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CHAPTER 1

INTRODUCTION

1.1. Discussion of the Problems, Methods and Previous Results

Three main points exist that led to the developments in this work. The first was a look at

the Wijsman topology on the hyperspace of closed subsets of a metric space, and an attempt

to develop a homeomorphic mapping from the closed linear subspaces of a Banach space

to their respective intersections with the closed unit ball. This proved difficult and did not

seem possible after some work. The second was an attempt to revive the usefulness of the

Wijsman topology, namely the numerous instances in which this topology produces a Polish

space, by using a similar topology called the slice topology. As proven in Beer’s Topologies

on Closed and Closed Convex Sets [2, p. 75], the slice topology remains relevant with regard

to producing Polish spaces as every Banach space which has a separable dual will admit a

Polish slice topology on its collection of nonvoid closed convex subsets. As a consequence,

the collection of closed linear subspaces in such a Banach space would be Polish under the

relative slice topology, as would the collection of their respective intersections with the closed

unit ball. Ultimately, this topology serves the purpose of being conducive to the development

of the aforementioned homeomorphic mapping, as is seen in Chapter 2. Another useful result

was given by László Zsilinszky in the article ”Polishness of the Wijsman Topology Revisited”

[8]. It is the proof offered by Zsilinszky that provides the motivation for developing the

lemmas and theorems leading up to the proof that the slice topology on the collection of

closed linear subspaces of a Banach space is strong Choquet. In particular, the method of

columnization, which is pursued by Zsilinszky before he obtains the collection of points whose

closure becomes his set proving that Player NONEMPTY can win by his strategy, is crucial

to the development of an appropriate strategy in the strong Choquet proof offered in Chapter
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4. Moreover, Zsilinszky follows this result with a statement indicating that, in the case of

the Wijsman topology on the collection of nonvoid closed subsets of a completely metrizable

space, the strong Choquet property that is developed for this collection is not hereditary

in all instances. This gives a need to redevelop the result for any closed (in the Wijsman

topology) proper subcollection of nonvoid closed subspaces of a completely metrizable space.

Hence, development of the proof in Chapter 4 is still pertinent, even though the collection of

nonvoid closed convex subsets of a Banach space under the slice topology is endowed with

the supremum of the Wijsman topologies on this collection associated to each equivalent

renorm. Even this overall collection would need a proof to show that it is strong Choquet,

if it indeed is, as it does not inherit this property from anything previously developed. As

these three previous results are fundamental to understanding the present work, they shall

be restated herein.

1.1.1. Wijsman Topologies

Definition 1.1. The collection CL (X) of nonvoid closed subsets of a metric space, X,

with metric d carries the Wijsman topology provided it has a subbasis consisting of sets

of two forms. The first form is U− = {A ∈ CL (X) : A ∩ U 6= ∅}, where U is an open

subset of X under the topology induced by d. The second form is (X \B (x, ε))+ =

{A ∈ CL (X) : A ⊂ (X \B (x, ε))}, where B (x, ε) = {y ∈ X : d (x, y) ≤ ε} is the closed ε

ball centered at x.

A note on this topology is now warranted. Beer, in his article ”A Polish Topology for the

Closed Subsets of a Polish Space” [1, p. 1125-1126], mentions that this topology is generally

finer than the Fell topology, but coarser than both the Vietoris topology and the Hausdorff

metric topology. He further gives reasons why these other topologies are too restrictive to

prove fruitful in developing Polish hyperspaces beyond a quite limited pool of underlying

spaces. However, he shows the beginnings of why the Wijsman topology proves fruitful in

making a Polish hyperspace for any Polish space X.
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Theorem 1.2. 〈CL (X) , τW 〉 is Polish when X is Polish.

Unfortunately, as later authors note, this theorem, while ultimately true, was not quite

proven as stated by Beer. Zsilinszky revisits this claim in his ”Polishness of the Wijsman

Topology Revisited” [8]. In this article, the theorem is proven as stated, but the method

towards this takes on an interesting turn that we shall later take up. The main thing to

note, however, is that the desire to develop a homeomorphic map φ defined by φ (A) =

A ∩ {x ∈ X : ‖x‖ ≤ 1} for every closed linear subspace A in a Banach space X would have

proven quite fruitful if it could have been realized under the Wijsman topology. Indeed, if

this goal was realizable under this topology, we would have a large class of Banach spaces

for which our collection of closed linear subspaces would be homeomorphic to our collection

of their respective intersections with the closed unit ball and for which both of these were

Polish spaces. Unfortunately, it is quite difficult, if not impossible, to establish that such a

mapping is homeomorphic with the Wijsman topology. The main problem is the lack of a

positive distance between the closed balls used and the closed linear subspace, which makes

constructing an appropriate strategy for Player NONEMPTY in a strong Choquet game quite

difficult and unnatural (not flowing naturally from our definitions and such). The other is

the lack of metric independence in the topology, which makes the notion of convergence in

the Wijsman topology vary somewhat from the natural idea of convergence one hopes is

inherited from the underlying space. This naturally led to the seeking of a topology which

preserved most, if not all, the desirability of the Wijsman topology, while achieving norm

independence and also achieving the positive distance from the closed, bounded, convex

subsets that are to be avoided by closed linear subspaces in the topology. The topology one

gravitates towards at this point is the slice topology.
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CHAPTER 2

THE FAMILY OF SLICE-LIKE TOPOLOGIES AND AN IMPORTANT

HOMEOMORPHISM

2.1. Definition of Slice-Like Topologies and Preliminary Consequences for the Collection of

Closed Linear Subspaces

2.1.1. Definitions

Definition 2.1. [2, p. 61] Given a normed linear space (X, ‖·‖), we define C (X) to be

the closed convex nonvoid subsets of X, CB (X) to be the bounded closed convex nonvoid

subsets of X, and the slice topology on C (X) to be the topology generated by the subbasis

composed of sets that are either of the form V − = {A ∈ C (X) : A ∩ V 6= ∅}, where V is an

open subset of X, or of the form

(X \B)++ = {A ∈ C (X) : ∃εA,B > 0, {x ∈ X : d (x,A) < εA,B} ⊆ X \B} ,

where B ∈ CB (X). We define Sε [A] = {x ∈ X : d (x,A) < ε} and we define Sε [A] =

{x ∈ X : d (x,A) ≤ ε} as a matter of convenience. We also define Xα = {x ∈ X : ‖x‖ ≤ α}

and Bα = {x ∈ X : ‖x‖ < α} when α > 0 for the closed α-ball centered at 0X and the open

α-ball centered at 0X , respectively.

Definition 2.2. Given a normed linear space (X, ‖·‖), we shall first define C ⊆ CB (X) to

be a collection of subsets of X which contains all singleton sets and for which every time

B ∈ C and ε > 0, the closed convex hull of Sε [B] is also in C. Then, we define a whole

collection T of topologies on C (X) in similar fashion as the slice topology. Namely, T

consists of all topologies τC generated by a subbasis consisting of sets of the form V −, V

open in X, and of the form (X \B)++, B ∈ C for some C as defined above. We note that

the slice topology is a member of T as τS = τCB(X).
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Definition 2.3. Given a normed linear space (X, ‖·‖), we define CLS (X) to be the collec-

tion of closed linear subspaces of X. When using CLS (X) with respect to the slice topology

on C (X), we shall say that CLS (X) is given the slice topology provided it is given the topol-

ogy inherited as a topological subspace of C (X). More generally, given a topology τ ∈ T ,

we shall say that CLS (X) is given the topology τ provided it is given the topology inherited

as a topological subspace of (C (X) , τ).

2.1.2. Preliminary Consequences

Lemma 2.4. (CLS (X) , τC) is Hausdorff whenever τC ∈ T .

Proof. Let A1, A2 ∈ CLS (X), with A1 6= A2. Suppose for a moment that either A1 ⊂ A2

or that neither A1 nor A2 are contained in one another. Then, there exists x ∈ A2 \A1. We

know that d (x,A1) > 0. So, A1 ∈
(
X \B (x, d (x,A1) /2)

)++

and A2 ∈ B (x, d (x,A1) /2)−.

However,
(
X \B (x, d (x,A1) /2)

)++

∩ B (x, d (x,A1) /2)− = ∅. Now, if we instead sup-

posed A2 ⊂ A1, we would find A2 ∈
(
X \B (x, d (x,A2) /2)

)++

, A1 ∈ B (x, d (x,A2) /2)−,

and
(
X \B (x, d (x,A2) /2)

)++

∩ B (x, d (x,A2) /2)− = ∅. In any event, we now see that

(CLS (X) , τC) is Hausdorff whenever τC ∈ T . �

Lemma 2.5. Given a closed linear subspace Y of X, CLS (Y ) is closed in CLS (X) under

any τ ∈ T .

