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The current study evaluated the performance of traditional versus modern MDTs in the 

estimation of fixed-effects and variance components for data missing at the second level of an hierarchical 

linear model (HLM) model across 24 different study conditions.  Variables manipulated in the analysis 

included, (a) number of Level-2 variables with missing data, (b) percentage of missing data, and (c) Level-2 

sample size.  Listwise deletion outperformed all other methods across all study conditions in the 

estimation of both fixed-effects and variance components.  The model-based procedures evaluated, EM 

and MI, outperformed the other traditional MDTs, mean and group mean substitution, in the estimation 

of the variance components, outperforming mean substitution in the estimation of the fixed-effects as 

well.  Group mean substitution performed well in the estimation of the fixed-effects, but poorly in the 

estimation of the variance components. Data in the current study were modeled as missing completely at 

random (MCAR).  Further research is suggested to compare the performance of model-based versus 

traditional MDTs, specifically listwise deletion, when data are missing at random (MAR), a condition that is 

more likely to occur in practical research settings. 
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MISSING DATA TREATMENTS AT THE SECOND LEVEL OF HIERARCHICAL LINEAR MODELS 

Introduction 

A common problem in educational and survey research is the absence of observations for 

individuals on one or more variables of interest, which is generally referred to as missing data.  Missing 

data can result from unanswered questions, student absences, movement of students out of a school, or 

any situation involving the failure to collect an observation for a given variable.  Generally, missing data can 

result in two basic problems for most research designs: (a) a decrease in statistical power due to a loss of 

information, and (b) the possibility of biased estimates for parameters (Roth, 1994).  Power refers to the 

ability of a test to detect a statistically significant effect.  Bias refers to the under or overestimation of a 

parameter (Roth & Switzer, 1995).   

Reduction to Statistical Power 

A reduction in statistical power translates to an increased Type II error rate, which means that a 

statistically significant effect, if present, will be more difficult to detect (Delucchi, 1994).  Because most 

statistical procedures require complete data for a case for inclusion in analyses, cases with incomplete 

data are discarded by default (Gibson & Olejnik, 2003).  For multivariate procedures, the likelihood of a 

cases being discarded increases as the number of variables increases (Gleason & Staelin, 1975).  The 

resulting decreased sample size decreases the power of statistical tests to detect effects (Gibson & Olejnik, 

2003).   

Monte Carlo studies have demonstrated that 18.3% of cases from a data set may be lost to 

analyses when 2% of the data are missing randomly and entire cases with missing data are deleted (Roth 

& Switzer, 1995).  Many research design choices are conditioned on how missing data will be treated.  In 

determining sample size to provide adequate statistical power, the researcher will collect data from more 
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than the required sample to adjust for the expected amount of missing data.  Even with best efforts, 

however, researchers often find significant levels of missing data (Fichman & Cummings, 2003) and may 

not have large enough sample or enough power to detect a statistically significant effect.  

Biased Parameter Estimates 

Missing data may also result in biased parameter estimates.  If data are missing systematically, 

parameter estimates will be biased (Davey, Shanahan, & Schafer, 2001).  In education for example, if low 

performers have a greater tendency to be absent, they will more likely be missed for measurement on a 

given variable.  In this situation, measures of central tendency such as the mean will be biased upward 

because of the absence of lower scores.  Model parameters such as regression coefficients will also be 

biased if the variable with missing data is related to the dependent variable.  The bias also affects the 

amount of dispersion or variance around parameters (Roth & Switzer, 1995) and in this example may 

result in a reduction of variance for a given variable.  Reducing variance effectively restricts the range of 

variable values and leads to attenuation or reduction of correlations between variables with reduced 

variance.  Eliminating entire cases with missing data may increase the variance around the parameter 

estimate because of the smaller N divisor in the variance equation (Roth & Switzer, 1995) leading to the 

calculation of unreasonably large ranges for confidence intervals.  Simply stated, bias leads to a 

degradation of accuracy in the estimation of parameter estimates and precision in the estimation of 

parameter variance and confidence intervals. 

Missing Data Mechanisms 

Bias is heavily influenced by the missing data mechanism (MDM) underlying a given dataset.  A 

MDM is the process that prevents us from observing our intended data (Xiao-Li Meng, 2000), or a 

description of the probability distribution of the pattern of missing observations (Heitjan, 1997).  Simply 
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stated, the MDM provides an answer to the question, “why are the data missing?” (Hedecker & Gibbons, 

2006).  The concept of MDMs was formalized by Rubin (1976), who described two types of MDMs, data 

missing completely at random (MCAR), and missing at random (MAR).  Collectively, MCAR and MAR 

assumptions are known as ignorable MDMs.  Rubin’s theory has been expanded to include a third MDM, 

not missing completely at random (NMAR) or nonignorable (Little & Rubin, 2002).   

MCAR.  If the probability of missing data on a variable, Y, is unrelated to the value of Y itself or to 

the values of any other variables in the dataset, data are MCAR and are essentially a simple random 

subsample from the original set of observations (Allison, 2002; Hedecker & Gibbons, 2006; Little & Rubin, 

2002).  For example, if weight and age are two variables in a dataset, where some subjects are missing 

values for the weight variable, data are MCAR if (a) data missing for weight are not related to the missing 

data values for weight, and (b) data missing for weight are not related to the values for age.  When MCAR 

holds, regression using all complete records, means of available cases, nonparametric tests, and moment-

based methods such as generalized estimating equations are all valid or unbiased (Heitjan, 1997).  

However, by employing common MDTs such as listwise and pairwise deletion, the original sample size is 

decreased resulting in a reduction in power (Little & Rubin, 2002).  In other words, MCAR estimates are 

generalizable, but less precise because of smaller sample size (Pigott, 2001).   

MAR.  A slightly weaker assumption than MCAR is data missing at random (MAR).  MAR holds 

when the probability of missing data on Y is unrelated to the value of Y after controlling for other variables 

in the analysis, or the probability of missingness on Y given the values of X and Y is equal to the probability 

of missingness on Y given the values of X alone (Allison, 2002; Hedecker & Gibbons, 2006).  With MAR, 

missingness depends only on the components Yobs or on the components of Y that are observed and not 

on the components that are missing.  Continuing with the weight and age example above, data would be 
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MAR if (a) data missing for weight are not related to the missing data values for weight, and (b) data 

missing for weight are related to the values for age.  It is not possible to test whether or not MAR is 

satisfied because we don’t know the values of the missing data so cannot compare the values of those 

with and without missing data to see if they differ systematically on that variable (Allison, 2002). 

MAR is defined relative to the variables in the dataset.  If a variable X is related to both the 

missingness of other variables and to the values of those variables, and X is removed from the dataset, 

MAR no longer holds.  Because of this, it is wise to include variables in the imputation process that are 

predictive of missingness (Schafer & Olsen, 1998). 

Both MCAR and MAR can be classified as ignorable missing data mechanisms.  Ignorability implies 

that it is not necessary to model the process by which the data are missing (Allison, 2002), which simplifies 

the model-based methods used for the missing data analysis (Pigott, 2001).  Technically, a missing data 

mechanism is referred to as ignorable if (a) data are MAR, and (b) the parameters that govern the missing 

data are not related to the parameters to be estimated (Hedecker & Gibbons, 2006).  Although the second 

condition may not always be satisfied for MAR, MAR is still classified as ignorable because methods that 

assume ignorability work well even when the second assumption is violated.  When dealing with ignorable 

missing data, the strategy is to adjust for all observable differences between missing and nonmissing cases 

and assume that all remaining differences are unsystematic (Allison, 2002).  Methods used to treat 

ignorable missing data include listwise deletion, pairwise deletion, mean imputation, group mean 

imputation, regression imputation, the expectation maximization (EM) algorithm, and multiple imputation 

(MI). 

NMAR.  The ignorability assumption is often unrealistic because uncontrolled missingness typically 

arises from a mixture of ignorable and nonignorable sources (Schafer & Olsen, 1998).  When the 
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ignorability assumption is violated, data are considered not missing at random (NMAR) or the missing data 

mechanism is said to be nonignorable.  NMAR implies that the missingness of a variable Y is related to the 

value of Y.  If typical MDTs are applied to data that are NMAR, parameter estimates will be biased (Little & 

Rubin, 2002).  However, the alternative is to propose a formal probability model for nonresponse and to 

carry out the analysis under that model, which requires a great deal of technical expertise (Schafer & 

Olsen, 1998).  The results are very sensitive to the choice of the model, and there is no empirical way to 

discriminate the results of one nonignorable model from another (Allison, 2002).  For these reasons, 

Schafer & Olsen (1998) recommend the cautious use of ignorable methods with an awareness of their 

limitations, which is the focus of this paper. 

Missing Data Treatments 

There are several methods that are commonly used to help alleviate the problems caused by 

missing data.  These methods are collectively referred to as missing data treatments (MDTs).  MDTs can be 

classified as (a) deletion procedures, (b) imputation procedures, and (c) model-based methods.  The 

discussion of MDTs will be limited to the methods applied in the current study, (a) listwise deletion, (b) 

mean substitution, (c) group mean substitution, (d) the expectation maximization (EM) algorithm, and (e) 

multiple imputation (MI). 

Listwise deletion.  Listwise deletion is by far the most commonly used MDT (Davey, Schanahan, & 

Schafer, 2001).  With listwise deletion, individuals or cases are completely dropped from an analysis if they 

have missing values on any variable.  Listwise deletion is easy to implement as it is the default in most 

statistical packages.  Listwise deletion produces a complete data set, so standard statistical analyses can be 

applied without modifications.  The use of a consistent sample base results in the computation of 

comparable univariate statistics (Little & Rubin, 2002).  Despite its advantages, a major drawback to 



 

6 

 

listwise deletion is that it can dramatically reduce sample size, resulting in a loss of statistical power 

(Baraldi & Enders, 2010).  When the percentage of missing cases is low, loss of precision and bias in the 

estimation of parameters will generally be low (Little & Rubin, 2002).   This statement is highly contingent 

on the MDM underlying the data as the use of listwise deletion assumes that data are MCAR.  When 

MCAR does not hold, as it generally does not in practical settings, listwise deletion will produce biased 

results (Baraldi & Enders, 2010).   

When data are MCAR, assuming the original sample would produce unbiased parameter 

estimates, listwise deletion will produce unbiased estimates, as the reduced sample is essentially a 

random subsample of the original sample (Allison, 2002). Unbiased parameter estimation generally holds 

only for central tendency estimates such as the mean (Davey, Shanahan, & Schafer, 2001) but due to the 

reduction of n in the denominator for variance calculations, variance estimates will be biased upward even 

if MCAR holds.  Stated differently, variance estimates will be inflated due to the loss of information (Allison, 

2002; Little & Rubin, 2002), resulting in the construction of inefficient, less precise confidence intervals 

(Davey, Shanahan, & Schafer, 2001).  Loss of precision corresponds directly to a loss of power or the ability 

to detect a statistically significant effect.  A caveat to the above occurs if the variable with missing 

information, Y1, is uncorrelated to other variables in the data set.  Because the other variables provide no 

information for the prediction of, Y1, the variance estimate will be fully efficient (Little & Rubin, 2002).   

If data are MAR, listwise can yield biased estimates if the probability of an independent variable 

being missing is related to the dependent variable being evaluated (Allison, 2002).  Mean estimates can be 

biased upward or downward, depending on the variable values of the individuals deleted from the 

analysis. Variance and covariance will be attenuated, or biased downward, because of the restricted range 

of values used in the analysis (Baraldi & Enders, 2010).  However, listwise is the most robust method under 
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violations of MAR among independent variables so long as the probability of missing values on the 

independent variables is not dependent on the values of the dependent variable (Allison, 2002).  A missing 

data mechanism that depends only on the values of the independent variables is similar to 

disproportionate stratified sampling of the independent variables, and results in the estimation of 

unbiased regression coefficients (Allison, 2002).  As described above, there are some situations in which 

listwise deletion may yield unbiased parameter estimates, but the APA Task Force on Statistical Inference 

warns that listwise deletion is among the worst options available for handling missing values for practical 

applications (Wilkinson & APA Task Force on Statistical Inference, 1999). 

Mean substitution.  Imputation procedures, including mean and group mean substitution, 

effectively reduce the problems of diminished power caused by listwise deletion by filling in missing values 

so that the complete sample is utilized for each statistical test.  Mean substitution simply substitutes the 

mean of complete cases for a given variable for the missing cases.  Imputing the mean produces biased 

estimates for variances, covariances, and correlation coefficients (Baraldi & Enders, 2010; Haitovsky, 

1968).  Variance underestimation is a consequence of adding variables to the center of the distribution.  

When data are MCAR, the sample variance from the imputed data set underestimates the variance by a 

factor of (n(j) – 1)/(n – 1), where n is total sample size and n(j) is number of available cases (i.e. number of 

individuals not missing data or having data on a given variable), which can be applied as a correction factor 

to estimate the true variance.  A similar adjustment factor can be applied for computing covariances.  

Although correction factors will yield unbiased estimates, their use may result in covariance matrices that 

are not positive-definite (Little & Rubin, 2002).  Without adjustment, correlation coefficients will also be 

attenuated or biased downward (Baraldi & Enders, 2010; Raymond, 1986).  Further, confidence intervals 

created from the attenuated variances and covariances are less likely to cover the true parameter (Little & 
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Rubin, 1999).  Another problem with this method is that it ignores relationships among other variables 

that may be valuable in predicting the true missing values (von Hippel, 2003).  Even under the most 

stringent assumption of data MCAR, mean imputation will produce biased results, and therefore is not 

recommended under any circumstances (Pigott, 2001). 

Group mean substitution.  Group mean substitution goes a step beyond simple mean substitution, 

computing means by group membership on one or more other variables and imputing those values for 

missing cases.  Also known as conditional mean imputation, group mean substitution classifies non-

respondents and respondents into J adjustment classes, based on the observed variables, and imputes the 

respondent mean for non-respondents in the same class (Little & Rubin, 2002).  Group mean substitution 

should result in variances and covariances that are less biased than that of simple mean substitution 

because the method takes into account relationships with other variables (von Hippel, 2003).  However, 

group mean substitution ignores random components so variances will still be underestimated (von 

Hippel, 2003). 

Imputation methods are more sophisticated than deletion procedures in that they utilize 

information from the data set to predict missing data values, thereby preserving sample size and statistical 

power.  However, variances are always underestimated, regardless of the missing data mechanism, 

leading to attenuation of correlation coefficients with mean imputation and inflated correlations in 

regression imputation.  If data are MAR or NMAR, estimates will be even more severely biased.   

Model-based methods.  A better approach to missing data imputation is to employ model-based 

methods such as the expectation maximization (EM) algorithm and multiple imputation (MI), which are 

based on the notion of a complete data set or the data planned to have been collected originally (Longford 

et al., 2000; Baraldi & Enders, 2010).  Both procedures are iterative processes that employ maximum 
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likelihood (ML) algorithms where the goal is to choose estimates that if true will maximize the likelihood of 

observing the data at hand (Allison, 2002).  In general, ML methods borrow information from other 

variables during the estimation of parameters that involve missing values by incorporating information 

from the conditional distribution of the missing data given the observed data (Enders, 2001).  Simulation 

studies have suggested that ML algorithms may be superior to traditional ad hoc MDTs in many cases 

(Arbuckle, 1996; Enders & Bandalos, 2001; Muthen et al., 1987, Wothke, 2000).  MI generally uses EM 

estimates as starting points, therefore the EM algorithm will be described first.   

