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Let µ be a Radon probability measure on M, the d-dimensional Real Euclidean space

(where d is a positive integer), and f a measurable function. Let P be the space of sequences

whose coordinates are elements in M. Then, for any point x in M, define a function fn on M

and P that looks at the first n terms of an element of P and evaluates f at the first of those n

terms that minimizes the distance to x in M. The measures for which such sequences converge

in measure to f for almost every sequence are called Mycielski-regular. We show that the

self-similar measure generated by a finite family of contracting similitudes and which up to a

constant is the Hausdorff measure in its dimension on an invariant set C is Mycielski-regular.
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CHAPTER 1

INTRODUCTION

Consider the measure space (X,Σ, ν), where X = Rd, for d ≥ 1, and Σ is the domain

of ν. We say that ν is a topological measure if Σ contains the open sets. Note that, in this

case, Σ contains also all the closed sets and all Borel sets. We say that ν is locally finite if

every bounded set has finite outer measure. If ν is a topological measure, ν is inner regular

with respect to the compact sets means

(1) ν(E) = sup{ν(K) : K ⊆ E,K is compact}

for all E ∈ Σ. Finally, ν is called a Radon measure if it is a complete, locally finite topological

measure that is inner regular with respect to the compact sets (a complete measure includes

all the subsets of sets of measure 0). Of course, when we say that ν is a probability measure,

we simply mean that ν(X) = 1 [5].

In his paper, Learning Theorems [7], Jan Mycielski poses the following scenario:

Given a metric space M and a sequence of points (xk)
∞
k=0 in M and an unknown real-valued

function f : M → R, for which we have learned its values for x0, x1, . . . , xn−1 (but perhaps

not for xn), we predict the value of f(xn) by the following algorithm. Let fn : M → R be

the function x 7→ f(xk), where xk is the first term of the first n elements of the sequence

that minimizes the distance from x to xi, for 0 ≤ i ≤ n− 1. To make the dependence of fn

on the sequence ~x = (xk)
∞
k=0 clear, we denote fn(x) = fn(x; ~x�n−1). In his paper, Mycielski

proves the following theorem:

Theorem 1.1. Let ν be a Radon probability measure on the Euclidean space Rd, and P = νN

the product measure in (Rd)N. If f : Rd → R is ν-measurable, then

(2) lim
n→∞

P (|fn(xn; ~x�n−1)− f(xn)| < ε) = 1
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for every ε > 0.

In other words, for every ε > 0, there exists N ∈ N and δ > 0 such that for all n ≥ N ,

(3) νN(En,ε) = P (En,ε) ≥ 1− δ,

where ~x ∈ En,ε if and only if |fn(xn, ~x�n−1) − f(xn)| < ε. So given ε > 0, the probability

that you will choose a sequence in (Rd)N such that fn differs from f by less than ε at the

nth term of that sequence goes to 1 as n→∞.

Mycielski then noted that it would be interesting to estimate the rate of convergence in

Theorem 1.1; and it seems that fn → f in ν measure for P-almost every sequence (x0, x1, . . .).

That is, it seems in the context of Theorem 1.1 that for all ε > 0

(4) lim
n→∞

ν({x ∈ Rd : |fn(x; ~x�n−1)− f(x)| < ε}) = 1

for P -a.e. sequence in (Rd)N. In other words, for P -a.e. ~x ∈ (Rd)N, ν(G(n, ~x)) → 1, where

x ∈ G(n, ~x) if and only if |fn(x; ~x�n−1) − f(x)| < ε. It seems likely that both (2) and (4)

hold for Radon probability measures on Rd. Theorem 1.1 certainly shows that for all Radon

probability measures on Rd, (2) holds. However, I do not know if it can be shown that (2)

implies (4). If it could, then (4) would follow immediately by virtue of Theorem 1.1. Instead,

I have used some results in a note by David H. Fremlin.

Fremlin has called measures that satisfy the condition that fn → f in ν-measure for

P -almost every sequence (x0, x1, . . .), Mycielski-regular. He has proved that for the the unit

cube with the Euclidean metric, Lebesgue measure is Mycielski-regular [4]. The purpose of

this paper is to extend Fremlin’s result to other measures on Rd with the Euclidean metric.

In particular, I show in Theorem 5.4 that the self-similar measure generated by a finite

family of contracting similitudes and which up to a constant is the Hausdorff measure in its

dimension on the invariant set C is Mycielski-regular.

I begin by tracing Fremlin’s development of conditions for which a measure µ is

Mycielski-regular [4]. I concentrate on the functional θ(E) = lim supn→∞
∫
F (ω�n,1E)dµ

(where E is a measurable set) and note some of its properties and its relation to a Radon
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measure µ (I define θ formally in chapter 2; for the moment, note that by the function

F (ω �n,1E) I mean what was denoted by the fn above, where f = 1A). Some results are

that θ does not depend on ω and that a Radon measure µ is Mycielski-regular if and only

if it is absolutely continuous with respect to θ; that is, µ is Mycielski-regular if and only if

θ(E) = 0 implies that µ(E) = 0 for all E ∈ Σ [6]. This leads to the main result, that a

measure is Mycielski-regular if it has moderated Voronoi tessellations (I define this in chapter

3)- this is shown by proving that if a measure satisfies this condition, then it is absolutely

continuous with respect to θ. It is this implication which provides the basic foundation for

our method. It is good to note at this point that Fremlin’s analysis is somewhat more general

than what is presented in this paper; in particular, he does not require the measure µ to be

atomless. However, for my purposes, it is useful to have µ to be atomless. In any case, since

the measures I study are atomless (since the Hausdorff measures Hs for s > 0, are), this is

all I need to have.

Since the self-similar measures I study have all their mass on an invariant set which is

constructed via similitudes that obey the open set condition, I spend some time developing

the theory in general of such self-similar measures and the open set condition. In doing so, I

am following Falconer’s treatment of the theory [3]. This is interesting not only as background

material; it is also interesting because the techniques in the proofs to the theorems are in

some instances mirrored in my own.

I present my results in two stages. First, in Theorem 5.1 I show that if the similitudes

have the same contraction ratio, then the self-similar measure is Mycielski-regular. I believe

it is a profitable exercise to do this first since the proof is slightly less complicated than the

more general case, gives the basic idea for all similar cases, and thus prepares one for the

proof of the general case. After giving an example, I then give in Theorem 5.4 my most

general result - for a self-similar measure µ that concentrates its mass on the invariant set

C which is constructed via similitudes (not necessarily with the same contraction ratio) and

which obey the open set condition, then µ is Mycielski-regular.
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Finally, I discuss the application of this method to some other measures; in particular,

I indicate that the measures which are used in the paper by Mauldin and Cawley [1] to get

some of the results in the multifractal analysis can similarly be shown to be Mycielski-regular.

I end with a discussion of future research possibilities. In particular, it would be interesting

to know if this extends to conformal measures. Of course, Mycielski posed the question for

all Radon probability measures, and so there is still much work to be done here.

To begin, however, I provide the proper setting and definitions, and give a couple

of examples of measures - one which is not Mycielski-regular, and one which is. The first

example shows that this is a non-trivial question: there are measures which do not converge

in measure for these sequences of functions.
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CHAPTER 2

DEFINITIONS AND MOTIVATION

We begin with notation. When referring to sets, the absolute value notation will refer

to the diameter of a set (otherwise, it carries its usual meaning). So, if A is a subset of some

metric space (X, ρ), then |A| = sup{ρ(x, y) : x, y ∈ A}. When referring to the number of

elements in a set - its cardinality - we will simply write Card(A). The interior of a set A will

be denoted by intA.