Proof. Since CLS (X) is closed within itself, we let Y ∈ CLS (X) \ {X}. Notice that

CLS (X) \ CLS (Y ) =
⋃

x∈(X\Y ), ‖x‖=1

B (x, d (x, Y ) /2)− is open in τ whenever τ ∈ T . There-

fore, CLS (Y ) is a proper, nonempty, closed subset of CLS (X) under any such topology

τ . �

Lemma 2.6. Given a closed linear subspace Y of X, the collection A = {A ∈ CLS (X) : Y ⊂

A} is closed in CLS (X) under any τ ∈ T .
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Proof. First, if Y is just the origin, then A = CLS (X) is closed. Let us suppose that Y is

at least one dimensional. Let Z = {y ∈ Y : ‖y‖ = 1}. Then, CLS (X)\A =
⋃
y∈Z

(X \ {y})++.

Therefore, A is closed in CLS (X) under any τ ∈ T . �

Lemma 2.7. The collection of finite dimensional linear subspaces of a Banach Space X are

dense in CLS (X) under the slice topology.

Proof. Let V =
k⋂
i=1

V −i ∩
m⋂
j=1

(X \Bj)
++ be a nonempty basic open subset of CLS (X) in

the slice topology. There exists a closed linear subspace A ∈ V. Now, if k = 0, we merely

choose x ∈ A and let F = span ({x}). On the other hand, if k 6= 0, we choose xi ∈ A ∩ Vi

for all 1 ≤ i ≤ k and we let F = span ({x1, . . . , xk}). In either case, we quickly note that

d (F,Bj) ≥ d (A,Bj) > ε (A,Bj) > 0 for all 1 ≤ j ≤ m as a consequence of the fact that

F ⊆ A. Furthermore, F was chosen so that F ∈
k⋂
i=1

V −i . Taking these two facts, we conclude

that F ∈ V and dim (F ) = k < +∞. Thus, the collection of finite dimensional linear

subspaces of X is dense in CLS (X) under the slice topology. �

Lemma 2.8. For each separable S ∈ CLS (X), there exists a sequence {Fn}+∞
n=0 ⊂ CLS (X)

such that S = lim
n→+∞

Fn under slice topological limits.

Proof. As S is separable, there exists a countable set {sn}+∞
n=0 ⊂ S such that S = {sn}+∞

n=0.

We shall let Fn = span ({si}ni=0) for each n ≥ 0. We quickly see that S =
+∞⋃
n=0

Fn and that

both Fn ∈ CLS (X) and dim (Fn) = n < +∞ for all n ≥ 0. Let V =
k⋂
i=1

V −i ∩
m⋂
j=1

(X \Bj)
++

be a basic open subset of CLS (X) that contains S. We quickly note that Fn ⊂ S for each

n ≥ 0, consequently Fn ∈
m⋂
j=1

(X \Bj)
++ for each n ≥ 0. Therefore, we may restrict our

focus to
k⋂
i=1

V −i . For each 1 ≤ i ≤ k, we choose yi ∈ Vi ∩ S and we find 0 < εi which satisfies

B (yi, εi) ⊆ Vi. For each 1 ≤ i ≤ k, there exists ni ≥ 0 such that sni ∈ B (yi, εi) ⊆ Vi. If we

let m0 = max {n1, . . . , nk}, then Fm ∈ V for all m ≥ m0. Hence, S = lim
n→+∞

Fn under slice

topological limits. �
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Lemma 2.9. The collection of separable closed linear subspaces of a Banach space X is

sequentially closed under slice topological limits.

Proof. Let {Sn}∞n=1 be a sequence of separable closed linear subspaces that converges under

slice topological limits with lim
n→∞

Sn = A ∈ CLS (X). If X is separable, there is nothing to

show since A would also be separable and the collection of separable closed linear subspaces of

X would have been the entirety of CLS (X). So, let us suppose X is not separable. Assume,

by way of contradiction, that A is also not separable. Let B =
{
B
(
x, 1

2

)
: ‖x‖ = 1, x ∈ A

}
be a maximal pairwise disjoint collection. Then, B is an uncountable collection. For each n,

let Bn = {B ∈ B : Sn ∩B 6= ∅}. Since Sn is separable for each n, Bn is a countable collection.

Moreover,
⋃
n∈N
Bn 6= B since the former is still a countable collection and the latter was noted

to be uncountable. Let B ∈ B \
⋃
n∈N
Bn. Then, A ∈ B− while Sn 6∈ B− for any n ∈ N, a

contradiction to Sn → A. Hence, A must be separable. �

Lemma 2.10. Suppose X is a normed linear space and further suppose that V ⊆ X is a

linear subspace. Then, V is closed if and only if V ∩X1 is closed.

Proof. The forward implication is trivial from topology since V is closed by hypothesis and

X1 is closed by definition. The reverse implication requires some proof. Suppose A = V ∩X1.

By hypothesis, A is closed. Let x ∈ clX (V ) and {xn}∞n=0 ⊂ V such that xn → x. Now,

for a moment, let us suppose V = {0X}. If this were the case, A = clX (V ) ∩ X1 since

V = clX (V ) in such a case. This is the conclusion we seek, so we may then turn to the case

where V 6= {0X}. This means that we may presume that x 6= 0X and {0X} ∩ {xn}∞n=0 = ∅

since this is the only relevant case when V 6= {0X}. Let us then acknowledge that y = x
‖x‖ ∈

clX (V ) and
{
yn = xn

‖xn‖

}∞
n=0
⊂ V . Now, since xn → x, we know that ‖xn‖ → ‖x‖, hence

yn = xn
‖xn‖ →

x
‖x‖ = y also. However, {yn}∞n=0 ⊂ X1 as well, so we know {yn}∞n=0 ⊂ A. Since

A is closed by hypothesis, y ∈ A. Now, since y ∈ A = V ∩ X1, y ∈ V . Since y = x
‖x‖ ,

x = ‖x‖ y ∈ V , by linearity of V . Thus, V = clX (V ). Therefore, V is closed in X if and

only if V ∩X1 is a closed subset of X. �
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Lemma 2.11. Given a net Aλ → A in C (X), Aλ ∈ CLS (X) for each λ, and x ∈ A, there

exists a net of values xλ ∈ Aλ such that xλ → x.

Proof. For each λ, if d (x,Aλ) > 0, there exists an xλ ∈ Aλ such that d (x, xλ) ≤ 2d (x,Aλ),

and if d (x,Aλ) = 0, then xλ = x ∈ Aλ and d (x, xλ) = 0 = 2 · 0 = 2d (x,Aλ). In either case,

for each λ we are able to obtain an xλ ∈ Aλ satisfying d (x, xλ) ≤ 2d (x,Aλ). Now, let ε > 0.

Let V = B‖·‖
(
x, ε

2

)
. Since Aλ → A and A ∈ V −, there exists λ0 such that Aλ ∈ V − for all

λ ≥ λ0. That is, d (x,Aλ) <
ε
2

for all λ ≥ λ0. But, d (x, xλ) ≤ 2d (x,Aλ) < 2 · ε
2

= ε for all

λ ≥ λ0. Therefore, xλ → x. �

Lemma 2.12. Given a net Aλ → A in C (X), Aλ ∈ CLS (X) for each λ, and xλ → x with

xλ ∈ Aλ for each λ and x ∈ X, we may conclude that x ∈ A.

Proof. Suppose x /∈ A. Then, we may let δ = d(x,A)
2

> 0. Note thatA ∈
(
X \B‖·‖ (x, δ)

)++

.

Since xλ → x, there exists λ0 such that d (x, xλ) < δ for all λ ≥ λ0. But, this says

Aλ /∈
(
X \B‖·‖ (x, δ)

)++

for all λ ≥ λ0, contradicting the fact that Aλ → A. So, x ∈ A. �

Lemma 2.13. Given a net Aλ → A in C (X), with Aλ ∈ CLS (X), then A ∈ CLS (X) also.

In other words, CLS (X) is a closed subset of C (X).

Proof. Let x ∈ A. Lemma 2.11 says there exists a net of values xλ ∈ Aλ such that xλ → x.

Now, suppose a net of values xλ ∈ Aλ converges to x ∈ X. Lemma 2.12 says that x ∈ A.

Now, let x, y ∈ A. We may obtain a net xλ ∈ Aλ converging to x and a net yλ ∈ Aλ

converging to y. Note that for each λ, xλ + yλ ∈ Aλ since Aλ is a closed linear subspace of

X. But, given the aforementioned convergences, xλ + yλ → x+ y. Therefore, x+ y ∈ A.

Finally, let x ∈ A and α ∈ R. We may obtain a net xλ ∈ Aλ converging to x. Since

αxλ → αx and αxλ ∈ Aλ for each λ, αx ∈ A.

Therefore, A is a closed linear subspace of X, as desired. �
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2.2. Important Geometric Equivalences in CLS (X)

Lemma 2.14. Suppose B is a closed, bounded, convex subset of X and suppose that V is an

open subset of X. Then, (X \B)++ = (X \ (−B))++ and V − = (−V )− in CLS (X).