EM algorithm.  The EM algorithm is an indirect model-based method that actually imputes values 

for cases with missing data.  Other ML methods such as full information maximum likelihood (FIML) and 

the multiple-group approach directly estimate parameters without imputation (Enders, 2001).  Unlike 

conventional regression imputation, the EM algorithm always uses all available variables for predictors 

(Allison, 2002). 

The EM algorithm consists of two steps, the expectation (E) and maximization (M) steps, which 

are repeated in an iterative process until the model converges to the ML estimates.  For application to the 

multivariate normal distribution, the E step is essentially a regression imputation of the missing values 

(Allison, 2002).  Using listwise or pairwise deletion of the data set, variables with missing values are 

regressed on all available variables in the data set to obtain regression equations, and these equations are 

used to generate imputations for the missing values (Allison, 2002).  Stated differently, the E step finds the 

conditional expectation of the missing data given the observed data and current estimated parameters 

(i.e. mean and covariance matrix estimated using listwise or pairwise deletion (Allison, 2002)), then 

substitutes these expectations for the missing data (Little & Rubin, 2002).   
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The M step can be described as ML estimation of a parameter as if there had been no missing 

data (Little & Rubin, 2002).  It calculates new values for the means and covariance matrix using the 

imputed data from the E step with the original nonmissing data (Allison, 2002).  Means are calculated 

using standard formulas (Allison, 2002).  However, because the imputations are deterministic in nature 

(Schafer & Olsen, 1998), falling directly on a regression line and lacking a random error component, 

variance and covariance calculations must be modified so as not to underestimate these parameters 

(Allison, 2002; Enders, 2001).  After the new estimates are calculated, the process starts over with the E 

step.  The E and M steps are cycled through until the estimates converge, or there is very little change from 

one iteration step to the next (Allison, 2002).  Convergence may be slow if a large percentage of the data is 

missing (Little & Rubin, 2002).  Programs that incorporate the EM algorithm include SPSS Missing Values, 

EMCOV (Graham & Hofer, 1993), and NORM (Schafer, 1998), and Amelia II (Honaker, King & Blackwell, 

2010) available for free download in R.  Limitations with the EM algorithm include 1) limited theory and 

software for models other than linear and log-linear models, and 2) the reliance on corrected variance and 

covariance calculations to account for the underestimation of these parameters due to the deterministic 

nature of EM imputation (Allison, 2002).   

MI.  MI helps to overcome the limitations of the EM algorithm as it can be used with virtually any 

type of model and can be done with conventional software.  Further, MI produces different estimates 

each time because random variation is intentionally introduced into the imputation process by taking 

random draws from the residual distribution of each imputed variables and adding these random 

numbers to the imputed values (Allison, 2002).  MI further corrects the downward bias of standard error 

estimates by repeating data imputation multiple times such that there are n complete datasets.  Having 

multiple data sets produces variability for the parameters of interest, which adjust the standard errors 
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upward (Allison, 2002).  Variance of parameters in MI will have two components, within and between-

imputation variance.  Within-imputation variance is simply the mean of the variances of the imputed data 

sets, and between imputation variance is calculated as the variance between the variances of the imputed 

data sets (Little & Rubin, 2002).  Adequate results can be obtained using as few as five imputed data sets 

(Schafer, 1997).  MI will produce unbiased parameter estimates and realistic standard errors if model 

assumptions hold and the data are MAR or MCAR.  Even if MAR fails, MI will still result in robust estimates 

as long as the proportion of missing data is small (Raudenbush & Bryk, 2002). 

MDTs Applied within the HLM Framework 

The effectiveness of MDTs has been evaluated by many studies for univariate analyses such as 

ANOVA and regression, but few have evaluated their effectiveness for hierarchical linear models (HLM), 

which are commonly employed in organizational and educational research.  HLM models take into 

consideration data at multiple levels.  In a simple two-level model, observations for individuals such as test 

scores are Level-1 or first-level data, and observations for group-level data such as a school’s graduation 

rate are Level-2 or second-level data.   Missing data at the first level of an HLM model is not a large 

problem because grand and group parameters are estimated using Maximum Likelihood (ML) and 

Bayesian methods, respectively.  Both of these procedures produce unbiased parameter estimates 

because they take into consideration group sample size and variance in their estimation (Bryk and 

Raudenbush, 1992; Hox, 2002).   

Although data missing on individuals within groups (i.e. Level-1 data) does not pose a problem for 

HLM, missing data at the second level results in entire groups being dropped from the analysis, which 

greatly impacts the estimation of both grand and group parameters (Hox, 2002).  Data may be missing at 

the second level if there is no information for a group on a second-level variable or if there are no 
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individual observations within a group on a first-level variable.  In either case, there is no information for a 

group on a variable being used in the model so the parameter estimates will be biased, regardless of the 

estimation procedure chosen. 

Many recent studies have focused on MDTs and their application to structural equation modeling 

(SEM) (Savalei & Yuan, 2009; Song & Lee, 2008; Shin, Davison, & Long, 2009; Yuan & Lu, 2008), differential 

item functioning (DIF) research (Furlow et al., 2007; Garrett, 2009), and planned missingness in 

longitudinal designs (Baraldi & Enders, 2010; Graham, Hofer, & MacKinnon, 1996; Graham et al., 2006).  

Although many of these studies evaluate the effectiveness of MDTs to data that are hierarchical in nature, 

they do not explicitly evaluate the effectiveness or provide guidance for the application of MDTs at the 

second level of HLM models.  Most recently, Shin and Raudenbush (2010) proposed a latent cluster-mean 

approach to the contextual effects model with missing data, but their approach focuses on the use of 

Level-1 covariates for imputation of missing Level-2 variables.  The focus of this study is the evaluation of 

MDTs at the second level of HLM models without consideration of the value of the Level-1 covariates. 

Only one study to date (Gibson & Olejnik, 2003) has specifically evaluated the effectiveness of 

MDTs for data missing at the second level of an HLM analysis.  Gibson and Olejnik evaluated the 

effectiveness of (a) traditional or ad hoc MDTs including listwise deletion, mean substitution, group mean 

substitution, (b) and modern or model-based MDTs including expected maximization (EM) algorithm, and 

multiple imputation (MI) over four manipulated factors: (a) sample size for the second-level units, (b) 

correlation between intercepts and slopes, (c) number of second-level variables, and (d) percentage of 

missing data.  Data were generated to simulate a subset of data from the 1982 High School and Beyond 

Survey (National Center for Education Statistics, 1982) analyzed by Singer (1998) and discussed in Bryk and 

Raudenbush (1992).  Results were evaluated using multivariate repeated measures analysis to evaluate 
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the stability of parameter estimates over the various study conditions for each MDT.  Findings revealed 

listwise deletion and the EM algorithm performed well in estimating fixed effects for variables having 

missing values and variables with no missing values.  Listwise deletion was the only MDT that produced 

unbiased random effects estimates.  Unexpectedly, the MI procedure yielded the most distorted 

estimates of all MDTs evaluated.  Overall mean substitution also produced very biased effects.  None of 

the MDTs evaluated produced unbiased random effects estimates when the Level-2 sample size was 30 

and 40% of the data were missing.   

To further evaluate the effectiveness of MDTs for data missing at the second level of HLM models, 

additional factors and study conditions should be considered.  The current study will expand upon the 

work performed by Gibson and Olejnik, adding a factor for number of variables with missing data, and 

adding levels for sample size for the second-level units and percentage of missing data.  This study will also 

take a different approach in the data sampling procedures, drawing random samples directly from the 

subset of the HSB dataset (sub-HSB) cited above, in lieu of Gibson and Olejnik’s method of recreating and 

sampling from the recreated sub-HSB dataset.  Further, in place of standard statistical packages such as 

SPSS and SAS, the present study will use R, a free software environment for statistical computing and 

graphics, for data sampling, application of MDTs, and data analysis.   

Purpose 

Although a great deal of work in recent methodological research has focused on model-based 

MDTs, a substantial gap still exists between MDT procedures applied in practical research and the model-

based methods recommended by that the methodological literature (Bodner, 2006; Peugh & Enders, 

2004; Wood, White, & Thompson, 2004; Baraldi & Enders, 2010).  Further, there is limited research 

available on the application of MDTs specifically within the HLM framework.  To that end, the primary goal 
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of this study is to evaluate and compare the performance of traditional versus modern MDTs when data is 

missing at the second level of HLM models, expanding upon Gibson and Olejnik’s findings by including a 

broader range of study conditions that are likely to occur in practical settings.  It is also hoped that this 

research will provide practical researchers and students an alternative to SPSS, SAS, and other standard 

statistical packages for applying MDTs to their data. 

Method 

Dataset Chosen for Analysis 

 The sub-HSB dataset cited above was chosen for analysis in the current study because of the 

familiarity and wide range of use of the HSB dataset in the field of educational research (Heck, 2010).  

More specifically, the HSB dataset has become a classic in the demonstration of HLM (Bryk & Raudenbush, 

1992; Singer, 1998), the statistical procedure applied in the current study.  

Research has also been utilized in one prior study of missing data treatments (MDTs) for Level-2 

variables in HLM (Gibson & Olejnik, 2003) specifically to the sub-HSB dataset.  This dataset contains 

information from 90 public and 70 Catholic high schools with a total sample size of 7,185 students.  There 

are four student or Level-1 variables within the dataset: (a) a measure of mathematics achievement from 

the student’s senior year (MATH), (b) a measure of socioeconomic status (SES), (c) a (0, 1) dummy variable 

indicating student ethnicity, and (d) a (0, 1) dummy variable indicating student gender (FEMALE).  The 

Level-2 variables are: (a) the mean SES (MEANSES) of students within each school, (b) a (0, 1) dummy 

variable indicating whether the school is Catholic or public (SECTOR), (c) the number of students enrolled 

in the school (SIZE), (d) the proportion of students on the academic track (PRACAD), (e) a scale measuring 

disciplinary climate (DISCLIM), and (6) a (0, 1) dummy variable (HIMNTY) to identify schools with greater 

than 40% minority enrollment.  
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MDTs Applied 

For comparability to the Gibson and Olejnik study findings, the same 5 MDTs, listwise deletion, 

mean substitution, group mean substitution, the EM algorithm, and MI were applied to the missing data in 

the current study.  For all MDTs, data was imputed, or in the case of listwise deletion, deleted, at the 

second level.  Listwise, mean substitution, and group mean substitution were performed using standard 

functions in R.    For the model-based imputation procedures, EM and MI, packages developed specifically 

executing these algorithms were applied in lieu of developing new code.  For EM, the Amelia package 

(Honaker, King, & Blackwell, 2010) which employs an EM algorithm for imputing missing data was applied. 

For MI, the MICE package (van Buuren & Groothuis-Oudshoorn, 2011) was utilized.  Appendix A provides 

the code developed and executed in R. 

For listwise deletion, groups missing either a value on MEANSES or SECTOR were deleted from the 

analysis.  Mean substitution imputed the mean for MEANSES based on the mean value of MEANSES for 

the groups that were not missing data for MEANSES.  Expected values of 0 or 1 were imputed for the 

dichotomous variable, SECTOR.  

 For group mean imputation, a simple correlation analysis was first performed to determine which 

second level variables in the sub-HSB dataset were correlated with MEANSES and SECTOR.  PRACAD was 

the best overall predictor for both variables (r = .65 for MEANSES; r = .67 for SECTOR).  For the group mean 

imputation, PRACAD was dummy coded, with 0 equating to values of PRACAD < .50 and 1 equating to 

values of PRACAD > .50 (.50 is the median value for PRACAD).  The values for MEANSES and SECTOR were 

imputed based on the mean MEANSES and SECTOR on their dummy coded PRACAD value.  

HLM Model Evaluated 
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In the present study, the 5 MDTs identified above were applied to a two variable HLM model over 

varying conditions as described below.  MATH was chosen as the dependent variable for each model.  The 

HLM model included one Level-1 variable, CSES, two Level-2 variables, MEANSES and SECTOR, and a cross-

level interaction between CSES and SECTOR.  CSES (the grand mean centered SES variable) was used in the 

analysis for ease of result interpretation.  Several researchers have employed this model in their analyses 

(Bryk & Raudenbush, 1992; Singer, 1998), including Gibson and Olejnik’s (2003) research investigating the 

performance of MDTs at the second level of HLM models.  This model was appropriate for the current 

study as it is a partial replication of Gibson and Olejnik’s work and one goal is to compare the findings from 

the current study to their work.  The HLM model can be seen as: 

MATHij = γ00 + γ01 (MEANSES)j + γ02(SECTOR)j + γ10(CSESij) + γ11(MEANSES)j(CSESij) + 

γ12(SECTOR)j(CSESij) +       (1) 

u0j + u1j(CSESij) + rij . 

where MATH is modeled as a function of the grand mean (γ00); the main effects of MEANSES  (γ01), 

SECTOR (γ01), and CSES (γ10); two cross-level interactions of MEANSES with CSES (γ11) and SECTOR with 

CSES (γ12) ; and the random error terms, u0j + u1j(CSES) + rij.  Parameter estimates are presented in Table 1.  

Table 1 
HLM Model Parameter Estimates 

 

Parameter

Fixed Effects Coefficient se

Intercept 12.114           0.199  
CSES 2.936             0.151  
MEANSES 5.343             0.369  
SECTOR 1.215             0.306  
MEANSES x CSES 1.044             0.291  
SECTOR x CSES -1.642 0.233  

Random Effects

σ 2
e 36.766           0.018  

σ 2
µ 0 2.376             0.000  

σ 2
µ 1 0.000             0.072  

σ 2
µ 01 0.000             

Model Fit
AIC 46,524.791   
BIC 46,593.580   
-2*LL 46,504.791   

Model 1
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Study Conditions and Variables Evaluated  

Each missing data treatment was tested for robustness of parameter estimates across three main 

study factors.  The three factors are: (a) percentage of missing data or % missing, (b) Level-2 sample size, 

and (c) number of variables with missing data. 

Percentage of missing data.  Percentage of missing data was set at 3 levels, 10%, 25%, and 40%.  

Ten and 40% represent low and high levels of missingness, respectively, and are consistent with the values 

used by Gibson and Olejnik.  Twenty-five percent was added to evaluate a moderate level of missingness.  

Both MEANSES and SECTOR were modeled as having missing values.  MEANSES was chosen for 

comparability to results from Gibson and Olejnik.  SECTOR was added to evaluate the effects of missing 

data across multiple variables, a condition more likely to occur in practice.      

Level-2 sample size.  Level-2 or group sample size was set at 4 levels, 20, 30, 90, and 160, which 

represents the total number of groups (i.e. schools) included in the SUB-HSB dataset.  Twenty was chosen 

to evaluate the performance of the ad hoc vs. iterative MDTs under conditions violating the assumptions 

of the central limit theorem, which states that a sample size of 30 is typically needed to obtain normally 

distributed parameter estimates (Dielman, 2001).  A sample size less of 20 could lead to biased parameter 

estimates for the ad hoc MDTs, which assume normally distributed data, especially for listwise deletion as 

a percentage of cases will be deleted from the analysis. Another reason for the use of 20 is simply because 

small sample sizes such as 20 are commonly encountered in practice.  Thirty and 160 were chosen for 

consistency with Gibson and Olejnik’s (2003) Level-2 sample sizes.  Ninety was included to further address 

the effect of Level-2 sample size on power.  Past studies employing HLM models have used similar ranges.  

Snijders and Bosker (1993) suggested that the optimal sample size for number of schools is between 30 

and 62, and Level-2 sample size ranges from school effect studies that employed HLM have evaluated 
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ranges from 21 (Bernstein & Burstein, 1994)  to 100 (Hill & Goldstein, 1998).  Table 2 presents the different 

levels for each factor described above.  The design is fully crossed, yielding a total of 24 possible study 

conditions.   