The following definitions are from David Fremlin [4]:

Definition 2.1. Let (X, ρ) be a metric space. Let ω = (xk)
∞
k=0 be an infinite sequence in

XN and let ω[n] = {x0, . . . , xn−1}. Suppose that z ∈ ω[n]. Define the Voronoi tile V (ω �n, z)

by

V (ω�n, z) = {x ∈ X : ρ(x, z) = ρ(x, ω[n]) and if i < j < n and z = xj 6= xi,(5)

then ρ(x, z) < ρ(x, xi)};

We call the collection of such V (ω�n, z) the Voronoi tessellation defined by ω[n].

That is, x ∈ V (ω�n, z) either if the distance from x to z is smaller than its distance

to any other element of ω[n], or if x is equidistant from two such points xi and xj, then x

belongs to the V (ω�n, z) such that z is equal to the first of the two elements xi and xj.

It is useful to note the fact that the Voronoi tessellation induces a partition on the

space X. (If a point is repeated in the first n entries of the sequence ω, say ω(i) = ω(j) for

i < j, then V (ω �n, ω(j)) = ∅.) It is also easily seen that in a Banach space, the Voronoi

tiles V (ω �n, z) are convex sets and that ∅ 6= intV (ω �n, z) ⊆ V (ω �n, z) ⊆ intV (ω�n, z).

The next definition is another way to define the function fn above.
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Definition 2.2. Let f : X → R, and ω[n] as above, and write xi = x(i). Let k(ω[n], x)

be the least i such that ρ(x, ω[n]) = ρ(x, x(i)), so that x ∈ V (ω �n, x(k(ω[n], x))). Define

F (ω�n, f)(x) = f(x(k(ω[n], x))).

Definition 2.3. Let (X,Σ, µ) be a measure space with µ a topological probability measure.

Let λ be the product measure µN on Ω = XN. We say that µ is Mycielski-regular provided

for every measurable f : X → R, the sequence (F (ω�n, f))∞n=1 converges in measure to f for

λ-almost every ω.

Example 2.4. An easy example of a measure which is not Mycielski-regular is given by

Fremlin [4]. Assume that there exists a countably additive extension µ of Lebesgue measure

to all subsets of X = [0, 1]. Let A = [0, 1/2) and B = [1/2, 1], and let µA and µB be

conditional measure induced by µ on A and B, respectively.

Let ρ be the zero-one metric on X; that is,

ρ(x, y) =

 0, if x = y,

1, otherwise.

Given a sequence ω = (xi)
∞
i=0, then for any n, V (ω � n, x0) = X\ω[n]∪{x0}, and has measure

1, while µ{z} = 0 for z ∈ ω[n]. Hence, for almost every x ∈ X,

F (ω�n, f)(x) = f(x0).

In particular, if f = 1A (where 1A is the characteristic function on the set A), then

F (ω�n, f)(x) =

 1, if x0 ∈ A,

0, otherwise.

It follows that µ{x ∈ X : |F (ω �n, f)(x) − f(x)| ≥ ε} ≥ 1 > 1/2 for every sequence and

for every n, and so F (ω�n, f) never converges in measure to f , and hence is not Mycielski-

regular.
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Example 2.5. An example of a measure that is Mycielski-regular - though it is rather

uninteresting! - is one that concentrates all its mass on a single point. For example, let

(X,Σ, µ) be a measure space and let x0 ∈ X such that µ{x0} = 1, and µ(X \ {x0}) = 0.

If P = µN, then P -almost every sequence is the constant sequence (x0)∞i=0. Hence, using

Mycielski’s notation, fn(x0) = f(x0) and so µ(x ∈ X : |fn(x) − f(x)| < ε) = µ{x0} = 1 for

P -almost every sequence in XN. Indeed, Fremlin has shown that any probability measure

such that supp(µ) is countable is Mycielski-regular [4].
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CHAPTER 3

CONDITIONS FOR A MEASURE TO BE MYCIELSKI-REGULAR

Here I trace David Fremlin’s development of the conditions for a measure to be

Mycielski-regular; the definitions and results in this chapter are taken from his note “Problem

GO” [4]. In what follows, Ω = XN and λ = µN is infinite product measure with domain

B(Ω). Following Fremlin, we define a functional θ : Σ→ [0, 1] such that for any measurable

E,

(6) lim sup
n→∞

∫
F (ω�n,1E)dµ = θ(E)

for λ-almost every ω ∈ Ω. Fremlin has shown that θ has the following properties:

(i) θ is a unital submeasure.

(ii) θ(H) ≤ µ(H) for every closed H ⊆ X, and θ(G) ≥ µ(G) for every open G ⊆ X.

(iii) If a measurable set E is such that µ(∂E) = 0, then θ(E) = µ(E), where ∂E is the

topological boundary of the set E.

To show these three properties, I note first that this function is measurable with

respect to B(Ω). To see this, write

(7) F (ω�n, f)(x) =
n∑
i=1

f(ω(i))1V (ω�n,ω(i))(x).

If f = 1E for E ∈ Σ, then for all x ∈ X, F (ω�n,1E)(x) ≤ 1, for every ω ∈ Ω. Hence,

∫
Ω

F (ω�n,1E))dλ =

∫
Ω×X

F (ω�n,1E))d(λ× µ) <∞.(8)

So F (ω�n,1E)) ∈ L1(Ω ×X,B(Ω) ⊗ Σ, λ × µ). It follows by Fubini’s theorem [6] that the

function

(9) ω 7→
∫
X

F (ω�n,1E))dµ
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is in L1(XN,B(Ω), λ) and, in particular, is λ-measurable.

At first sight, it appears that θ depends both on E ⊆ X and ω ∈ Ω. I will show that

if ω and ω
′ ∈ Ω are eventually equal, then limn→∞(F (ω �n, f)(x) − F (ω

′
�n, f)(x)) = 0 for

almost every x ∈ X, and so

(10) lim
n→∞

(∫
F (ω�n, f)−

∫
F (ω

′
�n, f)

)
= 0.

Hence the function h : ω ∈ Ω 7→ lim supn→∞
∫
F (ω � n, f)dµ is measurable and is constant on

all sequences that are eventually equal. By the Zero-One Law [6], the set {ω ∈ Ω : h(ω) > α}

has measure 0 or 1 for every α ∈ R, and so there is an α such that h(ω) = α for almost

every ω. To show (10), we enlist the aid of the following two propositions:

Proposition 3.1. Let (X, ρ) be a separable metric space and let µ be a topological probability

measure. If X0 is the support of µ, then for every k ∈ N, X0 = ω[N \ k] for λ-a.e. ω, where

ω[N \ k] = {xk, xk+1, . . .}.

Proof. If X is separable metric, then any subspace is separable metric; in particular, it

holds for X0. Let U be a countable base for X0. Since X0 is the support of µ, if U ∈ U , then

µ(U) > 0, and so λ({ω : ω[N \ k] ∩ U 6= ∅}) = 1, and since

(11)
⋂

U∈U\{∅}

{ω : U ∩ ω[N \ k] 6= ∅} ⊆ {ω : X0 ⊆ ω[N \ k]},

it follows that λ({ω : X0 ⊆ ω[N \ k]}) = 1 as well. �

Proposition 3.2. Let (X, ρ) be a separable metric space and let µ be a topological probability

measure such that µ has no atoms. There exists Ω0 ⊆ Ω with λ(Ω0) = 1, such that if

ω,ω
′ ∈ Ω0 are eventually equal, then for µ-a.e. x ∈ X, there is an n ∈ N such that

F (ω�m, f)(x) = F (ω
′
�m, f))(x) for every m ≥ n and for every f defined on X.