Proof. Let A be a closed linear subspace of X in (X \B)++. As A is a closed linear

subspace,

d (A, x) = inf
y∈A
‖y − x‖ = inf

y∈A
‖y + (−x)‖ = inf

y∈A
‖(−y) + (−x)‖

for every x ∈ X. But,

inf
y∈A
‖(−y) + (−x)‖ = inf

y∈A
‖y + x‖ = inf

y∈A
‖y − (−x)‖ = d (A,−x) .

Thus,

d (A,B) = inf
b∈B

d (A, b) = inf
b∈B

d (A,−b) = inf
b∈−B

d (A, b) = d (A,−B) .

As d (A,−B) = d (A,B) > 0, (X \B)++ = (X \ (−B))++.

Now, suppose G is a closed linear subspace of X in V −. Then, using the fact that

z ∈ G ∩ V if and only if −z ∈ G ∩ (−V ), we get that V − = (−V )−. �

Lemma 2.15. Suppose B is a closed, bounded, convex subset of X such that 0X /∈ B. Then,

there exists an m > 0 which satisfies

d (B, {−αb : α ≥ 0}) ≥ m for every b ∈ B.

Proof. Suppose, by way of contradiction, that z` ∈ B, b` ∈ B, and α` ≥ 0 for all ` ≥ 0 such

that ‖z` + α`b`‖ → 0. Since 0 ≤ ‖z`+α`b`‖
1+α`

≤ ‖z` + α`b`‖ for all ` ≥ 0, 1
1+α`
‖z` + α`b`‖ → 0.

But, for all ` ≥ 0, 1
1+α`

z` + α`
1+α`

b` ∈ B and d (0X , B) > 0, a contradiction. Hence, there

exists some m > 0 such that ‖z + αb‖ = ‖z − (−αb)‖ ≥ m for all z, b ∈ B and all α > 0. �

Lemma 2.16. Suppose B is a closed, bounded, convex subset of X such that 0X /∈ B. Let

B̃ =

〈{
x

‖x‖
: x ∈ B

}〉
.

Then, {0X} ∈
(
X \ B̃

)++

.

9



Proof. Let us suppose that
`(m)∑
i=1

λi,m
xi,m
‖xi,m‖ → 0 as m → 0, where λ1,m, . . . , λ`(m),m ≥ 0,

`(m)∑
i=1

λi,m = 1, and xi,m ∈ B for all 1 ≤ i ≤ ` (m). Since 0X /∈ B, we recognize that 0 < ‖xi,m‖

for all 1 ≤ i ≤ ` (m) and m ≥ 0, and thus the above sequence of sums is well defined.

Moreover, we will let L = sup
b∈B
‖b‖ < ∞, since B is bounded. Now, for all 1 ≤ i ≤ ` (m)

and m ≥ 0, we see that µ = 1
L
≤ 1
‖xi,m‖ ≤

1
d(B,0X)

= M . But, 0 < µ = µ
`(m)∑
i=1

λi,m ≤
`(m)∑
i=1

λi,m
1

‖xi,m‖ ≤M
`(m)∑
i=1

λi,m = M . Moreover,

`(m)∑
i=1

λi,m
xi,m
‖xi,m‖

=

`(m)∑
i=1

λi,m
1

‖xi,m‖


`(m)∑
i=1

λi,m
xi,m
‖xi,m‖

`(m)∑
i=1

λi,m
1

‖xi,m‖

→ 0.

However, due to the choices of the λi,m, we know that

`(m)∑
i=1

λi,m
xi,m
‖xi,m‖

`(m)∑
i=1

λi,m
1

‖xi,m‖

∈ B,

by the convexity of B. Since B is closed and excludes 0X and this collection of points cannot

go to 0X without 0X ∈ B, we must conclude that
`(m)∑
i=1

λi,m
1

‖xi,m‖ → 0. However, this is a

contradiction since
`(m)∑
i=1

λi,m
1

‖xi,m‖ ≥
`(m)∑
i=1

λi,mµ = µ > 0 for all m. That is, d
(

0X , B̃
)
> 0,

leaving us that {0X} ∈
(
X \ B̃

)++

. �

Lemma 2.17. Suppose B is a closed, bounded, convex subset of X with 0X /∈ B. Then, for

every A ∈ CLS (X) and every ν ≥ 0, νd (A,B) = d (A, νB). Moreover, if A ∈ CLS (X)

and 0 < µ = 1
sup
b∈B
‖b‖ , µd (A,B) ≤ d

(
A, B̃

)
. Finally, if A ∈ CLS (X) and M = 1

d(0X ,B)
, then

Md (A,B) ≥ d
(
A, B̃

)
.

Proof. First, 0 ·d (A,B) = inf
b∈B

inf
a∈A

0 · ‖a− b‖ = inf
b∈B

inf
a∈A
‖0 · a− 0 · b‖ = inf

b∈B
inf
a∈A
‖a− 0 · b‖ =

d (A, 0 ·B), because 0X ∈ A and 0 ·B = {0X}.
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Next, let A ∈ CLS (X) and ν > 0. Then,

νd (A,B) = inf
b∈B

inf
a∈A

ν ‖a− b‖ = inf
b∈B

inf
a∈A
‖νa− νb‖ .

Also, A is linear and as inf
b∈B

inf
a∈A
‖νa− νb‖ = inf

b∈B
inf
a
ν
∈A
‖a− νb‖, we get inf

b∈B
inf
a
ν
∈A
‖a− νb‖ =

inf
b∈B

inf
a∈A
‖a− νb‖. However, inf

b∈B
inf
a∈A
‖a− νb‖ = d (A, νB), so νd (A,B) = d (A, νB).

We now develop the second part of the conclusion. Note that µ = 1
sup
b∈B
‖b‖ > 0, since B

is bounded. Also, let x1, . . . , x` ∈ B and λi ≥ 0 for all 1 ≤ i ≤ `, where
∑̀
i=1

λi = 1. By

the proof of Lemma 2.16, 0 < µ = µ
∑̀
i=1

λi ≤
∑̀
i=1

λi
‖xi‖ and

∑̀
i=1

λixi
‖xi‖∑̀

i=1

λi
‖xi‖

∈ B. Also, from earlier in

this proof, µd (A,B) ≤ µd

A, ∑̀i=1

λixi
‖xi‖∑̀

i=1

λi
‖xi‖

 ≤ ∑̀
i=1

λi
‖xi‖d

A, ∑̀i=1

λixi
‖xi‖∑̀

i=1

λi
‖xi‖

 = d

(
A,
∑̀
i=1

λixi
‖xi‖

)
. That

is, µd (A,B) ≤ d
(
A, B̃

)
.

Finally, we develop the last part of the conclusion. Note that M = 1
d(0X ,B)

< +∞, since

0X /∈ B. Now, noting that 1
‖b‖ ≤ M for all b ∈ B, we get Md (A,B) = d (A,MB) =

inf
b∈B

d (A,Mb) = inf
b∈B

d
(
A,M ‖b‖ b

‖b‖

)
= inf

b∈B
M ‖b‖ d

(
A, b
‖b‖

)
≥ inf

b∈B
d
(
A, b
‖b‖

)
, since 1 ≤

M ‖b‖ for all b ∈ B. However, for every b ∈ B, b
‖b‖ ∈ B̃, by definition. So, inf

b∈B
d
(
A, b
‖b‖

)
≥

d
(
A, B̃

)
. That is, Md (A,B) ≥ d

(
A, B̃

)
. �

Lemma 2.18. Suppose B is a closed, bounded, convex subset of X with 0X /∈ B. Then,

(X \B)++ =
(
X \ B̃

)++

in CLS (X).

Proof. Suppose A ∈ CLS (X) and A ∈ (X \B)++. That is, d (A,B) > ε (A,B) > 0.

By Lemma 2.17, we have that 0 < µε (A,B) < µd (A,B) ≤ d
(
A, B̃

)
for a µ > 0. So,

A ∈
(
X \ B̃

)++

.

Now, suppose G ∈ CLS (X) and G ∈
(
X \ B̃

)++

. That is, d
(
G, B̃

)
> ε

(
G, B̃

)
> 0.

Again, by Lemma 2.17, we have that 0 < ε
(
G, B̃

)
< d

(
G, B̃

)
≤ Md (G,B) for an M > 0.

So, G ∈ (X \B)++.

Therefore, (X \B)++ =
(
X \ B̃

)++

, as desired. �
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Lemma 2.19. Suppose V is an open subset of X which satisfies 0X /∈ V . Then V − = Ṽ −n ,

where

Ṽn =

(⋃
x∈V

{
αx : α > 0 & 1− 1

2n+1
< α ‖x‖ < 1 +

1

2n+1

})
,

in CLS (X).