Table 2 
 Factor Levels 

 

Parameter estimates of interest from each model were: (a) fixed-effects estimates for the 

variable(s) with missing data (MEANSES and SECTOR), (b) fixed-effects estimates for the other predictor 

variables in the model (including all cross-level interaction effects and SECTOR when not missing), and (c) 

variance components for each model.  

Sampling Procedure 

Multiple samples (sample size equal to 20, 30, 90, or 160) for each study condition were drawn 

without replacement from the sub-HSB dataset by applying an iterative sampling procedure written in R 

(Appendix A).  Before data was deleted from the MEANSES and SECTOR variables for a selected sample, an 

HLM analysis was first performed on the selected sample (i.e. complete data) to derive parameters for the 

HLM Model outlined above.  The parameter estimates and standard errors for the complete data were 

later compared to estimates generated with the imputed data for each missing data treatment.  Data 

were simulated as MCAR by applying a simple random sampling procedure, such that all values for both 

MEANSES and SECTOR had an equal probability of being deleted from the dataset.  Missingness was 

modeled separately for the variables MEANSES and SECTOR, therefore a school may have a missing value 

for MEANSES, but not for SECTOR.  For listwise deletion, this led to a greater proportion of cases deleted 

Factors Levels
% Missing 10%, 25% and 40%

Sample Size 20, 30, 90, and 160

Predictors w/Missing Values 1 and 2
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from the analysis than the percent missing study condition of 10% to 40%.  One hundred iterations of the 

following steps were performed for each of the 24 study conditions: 

1. Sampled k schools from the sub-HSB dataset (i.e. complete data) 

2. Performed HLM analysis and generated parameter estimates for complete data 

3. Deleted specified percentage of variable values for predictor(s)  

4. Applied MDTs to missing data 

5. Performed HLM analysis and generated parameter estimates for MDT treated datasets 

6. Saved estimates with fields identifying the study conditions applied  

One hundred iterations is consistent with the values used in the Gibson and Olejnik (2003) study 

and yields a sufficient level of power (>0.80) for detecting a statistically (p < .05) and practically (partial    

or   
  > .10) significant effect in the application of a repeated measures design (Cohen, 1992; Cohen, 

1988).  With the repeated measures design, MDT was modeled as the within subjects factor.  In total, 

2400 iterations and 14,400 total observations were generated (6 observations for each iteration including 

1 for the complete data and 1 for each MDT). 

Evaluation of MDT Performance 

To determine the accuracy and precision of the estimates for each MDT, the mean estimate and 

mean standard error for each parameter were computed and compared to estimates produced from the 

complete data sampled prior to deleting a percentage of variables from MEANSES and SECTOR.  To 

determine if there was a statistically significant effect of the 3 chosen factors on the parameter estimates, 

6 repeated measure MANOVA models, one for each set of dependent variables, were used to evaluate 

which factors contributed to deviations in the estimates.  For each MANOVA model, MDT served as the 

within subjects factor or condition across which each condition was measured, and the remaining study 
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factors (% missing, Level-2 sample size, and number of predictors with missing data) served as between 

subjects factors.  The variables included for each repeated measures MANOVA model are detailed below. 

 The independent variables for the MANOVAs were % missing, Level-2 sample size, and number of 

predictors with missing values.  For MANOVA 1, the dependent variable was the fixed-effect for MEANSES 

(γ01).  For MANOVA 2, the dependent variables were the fixed-effects for MEANSES (γ01) and SECTOR (γ02).  

MANOVA 2 evaluates only conditions with missingness on 2 variables because SECTOR was only missing 

when number of predictors with missing values was equal to 2.  Therefore, the number of factors is 

reduced to 2 for the MANOVA 2 model (% missing and Level-2 sample size).  The dependent variables for 

MANOVA 3 included fixed effects for intercept (γ00), CSES (γ10), and the cross-level interaction of MEANSES 

x CSES (γ11), and the fixed effect for SECTOR x CSES (γ12).  MANOVA 4 included the MANOVA 3 variables 

plus SECTOR when number of predictors with missing values was equal to 1 (as on MANOVA 2, number of 

factors for MANOVA 4 was reduced to 2).  MANOVA 5 evaluated the random effects for intercept (u0j), 

CSES slope (u1j), and the Level-1 residual (rij), and the covariance (u01).   

Statistical significance was evaluated at α = .05.  Partial eta squared,   
 , was evaluated to 

determine practical significance (  
 = SSeffect / (SSeffect + SSerror), where SSeffect is the sum of squares for the 

effect of interest, and SSerror is the sum of squares error associated with the effect of interest).  Practical 

significance was set at   
  > .10 for the MANOVAs because the multiple dependent variables and within 

subjects measurements (i.e. MDTs) make it relatively easy to detect an effect at the standard    
  > .03 

level, the level chosen by Gibson and Olejnik (2003).  For planned contrasts and post-hoc analyses 

comparing 2 MDTs on one dependent variable, the standard   
  > .03 as recommended by Kromrey and 

Hines (1994) was considered practically significant.  Planned repeated contrasts for the MDTs compared to 

the complete data sample on each parameter estimate were first evaluated.  For planned contrasts 
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yielding statistically and practically significant results, post-hoc analyses were then performed.  To protect 

against Type I error rate, Bonferroni correction, maintaining a family-wise α = .05, was applied to the 

planned contrasts and post-hoc analyses. 

The practical significance of differences between the complete data values with each MDT was 

assessed for MEANSES using Cohen’s d (Cohen, 1992; Cohen, 1988).  For the calculation of Cohen’s d, data 

were evaluated by condition, such that there was one Cohen’s d calculated for each MDT on each 

condition (24 x 5 = 120 Cohen’s d values). Following the recommendation of Kromrey and Hines (1994), a 

Cohen’s d > |.3| was considered significant. Cohen’s d was calculated on MEANSES, the variable imputed 

across all conditions.    

Expected Findings 

 Data was evaluated for statistical and practical significance using the procedures outlined above. 

Expected findings included: 

1. Near equivalent performance of all MDTs with 10% missing data for fixed effects. 

2. Model-based MDTs outperforming the ad hoc procedures on 40% missing data. 

3. Poorer performance for all MDTs going from 1 to 2 variables with missing data.   

Biased variance components for ad hoc MDTs across all conditions. 

Results 

Fixed-Effects for Variables with Missing Data 

 MANOVA 1 MEANSES.  For MANOVA 1, with fixed-effect MEANSES as the dependent variable, an 

interaction between MDT and number of missing variables was detected, F(5, 2372) = 73.43, p < .05,   
 

 = 

.134.  To further assess this interaction effect, data were aggregated across the levels of % missing and 

Level-2 sample size and analyzed separately for the number of missing variable levels (1 and 2).  Table 3 
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compares the mean estimates of the MEANSES fixed-effect for each MDT to the values produced with 

complete data by number of missing variables. For both 1 and 2 missing variables, mean substitution 

produced estimates that were significantly different, both statistically and practically, from the complete 

data, F(1, 1199) = 103.99, p < .05,   
   = .080, and F(1, 1199) = 62.24, p < .05,   

   = .049, for 1 and 2 missing 

variables, respectively.  Mean substitution underestimated MEANSES when number of missing variables 

was equal to 1, overestimated MEANSES when variable missing was 2.  The EM algorithm estimates also 

differed from the complete data for the case of missing 1 variable, F(1, 1199) = 40.60, p < .05,   
  = .033, 

underestimating the MEANSES complete data estimate. 

Table 3 
Mean Estimates of the MEANSES Fixed-Effects by MDT and Number of Missing Variables 

 
Note: Data were aggregated over % missing and Level-2 sample size; df = 1, 1199. 

Effect size estimates for MEANSES.  To evaluate the practical significance of differences in the MDT 

estimates compared to complete data, effect size estimates were computed for the MDTs on fixed-effects 

estimates for MEANSES using Cohen’s d.  For a given study condition, d compares the mean parameter 

estimate from each MDT to the mean of the complete data samples.  Tables 4 displays Cohen’s d effect 

sizes of the MDTs on the fixed-effects for MEANSES as the only missing variable.    

 
 
 
 
 

Number of Missing Variables MDT M SE F p 
0 Complete data 5.285 .019 -- -- --
1 Listwise deletion 5.287 .026 0.02 .89 .000
1 Mean substitution 5.078 .027 103.99 <.01 .080
1 Group mean substitution 5.317 .025 3.36 .07 .003
1 EM algorithm 5.135 .030 40.60 <.01 .033
1 Multiple imputation 5.242 .027 4.82 <.05 .004

0 Complete data 5.283 .020 -- -- --
2 Listwise deletion 5.261 .035 0.63 .43 .001
2 Mean substitution 5.420 .026 62.24 <.01 .049
2 Group mean substitution 5.263 .027 1.40 .24 .001
2 EM algorithm 5.175 .032 16.39 <.01 .013
2 Multiple imputation 5.308 .027 1.83 .18 .002
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Table 4 
Effect Size Estimates (Cohen’s d) of MDTs on the Fixed-Effects for MEANSES  

 
Note: Boldface indicates practical significance (Cohen’s d > |.3|) 
 

For the estimation of the MEANSES fixed-effect, all MDT procedures performed well across all 

conditions when % missing was 10%, an expected outcome.  With the exception of listwise deletion and 

group mean imputation, all the procedures started to break down at the 25% missing point.  Mean 

imputation, and the EM algorithm were the poorest performers, particularly in the cases where 40% of 

the data was missing.  Listwise deletion and group mean substitution demonstrated the best performance 

of the MDTs, breaking down only under conditions where 40% of the data was missing.  Group mean 

substitution was the most precise estimator of MEANSES, with both the smallest mean Cohen’s |d| and 

least amount of variance in Cohen’s |d| across all study conditions.   

 

 

% Missing Sample Size Missing Variables Listwise Mean Sub Grp Mean Sub EM MI

10% 20 1 0.035         0.033                 0.092                        0.015           0.071          

10% 20 2 0.006         0.013                 0.015                        0.066           0.054          

10% 30 1 0.057         0.070                 0.062                        0.006           0.026          

10% 30 2 0.048         0.034                 0.059                        0.004           0.005          

10% 90 1 0.025         0.206                 0.051                        0.002           0.049          

10% 90 2 0.080         0.176                 0.006                        0.226           0.092          

10% 160 1 0.013         0.082                 0.007                        0.027           0.019          

10% 160 2 0.023         0.048                 0.015                        0.046           0.024          

25% 20 1 0.059         0.346                 0.098                        0.516           0.053          

25% 20 2 0.117         0.149                 0.033                        0.500           0.039          

25% 30 1 0.140         0.125                 0.165                        0.041           0.009          

25% 30 2 0.182         0.207                 0.056                        0.203           0.052          

25% 90 1 0.116         0.583                 0.110                        0.363           0.327          

25% 90 2 0.008         0.346                 0.139                        0.165           0.043          

25% 160 1 0.031         0.198                 0.050                        0.078           0.058          

25% 160 2 0.035         0.155                 0.013                        0.115           0.050          

40% 20 1 0.027         0.578                 0.084                        1.267           0.489          

40% 20 2 0.121         0.285                 0.066                        0.838           0.130          

40% 30 1 0.036         0.349                 0.021                        0.478           0.367          

40% 30 2 0.169         0.198                 0.099                        0.343           0.087          

40% 90 1 0.001         0.933                 0.340                        0.211           0.036          

40% 90 2 0.654         0.663                 0.279                        0.745           0.406          

40% 160 1 0.015         0.251                 0.095                        0.161           0.121          

40% 160 2 0.035         0.227                 0.034                        0.197           0.094          

Mean |d | 0.085         0.261                 0.083                        0.276           0.113          

Standard deviation 0.132         0.227                 0.082                        0.316           0.136          
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Fixed Effects for Variables without Missing Data 

 MANOVA 3.  For MANOVA 3, which included the Level-1 and cross-level interaction effects, a 

statistically and practically significant effect was detected for the interaction between number of missing 

variables and MDT, F(20, 2357) = 80.14, p < .05,   
   = .405.  Planned repeated contrasts of this interaction 

effect revealed differences across all effects estimated.  Data were aggregated across the non-statistically 

and practically significant predictors for MANOVA 3 (% missing and Level-2 sample size) and the mean 

estimates produced by each MDT for each fixed-effect were compared to the complete data by number 

of missing variables (Tables 5-8).  

Table 5 
Mean Estimates of MANOVA 3 Intercept by MDT and Number of Missing Variables  

Note: Data were aggregated across % missing and Level-2 sample size; df = 1, 1199 

Table 6 
Mean Estimates of MANOVA 3 CSES by MDT and Number of Missing Variables 

 
Note: Data were aggregated across % missing and Level-2 sample size; df = 1, 1199 

 
 

Effect Number of Missing Variables MDT M SE F p 

Intercept 0 Complete data 12.106 .009 -- -- --

1 Listwise deletion 12.118 .012 3.16 .08 .003

1 Mean substitution 11.900 .013 564.10 <.01 .320

1 Group mean substitution 12.106 .012 0.00 .98 .000

1 EM algorithm 12.074 .013 14.69 <.01 .012

1 Multiple imputation 12.070 .012 21.20 <.01 .017

0 Complete data 12.124 .009 -- -- --

2 Listwise deletion 12.137 .015 1.26 .26 .001

2 Mean substitution 12.103 .014 3.72 .05 .003

2 Group mean substitution 12.157 .012 14.42 <.01 .012

2 EM algorithm 12.135 .013 1.17 .28 .001

2 Multiple imputation 12.136 .012 1.85 .17 .002

Effect Number of Missing Variables MDT M SE F p 

CSES 0 Complete data 2.940 .008 -- -- --

1 Listwise deletion 2.941 .010 0.04 .84 .000

1 Mean substitution 2.905 .008 200.74 <.01 .143

1 Group mean substitution 2.930 .008 14.90 <.01 .012

1 EM algorithm 2.927 .008 26.32 <.01 .021

1 Multiple imputation 2.929 .008 23.35 <.01 .019

0 Complete data 2.945 .007 -- -- --

2 Listwise deletion 2.934 .012 1.08 .30 .001

2 Mean substitution 2.735 .010 838.90 <.01 .412

2 Group mean substitution 2.918 .008 42.88 <.01 .035

2 EM algorithm 2.860 .009 255.11 <.01 .175

2 Multiple imputation 2.878 .008 185.25 <.01 .134
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Table 7  
Mean Estimates of MANOVA 3 MEANSES x CSES by MDT and Number of Missing Variables 

 
Note: Data were aggregated across % missing and Level-2 sample size; df = 1, 1199 

Table 8 
Mean Estimates of MANOVA 3 SECTOR x CSES by MDT and Number of Missing Variables 

 
Note: Data were aggregated across % missing and Level-2 sample size; df = 1, 1199 

With the exception of mean substitution, all the MDTs performed well in the estimation of the 

intercept parameter across conditions with both 1 and 2 missing variables.  As hypothesized, the MDTs 

typically performed better in the case of 1 missing variable for the Level-1 and cross-level interaction 

effects.  The major exception was for mean substitution, which performed better when 2 variables were 

missing, F(1, 1199) = 564.10, p < .05, η2
p = .320, and F(1, 1199) = 3.72,  p < .05,   

  = .003, for 1 and 2 

missing variables, respectively.  Overall, mean substitution performed the poorest across the estimation of 

the other fixed-effects parameters, consistently underestimating the parameters across both 1 and 2 

missing variables.  The other MDTs were more balanced in the over and underestimation of the 

parameters.  MI and EM yielded different Level-1 and cross-level parameter estimates than the complete 

Effect Number of Missing Variables MDT M SE F p 

MEANSESxCSES 0 Complete data 0.968 .018 -- -- --
1 Listwise deletion 0.949 .022 2.11 <.01 .000
1 Mean substitution 0.919 .022 11.77 <.01 .010
1 Group mean substitution 0.890 .021 41.74 <.01 .034
1 EM algorithm 0.892 .019 45.17 <.01 .036
1 Multiple imputation 0.924 .020 15.40 <.01 .013

0 Complete data 1.000 .018 -- -- --
2 Listwise deletion 0.925 .030 9.77 <.01 .008
2 Mean substitution 0.632 .024 449.74 <.01 .273
2 Group mean substitution 0.955 .022 10.39 <.01 .009
2 EM algorithm 0.802 .021 200.43 <.01 .143
2 Multiple imputation 0.873 .021 90.79 <.01 .070

Effect Number of Missing Variables MDT M SE F p 

SECTORxCSES 0 Complete data (1.640) .013 -- -- --
1 Listwise deletion (1.639) .015 0.02 .89 .000
1 Mean substitution (1.553) .013 314.49 <.01 .208
1 Group mean substitution (1.613) .013 30.57 <.01 .025
1 EM algorithm (1.613) .013 33.58 <.01 .027
1 Multiple imputation (1.614) .013 33.46 <.01 .027

0 Complete data (1.643) .012 -- -- --
2 Listwise deletion (1.604) .020 5.23 <.05 .004
2 Mean substitution (1.208) .015 1,140.07 <.01 .487
2 Group mean substitution (1.550) .014 121.10 <.01 .092
2 EM algorithm (1.458) .014 299.45 <.01 .200
2 Multiple imputation (1.503) .014 217.34 <.01 .153
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data when number of variables missing was 2.  Group mean substitution performed well in the estimation 

of 3 of the 4 parameters with both 1 and 2 missing variables, but did yield a sizeable difference from the 

complete data in the estimation of SECTORxCSES.  Listwise deletion was the only MDT not to yield a 

practically significant difference from the complete data on any of the post-hocs evaluated.   