Proof. Let ω,ω
′ ∈ Ω0 such that ω(m) = ω

′
(m) for every m ≥ l. Let X0 = ω[N \ l] \ I and

I = ω[l] ∪ ω′
[l]. Then µ(X0) = 1 since µ(I) = 0. Now if x ∈ X0 then there exists n ≥ l
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such that ρ(x, ω[n \ l]) < ρ(x, I), and the same is true for all m ≥ n. So for any m ≥ n,

k(ω�m,x) = k(ω
′
�m,x), and hence that F (ω�m, f)(x) = F (ω

′
�m, f)(x). �

It thus happens that the functional θ is constant on measurable sets. We now establish

the three properties mentioned above. First, θ is a unital submeasure. By “unital” I simply

mean that θ : Σ → [0, 1], which is clear. That it is a submeasure is also easy to see. By

“submeasure,” I mean that θ has the following three properties:

(i) θ(A ∪B) ≤ θ(A) + θ(B) for all A,B ∈ Σ,

(ii) θ(A) ≤ θ(B) if A ⊆ B, and

(iii) θ(∅) = 0.

These properties follow because we can write

θ(E) = lim sup
n→∞

∫
F (ω�n,1E)dµ(12)

= lim sup
n→∞

∫ n∑
i=1

1E(ω(i))1V (ω�n,ω(i))(x)dµ(13)

= lim sup
n→∞

n∑
i=1

∫
1E(ω(i))1V (ω�n,ω(i))(x)dµ,(14)

and because of the properties of the characteristic function. Thus, 1A∪B(x) ≤ 1A(x)+1B(x),

and if A ⊆ B, then 1A ≤ 1B, and 1∅ ≡ 0.

To show that θ(H) ≤ µ(H) for every closed H ⊆ X, we first need the following

lemma:

Lemma 3.3. Let f be a real-valued continuous function defined on X. Then for almost every

ω ∈ Ω and for every x ∈ supp(µ) = X0, F (ω�n, f)(x) converges to f(x) as n→∞.

Proof. Let ε > 0. By the continuity of f , there exists a δ > 0 such that if ρ(x, y) < δ then

|f(x) − f(y)| < ε. Further, as n → ∞, for every x ∈ X0, we have that ρ(x, ω[n]) → 0. So

there is an n0 ∈ N, such that if n ≥ n0, then ρ(x, ω[n]) < δ. So,

|F (ω�n, f)(x)− f(x)| = |
n∑
i=1

f(ω(i))1V (ω�n,ω(i))(x)− f(x)|(15)
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= |f(ω(j))− f(x)|(16)

for the 1 ≤ j ≤ n such that x ∈ V (ω � n, ω(j)). As n → ∞, ρ(ω(j), x) < δ, and so

we get that |f(ω(j))− f(x)| < ε. �

Now let ε > 0, and let H ⊆ X be closed. There is a continuous function f , such that

1H ≤ f and
∫
fdµ < µ(H)+ε. Further, since limn→∞ F (ω �n, f)(x) = f(x) for almost every

x, then we have that

θ(H) = lim sup
n→∞

∫
F (ω�n,1H)dµ(17)

=

∫
f(x)dµ (by Lemma 3.3)(18)

< µ(H) + ε,(19)

and hence we have that θ(H) ≤ µ(H).

On the other hand, if G ⊆ X is open, then θ(G) = 1−θ(X\G) ≥ 1−µ(X\G) = µ(G).

Finally, we show that if a measurable set E is such that µ(∂E) = 0, then θ(E) = µ(E),

where ∂E is the topological boundary of the set E. This follows from

(20) µ(E) = µ(E) = µ(intE) ≤ θ(intE) ≤ θ(E) ≤ θ(E) ≤ µ(E) = µ(E).

This lays the groundwork for the following two fundamental theorems, and which

provide the key to proving which measures are in fact Mycieski-regular:

Theorem 3.4. Let (X, ρ) be a separable metric space, µ a topological probability measure

on X and θ : Σ→ [0, 1] the functional defined above. Then the following are equivalent:

(i) µ is Mycielski-regular;

(ii) θ is absolutely continuous with respect to µ;

(iii) θ = µ.

Proof. It is clear that (i) =⇒ (iii) =⇒ (ii). It is thus sufficient to show that (ii) =⇒

(i). Suppose then that θ is absolutely continuous with respect to µ. Let f : X → R be

measurable, and for each k ∈ N, let δk > 0 be such that θ(E) ≤ 2−k whenever µ(E) ≤ δk.
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By Lusin’s theorem [6], there exists a continuous function, call it gk : X → R, and a set

Ek = {x ∈ X : gk(x) 6= f(x)}, such that µ(Ek) ≤ min{2−k, δk}. Note that {x ∈ X : F (ω �

n, f)(x) 6= F (ω�n, gk)(x)} ⊆ {x ∈ X : F (ω�n,1Ek) = 1} for every ω ∈ Ω. Define Wk ⊆ Ω

such that ω ∈ Wk if and only if limn→∞ F (ω � n, gk)(x) = gk(x) for almost every x and

lim supn→∞
∫
F (ω�n,1Ek)dµ ≤ 2−k. Then λ(Wk) = 1. Let W = ∩k∈NWk. For any ω, we

have that

min{|F (ω�n, f)− F (ω�n, gk)|,1X} ≤ min{F (ω�n, |f − gk|),1X}(21)

≤ F (ω�n,1Ek).(22)

Hence,

min{|F (ω�n, f)− f |,1X} ≤ min{|F (ω�n, f)− F (ω�n, gk)|,1X}(23)

+ min{|F (ω�n, gk)− gk|,1X}+ min{|gk − f |,1X}(24)

≤ F (ω�n,1Ek) + min{|F (ω�n, gk)− gk|,1X}+ 1Ek .(25)

Thus we have that if ω ∈ W , then

lim
n→∞

∫
min{|F (ω�n, f)− f |,1X}dµ ≤ lim

∫
F (ω�n,1Ek)dµ(26)

+ lim

∫
min{|F (ω�n, gk)− gk|,1X}dµ(27)

+ lim

∫
1Ekdµ(28)

≤ 2−k + 0 + 2−k+1.(29)

Since this is true for every k ∈ N, it follows that F (ω � n, f) converges to f in measure.

And since f is arbitrary, we have that µ is Mycieski-regular. �

I now give a sufficient condition for a measure to be Mycielski-regular in terms of its

tessellations. We need the following definition:
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Definition 3.5. Let X, ρ, µ,Ω, and λ be as defined above. We say that µ has moderated

Voronoi tessellations if for every ε > 0 there exists M ≥ 0 such that

(30)
∞∑
n=1

λ{ω : µ
(⋃
{V ′

(ω�n, z) : z ∈ ω[n], µ(V
′
(ω�n, z)) ≥M/n}

)
≥ ε} <∞,

where each V
′
(ω�n, z) is the punctured Voronoi tile V (ω�n, z) \ {z}.

Note that if µ has moderated Voronoi tessellations for M then µ has moderated

Voronoi tessellations for all M
′ ≥M . The reason for this is as follows: call A(n,M, ε) = {ω :

µ
(⋃
{V ′

(ω�n, z) : z ∈ ω[n], µ(V
′
(ω�n, z)) ≥M/n}

)
≥ ε}, and B(n,M) =

⋃
{V ′

(ω �n, z) :

z ∈ ω[n], µ(V
′
(ω �n, z)) ≥ M/n}. If V

′
(ω �n, z)) ∈ B(n,M

′
), then V

′
(ω �n, z)) ∈ B(n,M)

so that B(n,M
′
) ⊆ B(n,M). Thus, if µ(B(n,M

′
)) ≥ ε then µ(B(n,M)) ≥ ε. So if

ω ∈ A(n,M
′
, ε) then ω ∈ A(n,M, ε). Hence, if

∑
A(n,M, ε) <∞ then

∑
A(n,M

′
, ε) <∞.

We now have the proper background to state the following theorem.