Proof. First, let U =
⋃
α>0

αV and W =
{
x ∈ X : 1− 1

2n+1 < ‖x‖ < 1− 1
2n+1

}
. Note that

Ṽn = U ∩W . Since U and W are both open sets, Ṽn must also be open.

Next, suppose A ∈ CLS (X) and satisfies A ∈ V −. Note that A 6= {0X}. Then, let

z ∈ A ∩ V and note that z 6= 0X . We then see that

z

‖z‖
∈
⋃
x∈V

{
αx : α > 0 & 1− 1

2n+1
< α ‖x‖ < 1 +

1

2n+1

}
∩ A.

Thus,

A ∈

(⋃
x∈V

{
αx : α > 0 & 1− 1

2n+1
< α ‖x‖ < 1 +

1

2n+1

})−
.

Whence, V − ⊂
( ⋃
x∈V

{
αx : α > 0 & 1− 1

2n+1 < α ‖x‖ < 1 + 1
2n+1

})−
.

Finally, suppose G ∈ CLS (X) that satisfies

G ∈

(⋃
x∈V

{
αx : α > 0 & 1− 1

2n+1
< α ‖x‖ < 1 +

1

2n+1

})−
.

Then, there is a y ∈ G ∩ Ṽn. So, there exists an x ∈ V and an α > 0 such that αx = y.

Moreover, {βy : β ∈ R} ⊂ G. Therefore, x ∈ G. Consequently,(⋃
x∈V

{
αx : α > 0 & 1− 1

2n+1
< α ‖x‖ < 1 +

1

2n+1

})−
⊂ V −.

Whence,

V − =

(⋃
x∈V

{
αx : α > 0 & 1− 1

2n+1
< α ‖x‖ < 1 +

1

2n+1

})−
.

�

Lemma 2.20. Suppose u ∈ X with ‖u‖ = 1 and 0 < δ < 1. Then, the diameter of{
αz : α > 0 & z ∈ B‖·‖ (u, δ) & 1− δ < α ‖z‖ < 1 + δ

}
is at most 2δ2+6δ

1−δ .

12



Proof. Let A = {z ∈ X : 1− δ < ‖z‖ < 1 + δ}. Note that if y ∈ B‖·‖ (u, δ), then ‖u− y‖ <

δ. So, −δ < ‖y‖ − ‖u‖ < δ. That is, 1− δ < ‖y‖ < 1 + δ. In other words, B‖·‖ (u, δ) ⊂ A.

Now, let λ ≥ 0, y ∈ B‖·‖ (u, δ) such that λy ∈ A. This gives 1 − δ < ‖λy‖ < 1 + δ and

1 − δ < ‖y‖ < 1 + δ simultaneously. That is, 1−δ
1+δ

< 1−δ
‖y‖ < λ < 1+δ

‖y‖ <
1+δ
1−δ . Furthermore,

‖λy − u‖ ≤ ‖λy − y‖+ ‖y − u‖ < |1− λ| ‖y‖+ δ.

If λ ≥ 1, |λ− 1| = λ − 1 ≤ 1+δ
1−δ − 1 = 2δ

1−δ . If 0 ≤ λ ≤ 1, |λ− 1| = 1 − λ ≤ 1 − 1−δ
1+δ

=

2δ
1+δ
≤ 2δ

1−δ .

So, summarizing, ‖λy − u‖ < 2δ
1−δ ‖y‖+ δ ≤ 2δ(1+δ)

1−δ + δ = δ2+3δ
1−δ . That is, the diameter of{

αz : α > 0 & z ∈ B‖·‖ (u, δ) & 1− δ < α ‖z‖ < 1 + δ
}

is at most 2δ2+6δ
1−δ . �

2.3. The Homeomorphism of CLS (X) with Its Restriction to the Closed Unit Ball

2.3.1. The Difficulty Faced in Nonreflexive Banach Spaces

Theorem 2.21. Let ψ =
(
1− 1

n

)
∈ `∞. For all f ∈ `1, ‖f‖1 ≤ 1 implies

∣∣∫ f · ψ∣∣ =∣∣∣∣ ∞∑
n=1

(
fn − fn

n

)∣∣∣∣ < 1. Therefore, the nonempty, closed, bounded convex set

A =

{
f ∈ `1 :

∫
f · ψ = 1

}
∩X2

is disjoint from X1, where X = `1, but d (X1, A) = 0.

Proof. To start, let us examine the set B =
{
f ∈ `1 :

∫
f · ψ = 1

}
in `1. Given f1, f2 ∈ B,

and λ ∈ R,
∫

(λf1 + (1− λ) f2) · ψ =
(
λ
∫
f1 · ψ

)
+
(
(1− λ)

∫
f2 · ψ

)
= λ + 1 − λ = 1.

Therefore, B is a convex subset of `1. Moreover, let (fn) be a sequence of points in B that

converges to the element f ∈ `1. Since fn → f , we obtain
∫

(fn − f) · ψ =
(∫

fn · ψ
)
−(∫

f · ψ
)
→ 1 −

∫
f · ψ = 0. Therefore, B is closed in `1. As a closed, convex subset of `1,

and letting X = `1, we see that the intersection of B with the closed 2-ball, A = X2 ∩B, is

a closed, bounded, convex subset of `1.

Now, suppose f ∈ X1. Then, we will note f = (an), a sequence of real numbers for which
∞∑
n=1

|an| ≤ 1. Let n0 be the first positive integer for which an0 6= 0. We see that
∫
‖f · ψ‖ =

13



∞∑
n=1

n−1
n
|an| ≤

∞∑
n=1

|an| − 1
n0
|an0| < ‖f‖1 ≤ 1. Therefore,

∣∣∣∣ ∞∑
n=1

n−1
n
an

∣∣∣∣ ≤ ∞∑
n=1

n−1
n
|an| < 1. That

is, X1 ∩ A ⊂ X1 ∩B = ∅.

Lastly, we shall create a sequence (fn) in A for which d (fn, X1) → 0. For each positive

integer N , we let fN,n = 0 whenever n 6= N +1, but we let fN,N+1 = N+1
N

. Now, ‖fn‖1 = n+1
n

for each positive integer n. So, d (fn, X1)→ 0. What remains is to show this sequence lies in

A. Indeed,
∞∑
n=1

n−1
n
fN,n = N

N+1
N+1
N

= 1 for each positive integer N . Therefore, A is a closed,

bounded, convex subset of `1 which is disjoint from the closed unit ball, but nevertheless has

a distance of 0 from the closed unit ball. �

2.3.2. The Correct View of Subbasic Open Sets Based on Closed Bounded Convex Sets

Lemma 2.22. If X is a Banach space, then the map φ : CLS (X)→ {V ∩X1 : V ∈ CLS (X)},

defined by φ (V ) = V ∩X1, has the property that

φ−1
[
(X \B)++ ∩ φ [CLS (X)]

]
=
∞⋃
n=1

((
X \

(
B ∩X1+ 1

n

))++

∩ CLS (X)

)
,

when B ∈ CB (X). Consequently, φ−1
[
(X \B)++ ∩ φ [CLS (X)]

]
is an open set in CLS (X)

for every B ∈ CB (X).

Proof. First, we need to show that (X \B)++∩φ [CLS (X)], or (X \B)++ in φ [CLS (X)], is

identical to
(
X \

(
B ∩X1+ 1

n

))++

in φ [CLS (X)] for every positive integer n. Indeed, given

A ∈ (X \B)++, d
(
B ∩X1+ 1

n
, A
)
≥ d (B,A) > 0. Moreover, given a closed linear subspace

A ∈
(
X \

(
B ∩X1+ 1

n

))++

, we get both d
(
B ∩X1+ 1

n
, A
)
> 0 and d

(
B \X1+ 1

n
, A
)
≥

d
(
B \X1+ 1

n
, X1

)
≥ 1

n
> 1

2n
> 0, so

d (B,A) ≥ min
{
d
(
B ∩X1+ 1

n
, A
)
, d
(
B \X1+ 1

n
, A
)}

> 0.

Thus, the above mentioned equality holds for every positive integer n.

Next, we need to show that A ∈ (X \B)++ in φ [CLS (X)] implies there exists a positive

integer n such that V = span (A) ∈
(
X \

(
B ∩X1+ 1

n

))++

in CLS (X). Indeed, let us

suppose this was not the case and derive a contradiction. So, we are supposing that A ∈

(X \B)++ in φ [CLS (X)], that V = span (A), and that V /∈
(
X \

(
B ∩X1+ 1

n

))++

in
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CLS (X) for any positive integer n. There would then exist a sequence {vm,n}∞m=1 and a

sequence {bm,n}∞m=1 for each positive integer n where d (vm,n, bm,n) → 0 as m → ∞ and

where 1 ≤ ‖bm,n‖ ≤ 1 + 1
n

for every positive integer n. This would then say that the limit

lim
n→∞

lim
m→∞

∥∥∥ vm,n
‖vm,n‖ − bm,n

∥∥∥ = 0, but that contradicts our earlier statement that A ∈ (X \B)++

in φ [CLS (X)]. Hence, we may conclude that A ∈ (X \B)++ in φ [CLS (X)] implies there

exists a positive integer n such that V = span (A) ∈
(
X \

(
B ∩X1+ 1

n

))++

in CLS (X).