MANOVA 4.  With the addition of the fixed-effect for SECTOR in MANOVA 4, an interaction 

between % missing and MDT was detected, F(50, 2328) = 18.80, p < .05,   
  = .288.  Planned repeated 

contrasts of this interaction revealed differences across the effects for Intercept, SECTOR, and 

SECTORxCSES.  Post-hoc analyses were conducted across these fixed-effects by % missing to further 

investigate the differences.  

Results of the post-hoc analyses are shown in Tables 9-11.  For every level of % missing on every 

parameter evaluated, mean substitution yielded a significantly, both statistically and practically, different 

estimate from that of the complete data, with a larger variance detected from the complete data as % 

missing increased.  Variance from the complete data with mean substitution was most noteworthy on 

SECTOR.  Mean substitution underestimated both main effects components (SECTOR and CSES) and 

underestimated the SECTORxCSES cross-level interaction across all levels.  The other MDTs were more 

balanced in their effects and performed well under 10% and 25% missingness, although MI detected a 

small variance from the complete data under 25% missingness. Collectively, MI and the EM algorithm 

deviated from the complete data under 40% missingness on all 3 parameters estimated.  Group mean 

substitution performed well across all conditions except 40% missing on the SECTORxCSES cross-level 

interaction, where it showed a slight variance from the complete data.  Listwise outperformed all MDTs on 

all conditions evaluated, and did not detect a statistically or practically significant difference from the 

complete data on any of the parameter estimates.  
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Table 9 
Mean Estimates of MANOVA 4 Intercept by MDT and % Missing  

Note: df = 1, 399; Number of variables with missing data = 1 for every condition evaluated. 

Table 10 
Mean Estimates of MANOVA 4 SECTOR by MDT and % Missing  

Note: df = 1, 399; Number of variables with missing data = 1 for every condition evaluated. 

 
 
 
 
 
 
 
 
 

Effect % Missing MDT M SE F p 

Intercept 0 Complete data 12.110 .016 -- -- --

10 Listwise deletion 12.123 .017 3.71 .05 .009

10 Mean substitution 12.024 .018 127.22 <.01 .242

10 Group mean substitution 12.113 .017 0.17 .68 .000

10 EM algorithm 12.102 .017 1.19 .28 .003

10 Multiple imputation 12.097 .017 4.09 <.05 .010

0 Complete data 12.115 .015 -- -- --

25 Listwise deletion 12.131 .019 2.02 .16 .005

25 Mean substitution 11.932 .022 162.35 <.01 .289

25 Group mean substitution 12.134 .021 2.00 .16 .005

25 EM algorithm 12.088 .022 4.13 <.05 .010

25 Multiple imputation 12.102 .022 0.89 .35 .002

0 Complete data 12.092 .017 -- -- --

40 Listwise deletion 12.100 .024 0.24 .62 .001

40 Mean substitution 11.745 .026 373.77 <.01 .484

40 Group mean substitution 12.070 .023 1.95 .16 .005

40 EM algorithm 12.033 .026 9.43 <.01 .023

40 Multiple imputation 12.011 .025 21.09 <.01 .050

Effect % Missing MDT M SE F p 

SECTOR 0 Complete data (1.641) .023 -- -- --

10 Listwise deletion (1.654) .025 2.07 .15 .005

10 Mean substitution (1.600) .023 166.07 <.01 .294

10 Group mean substitution (1.628) .023 1.59 .21 .004

10 EM algorithm (1.632) .023 0.06 .81 .000

10 Multiple imputation (1.628) .023 1.18 .28 .003

0 Complete data (1.648) .021 -- -- --

25 Listwise deletion (1.631) .025 0.07 .79 .000

25 Mean substitution (1.560) .021 361.11 <.01 .475

25 Group mean substitution (1.617) .022 1.80 .18 .004

25 EM algorithm (1.621) .021 0.81 .37 .002

25 Multiple imputation (1.615) .021 4.01 .05 .010

0 Complete data (1.632) .023 -- -- --

40 Listwise deletion (1.632) .030 2.59 .11 .006

40 Mean substitution (1.500) .022 735.04 <.01 .648

40 Group mean substitution (1.594) .024 1.48 .22 .004

40 EM algorithm (1.587) .022 23.84 <.01 .056

40 Multiple imputation (1.597) .022 38.51 <.01 .088
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Table 11 
Mean Estimates of MANOVA 4 SECTOR x CSES by MDT and % Missing  

Note: df = 1, 399; Number of variables with missing data = 1 for every condition evaluated. 

Variance Components 

 For the random effects in MANOVA 5, interaction effects were detected between all the between 

subjects factors and MDT.  Planned contrasts were inspected to see which variables were driving these 

effects.  All parameters varied across the number of missing variables and MDT interaction.  Intercept 

variance and covariance differed across the % missing x MDT interaction.  Only intercept variance 

estimation was effected by the Level-2 sample size x MDT interaction effect.  Post-hoc analyses were 

performed to determine the exact pair-wise effects for each interaction and parameter.  Results are 

detailed in Tables 12-15 below. 

Tables 12 and 13 display the intercept variance and covariance estimates by MDT and % missing.  

With the exception of listwise deletion, intercept variance and covariance estimates were inflated for all 

MDTs, increasing with the level of % missing.  Mean and group mean substitution were the poorest 

performers, particularly in the estimation of intercept variance with 40% missing data.  MI and EM 

Effect % Missing MDT M SE F p 

SECTORxCSES 0 Complete data 1.287 .029 -- -- --

10 Listwise deletion 1.271 .029 1.99 .16 .005

10 Mean substitution 1.463 .031 54.31 <.01 .120

10 Group mean substitution 1.272 .031 5.41 <.05 .013

10 EM algorithm 1.284 .030 3.49 .06 .009

10 Multiple imputation 1.301 .030 6.89 <.05 .017

0 Complete data 1.205 .028 -- -- --

25 Listwise deletion 1.199 .036 1.22 .27 .003

25 Mean substitution 1.662 .037 101.86 <.01 .203

25 Group mean substitution 1.175 .036 10.64 <.01 .026

25 EM algorithm 1.226 .037 10.09 <.01 .025

25 Multiple imputation 1.248 .037 12.94 <.01 .031

0 Complete data 1.260 .029 -- -- --

40 Listwise deletion 1.210 .042 0.00 1.00 .000

40 Mean substitution 2.018 .041 175.37 <.01 .305

40 Group mean substitution 1.291 .040 14.91 <.01 .036

40 EM algorithm 1.430 .046 20.60 <.01 .049

40 Multiple imputation 1.451 .044 14.22 <.01 .034
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outperformed mean and group mean substitution, but again, listwise deletion produced the least biased 

estimates across all levels of % missing. 

Table 12 
Mean Estimates of Intercept Variance by MDT and % Missing 

 
Note: Data aggregated across number of missing variables and Level-2 sample size; df = 1, 799 

Table 13 
Mean Estimates of Covariance by MDT and % Missing 

 
Note: Data aggregated across number of missing variables and Level-2 sample size; df = 1, 799 

 
 
 
 
 
 
 

Effect % Missing MDT M SE F p 

Intercept Variance 0 Complete data 2.443 .029 -- -- --
10 Listwise deletion 2.440 .031 0.06 .81 .000
10 Mean substitution 3.013 .037 672.49 <.01 .457
10 Group mean substitution 2.802 .034 356.73 <.01 .309
10 EM algorithm 2.622 .032 99.93 <.01 .111
10 Multiple imputation 2.644 .032 140.33 <.01 .149

0 Complete data 2.424 .028 -- -- --
25 Listwise deletion 2.432 .043 0.07 .79 .000
25 Mean substitution 3.815 .044 1,777.77 <.01 .690
25 Group mean substitution 3.292 .040 1,006.72 <.01 .558
25 EM algorithm 2.997 .043 319.56 <.01 .286
25 Multiple imputation 2.968 .040 406.74 <.01 .337

0 Complete data 2.378 .030 -- -- --
40 Listwise deletion 2.384 .047 0.02 .87 .000
40 Mean substitution 4.552 .050 3,084.68 <.01 .794
40 Group mean substitution 3.772 .044 1,917.53 <.01 .706
40 EM algorithm 3.326 .050 512.39 <.01 .391
40 Multiple imputation 3.344 .045 751.41 <.01 .485

Effect % Missing MDT M SE F p 

Covariance 0 Complete data 0.137 .013 -- -- --
10 Listwise deletion 0.163 .014 14.05 <.01 .017
10 Mean substitution 0.227 .015 99.63 <.01 .111
10 Group mean substitution 0.247 .015 169.33 <.01 .175
10 EM algorithm 0.204 .014 82.89 <.01 .094
10 Multiple imputation 0.208 .014 96.84 <.01 .108

0 Complete data 0.128 .011 -- -- --
25 Listwise deletion 0.169 .016 11.41 <.01 .014
25 Mean substitution 0.279 .017 115.96 <.01 .127
25 Group mean substitution 0.347 .016 319.23 <.01 .285
25 EM algorithm 0.249 .015 111.11 <.01 .122
25 Multiple imputation 0.257 .014 143.87 <.01 .153

0 Complete data 0.130 .011 -- -- --
40 Listwise deletion 0.192 .019 12.34 <.01 .015
40 Mean substitution 0.317 .020 121.12 <.01 .132
40 Group mean substitution 0.462 .017 620.40 <.01 .437
40 EM algorithm 0.330 .018 205.33 <.01 .204
40 Multiple imputation 0.306 .016 183.64 <.01 .187
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Table 14 
Mean Estimates of Slope Variance by MDT and Number of Missing Variables 

Note: Data aggregated across % missing and Level-2 sample size; df = 1, 1199 

Table 15 
Mean Estimates of Intercept Variance by MDT and Number of Missing Variables 

 
Note: Data aggregated across % missing and Level-2 sample size; df = 1, 1199 

 Tables  14 and 15 show the pair-wise comparisons by number of missing variables MDT for the 

slope and intercept variance components.  With the exception of listwise deletion, all MDTs performed 

poorly in the estimation of intercept variance.  As the number of missing variables increased from 1 to 2, 

estimation of intercept variance was consistently, but not markedly, poorer for each MDT (with the 

exception of listwise).  All of the MDTs differed from the complete data in the estimation of slope variance, 

again with variance from the complete data increasing from 1 to 2 missing variables with the exception of 

listwise deletion, which was fairly consistent across both levels of missingness.  In most cases, mean 

imputation was the poorest performer and listwise the best. 

 
 

Effect Number of Missing Variables MDT M SE F p 

Slope Variance 0 Complete data 0.200 .009 -- -- --

1 Listwise deletion 0.283 .012 125.46 <.01 .095

1 Mean substitution 0.293 .009 414.28 <.01 .257

1 Group mean substitution 0.293 .009 479.82 <.01 .286

1 EM algorithm 0.276 .009 307.10 <.01 .204

1 Multiple imputation 0.267 .009 279.88 <.01 .189

0 Complete data 0.218 .010 -- -- --

2 Listwise deletion 0.345 .015 113.32 <.01 .086

2 Mean substitution 0.476 .012 994.13 <.01 .453

2 Group mean substitution 0.351 .011 523.59 <.01 .304

2 EM algorithm 0.351 .011 473.27 <.01 .283

2 Multiple imputation 0.340 .011 479.24 <.01 .286

Effect Number of Missing Variables MDT M SE F p 

Intercept Variance 0 Complete data 2.435 .024 -- -- --

1 Listwise deletion 2.446 .030 0.34 .56 .000

1 Mean substitution 3.654 .038 1,728.66 <.01 .590

1 Group mean substitution 3.285 .034 1,168.41 <.01 .494

1 EM algorithm 2.952 .034 412.23 <.01 .256

1 Multiple imputation 2.990 .033 516.96 <.01 .301

0 Complete data 2.395 .024 -- -- --

2 Listwise deletion 2.391 .036 0.02 .89 .000

2 Mean substitution 3.932 .042 1,982.95 <.01 .623

2 Group mean substitution 3.292 .034 1,294.66 <.01 .519

2 EM algorithm 3.011 .037 426.70 <.01 .262

2 Multiple imputation 2.980 .033 601.97 <.01 .334C
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Table 16 
Mean Estimates of Level-1 Variance by MDT and Number of Missing Variables 

 
Note: Data aggregated across % missing and Level-2 sample size; df = 1, 1199 

 Tables 16 and 17 display the post-hoc results by number of missing variables and MDT for the 

Level-1 variance and covariance parameters.  For both of these parameters, the performance of the MDTs 

improved when going from 1 to 2 missing variable values.  With the exception of listwise deletion, all the 

MDTs performed poorly with 1 missing variable.  Mean substitution and listwise deletion were both strong 

performers in the case of 2 missing variables for both Level-1 variance and covariance.  Group mean 

substitution was the poorest overall performer, deviating from the complete data estimate on each 

missing variable level for both Level-1 variance and covariance.  Although listwise appears to have 

outperformed the other MDTs in the estimation of Level-1 variance, the standard error for this parameter 

estimate was inflated for listwise compared to the other MDTs.  A result of this is the construction of an 

inefficient, less precise confidence interval (Davey, Shanahan, & Schafer, 1999) that corresponds directly to 

the ability to detect a statistically significant effect between the complete data and listwise deletion.   It 

should also be noted that the Level-1 variance is obviously more subjective to individual Level-1 data, and 

because a random sample of the Level-2 predictors was deleted, the Level-1 variance did not vary in a 

practical sense for any of the MDTs.   