Theorem 3.6. Let (X, ρ) be a separable metric space, µ a topological probability measure

on X which has moderated Voronoi tessellations. Then µ is Mycielski-regular.

Proof. Let θ be the submeasure introduced above. I will show that θ is absolutely con-

tinuous with respect to µ and therefore by the previous theorem, it will follow that µ is

Mycielski-regular.

Let ε > 0, and let M ≥ 0 such that

(31)
∞∑
n=1

λ{ω : µ
(⋃
{V (ω�n, z) : z ∈ ω[n], µ(V (ω�n, z)) ≥M/n}

)
≥ ε/3} <∞.

Let

(32)

Ω1 = {ω : µ
(⋃
{V (ω�n, z) : z ∈ ω[n], µ(V (ω�n, z)) ≥M/n}

)
< ε/3 for all but finitely n}.

It follows that λ(Ω1) = 1.
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Now, let δ > 0 such that 2Mδ ≤ ε/3, δ ≤ ε/3, and δ ≤ 1/2. Suppose that µ(E) ≤ δ.

Let

(33) Ω2 = {ω : Card{n : Card{i : i < n, ω(i) ∈ E} > 2δn} <∞}.

It follows by the Strong Law of Large Numbers [6] that λ(Ω2) = 1. Let ω ∈ Ω1 ∩ Ω2. Let n

be such that

(34) µ
(⋃
{V (ω�n, z) : z ∈ ω[n], µ(V (ω�n, z)) ≥M/n}

)
≤ ε/3,

and

(35) Card{i : i < n, ω(i) ∈ E} ≤ 2δn.

Set I = E ∩ ω[n], and J = {z : z ∈ ω[n],µ(V (ω�n, z)) ≥M/n}. Thus,

∫
F (ω�n,1E)dµ =

∑
z∈I

µ(V (ω�n, z))(36)

=
∑
z∈I∩J

µ(V (ω�n, z)) +
∑
z∈I\J

µ(V (ω�n, z))(37)

≤ ε/3 + Card(I \ J) ·M/n(38)

≤ ε/3 +M · Card(I)/n(39)

≤ ε/3 + 2Mδ ≤ ε.(40)

As this is true for all but finitely n, it follows that θ(E) ≤ ε, and thus that θ is absolutely

continuous with respect to µ. �

I now present Fremlin’s theorem and proof that µ is Mycielski-regular when µ is

Lebesgue measure.

Theorem 3.7. Let r ≥ 1 be an integer. Let (X, ρ, µ) be [0, 1]r with its Euclidean metric and

Lebesgue measure. Then µ has moderated Voronoi tessellations, and so is Mycielski-regular.
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Proof. The point of the first part of the proof is just to get some calculations out of the way

that will be useful in the course of the proof. We begin by letting 0 < ε < 1, q = (2 + 2
√
r)r,

M = 1 + dln 10/εe, and γ = 1/2ε/4M . Finally, let

(41) n0 =

⌈
max

(
2M

(21/r − 1)r
,
4M

ε
,
20

ε

)⌉
.

Now let n ≥ n0 and let

(42) l =

⌊( n
M

)1/r
⌋
.

Observe that n ≤M(l+1)r and so l+1 ≥ 21/r

21/r − 1
, l ≥ 1

21/r − 1
, l+1 ≤ 21/rl, and n ≤ 2Mlr.

Let m = d εn
4M
e. It follows that

εn

5M
≤ εn

4M
− 1 and

lr

m
≤ n

Mm
≤ 5

ε
; also m ≤ n

4M
≤ lr.

Now that we are finished with the preliminaries, we begin the proof proper. Let J

be the set of hypercubes of the form

(43)
∏
j<r

[
ij
l
,
ij + 1

l

]
,

where ij < l for j < r. It follows that CardJ = lr, ∪J = X, µJ = 1/lr, and |J | =
√
r
l

for

J ∈ J .

The proof is based on the following claim:

Claim 3.8. Now suppose that V ⊆ [0, 1]r is convex and x ∈ V . Let

(44) Vx = V ∩
⋃
y∈V

{J ∈ J : J ⊆ intB(y, ρ(y, x))}.

Then, µ(V \ Vx) ≤ 2Mq/n.

To show the claim, let K be the set of members of J meeting B(x,
√
r
l

). Then

CardK ≤ q since each projection of B(x,
√
r
l

) onto a coordinate has length at most 2
√
r
l

and

meets at most 2 + 2
√
r intervals of the form [ i

r
, i+1

r
]. If y ∈ V \ ∪K, let J ∈ J such that

y ∈ J . Then J ⊆ B(y,
√
r
l

), while ρ(y, x) >
√
r/l, so that J ⊆ intB(y, ρ(x, y)) and y ∈ Vx.

Accordingly, V \Vx ⊆ ∪K is covered by q members of J , and has measure at most q
lr
≤ 2Mq

n
.

This finishes the proof for Claim 3.8.
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Claim 3.9. For ω ∈ Ω, set

(45) Hn(ω) =
⋃
{V (ω�n, z) : z ∈ ω[n], µV (ω�n, z) >

4Mq

n
},

(46) Kω = {J ∈ J : J ∩ ω[n] = ∅}.

Then µHn(ω) ≤ 4M
n
· Card(Kω).

To show this claim, note that if z ∈ ω[n] and V (ω �n, z) has measure greater than

4Mq
n

, then for every y ∈ V (ω�n, z), intB(y, ρ(y, z)) does not meet ω[n], and every member

of J included in intB(y, ρ(y, z)) belongs to Kω. By Claim 3.8, V (ω � n, z)\∪Kω has measure

at most 2Mq/n. Consequently,

(47) µ(V (ω�n, z)) ≤ 2µ(V (ω�n, z) ∩
⋃
Kω).

Summing over relevant z,

(48) µHn(ω) ≤ 2µ(Hn(ω) ∩
⋃
Kω) ≤ 2

lr
· Card(Kω) ≤ 4M

n
· Card(Kω).

This shows the claim.

It follows that if µHn(ω) ≥ ε, then Card(Kω) ≥ εn
4M
≥ m. Hence, we have that

(49) {ω : µHn(ω) ≥ ε} ⊆ {ω : Card(Kω) ≥ m}.

Define [J ]m = {K ⊆ J : Card(K) = m}. Then,

λ{ω : Card(Kω) ≥ m} ≤
∑
K∈[J ]m

λ{ω : ω[n] does not meet
⋃
K}(50)

≤ Card([J ]m)
(

1− m

lr

)n
(51)

≤ lrm

m!

(
1− m

lr

)Mlr

(since Mlr ≤ n)(52)

≤ emlrm

mm

(
1− 1

lr

)Mmlr

(since 1−mlr ≤ (1− lr)m)(53)

≤ emlrm

mm

(
1

e

)Mm

(since (1− x)1/x ≤ 1/e for every x > 0)(54)

=

(
elr

meM

)m
(55)
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≤
(

5e

εeM

)m
(56)

≤ 1

2m
(57)

≤ 1

2εn/4M
= γn.(58)

The above applies for all n ≥ n0, and so, summing over n, we get that

(59)
∞∑
n=1

λ{ω : µ
(⋃
{V (ω�n, z) : z ∈ ω[n], µ(V (ω�n, z)) ≥ 4Mq/n}

)
≥ ε}

≤ n0 +
∞∑

n=n0

λ{ω : µHn(ω) ≥ ε}(60)

≤ n0 +
∞∑

n=n0

γn <∞.(61)

Since ε is arbitrary, we have that µ has moderated Voronoi tessellations. It follows

that µ is Mycielski-regular. �
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CHAPTER 4

SELF-SIMILAR MEASURES AND THE OPEN SET CONDITION

In this section, I am basically following Kenneth Falconer’s treatment of self-similar

measures; the theorems and their proofs are from material in his book The Geometry of

Fractal Sets [3]. As stated, the goal is to extend Fremlin’s results to other measures besides

Lebesgue measure. Here I am concerned with self-similar measures on bounded subsets of

Rd, for d ≥ 1. Our setting is as follows. We begin with two definitions.