Finally, we may note that V ∈
(
X \

(
B ∩X1+ 1

n

))++

in CLS (X) implies the inequality

d
(
V ∩X1, B ∩X1+ 1

n

)
≥ d

(
V,B ∩X1+ 1

n

)
> 0, so (V ∩X1) ∈ (X \B)++ in φ [CLS (X)] by

the first equality we mentioned in this proof.

Consequently, we have shown that

φ−1
[
(X \B)++ ∩ φ [CLS (X)]

]
=
∞⋃
n=1

((
X \

(
B ∩X1+ 1

n

))++

∩ CLS (X)

)
is an open set in CLS (X). �

2.3.3. The Homeomorphism Result

Theorem 2.23. If X is a Banach space, the map φ : CLS (X)→ {V ∩X1 : V ∈ CLS (X)},

defined by φ (V ) = V ∩X1, is a continuous map.

Proof. According to Lemma 2.22, φ−1
[
(X \B)++] is open in CLS (X) for every B ∈

CB (X). That leaves checking our other subbasic open sets to see if their inverse image is

open.

Let V ∈ τ‖·‖. Also, let B1 = {x ∈ X : ‖x‖ < 1}. Now, note that {A : φ (A) ∩ V 6= ∅} =

{A : φ (A) ∩ V ∩X1 6= ∅} because φ (A) ∩ V ∩ X1 = A ∩ V ∩ X1 for all A ∈ CLS (X).

Moreover, the set containment {A : φ (A) ∩ V ∩X1 6= ∅} ⊇ {A : φ (A) ∩ V ∩B1 6= ∅} occurs

because X1 ⊇ B1. For the moment, let A ∈ CLS (X) which satisfies φ (A) ∩ V ∩ X1 6= ∅.

So, there exists x ∈ A ∩ V ∩X1. Now, if x = 0X , then x ∈ A ∩ V ∩ B1 already. Otherwise,

there exists 0 < δ < ‖x‖
2

which satisfies B (x, δ) ⊆ V . But, if we let 0 < λ = 1 − δ
2
< 1,

then ‖λx− x‖ =
∥∥(1− δ

2
− 1
)
x
∥∥ = δ

2
‖x‖ ≤ δ

2
< δ. That is, λx ∈ B (x, δ). However,

‖λx‖ = λ ‖x‖ ≤ λ < 1, so λx ∈ B1. Moreover, λx ∈ A since x ∈ A ∈ CLS (X). Therefore,
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{A : φ (A) ∩ V ∩X1 6= ∅} = {A : φ (A) ∩ V ∩B1 6= ∅}. Finally, we may make note of the

equality {A : φ (A) ∩ V ∩B1 6= ∅} = {A : A ∩ V ∩B1 6= ∅} because φ (A) ∩ V ∩ B1 = A ∩

V ∩B1 for all A ∈ CLS (X). That is, φ−1 (V −) = (V ∩B1)−. Hence, φ−1 (V −) is a subbasic

open subset of CLS (X).

Now, given any basic open set V =
k⋂
i=1

V −i ∩
m⋂
j=1

(X \ Cj)++, we get that φ−1 (V) =

k⋂
i=1

φ−1
(
V −i
)
∩

m⋂
j=1

φ−1
(
(X \ Cj)++), which is also a basic open set in the slice topology.

Whence, φ is continuous. �

Theorem 2.24. The map φ : CLS (X) → {V ∩X1 : V ∈ CLS (X)}, defined by φ (V ) =

V ∩X1, is a bijection.

Proof. To see that φ is one-to-one, we need only note the following:

Let A,B ∈ φ (CLS (X)). By Lemma 2.10, we note that span (A) and span (B) are

elements of CLS (X). Now, suppose that A = B. This says that span (A) = span (B).

Whence, φ is 1− 1.

To see that φ is onto, we need only note that by the definitions of {V ∩X1 : V ∈ CLS (X)}

and φ, we will get the desired equation φ [CLS (X)] = {V ∩X1 : V ∈ CLS (X)}.

Therefore, φ is a bijection. �

Theorem 2.25. The map φ : CLS (X) → {V ∩X1 : V ∈ CLS (X)}, defined by φ (V ) =

V ∩X1, is an open map.

Proof. Let C ∈ CB (X). By Lemma 2.18, we know that (X \ C)++ =
(
X \ C̃

)++

. By

the same arguments that led to the result of Lemma 2.18, we could also obtain that, given

C̃
′

=
〈{

x
2‖x‖ : x ∈ C

}〉
, (X \ C)++ =

(
X \ C̃ ′

)++

. Also, we see that φ

[(
X \ C̃ ′

)++
]

={
φ (A) : A ∈ CLS (X) and d

(
A, C̃

′
)
> ε

(
A, C̃

′
)
> 0
}

, which is contained in the collection{
φ (A) : A ∈ CLS (X) and d

(
φ (A) , C̃

′
)
> ε

(
φ (A) , C̃

′
)
> 0
}

. By way of a contradiction,

let us suppose that the reverse set inclusion is not true. Then, there is an A ∈ CLS (X)

for which A /∈
(
X \ C̃ ′

)++

= (X \ C)++ while d
(
φ (A) , C̃

′
)
> 0. But, this would yield a

sequence {an}n∈N ⊂ A with ‖an‖ > 1 and a sequence {cn}n∈N ⊂ C̃
′
such that ‖an − cn‖ → 0.
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However, for all n ∈ N, ‖cn‖ ≤ 1
2
. As ‖an − cn‖ ≥ |‖an‖ − ‖cn‖| > 1 − 1

2
= 1

2
> 0 for all

n ∈ N, ‖an − cn‖ 6→ 0, contradicting the fact that A /∈
(
X \ C̃ ′

)++

= (X \ C)++. Therefore,

we get the equation

φ

[(
X \ C̃ ′

)++
]

=
{
φ (A) : A ∈ CLS (X) and d

(
φ (A) , C̃

′
)
> ε

(
φ (A) , C̃

′
)
> 0
}
.

We see that since the latter set is by definition a subbasic open subset of φ [CLS (X)], the

former must be subbasic open.

Let V ∈ τ‖·‖ such that 0X /∈ V , for otherwise V − = CLS (X) and φ [V −] = φ [CLS (X)]

would be an open subset of φ [CLS (X)] under the subspace topology it inherits from C (X)

under the slice topology. Also, let B1 = {x ∈ X : ‖x‖ < 1}. By Lemma 2.19, we know that

V − = Ṽ −n for any n ∈ N. However, the same proofs that led to the result of Lemma 2.19

also lead to V − =
(
Ṽ
′
n

)−
where Ṽ

′
n =

⋃
x∈V

{
αx : α > 0 & 1

2
− 1

2n+2 < α ‖x‖ < 1
2

+ 1
2n+2

}
for

any n ∈ N. Now, φ

[(
Ṽ
′
n

)−]
=
{
φ (A) : A ∈ CLS (X) and A ∩ Ṽ ′n 6= ∅

}
. However, since

Ṽ
′
n ⊂ B1, we now have A ∩ Ṽ ′n 6= ∅ if and only if (A ∩X1) ∩ Ṽ ′n 6= ∅ whenever A ∈ CLS (X).

That is, φ (A) ∩ Ṽ ′n 6= ∅ if and only if A ∈
(
Ṽ
′
n

)−
. Since the set {φ (A) : A ∈ CLS (X) and

φ (A) ∩ Ṽ ′n 6= ∅
}

is the definition for the other type of subbasic open subsets of φ [CLS (X)]

and is the same as the set φ

[(
Ṽ
′
n

)−]
, we have that the latter is subbasic open.

Finally, we shall let V =
k⋂
i=1

(
Ṽ
′
i

)−
∩

m⋂
j=1

(
X \ B̃′j

)++

, an arbitrary basic open subset of

CLS (X) under the slice topology. Now, φ [V] =
k⋂
i=1

φ

[(
Ṽ
′
i

)−]
∩

m⋂
j=1

φ

[(
X \ B̃′j

)++
]

since

φ is a bijection by Theorem 2.24, but in particular because φ is 1 − 1. Now, that tells us

that φ [V] is a basic open subset of φ [CLS (X)]. Thus, φ is an open map. �

Theorem 2.26. If X is a Banach space, the map φ : CLS (X)→ {V ∩X1 : V ∈ CLS (X)},

defined by φ (V ) = V ∩X1, is a homeomorphism.