 
 
 

Effect Number of Missing Variables MDT M SE F p 

Variance Level-1 0 Complete data 36.628 .036 -- -- --
1 Listwise deletion 36.584 .045 2.87 .09 .002
1 Mean substitution 36.604 .036 339.57 <.01 .221
1 Group mean substitution 36.605 .036 335.42 <.01 .219
1 EM algorithm 36.609 .036 233.91 <.01 .163
1 Multiple imputation 36.610 .036 211.49 <.01 .150

0 Complete data 36.665 .037 -- -- --
2 Listwise deletion 36.638 .053 0.48 .49 .000
2 Mean substitution 36.666 .037 0.49 .48 .000
2 Group mean substitution 36.652 .037 59.53 <.01 .047
2 EM algorithm 36.657 .037 21.68 <.01 .018
2 Multiple imputation 36.655 .037 34.68 <.01 .028
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Table 17 
Mean Estimates of Covariance by MDT and Number of Missing Variables 

Note: Data aggregated across % missing and Level-2 sample size; df = 1, 1199 

 Table 18 shows the interaction effect of MDT and Level-2 sample size in the estimation of 

intercept variance.  With the exception of listwise deletion, all MDTs consistently overestimated intercept 

variance compared to the complete data.  Mean and group mean substitution were the poorest 

performers, followed by EM and MI.  The   
  effect size indicated poorer performance with increased 

sample size.  However, it should be noted that as sample size increases, the variance in the complete data 

decreases, resulting in a reduction to error variance, part of the denominator in the calculation of the   
 

 

effect size.  The variance in the MDT parameter estimates also decreases as sample size increases, but not 

at the same rate as the complete data, therefore, the variance of the within subjects factor, MDT, 

becomes progressively larger in relationship to the error variance, resulting in a larger   
  effect size.  

Stated another way, as sample size increases, there is greater precision in the estimation of a given 

parameter, making it easier to detect a difference between the complete data estimate and each MDT 

estimate of that parameter.  Caution should be taken when interpreting the results of the increasing   
 

  

effect size without evaluating the mean differences, which in most cases go down as sample size increases.  

 
 
 
 

Effect Number of Missing Variables MDT M SE F p 

Covariance 0 Complete data 0.126 .010 -- -- --

1 Listwise deletion 0.175 .013 32.52 <.01 .026

1 Mean substitution 0.389 .014 672.54 <.01 .359

1 Group mean substitution 0.369 .013 664.22 <.01 .356

1 EM algorithm 0.291 .013 323.54 <.01 .213

1 Multiple imputation 0.283 .012 344.32 <.01 .223

0 Complete data 0.138 .010 -- -- --

2 Listwise deletion 0.175 .014 9.00 <.01 .007

2 Mean substitution 0.159 .014 3.68 .06 .003

2 Group mean substitution 0.336 .013 385.65 <.01 .243

2 EM algorithm 0.232 .013 99.97 <.01 .077

2 Multiple imputation 0.231 .012 110.61 <.01 .084
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Table 18 
Mean Estimates of Intercept Variance by MDT and Level-2 Sample Size 

Note: Data aggregated over number of missing variables and % missing; df = 1, 599 

Discussion 

All of the MDTs performed well in the estimation of MEANSES with 10% missing, as demonstrated 

by MANOVA 1 (no practical MDT x % missing interaction effect, F(20, 2358) = 7.40, p < .05,   
  = .059) and 

with Cohen’s d < |.3| for all conditions with 10% missing.  With the exception of mean substitution, all the 

MDTs performed well in the estimation of the other fixed-effects with 10% missing data as well.  This 

result was expected given the fact that the estimates generated by each MDT were compared to those 

generated by the complete data sampled, not the complete data set.  Of course in theory, the smaller the 

sample selected, the less likely statistics generated from that sample will be normally distributed.  In this 

case, any level of missingness could further skew the distribution, especially if missing data is being 

imputed by a value that does not represent the population from which it was sampled, which is precisely 

Level-2 Sample Size MDT M SE F p 

20 Complete data 2.458 .051 -- -- --
20 Listwise deletion 2.467 .070 0.04 .84 .000
20 Mean substitution 3.863 .077 579.16 <.01 .492
20 Group mean substitution 3.364 .069 359.81 <.01 .375
20 EM algorithm 3.371 .075 224.51 <.01 .273
20 Multiple imputation 3.210 .068 223.88 <.01 .272

30 Complete data 2.433 .041 -- -- --
30 Listwise deletion 2.448 .058 0.15 .70 .000
30 Mean substitution 3.767 .065 688.69 <.01 .535
30 Group mean substitution 3.287 .057 458.49 <.01 .434
30 EM algorithm 3.018 .057 210.69 <.01 .260
30 Multiple imputation 3.064 .056 278.18 <.01 .317

90 Complete data 2.394 .015 -- -- --
90 Listwise deletion 2.378 .024 0.71 .40 .001
90 Mean substitution 3.776 .041 1,417.25 <.01 .703
90 Group mean substitution 3.255 .030 1,166.45 <.01 .661
90 EM algorithm 2.784 .024 451.93 <.01 .430
90 Multiple imputation 2.868 .025 571.43 <.01 .488

160 Complete data 2.376 .000 -- -- --
160 Listwise deletion 2.380 .014 0.09 .76 .000
160 Mean substitution 3.766 .032 1,875.54 <.01 .758
160 Group mean substitution 3.248 .021 1,678.86 <.01 .737
160 EM algorithm 2.753 .013 798.38 <.01 .571
160 Multiple imputation 2.799 .014 880.22 <.01 .595
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what is driving the poor performance of mean imputation in this study.  The other imputation strategies 

outperformed mean substitution simply because they used more information from the dataset to impute 

a value.  It is likely that listwise deletion outperformed mean imputation because the data were modeled 

as MCAR.   It has been shown in simpler statistical models (e.g. regression) when data are MCAR, listwise 

deletion will produce unbiased estimates assuming the original sample would produce unbiased 

parameter estimates, as the reduced sample is essentially a random subsample of the original sample 

(Allison, 2002).  Findings from the current study suggest that listwise deletion will also produce unbiased 

estimates when data are MCAR at the second level of HLM. 

As the level of % missing increased, mean substitution demonstrated increasingly poor 

performance in estimating the fixed-effects for variables without missing values (Intercept, CSES, 

SECTORxCSES), consistently underestimating the main effects and overestimating the absolute value of 

each interaction effect (SECTORxCSES slope was negative).  Mean substitution was by far the poorest 

performing MDT on all levels of % missing for the case of number of missing variables = 1.  The other MDTs 

performed well in the estimation of the other fixed-effects up to the 40% level of missingness, where 

group mean substitution, MI, and the EM algorithm all deviated from the complete data on one or more 

of the parameter estimates.  Listwise deletion was the only MDT that demonstrated solid performance 

across all levels of % missing in the estimation of the fixed-effects, contrary to the hypothesis that EM and 

MI would outperform all ad hoc MDTs.  Listwise deletion outperformed the other MDTs in the estimation 

of the fixed effects because data were modeled as MCAR.  When data are MCAR unbiased parameter 

estimation generally holds only for central tendency estimates such as the mean (Davey, Shanahan, & 

Schafer, 2001).  Again, when data are MCAR, listwise deletion will result in unbiased fixed-effects estimates 

because it essentially produces a random subsample of the original sample (Allison, 2002). 



 

35 

 

Mean substitution, EM, and MI all showed progressively poorer performance for most of the fixed 

effects when number of predictors with missing values increases from 1 to 2, underestimating the fixed-

effects for CSES, and the two cross-level interactions.  Listwise and group mean substitution were fairly 

consistent regardless of the number of missing variables in the estimation of all the fixed-effects.  Mean 

substitution demonstrated inconsistent performance in underestimating the fixed-effect for MEANSES 

with 1 variable missing and overestimating MEANSES when 2 variables were missing.  Because mean 

imputation ignores relationships among other variables that may be valuable in predicting the true missing 

values (von Hippel, 2003), its estimates are likely to be biased in either direction, depending on the sample.  

Even under the most stringent assumption of data MCAR, mean imputation will produce biased results, 

and therefore is not recommended under any circumstances (Pigott, 2001). 

A somewhat surprising result was mean substitution’s underestimation of intercept with 1 missing 

variable, but showing very little variance from the complete data when 2 variables were missing.  The 

expected result would be for greater variance from the complete data with 2 variables missing.  Had a 

stratified sampling procedure for missing data on SECTOR been incorporated, this anomaly may not have 

occurred.  There are a greater percentage of public vs. Catholic schools included in the SUB-HSB dataset, 

so the imputation of SECTOR based on the PRACAD value may have served to balance out the estimation 

of the intercept parameter.   

Variance components were biased upward for all MDTs across one or more conditions.  Intercept 

and slope variance were relatively the same across number of missing variables for each MDT, but 

covariance and Level-1 variance both decreased slightly going from 1 to 2 missing variables.  This is 

probably due to the fact that the second variable modeled with missingness, SECTOR, is a dichotomous 

variable, so values imputed for this variable could actually contribute to lowering the variance in the 
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model, unlike the deletion of MEANSES, which depending on a given sample could severely skew the 

variance estimates.  The simple random sampling procedure employed on SECTOR in lieu of a stratified 

random sample may also have contributed to this result. 

As the % missing increased, so did the upward bias in the estimate of intercept variance and 

covariance across all MDTs except listwise.  Most notably, when going from 25% to 40% missing on 

intercept variance, mean substitution and group mean both yielded   
  > .7.  Overall, mean substitution 

and group mean substitution performed the worst in estimating the variance components across all 

conditions.  This is a logical result because both of these procedures reduce the variance in a sample by 

imputing the same value or value based on grouping for any case missing a variable.  Reducing sampling 

variance drastically alters the covariances of imputed variables to other variables in a prediction model.  

Simply stated, imputing the mean produces biased estimates for variances and covariances (Haitovsky, 

1968).  As covariance is the driving factor in any prediction model, it is evident as to why both mean and 

group mean imputation performed so poorly in the estimation of the variance components for the chosen 

HLM model.  Applying group mean imputation may be a viable option for estimating fixed-effects as 

demonstrated by its strong performance across all study conditions in the prediction of MEANSES and the 

other fixed effects, but should not be applied toward estimating variance components for the reasons 

stated above.  Given mean substitution’s poor performance across the majority of the conditions 

evaluated, and it’s know problems as identified in previous research, mean imputation should not be used 

at all. 

In summary, of the MDTs evaluated in the current study, listwise deletion performed the best 

across all conditions, yielding only one practically significant mean difference as evidenced by Cohen’s d = 

(0.654) on the study condition of % missing 40%, sample size 90, and 2 missing variables, and only one 
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biased estimate (upward) on slope variance as detected by post-hoc pair-wise analyses.  The upward 

biased slope variance estimate was expected because listwise reduces sample size.  Due to the reduction 

of n in the denominator for variance calculations, variance estimates will be biased upward.  Stated 

differently, variance estimates will be inflated due to the loss of information (Allison, 2002; Little & Rubin, 

2002).  Further, as evident from the larger standard errors computed for the variance components, the 

use of listwise deletion results in the construction of inefficient, less precise confidence intervals (Davey, 

Shanahan, & Schafer, 2001).  Loss of precision corresponds directly to a loss of power or the ability to 

detect a statistically significant effect.  Therefore, use of listwise deletion is cautioned for use in the HLM 

framework under conditions where sample size is low and there are a large percentage of missing values 

for the Level-2 predictors.   

Group mean imputation was a solid performer in the estimation of fixed effects, but not for the 

variance components. Both model-based MDTs outperformed the mean and group mean substitution 

strategies for the variance component estimates, and in all cases of the fixed-effects estimates, they 

outperformed mean imputation.  Contrary to findings from Gibson and Olejnik (2003), MI consistently 

outperformed the EM algorithm.  This finding is due in part because (a) Gibson and Olejnik utilized 

different packages for employing MI and the EM algorithm that the current study which use different 

algorithms in their execution, and (b) the settings utilized by Gibson and Olejnik in the execution of the 

model-based MDTs may have differed widely from the values applied in the current study.  Gibson and 

Olejnik used NORM (Schafer, 1994) and a modified version of EM_COVAR.SAS (Gregorich, 1997), 

respectively, for employing MI and the EM algorithm.  The current study utilized the R freeware packages 

MICE (van Buuren & Groothuis-Oudshoorn, 2011) and Amelia (Honaker, King, & Blackwell, 2010) for MI 

and the EM algorithm, respectively.  It is unknown what settings were used in the NORM and 
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EM_COVAR.SAS packages for execution of the model-based MDTs; the current study employed the 

default settings within MICE and AMELIA (e.g. no prior assumptions regarding the missing data).  Mean 

substitution was overall the weakest MDT strategy evaluated, yielding parameter estimates that deviated 

by far the most from the complete data than any other MDT. 

Limitations 

Data missing completely at random (MCAR) was the only missing data mechanism included in the 

current study.  As previously stated, the strong performance of listwise is expected as data were modeled 

as MCAR, which is a major limitation of the current study.  If data are missing at random (MAR), listwise 

can yield biased estimates if the probability of an independent variable being missing is related to the 

dependent variable being evaluated (Allison, 2002).  Gibson and Olejnik’s (2003) study resulted in similar 

findings, with poorer performance of the iterative procedures, specifically MI, compared to listwise.  They 

suggested that the performance of MI would have been improved if (a) the number of imputations had 

been increased and (b) if the data were modeled as MAR as maximum likelihood approaches such as MI 

and EM, the less stringent requirement of MAR is sufficient (Rubin, 1976).  Because data are more likely to 

be MAR rather than MCAR, it is wise to test the MDTs for robustness under conditions where data are 

MAR.   

The focus of the current study was to evaluate the effectiveness of the MDTs over a broader range 

of study conditions (% missing, sample size, number of variables with missing data) than shown in prior 

research.  Twenty-four fully crossed study conditions were included in the study design.  So as not to add 

another layer of complexity to the current study, it was decided to save the inclusion of data modeled as 

MAR for future research.  Future studies could incorporate the following method to evaluate the MAR 

condition for comparison to the results found with MCAR from the current study.  For the MAR condition, 
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model missingness on MEANSES as a function of the variable HIMNTY such that schools with a high 

minority enrollment are more likely to have missing values for the variable MEANSES.  For SECTOR, 

simulate MAR simulated as a function of the DISCLIM variable such that schools with a lesser disciplinary 

climate are more likely to have missing values for the variable SECTOR.  

Another note of caution in interpreting the strong performance of listwise deletion in the current 

study is the sampling and data analysis procedures incorporated.  With 2 variables being modeled with 

missing data on 20 groups, listwise deletion will inevitably fail when complex models are implemented 

because there may not be enough cases or degrees of freedom compared to the number of parameters in 

the model to carry out the analysis.  When this occurs, the lme function in R used to run the HLM analysis 

within the code for the current study renders a warning that not enough cases are present in the dataset 

to compute coefficients and the iterative procedure crashes.  Even with error-handling code to proceed to 

the next MDT, the elimination of listwise observations would have been problematic because the 

repeated measures MANOVA procedure employed for comparison of the MDT performance requires a 

balanced design, or equal cell sizes for each study condition evaluated.  As a work around to these 

problems, a repeat loop was incorporated in the code such that a new sample was drawn if there were 

not enough degrees of freedom to perform the HLM.  Of course this is not practical in a real-world setting 

because there is typically only one sample to work with.  In the case of too many missing data points, 

listwise is simply not a viable option if the analysis cannot be run.  Refinements to the current study would 

be to simply count the number of times listwise failed because of insufficient sample size to better portray 

real-world performance of this MDT.  Going a step further, for iterations where listwise or any other MDT 

failed, rendering unequal cell sizes for the study conditions, the data could be evaluated using a HLM 
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model.  HLM does not require balanced data, so it is not a problem if the number of available 

measurements (i.e. MDT treatments) is not the same for each iteration (Hox, 2002).   