Definition 4.1. A contraction is a mapping φ : Rn → Rn such that |φ(x)−φ(y)| < c|x−y|

for c < 1 and all x, y ∈ Rn.

Definition 4.2. A similitude is a mapping φ : Rn → Rn such that there exists a constant

c > 0 for which |φ(x)− φ(y)| = c|x− y| for all x, y ∈ Rn.

Let X be a subset of Rd, ρ the Euclidean metric, and let φi : X → X for 1 ≤ i ≤ l, be

similitudes with contraction ratios r1, r2, . . . , rl, and for which the open set condition holds

(to be explained shortly). Let

(62) φ(F ) =
l⋃

i=1

φi(F ).

A set C is called an invariant set if C =
⋃l
i=1 φi(C). Moreover, if Hs(φi(C) ∩ φj(C)) = 0

(whereHs is the s-dimensional Hausdorff measure, see definition below), then we call C a self

similar set. We will be looking at measures that concentrate their mass on a compact subset

of X, which is constructed via these similitudes. Theorem 4.5 guarantees the existence of

the type of compact set that we are looking for. Though I am primarily interested in self-

similar measures on bounded subsets of Rd with the Euclidean metric, I now define both the

Hausdorff measure and Hausdorff metric which will be used in establishing several of the
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following theorems. It will also be seen that Hausdorff measure and the self-similar measures

I am interested in are closely related.

Definition 4.3. Let F be a subset of Rd and let s be a non-negative real number. For

δ > 0, define

(63) Hs
δ(F ) = inf

∞∑
i=1

|Ui|s,

where the infimum is taken over all countable covers {Ui} of F with diameter less than

or equal to δ. The s-dimensional Hausdorff measure is defined to be limδ→0Hs
δ(F ) and is

written Hs(F ).

Note that, given δ < 1, and a measurable set E, Hs
δ(E) is a non-increasing function

of s. Now suppose that Hs(E) <∞. Then for any t > s, and for any δ-cover {Ui} of E,

(64) Ht
δ(E) ≤

∞∑
i=1

|Ui|t ≤ δt−s
∞∑
i=1

|Ui|s.

Letting δ → 0, we see that Ht(E) = 0 for all t > s. This also implies that for all t < s,

Ht(E) =∞. Hence, because of the properties of Hausdorff measure, graphing the Hausdorff

measure of a set versus the number s shows that the graph is always infinity or 0, except

at one point, where the graph jumps from infinity to 0. This point is called the Hausdorff

dimension of a set, and is of considerable interest. In particular, it is often of interest to

know if 0 < Hs(F ) <∞. If so, then the set F is called an s-set.

Definition 4.4. Let (X, ρ) be a metric space and letK(X) be the collection of all non-empty

compact subsets of X. The Hausdorff metric on K(X) is given by

ρH(K1, K2) = max

{
sup
x∈K2

{ρ(x,K1)}, sup
x∈K1

{ρ(x,K2)}
}

(65)

= inf{ε > 0 : K1 ⊆ B(K2, ε), K2 ⊆ B(K1, ε)},(66)

where B(K, ε) = {x ∈ X : ρ(x,K) < ε} and ρ(x,K) = inf{ρ(x, y) : y ∈ K}.
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Theorem 4.5. Let {φi}li=1 be contractions on Rd with contraction ratios ri < 1. Then there

exists a unique non-empty compact set C such that

(67) C = φ(C) =
l⋃

i=1

φj(C).

Further, if F is any non-empty compact subset of Rd the iterates φk(F ) converge to C in the

Hausdorff metric as k →∞.

Proof. Let K be the collection of non-empty compact subsets of Rd. First we show that K

is a complete metric space when equipped with the Hausdorff metric. The result will then

follow by an application of the Banach Fixed Point Theorem [6].

To show that K is a complete metric space when equipped with the Hausdorff metric,

let {Ei} be a Cauchy sequence of compact sets of Rd so that ρH(Ei, Ej) ≤ 1/min(i, j), and

let

(68) E =
⋂
j≥1

⋃
i≥j

Ei.

E is non-empty compact since it is the intersection of a decreasing sequence of non-empty

compact sets. It will now be shown that the sequence {Ei} converges to E in the Hausdorff

metric. To see this, note first that

(69) E ⊆
⋃
i≥j

Ei ⊆ B(Ej, 1/j)

for all j. On the other hand, let x ∈ Ej; it follows that x ∈ B(Ei, 1/j) for all i ≥ j and so

x ∈ B(
⋃∞
i=k Ek, 1/j) for k ≥ j. Now choose a sequence {yk} such that yk ∈

⋃∞
i=k Ek and

|x − yk| ≤ 1/j. By compactness, this sequence has a subsequence that converges to some

y ∈
⋂∞
k=1

⋃∞
i=k Ek = E and |x − y| ≤ 1/j. Hence, x ∈ B(E, 1/j), and so Ej ⊆ B(E, 1/j).

Therefore, ρH(Ej, E) ≤ 1/j and it follows that the Ej converge to E in the Hausdorff metric.

Now, let F1 and F2 ∈ K. Then,

ρH(φ(F1), φ(F2)) = ρH

(
l⋃

i=1

φj(F1),
l⋃

i=1

φj(F2)

)
(70)

≤ max
j
ρH(φj(F1), φj(F2))(71)
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≤ (max
j
rj)ρH(F1, F2).(72)

By the Banach Fixed Point Theorem, it follows immediately that there is a unique F ∈ K

such that F = φ(F ). �

The number s for which
∑l

j=1 r
s
j = 1 is called the similarity dimension. If we raise

both sides to the kth power, we obtain,

(73)
∑

j1j2...jk

(rj1rj2 · · · rjk)s = 1,

where we are summing over all the k-tuples {j1j2 . . . jk} for 1 ≤ j ≤ l. Let Fj1...jk =

φj1 ◦ · · · ◦ φjk(F ). We now come to the self-similar measure which is defined on the compact

set C.

Proposition 4.6. There exists a Borel measure µ with support contained in C, such that

µ(Rd) = 1 and such that for any measurable set F ,

(74) µ(F ) =
l∑

j=1

rsjµ(φ−1
j (F )).

Proof. Let x ∈ C and let xj1...jk = φj1 ◦ · · · ◦ φjk(x). For k = 1, 2, . . ., define a positive

linear function defined on the space of continuous functions by

(75) Lk(f) =
∑
j1...jk

(rj1rj2 · · · rjk)sf(xj1...jk).

If f is continuous, then f is uniformly continuous on C, so given ε > 0, we can find a

k0 such that for all k ≥ k0, we have that f varies by no more than ε on each set Cj1...jk

since |Cj1...jk | ≤ (max rj)
k|E|. For k ≥ k0, we have that xj1...jk ∈ Cj1...jk and therefore

|Lk(f) − Lk′(f)| ≤ ε as long as both k, k′ ≥ k0. It follows that Lk(f) converges for each f

and the limit function defines a positive linear function on the space of continuous functions

on C. By the Riesz Representation Theorem, there exists a Borel measure µ such that

(76)

∫
fdµ = lim

k→∞
Lk(f)
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for each continuous function f . Moreover,

Lk(f) =
∑
j1

rsj1

∑
j2...jk

(rj2 . . . rjk)
sf(xj1...jk)(77)

=
∑
j1

rsj1

∑
j2...jk

(rj2 . . . rjk)
sf(φ(xj2...jk))(78)

=
∑
j

rsjLk−1(f ◦ φj).(79)

Letting k →∞, we obtain

(80)

∫
fdµ =

∑
j

rsj

∫
f ◦ φjdµ.