Proof. This follows from Theorems 2.23, 2.24, and 2.25. �
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CHAPTER 3

KNOWN RESULTS REGARDING STRONG CHOQUET TOPOLOGIES

3.1. Definition

Definition 3.1. [5, p. 44-45] Given a topological space (X, τ), a strong Choquet game is a

two-player non-cooperative game in which we shall call the first player Player EMPTY and

the second player Player NONEMPTY. The game is played so that Player EMPTY begins

with a pair (x0, V0) ∈ (X × τ) which satisfies x0 ∈ V0 and Player NONEMPTY follows by

playing a set U0 ∈ τ that satisfies x0 ∈ U0 ⊆ V0. Furthermore, for each positive integer n,

Player EMPTY must play a pair (xn, Vn) ∈ (X × τ) which satisfies xn ∈ Vn ⊆ Un−1 and

Player NONEMPTY follows this up by playing a set Un ∈ τ that satisfies xn ∈ Un ⊆ Vn.

The game is won by Player EMPTY if
∞⋂
n=0

Un =
∞⋂
n=0

Vn = ∅. Otherwise, the game is won by

Player NONEMPTY.

Definition 3.2. [5, p. 44-45] A topological space (X, τ) is a strong Choquet space if there

exists a strategy by which Player NONEMPTY is assured to win every strong Choquet game

in which this strategy is employed.

Theorem 3.3. Given a topological space (X, τ) and a basis B for τ , the existence of a

winning strategy for Player NONEMPTY using basis elements is equivalent to the existence

of a winning strategy for Player NONEMPTY using open sets in general.

Proof. For the forward implication, suppose σ is a winning strategy for Player NONEMPTY

using only basis elements. Suppose (x0, V0) is played by Player EMPTY. Player NONEMPTY

will play C0 = σ ((x0, B0)), where x0 ∈ B0 ⊂ V0 for a basic open set B0. Suppose on move n,

Player EMPTY makes a move (xn, Vn) where Vn is an open set that is not necessarily basic

open. Player NONEMPTY will play Cn = σ ((x0, B0) , . . . , (xn, Bn)) where B0, . . . , Bn−1 ∈ B
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are the basic open sets used in the previous moves by Player NONEMPTY and where Bn

is a basic open set obeying xn ∈ Bn ⊂ Vn. In this way, Player NONEMPTY will win the

game.

Now, to see the reverse implication, let σ be a winning strategy for Player NONEMPTY

using open sets in general. Suppose Player EMPTY plays (x0, B0) where B0 is a basic open

set. Player NONEMPTY first derives U0 = σ ((x0, B0)), an open set that may not be basic

open, and then uses a basic open set C0 such that x0 ∈ C0 ⊂ U0. Suppose on move n, Player

EMPTY plays (xn, Bn), where Bn is basic open. Then, Player NONEMPTY will first get

Un = σ ((x0, B0) , . . . , (xn, Bn)) and then play a basic open set Cn such that xn ∈ Cn ⊂ Un.

Note that ∅ 6=
∞⋂
n=0

Un =
∞⋂
n=0

Bn =
∞⋂
n=0

Cn. Therefore, Player NONEMPTY will win based on

this variant on strategy σ. �

3.2. Strong Choquet Subsets of Strong Choquet Spaces

Theorem 3.4. Whenever (X, τ) is a strong Choquet space and O ∈ τ , O is also a strong

Choquet space under the subspace topology.

Proof. Let Γ be a strong Choquet game on O as follows. Player EMPTY picks (x0, V0)

from O × τO. Player NONEMPTY treats this game as a strong Choquet game on X from

this point onward and uses the winning strategy σ available, since all open subsets of O are

open under X. Thus, Γ = (x0, V0) , σ (x0, V0) , (x1, V1) , σ (x1, V1) , . . . , (xn, Vn) , σ (xn, Vn) , . . .

is our strong Choquet game over X and O simultaneously and Player NONEMPTY must

win over X, so Player NONEMPTY wins over O. �

Theorem 3.5. Whenever (X, τ) is a strong Choquet space and Y is a Gδ subset of X, Y is

also a strong Choquet space under the subspace topology.

Proof. Let Y be a Gδ subset of X. Given that Y =
∞⋂
n=0

Zn with Zn open in X for all n,

for each m we will let Ym =
m⋂
n=0

Zn. Finally, we are ready to engage in a strong Choquet

game with Y . First, Player EMPTY chooses (x0, V0) from (Y, τY ) and Player NONEMPTY

treats this choice as
(
x0, V

′
0

)
, where V

′
0 ∈ τY0 satisfying V

′
0 ∩ Y = V0, and subsequently
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chooses U
′
0 = σ

(
x0, V

′
0

)
using the winning strategy over X and lets U0 = Y ∩ U ′0. Now,

Player EMPTY always makes a valid choice (xn, Vn) in our strong Choquet game over Y

and then Player NONEMPTY treats this choice as some V
′
n ∈ τYn satisfying xn ∈ V

′
n ⊆ U

′
n−1,

makes the choice U
′
n = σ

(
xn, V

′
n

)
and then lets Un = Y ∩ U ′n. Given this, we may conclude

that Player NONEMPTY wins the concurrent strong Choquet game that has developed

over X, leaving ∅ 6=
∞⋂
n=0

U
′
n ⊆ Y . But,

∞⋂
n=0

Vn =
∞⋂
n=0

Un =
∞⋂
n=0

U
′
n 6= ∅. Therefore, Player

NONEMPTY wins the strong Choquet game by this strategy, confirming that Y is a strong

Choquet space. �

3.3. The Strong Choquet Spaces Compared to Choquet Spaces and Baire Spaces

Definition 3.6. [5, p. 43-44] Given a topological space (X, τ), a Choquet Game is a two-

player non-cooperative game in which we shall call the first player Player EMPTY and the

second player Player NONEMPTY. The game is played so that Player EMPTY begins with

a nonempty set V0 ∈ τ and Player NONEMPTY follows by playing a set U0 ∈ τ that satisfies

U0 ⊆ V0. Furthermore, for each positive integer n, Player EMPTY must play a nonempty set

Vn ∈ τ which satisfies Vn ⊆ Un−1 and Player NONEMPTY follows this up by playing a set

Un ∈ τ that satisfies Un ⊆ Vn. The game is won by Player EMPTY if
∞⋂
n=0

Un =
∞⋂
n=0

Vn = ∅.

Otherwise, the game is won by Player NONEMPTY.

Definition 3.7. [5, p. 43-44] A topological space (X, τ) is a Choquet space if there exists

a strategy by which Player NONEMPTY is assured to win every Choquet Game in which

this strategy is employed.

Theorem 3.8. Every strong Choquet space is a Choquet space.

Proof. Suppose (X, τ) is a strong Choquet space. There is a strategy σ that Player

NONEMPTY may employ and be guaranteed to win. For every nonempty V ∈ τ , let

us pick xV ∈ V . Now, let us suppose we are going to play a Choquet game. Player

EMPTY will start us off by playing a nonempty V0 ∈ τ . Now, Player NONEMPTY no-

tices that xV0 ∈ V0 and employs σ to obtain U0 = σ ((xV0 , V0)). This set satisfies U0 ⊂ V0.
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At each stage n, Player EMPTY plays a nonempty set Vn ∈ τ satisfying Vn ⊂ Un−1 and

Player NONEMPTY notes that xVn ∈ Vn to employ σ on (xV0 , V0) , . . . , (xVn , Vn) to ob-

tain Un = σ ((xV0 , V0) , . . . , (xVn , Vn)). Since σ guarantees a win by Player NONEMPTY on

the apparently concurrent strong Choquet game (xV0 , V0) , U0, (xV1 , V1) , U1, . . ., we know that
∞⋂
n=0

Un 6= ∅. Therefore, the strategy σ′ defined by σ′ (V0, . . . , Vn) = σ ((xV0 , V0) , . . . , (xVn , Vn))

for any V0, . . . , Vn from a partial run of a Choquet game on (X, τ) guarantees that Player

NONEMPTY will win. Whence, strong Choquet spaces are Choquet spaces. �

Theorem 3.9. [5, p. 43-44] [7] Every Choquet space is a Baire space.