Another enhancement to the current study would be to employ a more sophisticated sampling 

procedure.  Because the current study evaluated a complete data set in which the parameters were 

already known, simple random sampling was the more powerful approach.  Bootstrapping one sample, 

then sampling with replacement from that sample could become problematic if the original sample drawn 

was not representative of the population.  If nothing was known about the population distribution from 

which the sample was drawn, bootstrapping would be a more viable option. An idea for future research 

would be to use the bootstrap to evaluate the effectiveness of MDTs in the estimation of parameters from 

non-normal distributions. 

Conclusion 

Although listwise deletion was found to be the best MDT strategy in the current study, listwise is 

still not considered to be the most viable MDT option because the MCAR condition modeled here is not 

likely to occur in practice.  Future studies should incorporate the MAR condition, where missing data on a 

given variable is modeled as a function of values of other variables in the dataset.  For the sub-HSB dataset 

used in the current study, MAR could be modeled on both MEANSES and SECTOR, respectively, by having: 

(a) schools with a high minority enrollment (HIMINTY) more likely to be missing values for the variable 

MEANSES, and (b) schools with a lesser disciplinary climate (DISCLIM) more likely to be missing values for 

the variable SECTOR.  

Further, listwise deletion will inevitably prevent an HLM analysis from running in situations where 

there are simply not enough groups to carry out the analysis.  The current study created a workaround for 

this problem, but future studies enhancing the R code used here should at a minimum count how many 
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times listwise would have failed to carry out the analysis, and preferably incorporate the missing data for a 

given condition in the estimation of the HLM parameters.  In practice, if there is a high probability of 

listwise failing, it should not be used even if data are MCAR.   

Recent methodological research has recommended the application of model-based MDTs to treat 

missing data; however, a substantial gap still exists between the recommended methods and the actual 

MDTs applied in practice.  To help narrow the gap between methodology and practice, model-based 

MDTs must be made more user-friendly and accessible to students and research practitioners for use 

across multiple areas of research and statistical models.
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R CODE 
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#### Missing Data Treatments at HLM 2nd Level 

#### SUB-HSB Dataset 

#### Simple Random Sampling 

 

#### Load packages for running code 

library(foreign) 

library(lme4) 

library(nlme) 

library(car) 

library(Amelia) 

library(mice) 

 

#### Read in data from SPSS 

hsb.data <- read.spss("f:/hsb.data.sav", use.value.labels=TRUE, 

max.value.labels=Inf, to.data.frame=TRUE)  

hsb.data$SCHOOL <- factor(hsb.data$SCHOOL) 

 

#### Make a dataframe with two columns 

  ## Column 1 is the school id 

  ## Column 2 is the number of people in the school 

hsb.data2<-data.frame(table(hsb.data$SCHOOL)) 

 

#### Define levels for each variable 

nboot<-100      #number of iterations for each 

study condition 

MDT<-0      #MDT: Complete Data=0, LW=1, Mean 

Imp=2, Grp Mean=3, EM=4, MI=5 

NumMDT<-5      #Number of MDT's; use for looping 

through MDT's for each sample  

n.var<-4      #number of study variables 

per.miss<-c(.1,.25,.4)    #percent missingness 

n.schools<-c(20,30,90,160)   #number of schools sampled (level 

2 sample size) 

n.var.1<-(n.var+1)    #number of study variables + 1 for 

evaluation against J or level 2 school units 

n2.predictors<-c(2)    #number of level 2 predictors 

n2.1<-(n2.predictors+1)    #number of level 2 

explanatory variables + 1 for evaluation against J or level 2 school units 

n2.miss<-c(1,2)     #number of level 2 predictors 

w/missing values 

 

#### Study conditions matrix 

study.conditions<-expand.grid(per.miss,n.schools,n2.predictors,n2.miss) 

n.study.conditions<-nrow(study.conditions) 

 

study.conditions.current<-matrix(nrow=1,ncol=4)   

    

#### Creating matrix for collection of model parameters 

results.out1<-matrix(nrow=0,ncol=25) 

 

for (i in 1:nrow(study.conditions)) { 

 iteration1<-i 

 n.study.condition<-i 
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 study.conditions.current<-study.conditions[i,1:4]    #looping 

through study conditions matrix 

 print(study.conditions.current) 

  

#### Define number of schools 

n.schools<-study.conditions.current[[2]] 

 

#### Define % missingness 

per.miss<-study.conditions.current[[1]] 

 

#### Number of level-2 predictors 

n2.predictors<-study.conditions.current[[3]] 

 

#### Number of predictors with missing data 

n2.miss<-study.conditions.current[[4]] 

     

#### Number of iterations 

results.out<-matrix(nrow=(NumMDT+1),ncol=25) 

dimnames(results.out)<-list(NULL, 

c("MDT","Condition","Iter","N.Schools","Per.Miss","Model","N2.Miss","Int.V

ar",  

 "Slp.Var", "Cov", "Var.L1", "Int", "MEANSES", "CSES",  

 "MEANSESxCSES", "Int.SE", "MEANSES.SE", "CSES.SE",  

 "MEANSESxCSES.SE", "Var.L1.SE", 

"Slp.Var.SE","SECTOR","SECTORxCSES","SECTOR.SE","SECTORxCSES.SE")) 

results.out2<-matrix(nrow=1,ncol=25) 

 

for (i in 1:nboot) { 

 

iteration<-i 

#### Randomly pick "X" number of schools 

result<-try(          

 #### try is beginning of error handling code 

{sample.schools<-sample(levels(hsb.data2$Var1), n.schools, replace=F) 

hsb.new<-data.frame() 

for (i in sample.schools){ 

hsb.new<-rbind(hsb.new, hsb.data[hsb.data$SCHOOL==i,]) 

} 

hsb.new$SCHOOL<-factor(hsb.new$SCHOOL)      

 #### Complete data 

 

J<-0 

 

repeat{ 

 

#### Model missingness for 2 variables MEANSES and SECTOR independently 

#### Randomly select "X" % of the schools for % missingness on MEANSES 

samp.schools<-data.frame(unique(hsb.new$SCHOOL))[sample(n.schools,  

     round(n.schools * (1-per.miss))),] 

 

#### Randomly select "X" % of the schools for % missingness on SECTOR 

samp.schools2<-data.frame(unique(hsb.new$SCHOOL))[sample(n.schools,  

     round(n.schools * (1-per.miss*(n2.miss-1)))),] 
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#### Merge two datasets before using subset to remove N/A else school that 

should be deleted may appear? no subset takes care of this on successive 

code 

 

#### Subset function removes N/A values from hsb.new 

new.without.NA<-subset(hsb.new, SCHOOL%in%samp.schools) 

new.without.NA$MEANSES.miss<-new.without.NA$MEANSES 

 

#### Subset function removes N/A values from hsb.new; create new variable 

SECTOR.miss so schools not selected on MEANSES sample will have a NA value 

when samples are merged, else would only be removing schools from analysis 

that had missing values on both SECTOR and MEANSES 

new.without.NA2<-subset(hsb.new, SCHOOL%in%samp.schools2) 

new.without.NA2$SECTOR.miss<-new.without.NA2$SECTOR 

 

#### Merge two datasets with missingness on MEANSES and SECTOR variables 

new.without.NA<-merge(new.without.NA,new.without.NA2, all=T) 

new.without.NA<-subset(new.without.NA,new.without.NA$MEANSES.miss!="NA") 

new.without.NA<-subset(new.without.NA,new.without.NA$SECTOR.miss!="NA") 

 

#### Number of level 2 or school units in new.without.NA 

J.data<-data.frame(table(new.without.NA$SCHOOL)) 

J<-nrow(data.frame(J.data[,2][J.data[,2]>0])) 

 

#### Check that samp.schools has enough Level 2 units (SCHOOL) to run 

model J > p+1 or J>n2.1 

if(J>n.var.1) break 

 

} 

 

#### Looping through MDT's for each school sample 

MDT<-0        #### Everytime new 

sample of schools made, recycle through MDT's for new sample 

for (i in 1:(NumMDT+1)) { 

 

iteration2<-i 

#### If complete data, just run model on hsb.new dataframe 

{if(MDT==0)            

 model.2<-

lme(data=hsb.new,MATHACH~CSES*(MEANSES+SECTOR),random=~CSES|SCHOOL,  

   control=lmeControl(opt="optim")) 

  

#### Listwise deletion 

else if(MDT==1)  {   

 

#### Running model 2 for list-wise deletion 

model.2<-

lme(data=new.without.NA,MATHACH~CSES*(MEANSES+SECTOR),random=~CSES|SCHOOL,  

  control=lmeControl(opt="optim")) 

 } 

 

#### Mean imputation 

else if(MDT==2)  { 

 



 

46 

 

#### Subset function removes N/A values from hsb.new 

new.without.NA<-subset(hsb.new, SCHOOL%in%samp.schools) 

new.without.NA$MEANSES.miss<-new.without.NA$MEANSES  #### add a 

variable that hsb.new doesn't contain so when merging the two dataframes, 

will have missing values for imputation in MEAN.SES.miss (MEAN.SES is 

first variable modeling missingness for)  

new.with.NA<-merge(hsb.new,new.without.NA,all=T)  #### merging two 

datasets will keep only unique values; contains NA's for running 

imputation on 

 

#### Mean imputation for MEANSES 

new.with.NA$MEANSES.mean.impute<-recode(new.with.NA$MEANSES.miss,  

   "NA=summary(new.with.NA$MEANSES.miss)[[4]]; 

else=new.with.NA$MEANSES.miss") 

 

#### Subset function removes N/A values from hsb.new; create new variable 

SECTOR.miss so schools not selected on MEANSES sample will have a NA value 

when samples are merged, else would only be removing schools from analysis 

that had missing values on both SECTOR and MEANSES 

new.without.NA2<-subset(hsb.new, SCHOOL%in%samp.schools2) 

new.without.NA2$SECTOR.miss<-new.without.NA2$SECTOR 

new.with.NA2<-merge(hsb.new,new.without.NA2,all=T) 

 

#### Mean imputation for SECTOR 

new.with.NA2$SECTOR.mean.impute<-recode(new.with.NA2$SECTOR.miss,  

   "NA=round(summary(new.with.NA2$SECTOR.miss),0)[[4]]; 

else=new.with.NA2$SECTOR.miss") 

 

#### Merge two datasets with missingness on MEANSES and SECTOR variables 

new.without.NA3<-merge(new.without.NA,new.without.NA2, all=T) 

new.without.NA3<-

subset(new.without.NA3,new.without.NA3$MEANSES.miss!="NA") 

new.without.NA3<-subset(new.without.NA3,new.without.NA3$SECTOR.miss!="NA") 

 

new.with.NA3<-merge(new.with.NA,new.with.NA2, all=T)  

 

#### Running model 2 for mean imputation 

model.2<-

lme(data=new.with.NA3,MATHACH~CSES*(MEANSES.mean.impute+SECTOR.mean.impute

),random=~CSES|SCHOOL,  

  control=lmeControl(opt="optim")) 

 } 

 

#### Group mean imputation 

else if(MDT==3)  { 

 

#### Creating matrix with MEANSES missing values 

new.without.NA<-subset(hsb.new, SCHOOL%in%samp.schools)  #### Subset 

function removes N/A values from hsb.new 

new.without.NA$MEANSES.miss<-new.without.NA$MEANSES  #### add a 

variable that hsb.new doesn't contain so when merging the two dataframes, 

will have missing values for imputation in MEANSES.miss (MEANSES is first 

variable modeling missingness for)  
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new.with.NA<-merge(hsb.new,new.without.NA,all=T)  #### merging data 

such that NA's are now shown 

 

#### Creating matrix with SECTOR missing values 

new.without.NA3<-subset(hsb.new, SCHOOL%in%samp.schools2) #### Subset 

function removes N/A values from hsb.new 

new.without.NA3$SECTOR.miss<-new.without.NA3$SECTOR  #### add a 

variable that hsb.new doesn't contain so when merging the two dataframes, 

will have missing values for imputation in SECTOR.miss (SECTOR is second 

variable modeling missingness for) 

new.with.NA3<-merge(hsb.new,new.without.NA3,all=T)  #### merging data 

such that NA's are now shown 

 

#### Merging matrices with missing values for MEANSES and SECTOR 

new.with.NA.2<-merge(new.with.NA,new.with.NA3,all=T)   #### 

merging dataframes for missingness on MEANSES and SECTOR 

new.with.NA.2$SCHOOL<-as.numeric(new.with.NA.2$SCHOOL)  #### must 

make SCHOOL variable numeric to run imputation model 

new.with.NA.2<-cbind(new.with.NA.2[,1:2],new.with.NA.2[,4:16]) #### 

removing "constant" variable CONS from data to run imputation model 

 

#### Aggregating level 2 data so that imputation is run at level 2 

L2.with.NA<-

data.frame(cbind(new.with.NA.2[1],new.with.NA.2[6],new.with.NA.2[9:15]))  

#### Selecting L2 variables 

L2.with.NA2<-

data.frame(aggregate(L2.with.NA,list(L2.with.NA$SCHOOL),mean))[,2:10]    

#### Aggregating L2 data by school 

 

#### If 2 variables missing, chance that splitting data on SECTOR to 

compute meanses will result in error as SECTOR could also be missing, use 

PRACAD as best overall correlation with both MEANSES and SECTOR (>0.6 for 

both) 

L2.with.NA2.0<-

data.frame(L2.with.NA2$MEANSES.miss[L2.with.NA2$PRACAD<=.5]) #### 

Filtering MEANSES.miss values for PRACAD <= 0.5     

    #### Splitting data on PRACAD to compute means 

L2.with.NA2.1<-data.frame(L2.with.NA2$MEANSES.miss[L2.with.NA2$PRACAD>.5])

 #### Filtering MEANSES.miss values for PRACAD > 0.5  

 

MEANSES.imp.0<-apply(L2.with.NA2.0,2,mean, na.rm=T)    

 #### Mean value for MEANSES when PRACAD <=0.5 

MEANSES.imp.1<-apply(L2.with.NA2.1,2,mean, na.rm=T)    

 #### Mean value for MEANSES when PRACAD >0.5 

 

new.with.NA.2$MEANSES.imp<-new.with.NA.2$MEANSES.miss    

 #### Create a new variable for MEANSES based on PRACAD dummy 

variable 

new.with.NA.2$MEANSES.imp[new.with.NA.2$PRACAD<=.5]<-MEANSES.imp.0 

 #### Recode MEANSES as mean value based on MEANSES for PRACAD <=0.5 

new.with.NA.2$MEANSES.imp[new.with.NA.2$PRACAD>.5]<-MEANSES.imp.1  

 #### Recode MEANSES as mean value based on MEANSES for PRACAD >0.5 
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L2.with.NA2.S0<-

data.frame(L2.with.NA2$SECTOR.miss[L2.with.NA2$PRACAD<=.5]) #### 

Filtering SECTOR.miss values for PRACAD <= 0.5     

    #### Splitting data on PRACAD to compute means 

L2.with.NA2.S1<-data.frame(L2.with.NA2$SECTOR.miss[L2.with.NA2$PRACAD>.5])

 #### Filtering SECTOR.miss values for PRACAD > 0.5 

 

SECTOR.imp.0<-round(apply(L2.with.NA2.S0,2,mean, na.rm=T))   

 #### Rounded mean value for SECTOR when PRACAD <=0.5 

SECTOR.imp.1<-round(apply(L2.with.NA2.S1,2,mean, na.rm=T))   