By the Monotone Convergence Theorem, it follows that this also holds for all non-negative

functions, and so, letting f = 1F , we obtain

(81) µ(F ) =

∫
1Fdµ =

∑
j

rsj

∫
1F ◦ φjdµ =

∑
j

rsjµ(φ−1
j (F )).

Moreover, if f ≡ 1, then by equation (73), we have that µ(Rd) = 1. Finally, µ has its support

in C, because if f is any continuous function vanishing on C, Lk(f) = 0 for every k, and so∫
fdµ = 0. �

The open set condition means that there exists a bounded open set V such that

(82) φ(V ) =
l⋃

j=1

φj(V ) ⊆ V,

and this union is disjoint. Let φj1 ◦ · · · ◦ φjk = φj1...jk , and Vj1...jk = φj1 ◦ · · · ◦ φjk(V ). Then

by applying φj1...jk , we have that

(83)
l⋃

j=1

Vj1...jk,j ⊆ Vj1...jk ,

and this union is also disjoint. So the sets Vj1...jk form a net in the sense that each one is

disjoint from the other, contains or is contained in the other.

We also have that

(84) C =
∞⋂
k=0

φk(V ).

22



This follows because the φk(V ) are a decreasing sequence of non-empty compact sets and

which converge to C in the Hausdorff metric by Theorem 4.5, which couldn’t happen if C

has points outside of V . Moreover, if we apply φj1 ◦ · · · ◦ φjk , we get that Cj1...jk ⊆ V j1...jk .

It turns out that if you have the open set condition for the similitudes {φi} with

corresponding reduction ratios ri such that
∑l

i=1 r
s
i = 1, then the set C is an s-set; that is,

0 < Hs(C) <∞. In this case, we say that the self-similar measure µ is associated with the s-

dimensional Hausdorff measure. Moreover, if the open set condition holds for the similitudes,

then it follows that C is self-similar, and as µ concentrates its mass on a self-similar set,

we call µ a self-similar measure. So we end this section with establishing these final results.

The proof of Theorem 4.8 is not only interesting in itself, but also because its method gave

us an idea of how to deal with differing contraction ratios in Theorem 5.4. I first give an

important geometric lemma.

Lemma 4.7. Let {Vi} be a collection of disjoint open subsets of Rd such that Vi contains

a ball of radius c1ζ and is contained in a ball of radius c2ζ. Then any ball B of radius ζ

intersects no more than Γ = (1 + 2c2)dc−d1 of the sets V i.

Proof. Suppose that V i ∩ B 6= ∅. B is of radius ζ and since Vi is contained in a ball of

radius c2ζ, it follows that V i is contained in a ball concentric with B and of radius (1+2c2)ζ.

Suppose now that Γ of the V i meet B, then summing up the volumes of the corresponding

balls of radius c1ζ, we get that Γ(c1ζ)d ≤ (1 + 2c2)dζd. �

Theorem 4.8. Suppose that the open set condition holds for the similitudes φi with ratios ri

for 1 ≤ i ≤ l. Then the associated compact invariant set C is an s-set, where s is determined

by
∑l

i=1 r
s
i = 1.

Proof. Iterate (67) to obtain C = ∪j1...jkCj1...jk . By (73), we have that

(85)
∑
j1...jk

|Cj1...jk |s =
∑
j1...jk

(rji · · · rjk)s|C|s = |C|s,

and since |Cj1...jk | ≤ max rsi |C| → 0 as k →∞, it follows that Hs(C) ≤ |C|s <∞.
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To show that 0 < Hs(C), let V be the bounded open set given by the open set

condition, and suppose that it contains a ball of radius c1 and is contained in a ball of

radius c2. Let ζ > 0. For each infinite sequence {j1, j2, . . .}, 1 ≤ ji ≤ l, truncate the

sequence at the first k ≥ 1 for which (minj rj)ζ ≤ rj1rj2 · · · rjk ≤ ζ, and let S denote

the set of finite sequences obtained in this manner. From an earlier remark, the collection

{Vj1...jk : j1 . . . jk ∈ S} is a disjoint collection of open sets; each member containing a ball of

radius c1rj1 · · · rjk ≥ c1(minj rj)ζ and contained in a ball of radius c2ζ. By Lemma 4.7, any

ball B of radius ζ intersects, at most Γ sets of the collection {V j1...jk : j1 . . . jk ∈ S}. Also

note that µj1...jk(Rd) = 1 and that µj1...jk has its support in the set Cj1...jk ⊆ V j1...jk .

Define µj1...jk(F ) = µ((φj1 ◦· · ·◦φjk)−1(F )) = µ(φ−1
jk
◦· · ·◦φ−1

j1
(F )). Then the measure

µj1...jk is supported on Cj1...jk and

(86) µj1...jk =
∑
j

rsjµj1...jkj.

By iterating (86) where appropriate, we get that

(87) µ =
∑

j1...jk∈S

(rj1...jk)
sµj1...jk .

Hence, µ(B) ≤
∑

(rj1...jk)
sµj1...jk(Rd), where the sum is taken over those sequences in S for

which V j1...jk ∩ B 6= ∅. It follows that µ(B) ≤ Γζs = Γ2−s|B|s for any ball with |B| < |V |.

However, given any cover {Ui} of C, we can cover C by balls of diameter less than or equal

to 2|Ui|, and so

(88) 1 = µ(C) ≤
∑

µ(Bi) ≤ Γ2−s
∑
|Bi|s ≤ Γ

∑
|Ui|s.

Since the cover {Ui} is arbitrary, it follows that Hs(C) ≥ 1/Γ > 0. �

Corollary 4.9. If the open set condition holds, then Hs(φi(C) ∩ φj(C)) = 0 for i 6= j, so

the set C is self-similar.
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Proof. Since the φi are similitudes, we have that

(89)
l∑

j=1

Hs(φj(C)) =
l∑

j=1

rsjHs(C) = Hs(C),

Since 0 < Hs(C) < ∞, this can only happen if Hs(φi(C) ∩ φj(C)) = 0 by (67) and the

additive properties of Hausdorff measure. �
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CHAPTER 5

SELF-SIMILAR MEASURES AND MYCIELSKI-REGULARITY

In this chapter, X is a convex and bounded subset of Rd, ρ is the Euclidean metric,

and µ is the self-similar measure which up to a constant is Hausdorff measure on the invariant

set C. The maps φi are similitudes and ri < 1 are the corresponding contraction ratios, where

1 ≤ i ≤ l. I assume that the open set condition is satisfied (taking V as the interior of X), so

that the theorems in the previous chapter apply. First, I show that if the contraction ratios

are the same for each map φi, then µ has moderated Voronoi tessellations.

Theorem 5.1. Let (X, ρ, µ),φi be as defined above, and such that ri = rj for each i, j. Then

µ has moderated Voronoi tessellations.

Proof. I use the basic argument of Fremlin, which he uses for Lebesgue measure; however,

it is sufficiently remodeled as to be a new result; this is especially seen in that his proof really

depends on the fact that Lebesgue measure is uniformly distributed over the unit cube. I

do, however, use much of the same terminology and notation.

Let ε > 0. As noted above, I assume that OSC is satisfied for the similitudes. Let J1 =

φ1(X), J2 = φ2(X), . . ., Jl = φl(X). In general, for σ ∈ {1, 2, . . . , l}t (so σ = (j1, . . . , jt),

where 1 ≤ jk ≤ l and 1 ≤ k ≤ t), let Jσ = φj1 ◦ · · · ◦ φjt(X). Further, let Jt = {Jσ : σ ∈

{1, 2, . . . , l}t}. Then Card(Jt) = lt, and µ(Jσ) = 1/lt. Let M = 1 + dln(10/ε)e. Also, for

large n ∈ N, choose t(n) ∈ N such that

(90) logl n−loglM ≥ t(n) ≥ logl n−loglM−1 ≥ logl(logl n)+logl 2−logl(logl 2)−logl ε/2.