Proof. Let (X, τ) be a Choquet space. Let {W0, . . . ,Wn, . . .} be a countable collection of

dense open subsets of X. Let O be a nonempty open subset of X. We begin to play a

Choquet game. Player EMPTY begins by playing V0 = W0 ∩O, which we know to be both

nonempty and open. Player NONEMPTY shall use their strategy σ to obtain U0. Since

∅ 6= U0 ⊂ V0 ⊂ O, Player EMPTY is able to play V1 = U0 ∩W1, which is nonempty (W1

is dense and U0 is open), open (both U0 and W1 are open), and a subset of U0. Player

NONEMPTY proceeds by using σ to obtain U1. Continuing in this manner, Player EMPTY

shall play Vn = Un−1 ∩Wn, which is valid because it is nonempty (Un−1 is open and Wn is

dense), open (Un−1 and Wn are open), and a subset of Un−1. Likewise, Player NONEMPTY

proceeds to use σ to obtain Un. Taking the full run of the game, we find that this is a

Choquet game in which Player NONEMPTY has used σ at each stage. Therefore, we know

that ∅ 6=
∞⋂
n=0

Un =
∞⋂
n=1

(Un−1 ∩Wn) ∩ (W1 ∩O) ⊂
(
∞⋂
n=0

Wn

)
∩ O. So, the intersection

W =
∞⋂
n=0

Wn is dense in X. This being true of every such countable intersection of dense

open subsets of X, we know that (X, τ) is a Baire space. �

Corollary 3.10. Every strong Choquet space is a Baire space

Proof. By transitivity via Theorem 3.8 and Theorem 3.9. �
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3.4. Topological and Metric Spaces that are Strong Choquet

Theorem 3.11. Given a complete metric space (X, d), the space (X, τd) is strong Choquet.

Proof. Given any move (xn, Vn) by Player EMPTY in a strong Choquet game, let Player

NONEMPTY play Un = Bd

(
xn,

d(xn,X\Vn)
2n

)
= σ ((x0, V0) , . . . , (xn, Vn)). Since (X, d) is a

complete metric space, Vn+1 ⊂ Un ⊂ Un ⊂ Vn for each n ≥ 0, and diam (Un) → 0, we know

that
∞⋂
n=0

Un =
∞⋂
n=0

Un = {x} for some x ∈ X. Therefore, σ is a winning strategy for Player

NONEMPTY. Therefore, (X, τd) is a strong Choquet space. �

Theorem 3.12. Every compact Hausdorff space (X, τ) is strong Choquet.

Proof. Let x ∈ V ∈ τ . There exists a compact neighborhood K for which x ∈ int (K) ⊂

K ⊂ V . Now, let us start a strong Choquet game. For any move (xn, Vn) made by Player

EMPTY, Player NONEMPTY will retort with the interior of a compact neighborhood xn ∈

int (Kn) ⊂ Kn ⊂ Vn. In other words, Un = int (Kn). Given a full run of the game with

Player NONEMPTY following this strategy, we find
∞⋂
n=0

Un =
∞⋂
n=0

Kn 6= ∅. Therefore, (X, τ)

is a strong Choquet space. �

Corollary 3.13. Every locally compact Hausdorff space is strong Choquet.

Proof. Same proof as in Theorem 3.12. �

3.5. Weakness of Strong Choquet

Remark 3.14. [4, p. 201] The space R with the topology formed from the subbasis consisting

of the open intervals and of the set of irrationals is a strong Choquet space. Moreover, Q is

a closed subset of R in this topology, but the topology it inherits as a topological subspace

is the usual topology on Q, which is not Baire.

The fact that R is strong Choquet in this topology, which was mentioned in this remark,

is proven by Debs in another of his papers [3, p. 31-32] in more generality. Furthermore, the

other comments in the remark are quite obvious after a moments thought.
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CHAPTER 4

IMPORTANT ESTIMATES AND THE STRONG CHOQUET PROPERTY FOR

SLICE-LIKE TOPOLOGIES

4.1. Important Estimates Needed

Lemma 4.1. Suppose v = (v1, . . . , vn) ∈ Xn such that v1, . . . , vn are linearly indepen-

dent. There exists a c > 0 such that for every λ = (λ1, . . . , λn) ∈ Rn and for every

v
′
=
(
v
′
1, . . . , v

′
n

)
∈ Xn, c ‖λ‖ ≤

∥∥∥∥ n∑
i=1

λivi

∥∥∥∥ and

∥∥∥∥ n∑
i=1

λiv
′
i

∥∥∥∥ ≥
(
c−

(
n∑
i=1

∥∥vi − v′i∥∥2
) 1

2

)
‖λ‖.

Proof. First, the function f : Rn → R, defined by f (λ) =

∥∥∥∥ n∑
i=1

λivi

∥∥∥∥ for all λ = (λ1, . . . , λn)

∈ Rn, is a continuous function. Since the set Λ = {λ ∈ Rn : ‖λ‖ = 1} is compact in Rn,

c = min
λ∈Λ

f (λ) is well-defined. Moreover, the fact that v1, . . . , vn are linearly independent

implies that c > 0. Because

∥∥∥∥ n∑
i=1

λi
‖λ‖vi

∥∥∥∥ ≥ c for all λ = (λ1, . . . , λn) ∈ Rn \ {0Rn}, we also

get that

∥∥∥∥ n∑
i=1

λivi

∥∥∥∥ ≥ c ‖λ‖ for all λ = (λ1, . . . , λn) ∈ Rn. We now let λ ∈ Rn and v
′

=(
v
′
1, . . . , v

′
n

)
∈ Xn. Notice that c ‖λ‖ ≤ f (λ) =

∥∥∥∥ n∑
i=1

λivi

∥∥∥∥ ≤ n∑
i=1

|λi|
∥∥vi − v′i∥∥ +

∥∥∥∥ n∑
i=1

λiv
′
i

∥∥∥∥ ≤
‖λ‖

(
n∑
i=1

∥∥vi − v′i∥∥2
) 1

2

+

∥∥∥∥ n∑
i=1

λiv
′
i

∥∥∥∥ by the Schwarz inequality. We finally get the inequality(
c−

(
n∑
i=1

∥∥vi − v′i∥∥2
) 1

2

)
‖λ‖ ≤

∥∥∥∥ n∑
i=1

λiv
′
i

∥∥∥∥, as desired. �

Corollary 4.2. Suppose v = (v1, . . . , vn) ∈ Xn such that v1, . . . , vn are linearly indepen-

dent. Also, suppose B1, . . . , Bm are bounded subsets of X. Then, given M = sup
1≤j≤m

sup
b∈Bj
‖b‖+

1, there exists a M ≥ c > 0 such that for every λ = (λ1, . . . , λn) ∈ Rn and for every

v
′

=
(
v
′
1, . . . , v

′
n

)
∈ Xn, if ‖λ‖ ≥ 2M+2

c
and for every 1 ≤ i ≤ n,

∥∥vi − v′i∥∥ < c
2
√
n

, then

d

(
n∑
i=1

λiv
′
i, Bj

)
≥ 2 > 1 > 0 for each 1 ≤ j ≤ m.
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Proof. First, obtain c1 > 0 from Lemma 4.1. Then, using c = min {c1,M}, we obtain

∥∥∥∥∥
n∑
i=1

λiv
′

i

∥∥∥∥∥ ≥
c−( n∑

i=1

∥∥∥vi − v′i∥∥∥2
) 1

2

 ‖λ‖ ≥ (c−√n
c2

4n

)
‖λ‖ .

But,

(
c−

√
n c2

4n

)
‖λ‖ = c

2
‖λ‖ and ‖λ‖ ≥ 2M+2

c
. So, we then obtain

∥∥∥∥ n∑
i=1

λiv
′
i

∥∥∥∥ ≥ M + 1.

That is, d

(
n∑
i=1

λiv
′
i, Bj

)
≥
∣∣∣∣∥∥∥∥ n∑
i=1

λiv
′
i

∥∥∥∥− (M − 1)

∣∣∣∣ ≥ 2 > 1 > 0 for each 1 ≤ j ≤ m, as

desired. �

Corollary 4.3. Suppose v = (v1, . . . , vn) ∈ Xn such that v1, . . . , vn are linearly indepen-

dent. Then, there exists a c > 0 such that for every v
′

=
(
v
′
1, . . . , v

′
n

)
∈ Xn, if for every

1 ≤ i ≤ n,
∥∥vi − v′i∥∥ < c

2
√
n

, then v
′
1, . . . , v

′
n are linearly independent.

Proof. Let λ ∈ Rn and obtain c > 0 by Lemma 4.1. Then,

∥∥∥∥ n∑
i=1

λiv
′
i

∥∥∥∥ ≥ c
2
‖λ‖. If we suppose

that ‖λ‖ > 0, then

∥∥∥∥ n∑
i=1

λiv
′
i

∥∥∥∥ ≥ c
2
‖λ‖ > 0. That is, v

′
1, . . . , v

′
n are linearly independent. �

Lemma 4.4. Suppose v = (v1, . . . , vn) ∈ Xn and V1, . . . , Vn are open subsets of X for which

vi ∈ Vi for all 1 ≤ i ≤ n. Then, there exists a set L ⊂ {1, . . . , n} such that {vi : i ∈ L} is

linearly independent with a span equal to the span of {v1, . . . , vn}. Furthermore, there exists

ε > 0 such that
⋂
i∈L

B (vi, ε)
− ⊂

n⋂
i=1

V −i .