 #### Rounded mean value for SECTOR when PRACAD >0.5 

 

new.with.NA.2$SECTOR.imp<-new.with.NA.2$SECTOR.miss    

 #### Create a new variable for SECTOR based on PRACAD dummy variable 

new.with.NA.2$SECTOR.imp[new.with.NA.2$PRACAD<=.5]<-SECTOR.imp.0  

 #### If PRACAD <= 0.5, recode SECTOR as 0 

new.with.NA.2$SECTOR.imp[new.with.NA.2$PRACAD>.5]<-SECTOR.imp.1  

 #### If PRACAD > 0.5, recode SECTOR as 1 

 

new.with.NA.2$MEANSES.imp[!is.na(new.with.NA.2$MEANSES.miss)]<-  

 #### If MEANSES missing, impute value based on PRACAD, else use 

value in dataset 

 new.with.NA.2$MEANSES.miss[!is.na(new.with.NA.2$MEANSES.miss)] 

 

new.with.NA.2$SECTOR.imp[!is.na(new.with.NA.2$SECTOR.miss)]<-  

 #### If SECTOR missing, impute value based on PRACAD, else use value 

in dataset 

 new.with.NA.2$SECTOR.miss[!is.na(new.with.NA.2$SECTOR.miss)] 

 

GrpMean.dataset<-new.with.NA.2 

 

#### Running model 2 for Grp Mean Imputation  

model.2<-

lme(data=GrpMean.dataset,MATHACH~CSES*(MEANSES.imp+SECTOR.imp),random=~CSE

S|SCHOOL,  

  control=lmeControl(opt="optim")) 

 } 

 

#### EM Algorithm 

else if(MDT==4)  { 

 

#### Creating matrix with MEANSES missing values 

new.without.NA<-subset(hsb.new, SCHOOL%in%samp.schools)  #### Subset 

function removes N/A values from hsb.new 

new.without.NA$MEANSES.miss<-new.without.NA$MEANSES  #### add a 

variable that hsb.new doesn't contain so when merging the two dataframes, 

will have missing values for imputation in MEANSES.miss (MEANSES is first 

variable modeling missingness for)  

new.with.NA<-merge(hsb.new,new.without.NA,all=T)  #### merging data 

such that NA's are now shown 

 

#### Creating matrix with SECTOR missing values 

new.without.NA3<-subset(hsb.new, SCHOOL%in%samp.schools2) #### Subset 

function removes N/A values from hsb.new 
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new.without.NA3$SECTOR.miss<-new.without.NA3$SECTOR  #### add a 

variable that hsb.new doesn't contain so when merging the two dataframes, 

will have missing values for imputation in SECTOR.miss (SECTOR is second 

variable modeling missingness for) 

new.with.NA3<-merge(hsb.new,new.without.NA3,all=T)  #### merging data 

such that NA's are now shown 

 

#### Merging matrices with missing values for MEANSES and SECTOR 

new.with.NA.2<-merge(new.with.NA,new.with.NA3,all=T)  #### 

merging dataframes for missingness on MEANSES and SECTOR 

new.with.NA.2$SCHOOL<-as.numeric(new.with.NA.2$SCHOOL) #### must make 

SCHOOL variable numeric to run imputation model 

new.with.NA.2<-cbind(new.with.NA.2[,1:2],new.with.NA.2[,4:16]) #### 

removing "constant" variable CONS from data to run imputation model 

 

#### Aggregating level 2 data so that imputation is run at level 2 

L2.with.NA<-

data.frame(cbind(new.with.NA.2[1],new.with.NA.2[6],new.with.NA.2[9:15]))  

#### Selecting L2 variables 

L2.with.NA2<-

data.frame(aggregate(L2.with.NA,list(L2.with.NA$SCHOOL),mean))[,2:10]    

#### Aggregating L2 data by school 

L2.with.NA3<-cbind(L2.with.NA2[1],L2.with.NA2[3],L2.with.NA2[5:9]) 

 

#### EM for missing values for MEANSES and SECTOR 

EM.list.L2<-

amelia(x=L2.with.NA3,idvars=c("SCHOOL"),tolerance=.00001,noms="SECTOR.miss

",ords="HIMINTY") 

EM.list.L2.no.NA<-EM.list.L2$imputations[!is.na(EM.list.L2$imputations)] 

  #### Extracting imputations yielding NAs 

 

###Creating dataframe of logical imputations, using mean of EM estimated 

values for MEANSES imputation for each school 

EM.imp.num<-dim(matrix(EM.list.L2.no.NA))[1]      

 #### Variable for number of logical imputations derived from EM 

EM.MEANSES.imp<-matrix(nrow=n.schools,ncol=EM.imp.num)    

 #### Creating matrix for mean imputations 

EM.SECTOR.imp<-matrix(nrow=n.schools,ncol=EM.imp.num) 

 

for (i in 1:EM.imp.num){         

 #### Loop required for selecting only logical values produced from 

EM 

 EM.MEANSES.imp[,i]<-data.frame(EM.list.L2.no.NA[i])[,6]   

 #### Dataframe of mean imputations 

 EM.SECTOR.imp[,i]<-data.frame(EM.list.L2.no.NA[i])[,7]  

 } 

 

EM.MEANSES.imp<-data.frame(rowMeans(EM.MEANSES.imp))    

  ####Mean of EM imputations for MEANSES 

EM.SECTOR.imp<-data.frame(round(rowMeans(EM.SECTOR.imp),0))   

  ####Mean of EM imputations for SECTOR 

 

EM.imp<-data.frame(cbind(EM.MEANSES.imp,EM.SECTOR.imp)) 
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EM.imp.L2<-data.frame(cbind(L2.with.NA2,EM.imp))     

 ####Creating dataframe w/ L2 data and imputed MEANSES and SECTOR 

values  

            

###Merge aggregate L2 data with imputed MEANSES and SECTOR values with 

dataset to be used in lme 

EM.dataset<-merge(EM.imp.L2,new.with.NA.2,all=T) 

EM.dataset$MEANSES.imp<-EM.dataset$rowMeans.EM.MEANSES.imp. 

EM.dataset$SECTOR.imp<-EM.dataset$round.rowMeans.EM.SECTOR.imp...0. 

 

#### Running model 2 for EM  

model.2<-

lme(data=EM.dataset,MATHACH~CSES*(MEANSES.imp+SECTOR.imp),random=~CSES|SCH

OOL,  

  control=lmeControl(opt="optim")) 

 } 

 

#### Multiple imputation 

else if(MDT==5) { 

 

#### Creating matrix with MEANSES missing values 

new.without.NA<-subset(hsb.new, SCHOOL%in%samp.schools)  #### Subset 

function removes N/A values from hsb.new 

new.without.NA$MEANSES.miss<-new.without.NA$MEANSES  #### add a 

variable that hsb.new doesn't contain so when merging the two dataframes, 

will have missing values for imputation in MEANSES.miss (MEANSES is first 

variable modeling missingness for)  

new.with.NA<-merge(hsb.new,new.without.NA,all=T)  #### merging data 

such that NA's are now shown 

 

#### Creating matrix with SECTOR missing values 

new.without.NA3<-subset(hsb.new, SCHOOL%in%samp.schools2) #### Subset 

function removes N/A values from hsb.new 

new.without.NA3$SECTOR.miss<-new.without.NA3$SECTOR  #### add a 

variable that hsb.new doesn't contain so when merging the two dataframes, 

will have missing values for imputation in SECTOR.miss (SECTOR is second 

variable modeling missingness for) 

new.with.NA3<-merge(hsb.new,new.without.NA3,all=T)  #### merging data 

such that NA's are now shown 

 

#### Merging matrices with missing values for MEANSES and SECTOR 

new.with.NA.2<-merge(new.with.NA,new.with.NA3,all=T)  #### 

merging dataframes for missingness on MEANSES and SECTOR 

new.with.NA.2$SCHOOL<-as.numeric(new.with.NA.2$SCHOOL) #### must make 

SCHOOL variable numeric to run imputation model 

new.with.NA.2<-cbind(new.with.NA.2[,1:2],new.with.NA.2[,4:16]) #### 

removing "constant" variable CONS from data to run imputation model 

 

#### Aggregating level 2 data so that imputation is run at level 2 

L2.with.NA<-

data.frame(cbind(new.with.NA.2[1],new.with.NA.2[6],new.with.NA.2[9:15]))  

#### Selecting L2 variables 
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L2.with.NA2<-

data.frame(aggregate(L2.with.NA,list(L2.with.NA$SCHOOL),mean))[,2:10]    

#### Aggregating L2 data by school 

L2.with.NA3<-cbind(L2.with.NA2[1],L2.with.NA2[3],L2.with.NA2[5:9])  

   #### removing MEANSES and SECTOR so they aren't used in imputation 

model 

 

#### Multiple imputation for missing values for MEANSES and SECTOR 

MI.imp<-mice(L2.with.NA3,maxit=5)       #### 

Running multiple imputation (MI) on level 2 data 

MI.imp.MEANSES<-data.frame(complete(MI.imp,"repeated")[,26:30]) 

 #### Generating imputed data for MEANSES 

MI.imp.MEANSES<-data.frame(apply(MI.imp.MEANSES,1,mean,na.rm=T)) 

 #### Taking average of imputations  

MI.imp.SECTOR<-data.frame(complete(MI.imp,"repeated")[,31:35])  #### 

Generating imputed data for SECTOR 

MI.imp.SECTOR<-data.frame(round(apply(MI.imp.SECTOR,1,mean,na.rm=T)))

 #### Taking average of imputations  

MI.imp<-cbind(MI.imp.MEANSES,MI.imp.SECTOR)     #### 

Combining imputed SECTOR and MEANSES values  

colnames(MI.imp)<-c("MEANSES.imp","SECTOR.imp")    

 #### Defining column names for imputed dataset 

   

MI.imp<-data.frame(cbind(L2.with.NA2[1:7],MI.imp[1:2]))   #### 

Combine MI.imp with L2 data, removing common fields 

 

###Merge aggregate L2 data with imputed MEANSES and SECTOR values with 

dataset to be used in lme 

MI.dataset<-merge(MI.imp,new.with.NA.2,all=T)   #### Merge 

imputed L2 data with full dataset for lme  

 

 

#### Running model 2 for EM  

model.2<-

lme(data=MI.dataset,MATHACH~CSES*(MEANSES.imp+SECTOR.imp),random=~CSES|SCH

OOL,  

  control=lmeControl(opt="optim")) 

 } 

}           #### End of 

if else statements block 

 

#### Data collected for parameter matrix 

intercept.variance<-as.double(VarCorr(model.2)[1])    

slope.variance<-as.double(VarCorr(model.2)[2]) 

correlation<-as.double(VarCorr(model.2)[8]) 

covariance<-correlation*sqrt(intercept.variance)*sqrt(slope.variance) 

variance.level.1<-as.double(VarCorr(model.2)[3]) 

intercept<-as.double(summary(model.2)$tTable[[1]]) 

mean.ses<-as.double(summary(model.2)$tTable[[3]]) 

cses<-as.double(summary(model.2)$tTable[[2]]) 

mean.sesXcses<-as.double(summary(model.2)$tTable[[5]]) 

intercept.se<-as.double(summary(model.2)$tTable[[7]]) 

meanses.se<-as.double(summary(model.2)$tTable[[9]]) 

cses.se<-as.double(summary(model.2)$tTable[[8]]) 
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mean.sesXcses.se<-as.double(summary(model.2)$tTable[[11]]) 

variance.level.1.se<-

as.double(VarCorr(model.2)[6])/sqrt(as.double(model.2$dims[1])) 

slope.variance.se<-

as.double(VarCorr(model.2)[5])/sqrt(as.double(model.2$dims[1])) 

sector<-as.double(summary(model.2)$tTable[[4]]) 

sectorXcses<-as.double(summary(model.2)$tTable[[6]]) 

sector.se<-as.double(summary(model.2)$tTable[[10]]) 

sectorXcses.se<-as.double(summary(model.2)$tTable[[12]]) 

results.out2<-

cbind(MDT,n.study.condition,iteration,n.schools,per.miss,n2.predictors,n2.

miss,intercept.variance,slope.variance,covariance, 

 variance.level.1,intercept,mean.ses,cses,mean.sesXcses,intercept.se, 

 meanses.se,cses.se,mean.sesXcses.se,variance.level.1.se,slope.varian

ce.se,sector,sectorXcses,sector.se,sectorXcses.se) 

results.out[iteration2,]<-results.out2     #### 

Combining data for all MDT's for a given study condition 

MDT<-MDT+1 

}           #### Ends 

loop through MDT's for each sample 

 

#### Combining data for each study condition 

 

results.out1<-rbind(results.out,results.out1)}) 

if(inherits(result,"try-error"))next     #### If 

error, code shouldn't crash, should take another school sample 

}           #### Ends 

loop for a sample, new sample of schools drawn 

####creating dataframe with all study conditions for all MDT's on Model 2  

results.out.dataframe<-data.frame(results.out1) 

results.out.L22_MISS1_2<-results.out.dataframe 

 

####Creating subj factor for unique iterations by condition (1000 

iterations for each condition are akin to 1000 subjects for each condition 

and must be unique to each condition) 

results.out.L22_MISS1_2$subj<-(results.out.L22_MISS1_2$Condition-

1)*nboot+results.out.L22_MISS1_2$Iter 

} 

 

#### Need to examine results to determine if some iterations did not yield 

results (skipped to next iteration/sample if error) 

#### If missing, determine which conditions and iterations are missing 

using MissingIterations code (will have to vary based on specifics of data 

run) 

diag.table<-table(results.out.L22_MISS1_2$N.Schools, 

 results.out.L22_MISS1_2$Per.Miss, 

 results.out.L22_MISS1_2$N2.Miss, 

 dnn = list("N.Schools","Per.Miss","N2.Miss")) 

 

(diag.table<-diag.table/(nboot*6))      #### Each 

cell should equal nboot, if not, missing iteration for that condition 
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####Combining data for each subject on one row to handle doubly MANOVA 

analysis in R(row for each subj contains lme model parameters calculated 

for each MDT) 

a2<-

split(results.out.L22_MISS1_2_temp3,results.out.L22_MISS1_2_temp3$subj) 

    ####Split data by subject  

 

####Fix row numbers to capture number of iterations 

L22.data<-matrix(nrow=(100*24),ncol=114)      

  ####Create matrix for L22 data by subject 

dimnames(L22.data)<-list(NULL, 

c("Condition","Iter","N.Schools","Per.Miss","Model","N2.Miss", 

 "Int.Var.0","Int.Var.1","Int.Var.2","Int.Var.3","Int.Var.4","Int.Var

.5",  

 "Slp.Var.0","Slp.Var.1","Slp.Var.2","Slp.Var.3","Slp.Var.4","Slp.Var

.5", 

 "Cov.0","Cov.1","Cov.2","Cov.3","Cov.4","Cov.5", 

 "Var.L1.0","Var.L1.1","Var.L1.2","Var.L1.3","Var.L1.4","Var.L1.5",  

 "Int.0","Int.1","Int.2","Int.3","Int.4","Int.5", 

 "MEANSES.0","MEANSES.1","MEANSES.2","MEANSES.3","MEANSES.4","MEANSES

.5", 

 "CSES.0","CSES.1","CSES.2","CSES.3","CSES.4","CSES.5",  

 "MEANSESxCSES.0","MEANSESxCSES.1","MEANSESxCSES.2","MEANSESxCSES.3",

"MEANSESxCSES.4","MEANSESxCSES.5",  

 "Int.SE.0","Int.SE.1","Int.SE.2","Int.SE.3","Int.SE.4","Int.SE.5",  

 "MEANSES.SE.0","MEANSES.SE.1","MEANSES.SE.2","MEANSES.SE.3","MEANSES

.SE.4","MEANSES.SE.5",  

 "CSES.SE.0","CSES.SE.1","CSES.SE.2","CSES.SE.3","CSES.SE.4","CSES.SE

.5",  

 "MEANSESxCSES.SE.0","MEANSESxCSES.SE.1","MEANSESxCSES.SE.2","MEANSES

xCSES.SE.3","MEANSESxCSES.SE.4","MEANSESxCSES.SE.5",  

 "Var.L1.SE.0","Var.L1.SE.1","Var.L1.SE.2","Var.L1.SE.3","Var.L1.SE.4

","Var.L1.SE.5",  

 "Slp.Var.SE.0","Slp.Var.SE.1","Slp.Var.SE.2","Slp.Var.SE.3","Slp.Var

.SE.4","Slp.Var.SE.5", 

 "SECTOR.0","SECTOR.1","SECTOR.2","SECTOR.3","SECTOR.4","SECTOR.5", 

 "SECTORxCSES.0","SECTORxCSES.1","SECTORxCSES.2","SECTORxCSES.3","SEC

TORxCSES.4","SECTORxCSES.5", 

 "SECTOR.SE.0","SECTOR.SE.1","SECTOR.SE.2","SECTOR.SE.3","SECTOR.SE.4

","SECTOR.SE.5", 

 "SECTORxCSES.SE.0","SECTORxCSES.SE.1","SECTORxCSES.SE.2","SECTORxCSE

S.SE.3","SECTORxCSES.SE.4","SECTORxCSES.SE.5")) 