Note that as n→∞, so does t(n). Also note that usually I denote t(n) by t, unless there is

a reason to specifically highlight its dependence on n.
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Let z ∈ C, and let Jσ ∈ Jt for σ ∈ {1, . . . , l}t. Then the |Jσ| = rt|X| = |X|/lt/s

(where r is the common contraction ratio, and s is the similarity dimension of the set C),

and so each Jσ is contained in a ball of radius |X|/2lt/s and contains a ball of radius c1/l
t/s,

where c1 < |X|/2. Then if E = B(z, |X|/lt/s), by Lemma 4.7 there is a uniform bound (in z

and t) Γ on the number of the Jσ that meet E. Let K be the set of members of Jt meeting

E; it follows that Card(K) ≤ Γ.

Let V ⊆ X be convex. Suppose that y ∈ (V ∩ C) \ ∪K such that y ∈ Jσ for Jσ ∈ Jt.

Since y 6∈ E, it follows that ρ(y, z) > |X|/lt/s. Further, since |Jσ| = |X|/lt/s, it follows

that Jσ ⊆ intB(y, ρ(y, z)). Hence, y ∈ Vz = V ∩
⋃
y∈V ∩C{J ∈ Jt : J ⊆ intB(y, ρ(y, z))}.

Accordingly, (V ∩ C) \ Vz ⊆ ∪K is covered by at most Γ members of Jt and so V \ Vz has

measure at most Γ/lt. (Note that µ((V ∩ C) \ Vz) = µ(V \ Vz) since the measure of the

complement of C has measure 0.)

Recall that the Voronoi tiles are convex. Let ω ∈ Ω and let

(91) Hn(ω) =
⋃
{V (ω�n, z) : z ∈ ω[n], µV (ω�n, z) ≥ 2Γl−t}.

Let

(92) Kω = {Jσ ∈ Jt : Jσ ∩ ω[n] = ∅},

Suppose that µ(V (ω � n, z)) ≥ 2Γl−t. It follows that if y ∈ V (ω � n, z), (y 6= z), then

intB(y, ρ(y, z)) ∩ ω[n] = ∅ and if Jσ ⊆ intB(y, ρ(y, z)) then Jσ ∈ Kω. By above, we have

that µ(V (ω�n, z) \
⋃
Kω) ≤ Γl−t and so µ(V (ω�n, z) ≤ 2µ(V (ω�n, z) ∩

⋃
Kω).

Hence,

µHn(ω) ≤ 2µ(Hn(ω) ∩
⋃
Kω)(93)

≤ 2l−t · Card(Kω).(94)
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It follows that if µHn(ω) ≥ ε then Card(Kω) ≥ εlt

2
≥ m, where m = b εlt

2
c. Therefore,

{ω ∈ Ω : µHn(ω) ≥ ε} ⊆ {ω ∈ Ω : Card(Kω) ≥ m}. Also,

(95) λ{ω ∈ Ω : Card(Kω) ≥ m} ≤
∑
K∈[J ]m

λ{ω : ω[n] does not meet ∪ K},

where [J ]m = {K ⊆ Jt : Card(K) = m}, and so

λ{ω ∈ Ω : Card(K) ≥ m} ≤ ltm

m!

(
1−ml−t

)n
(96)

≤ ltm

m!

(
1−ml−t

)Mlt
(since Mlt ≤ n)(97)

≤ emltm

mm

(
1− l−t

)Mmlt
(since 1−ml−t ≤ (1− l−t)m)(98)

≤ emltm

mm

(
1

e

)Mm

(since (1− x)1/x ≤ 1/e if x > 0)(99)

=

(
elt

meM

)m
(100)

=

(
elt

b εlt
2
ceM

)m

(101)

≤
(

5e

εeM

)m
(102)

≤ 1

2m
(by choice of M)(103)

≤ 1

2εlt/2
.(104)

By (90), it follows that for n sufficiently large,

(105)

(
1

2

)εlt/2
≤ 1

n2
.

Let n0 be such that for all n ≥ n0, (90) holds. Then,

∞∑
n=1

λ{ω : µ(Hn(ω)) ≥ ε} ≤ n0 +
∞∑

n=n0

λ{ω : µHn(ω) ≥ ε}(106)
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≤ n0 +
∞∑

n=n0

1

n2
<∞.(107)

Of course, the definition of moderated Voronoi tessellations is that for every ε > 0

there exists M ≥ 0 such that

(108)
∞∑
n=1

λ{ω : µ
(⋃
{V (ω�n, z) : z ∈ ω[n], µ(V (ω�n, z)) ≥M/n}

)
≥ ε} <∞,

but this is true if and only if

(109)
∞∑
n=1

λ{ω : µ
(⋃
{V (ω�n, z) : z ∈ ω[n], µ(V (ω�n, z)) ≥ 2Γl−t}

)
≥ ε} <∞.

Note that if we call

(110) An = {ω : µ
(⋃
{V (ω�n, z) : z ∈ ω[n], µ(V (ω�n, z)) ≥M/n}

)
≥ ε}

and

(111) Bt(n) = {ω : µ
(⋃
{V (ω�n, z) : z ∈ ω[n], µ(V (ω�n, z)) ≥ 2Γl−t(n)}

)
≥ ε},

then for every n ∈ N, we have that Bt(n) ⊆ An since M/n ≤ 2Γl−t(n) by (90), and it follows

that if
∑
λ(An) <∞, then

∑
λ(Bt(n)) <∞.

Now suppose that
∑
λ(Bt(n)) < ∞. By (90), we also have that An ⊆ Bt(n) since

2ΓMl/n ≥ 2Γl−t(n) (let M in (110) be replaced by M
′
= 2ΓMl). It follows that

∑
λ(An) <

∞. Hence, µ has moderated Voronoi tessellations. �

Corollary 5.2. The measure µ as defined above is Mycielski-regular.

Example 5.3. Let (X, ρ, µ) be defined as follows: Let X be the two-dimensional unit square,

let ρ be the Euclidean metric, and let µ be the self-similar measure described above and which

concentrates its mass on the the two-dimensional Cantor set (with similarity dimension =

Hausdorff dimension = ln 4/ ln 3). In this case, the similitudes are φ1(x, y) = (x/3, y/3),

φ2(x, y) = ((x+ 2)/3, y/3), φ3(x, y) = (x/3, (y+ 2)/3), and φ4(x, y) = ((x+ 2)/3, (y+ 2)/3).

Note that the contraction ratios are obviously all the same and are equal to 1/3. As the

above theorem implies, this measure is Mycielski-regular.
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I will now do the case for which the contraction ratios are different. This theorem,

our most general result, will show that any self-similar measure which is Hausdorff measure

(up to a constant) on an invariant set is Mycielski-regular.

Theorem 5.4. Let (X, ρ, µ), φi and ri be as defined above. Then µ has moderated Voronoi

tessellations.

Proof. Suppose that the open set V given by the OSC contains a ball of radius c1 and is

contained in a ball of radius c2. Let ζ = 1/lt/s, let β = min rj, and St be the set of finite

sequences obtained in the following way: for each infinite sequence {j1, j2, . . .}, 1 ≤ ji ≤ l,

truncate the sequence at the first k ≥ 1 for which βζ ≤ rj1rj2 · · · rjk ≤ ζ. It follows from the

net property of the open sets that {Vj1...jk : j1 . . . jk ∈ St} is a disjoint collection. Each such

Vj1...jk contains a ball of radius c1rj1 · · · rjk and hence a ball of radius c1βζ and similarly is

contained in a ball of radius c2ζ. By Lemma 4.7, any ball of radius ζ intersects, at most,

(1 + 2c2)dc−d1 (min rj)
−d sets of the collection Vt = {V j1...jk : j1 . . . jk ∈ St}. Also, by (87) we

have that

(112) µ =
∑

j1...jk∈St

(rj1 · · · rjk)sµj1...jk ≤
∑

j1...jk∈St

(rj1 · · · rjk)s.

Now let z ∈ C and let E = B(z, 2c2ζ). ThenE intersects at most Γ = (6c2)dc−d1 (min rj)
−d

members of Vt. Let K = {V σ ∈ Vt : V σ ∩ E 6= ∅} (where σ ∈ {1, 2, . . . , l}k for some k). So

Card(K) ≤ Γ.

Let W ⊆ X be convex and let y ∈ W \ ∪K; suppose that y ∈ V σ, σ ∈ St for some

V σ 6∈ K. Then V σ ⊆ intB(y, ρ(y, z)), since ρ(y, z) > 2c2ζ. So y ∈ Vz = W ∩ ∪y∈W{V σ :

V σ ⊆ intB(y, ρ(y, z))}. So W \ Vz ⊆ ∪K.

Claim 5.5. ∪K has measure at most Γζs = Γ/lt (and hence so does W \ Vz).

Proof. To see this, let V σ ∈ K and let σ ∈ St be such that σ = (a1, a2, . . . , am), and so

µ(Vσ) =
∑

j1...jk∈St

(rj1 · · · rjk)sµj1...jk(Vσ)(113)

30



=
∑

j1...jk∈St

(rj1 · · · rjk)sµ(φ−1
jk
◦ · · · ◦ φ−1

j1
(φa1 ◦ · · · ◦ φam(V )))(114)

= (ra1 · · · ram)s(115)

≤ ζs,(116)

since (a1, a2, . . . , am) ∈ St and since µ(φ−1
am ◦ · · · ◦φ

−1
a1

(φa1 ◦ · · · ◦φam(V ))) = 1, whereas every

other term in the sum has measure zero, since φ−1
i ◦ φj(F ) = ∅ when i 6= j and for any

F ⊆ X. This shows the claim. �

Let ω ∈ Ω. Define Hn(ω) as before and let

(117) Kω = {Vσ ∈ St : Vσ ∩ ω[n] = ∅}.

Let ε > 0. By an argument identical to the one I gave in Theorem 5.1, we get

(118) µHn(ω) ≤ 2

lt
· Card(Kω),

and so if Hn(ω) ≥ ε, then

(119) Card(Kω) ≥ εlt

2
≥ m,

where m = b εlt
2
c. Again, as before, we get that {ω ∈ Ω : µHn(ω) ≥ ε} ⊆ {ω ∈ Ω : Card(K) ≥

m} and so

(120) λ{ω ∈ Ω : Card(K) ≥ m} ≤
∑
K∈[Vt]m

λ{ω : ω[n] does not meet ∪ K},

Claim 5.6. CardK ≤ lt/βs.

Proof. This follows because

(121) 1 ≥ µ(∪K) =
∑
Vσ∈K

µ(Vσ) ≥
∑
Vσ∈K

(βζ)s ≥
∑
Vσ∈K

βs

lt
= CardKβ

s

lt
,

and so

(122) CardK ≤ lt

βs
.

�
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Let

(123) M =
1 + ln(10dβ−se/ε)

β
.

If we require that Mlt/s ≤ n and that

(124)
1

2εlt/2
≤ 1

n2
,

(which, by (90), is true for n sufficiently large) then we get (the justifications for the inequal-

ities are essentially the same as those given for Theorem 5.1):

λ{ω ∈ Ω : Card(K) ≥ m} ≤
(
dlt/βse
m

)(
1− mβ

lt/s

)n
(125)

≤

(
d lt
βs
e
)m

m!

(
1− mβ

lt/s

)n
(126)

≤
d lt
βs
em

m!

(
1− mβ

lt/s

)Mlt/s

(127)

≤ emdβ−sltem

mm

(
1− 1

lt/s

)Mmβlt/s

(128)

≤ emdβ−sltem

mm

(
1

e

)Mmβ

(129)

=

(
edβ−slte
meMβ

)m
(130)

=

(
edβ−slte
b εlt

2
ceMβ

)m

(131)

≤ 1

2m
(132)

≤ 1

2εlt/2
.(133)

The proof is finished in exactly the same way as Theorem 5.1, taking n sufficiently

large. It follows that µ has moderated Voronoi tessellations. �

Corollary 5.7. The measure µ given in Theorem 5 is Mycielski-regular.
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5.1. Some Other Measures

Other measures can be similarly shown to be Mycielski-regular. For example, in the

paper Multifractal Decompositions of Moran Fractals by Mauldin and Cawley [1], multifractal

decompositions of the invariant set C are characterized in terms of the local behavior of a

probability measure induced on C by a product measure on the coding space, Θ = {1, . . . , l}N.

This measure is defined in the following way.

For each σ ∈ Θ, and k ∈ N, let σ|k = (σ(1), . . . , σ(k)), and let g be the natural coding

map of Θ onto C defined by the condition

(134) {g(σ)} =
∞⋂
k=1

J(σ|k),

(J(σ|k) is defined similarly to the way Jσ was defined in the proof of Theorem 5.1).

Fix a probability vector (p1, . . . , pl) with each pi positive and let ρ̂ be the correspond-

ing infinite product measure on Θ. Let ρ be the image measure on C induced by g; that is,

for E ⊆ X, ρ(E) = ρ̂(g−1(E)). Then ρ can be shown to be Mycielski-regular using virtually

the same proof as given in Theorem 5.4, with some modifications. In this case, let ζ = 1/lt

and let St be the collection of those sequences σ|k which are truncated at the first k such

that, if β = min pi, then

(135) βζ ≤ pi1 · · · pik ≤ ζ.

Each Vσ (with σ ∈ St) would have measure at most ζ. With these modifications, one can

proceed as in the proof of Theorem 5.4.

Another measure that we meet with in the same paper are probability measures µq

supported on a fractal Kα(q) (see [1]). Here, these are the image under the coding map of the

infinite product measure µ̂q, on Θ, and based on the probability vector (pq1t
β(q)
1 , . . . , pql t

β(q)
l ),

where q is a real number, and β(q) is the unique number such that

(136)
l∑

i=1

pqi t
β(q)
i = 1.
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The ti are contraction ratios corresponding to contractions Ti and the pi are as defined above.

But again, the same trick works: if we let this time β = min pqi t
β(q)
i , and ζ = 1/lt, and look

at those sequences such that

(137) βζ ≤ pqi1t
β(q)
i1
· · · pqikt

β(q)
ik
≤ ζ,

then the proof of Theorem 5.4 shows that such measures are also Mycielski-regular.

5.2. Future Research Possibilities

The question as to which measures are Mycielski-regular was posed for Radon proba-

bility measures. Fremlin proved it for Lebesgue measure on the unit cube. Actually, for the

one-dimensional case, he has proved it for all Radon probability measures [4]. In this paper,

I have shown that it is true for those self-similar measures which correspond to Hausdorff

measure on an invariant subset of the unit cube. I believe it is possible, and would like to

know, if it is also in fact true for conformal measures. That is, if T is a measurable endo-

morphism on X, and f is a non-negative function on X, then µ is called f -conformal (see

[2]) if

(138) µ ◦ T (A) =

∫
A

f(x)dµ(x),

where A is a measurable subset of X, T (A) is measurable and T : A→ T (A) is invertible.
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