 

L22.data.temp<-matrix(nrow=1,ncol=108)       

 ####Temp matrix for L21 data 

par.subj.1mdt<-matrix(nrow=1,ncol=6)       

 ####Matrix for parameter data for indiv subj on one MDT 

par.subj.allmdt<-matrix(nrow=1,ncol=0)       

 ####Combined parameter data matrix across all MDT's for indiv subj 

i2<-1             

 ####Counter for subj in parameter data collection 

 

####Main loop to capture between subj variables, then loop through 

parameter estimates for each subject on each MDT 
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for (i in 1:(100*24)){         

         ####Loops = number of 

subj/iterations = iterations x # conditions 

 i3<-i            

         ####Counter for subj 

for betw subj variable collection 

 L22.data.temp<-

cbind(a2[[i3]][1,2],a2[[i3]][1,3],a2[[i3]][1,4],a2[[i3]][1,5],a2[[i3]][1,6

],a2[[i3]][1,7])    ####Between subj variables 

 

####Loop for parameter estimates for each subj 

for (i in 8:25){          

         ####Columns 8:25 are 

lme parameter estimates 

 i4<-i            

         ####Counter for column 

of data (parameter) to be collected 

 par.subj.1mdt<-

cbind(a2[[i2]][1,i4],a2[[i2]][2,i4],a2[[i2]][3,i4],a2[[i2]][4,i4],a2[[i2]]

[5,i4],a2[[i2]][6,i4])   ####Parameter data for indiv subj on 

one MDT 

 par.subj.allmdt<-cbind(par.subj.allmdt,par.subj.1mdt)   

          ####Combining 

parameters for indiv subj across all MDT's 

 } 

  

 L22.data.temp<-cbind(L22.data.temp,par.subj.allmdt)    

 ####Combinining betw subj data with parameter estimates for indiv 

subj         

 L22.data[i3,]<-L22.data.temp        

 ####Adding line of data for indiv subj to L21.data matrix 

 i2<-i2+1           

 ####Move to next subj for parameter data collectin 

 par.subj.allmdt<-matrix(nrow=1,ncol=0)      

 ####Reset combined parameter data matrix so it is empty 

}   

 

L22.data<-data.frame(L22.data)        

 ####Changing L21.data to dataframe 

attach(L22.data)           

 ####Attach L21.data for MANOVA's 

L22.data$Per.Miss<-factor(L22.data$Per.Miss)      

 ####Converting numeric betw subj variables to factors for use in 

MANOVA 

L22.data$N.Schools<-factor(L22.data$N.Schools) 

 

#### Dependent variables for MANOVAs, use cbind for ease of reading 

Model.2.Y1<-

cbind(MEANSES.0,MEANSES.1,MEANSES.2,MEANSES.3,MEANSES.4,MEANSES.5) 

 

Model.2.Y1.2<-

cbind(MEANSES.0,MEANSES.1,MEANSES.2,MEANSES.3,MEANSES.4,MEANSES.5, 

 SECTOR.0,SECTOR.1,SECTOR.2,SECTOR.3,SECTOR.4,SECTOR.5)[N2.Miss==2,] 
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Model.2.Y2<-

cbind(Int.0,Int.1,Int.2,Int.3,Int.4,Int.5,CSES.0,CSES.1,CSES.2,CSES.3,CSES

.4,CSES.5, 

 MEANSESxCSES.0,MEANSESxCSES.1,MEANSESxCSES.2,MEANSESxCSES.3,MEANSESx

CSES.4,MEANSESxCSES.5, 

 SECTORxCSES.0,SECTORxCSES.1,SECTORxCSES.2,SECTORxCSES.3,SECTORxCSES.

4,SECTORxCSES.5) 

 

Model.2.Y2.2<-

cbind(Int.0,Int.1,Int.2,Int.3,Int.4,Int.5,CSES.0,CSES.1,CSES.2,CSES.3,CSES

.4,CSES.5, 

 MEANSESxCSES.0,MEANSESxCSES.1,MEANSESxCSES.2,MEANSESxCSES.3,MEANSESx

CSES.4,MEANSESxCSES.5, 

 SECTOR.0,SECTOR.1,SECTOR.2,SECTOR.3,SECTOR.4,SECTOR.5, 

 SECTORxCSES.0,SECTORxCSES.1,SECTORxCSES.2,SECTORxCSES.3,SECTORxCSES.

4,SECTORxCSES.5)[N2.Miss==1,] 

 

Model.2.Y3<-

cbind(Int.Var.0,Int.Var.1,Int.Var.2,Int.Var.3,Int.Var.4,Int.Var.5, 

 Slp.Var.0,Slp.Var.1,Slp.Var.2,Slp.Var.3,Slp.Var.4,Slp.Var.5, 

 Var.L1.0,Var.L1.1,Var.L1.2,Var.L1.3,Var.L1.4,Var.L1.5, 

 Cov.0,Cov.1,Cov.2,Cov.3,Cov.4,Cov.5) 

edit(L22.data) 

#### MANOVA 4 code (MANOVA4 MEANSES main effect w/N2.Miss as factor; 

MANOVA4.1 SECTOR added as main effect but only across N2.Miss=2) 

 

#### Creating within subj matrix; Uses repeated contrasts compare means 

across MDT's (within subj factor) 

WI.Matrix1<-matrix(c( 

 -1, 0, 0, 0, 0,   #### Complete data 

  1,-1, 0, 0, 0,   #### LW 

  0, 1,-1, 0, 0,   #### Mean Imp 

  0, 0, 1,-1, 0,   #### Grp Mean Imp 

  0, 0, 0, 1,-1,   #### EM 

  0, 0, 0, 0, 1),6,5,byrow=T) #### MI 

 

colnames(WI.Matrix1)<-

cbind("MEANSES.C1","MEANSES.C2","MEANSES.C3","MEANSES.C4","MEANSES.C5") 

 

#### Multivariate test for all contrasts, shows if any contrasts 

statistically sig 

MANOVA4.mod<-lm(Model.2.Y1~Per.Miss*N.Schools*N2.Miss,data=L22.data)  

   #### Multivariate regression 

(MANOVA4<-Anova(MANOVA4.mod,imatrix=list(MDT=WI.Matrix1),test="Wilks")) 

    #### Uses imatrix command to identify within 

subjects effects 

             

   #### Using imatrix with Anova function in place of 

contrasts below as it allows for labeling of within subj line on output 

            

#### Univariate test for each contrast(labeled as response in summary 

output), shows which contrast is statistically sig, remember to use 

Bonferroni correction to adj for Type I error rate 



 

56 

 

ANOVA4.mod<-aov(Model.2.Y1%*%WI.Matrix1~Per.Miss*N.Schools*N2.Miss, 

data=L22.data) 

(ANOVA4<-summary(ANOVA4.mod,intercept=T)) 

 

MANOVA4etasq<-etasq(MANOVA4,anova=TRUE,partial=TRUE) 

 

WI.Matrix4<-kronecker(diag(2),WI.Matrix1)     

 #### kronecker function expands matrix for multiple DV's 

 

colnames(WI.Matrix4)<-

cbind("MEANSES.C1","MEANSES.C2","MEANSES.C3","MEANSES.C4","MEANSES.C5", 

 "SECTOR.C1","SECTOR.C2","SECTOR.C3","SECTOR.C4","SECTOR.C5") 

 

L22.data.N2.2<-data.frame(L22.data[L22.data$N2.Miss==2,])    

 #### Creating new dataframe for L22 data split by N2.Miss 

 

#### Multivariate test for all contrasts, shows if any contrasts 

statistically sig 

MANOVA4.1mod<-

lm(Model.2.Y1.2~L22.data.N2.2$Per.Miss*L22.data.N2.2$N.Schools,data=L22.da

ta.N2.2)     #### Multivariate regression 

(MANOVA4.1<-Anova(MANOVA4.1mod,imatrix=list(MDT=WI.Matrix4),test="Wilks")) 

    #### Uses imatrix command to identify within 

subjects effects 

             

   #### Using imatrix with Anova function in place of 

contrasts below as it allows for labeling of within subj line on output 

            

#### Univariate test for each contrast(labeled as response in summary 

output), shows which contrast is statistically sig, remember to use 

Bonferroni correction to adj for Type I error rate 

ANOVA4.1mod<-

aov(Model.2.Y1.2%*%WI.Matrix4~L22.data.N2.2$Per.Miss*L22.data.N2.2$N.Schoo

ls, data=L22.data.N2.2) 

(ANOVA4.1<-summary(ANOVA4.1mod,intercept=T)) 

 

MANOVA4.1etasq<-etasq(MANOVA4.1,anova=TRUE,partial=TRUE) 

 

#### MANOVA 5 code (MANOVA5 fixed effects without missing data over all 

conditions; MANOVA5.1 adds SECTOR but only with N2.Miss==1) 

 

WI.Matrix5<-kronecker(diag(4),WI.Matrix1)     

 #### kronecker function expands matrix for multiple DV's 

 

colnames(WI.Matrix5)<-cbind("Int.C1","Int.C2","Int.C3","Int.C4","Int.C5", 

 "CSES.C1","CSES.C2","CSES.C3","CSES.C4","CSES.C5", 

 "MEANSESxCSES.C1","MEANSESxCSES.C2","MEANSESxCSES.C3","MEANSESxCSES.

C4","MEANSESxCSES.C5", 

 "SECTORxCSES.C1","SECTORxCSES.C2","SECTORxCSES.C3","SECTORxCSES.C4",

"SECTORxCSES.C5") 

 

#### Multivariate test for all contrasts, shows if any contrasts 

statistically sig 
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MANOVA5.mod<-lm(Model.2.Y2~Per.Miss*N.Schools*N2.Miss,data=L22.data)  

   #### Multivariate regression 

(MANOVA5<-Anova(MANOVA5.mod,imatrix=list(MDT=WI.Matrix5),test="Wilks")) 

    #### Uses imatrix command to identify within 

subjects effects 

             

   #### Using imatrix with Anova function in place of 

contrasts below as it allows for labeling of within subj line on output 

            

#### Univariate test for each contrast(labeled as response in summary 

output), shows which contrast is statistically sig, remember to use 

Bonferroni correction to adj for Type I error rate 

ANOVA5.mod<-aov(Model.2.Y2%*%WI.Matrix5~Per.Miss*N.Schools*N2.Miss, 

data=L22.data) 

(ANOVA5<-summary(ANOVA5.mod,intercept=T)) 

 

MANOVA5etasq<-etasq(MANOVA5,anova=TRUE,partial=TRUE) 

 

WI.Matrix5.1<-kronecker(diag(5),WI.Matrix1)  

 

colnames(WI.Matrix5.1)<-

cbind("Int.C1","Int.C2","Int.C3","Int.C4","Int.C5", 

 "CSES.C1","CSES.C2","CSES.C3","CSES.C4","CSES.C5", 

 "MEANSESxCSES.C1","MEANSESxCSES.C2","MEANSESxCSES.C3","MEANSESxCSES.

C4","MEANSESxCSES.C5", 

 "SECTOR.C1","SECTOR.C2","SECTOR.C3","SECTOR.C4","SECTOR.C5", 

 "SECTORxCSES.C1","SECTORxCSES.C2","SECTORxCSES.C3","SECTORxCSES.C4",

"SECTORxCSES.C5") 

 

L22.data.N2.1<-data.frame(L22.data[L22.data$N2.Miss==1,])    

    #### Creating new dataframe for L22 data split by 

N2.Miss 

 

#### Multivariate test for all contrasts, shows if any contrasts 

statistically sig 

MANOVA5.1mod<-

lm(Model.2.Y2.2~L22.data.N2.1$Per.Miss*L22.data.N2.1$N.Schools,data=L22.da

ta.N2.1)     #### Multivariate regression 

(MANOVA5.1<-

Anova(MANOVA5.1mod,imatrix=list(MDT=WI.Matrix5.1),test="Wilks"))  

   #### Uses imatrix command to identify within subjects 

effects 

             

   #### Using imatrix with Anova function in place of 

contrasts below as it allows for labeling of within subj line on output 

            

#### Univariate test for each contrast(labeled as response in summary 

output), shows which contrast is statistically sig, remember to use 

Bonferroni correction to adj for Type I error rate 

ANOVA5.1mod<-

aov(Model.2.Y2.2%*%WI.Matrix5.1~L22.data.N2.1$Per.Miss*L22.data.N2.1$N.Sch

ools, data=L22.data.N2.1) 

(ANOVA5.1<-summary(ANOVA5.1mod,intercept=T)) 
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MANOVA5.1etasq<-etasq(MANOVA5.1,anova=TRUE,partial=TRUE) 

 

#### MANOVA 6 code on random effects as DV's 

WI.Matrix6<-kronecker(diag(4),WI.Matrix1)      

    #### kronecker function expands matrix for multiple 

DV's 

 

colnames(WI.Matrix6)<-

cbind("Int.Var.1","Int.Var.2","Int.Var.3","Int.Var.4","Int.Var.5", 

 "Slp.Var.1","Slp.Var.2","Slp.Var.3","Slp.Var.4","Slp.Var.5", 

 "Var.L1.1","Var.L1.2","Var.L1.3","Var.L1.4","Var.L1.5", 

 "Cov.1","Cov.2","Cov.3","Cov.4","Cov.5") 

 

#### Multivariate test for all contrasts, shows if any contrasts 

statistically sig 

MANOVA6.mod<-lm(Model.2.Y3~Per.Miss*N.Schools*N2.Miss,data=L22.data)  

   #### Multivariate regression 

(MANOVA6<-Anova(MANOVA6.mod,imatrix=list(MDT=WI.Matrix6),test="Wilks")) 

    #### Uses imatrix command to identify within 

subjects effects 

             

   #### Using imatrix with Anova function in place of 

contrasts below as it allows for labeling of within subj line on output 

            

#### Univariate test for each contrast(labeled as response in summary 

output), shows which contrast is statistically sig, remember to use 

Bonferroni correction to adj for Type I error rate 

ANOVA6.mod<-aov(Model.2.Y3%*%WI.Matrix6~Per.Miss*N.Schools*N2.Miss, 

data=L22.data) 

(ANOVA6<-summary(ANOVA6.mod,intercept=T)) 

 

MANOVA6etasq<-etasq(MANOVA6,anova=TRUE,partial=TRUE) 
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