Proof. To take care of a trivial case, suppose 0X ∈ Vj for some 1 ≤ j ≤ n. Since 0X ∈ A

for all A ∈ CLS (X), we note that X− = V −j = CLS (X). This says that
j−1⋂
i=1

V −i ∩
n⋂

i=j+1

V −i =

n⋂
i=1

V −i for every 1 ≤ j ≤ n satisfying 0X ∈ Vj. Without loss of generality, we shall assume

0X /∈ Vi for all 1 ≤ i ≤ n.

Let ṽ1 = v1 and for each 1 ≤ i ≤ n − 1, let [vi+1] ∈ X/span {v1, . . . , vi}. Then, let

ṽi+1 = 0X if [vi+1] = [0X ], but let ṽi+1 = vi+1 otherwise, for 1 ≤ i ≤ n− 1. Furthermore, let

L = {i ∈ {1, . . . , n} : ṽi 6= 0}, let Λ = {1, . . . , n} \ L, and let ` = |L|. Then, {vi : i ∈ L} is

linearly independent and has a span equal to that of {v1, . . . , vn}.
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Let j ∈ Λ. Let ι : {1, . . . , `} → L be an increasing bijection. Let λ(j) =
(
λ

(j)
1 , . . . , λ

(j)
`

)
∈

R` such that 0X 6= vj =
∑̀
i=1

λ
(j)
i vιi . Then, because of the aforementioned linear independence

and our assumption that 0X /∈ Vj,
∥∥λ(j)

∥∥ > 0. Let 0 < εj =
d(vj ,X\Vj)
2‖λ(j)‖√` < +∞. Then,

so long as
∥∥vιi − v′ιi∥∥ < εj for all 1 ≤ i ≤ `,

∥∥∥∥vj − ∑̀
i=1

λ
(j)
i v

′
ιi

∥∥∥∥ =

∥∥∥∥∑̀
i=1

λ
(j)
i

(
vιi − v

′
ιi

)∥∥∥∥ ≤∑̀
i=1

∣∣∣λ(j)
i

∣∣∣ ∥∥vιi − v′ιi∥∥ ≤ ∥∥λ(j)
∥∥(∑̀

i=1

∥∥vιi − v′ιi∥∥2
) 1

2

, which is strictly less than
∥∥λ(j)

∥∥ (` (εj)
2) 1

2 ,

which equals
d(vj ,X\Vj)

2
. Now, suppose A ∈

⋂
i∈L

B (vi, εj)
−. This says that we have v−i ∈

A ∩ B (vi, εj) for all i ∈ L. By the above inequalities, this implies that
∑̀
i=1

λ
(j)
i v

′
ιi
∈ Vj.

So, ∅ 6= A ∩ Vj. Thus, A ∈ V −j . That is,
⋂
i∈L

B (vi, εj)
− ⊂ V −j . Moreover, if we let

min

{
min
i∈L

d(vi,X\Vi)
2

,min
j∈Λ

εj

}
be denoted by ε, then 0 < ε and

⋂
i∈L

B (vi, ε)
− ⊂

n⋂
i=1

V −i , as

desired. �

Lemma 4.5. Suppose A is a closed linear subspace of X, v = (v1, . . . , vn) with v1, . . . , vn ∈ X

linearly independent, V1, . . . , Vn are open subsets of X, and B1, . . . , Bm are closed, bounded,

convex subsets of X satisfying A ∈
⋂

1≤i≤n
V −i ∩

⋂
1≤j≤m

(X \Bj)
++ and vi ∈ A ∩ Vi for each

1 ≤ i ≤ n. Suppose further that M = max
1≤j≤m

sup
b∈Bj
‖b‖ + 1 and c = min {M, c1}, where

c1 = min
‖λ‖=1

∥∥∥∥ n∑
i=1

λivi

∥∥∥∥ as in Lemma 4.1. Then, there exists an ε > 0 such that given w =

(w1, . . . , wn) ∈ Xn and λ = (λ1, . . . , λn) ∈ Rn, ‖vi − wi‖ < ε for all 1 ≤ i ≤ n implies

inf
‖λ‖≤ 2M+2

c

min
1≤j≤m

d

(
n∑
i=1

λiwi, Bj

)
> min

1≤j≤m
ε(A,Bj)

2
> 0.

Proof. Let L =
{
λ ∈ Rn : ‖λ‖ ≤ 2M+2

c

}
. Let f : Rn × Xn → R be defined by f (λ,w) =

min
1≤j≤m

d

(
n∑
i=1

λiwi, Bj

)
. Note that f is a continuous function as (λ,w) 7→

n∑
i=1

λiwi is con-

tinuous via X being a Banach space and both distance function and the minimum func-

tion are continuous. Also, note that the span of v1, . . . , vn is contained in A. Then,

inf
λ∈L

f (λ, v) ≥ min
1≤j≤m

d (A,Bj) > 0. Furthermore, if λ ∈ L, then
n∑
i=1

|λi| ≤ D < +∞ for

some D > 0 depending only on 2M+2
c

.
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Let 1 ≤ j0 ≤ m such that ε (A,Bj0) ≤ ε (A,Bj) for all 1 ≤ j ≤ m. Let ε =
ε(A,Bj0)

2Dn
.

Then, ε > 0 and if ‖vi − wi‖ < ε for each 1 ≤ i ≤ n, we have
ε(A,Bj0)

2
= ε (A,Bj0) −

ε(A,Bj0)
2

≤ ε (A,Bj0) − D
ε(A,Bj0)

2D
≤ ε (A,Bj0) −

(
n∑
i=1

|λi|
)

nε(A,Bj0)
2Dn

< d

(
n∑
i=1

λivi, Bj0

)
−

n∑
i=1

‖λi (wi − vi)‖ ≤ d

(
n∑
i=1

λivi, Bj0

)
−
∥∥∥∥ n∑
i=1

λi (wi − vi)
∥∥∥∥ ≤ min

1≤j≤m
d (
∑n

i=1 λiwi, Bj) for all

λ ∈ L. That is, inf
λ∈L

f (λ,w) > min
1≤j≤m

ε(A,Bj)

2
> 0 whenever ‖wi − vi‖ < ε for all 1 ≤ i ≤ n. �

4.2. The Strong Choquet Result

Theorem 4.6. Suppose C ⊆ CB (X) satisfies the conditions laid out in Definition 2.2. Then

the space CLS (X) with the topology τC is strong Choquet.

Proof. Given An, a closed linear subspace of X, and An ∈ Vn, a basic open subset of

CLS (X) under τC, we obtain Un in the following manner

Initially, we must tend to three trivial cases. First, suppose Player EMPTY plays X

as the choice of closed linear subspace of X and an open set of the form V =
k⋂
i=1

V −i .

Player NONEMPTY would respond with U = V. Should Player EMPTY continue in such

a manner through the rest of the game, X will still be in the intersection, so the game is

trivially won by Player NONEMPTY.

For the second trivial case, should Player EMPTY play a proper closed linear subspace

of X, say A, and an open set of the form V =
k⋂
i=1

(Vi)
− with A ∈ V, then there exists a point

x /∈ A. Since A is closed, 0 < d (x,A). Let B1 = {x}, a closed, bounded, convex subset of X

satisfying A ∈ (X \B1)++. For each i ∈ [1, k]∩N, fix vi ∈ Vi∩A. Let v = (v1, . . . , vk) ∈ Xk.

We will now appeal to the algorithm used in the proof of Lemma 4.4 to obtain ε1, L ⊂

{1, . . . , k}, and ` = |L| such that {vi : i ∈ L} is linearly independent and
⋂
i∈L

B (vi, ε1)− ⊂
k⋂
i=1

(Vi)
−. Next, we let ι : {1, . . . , `} → L be a one-to-one, increasing, onto function. Letting

u = (vι1 , . . . , vι`) and M = ‖x‖ + 1, we now appeal to Corollary 4.2 to obtain M ≥ c > 0

such that d

(∑̀
i=1

λiv
′
ιi
, x

)
≥ 2 > 1 > 0 whenever

∥∥v′ιi − vιi∥∥ < c
2
√
`

for each 1 ≤ i ≤ ` and

λ = (λ1, . . . , λ`) ∈ R` satisfies ‖λ‖ ≥ 2M+2
c

. Note that Corollary 4.3 tells us that whenever

v
′
ιi
∈ B

(
vιi ,

c
2
√
`

)
for each 1 ≤ i ≤ `, we know that v

′
ι1
, . . . , v

′
ι`

are linearly independent

26



also. Finally, we appeal to Lemma 4.5 to obtain ε2 such that whenever λ ∈ R` satisfies

‖λ‖ ≤ 2M+2
c

and v
′
ιi
∈ B (vιi , ε2) for all 1 ≤ i ≤ `, then d

(∑̀
i=1

λiv
′
ιi
, x

)
> ε(A,B1)

2
> 0. Letting

ε = 1
2

min
{

1, ε1,
c

2
√
`
, ε2

}
> 0, we now have that whenever v

′
ιi
∈ B (vιi , ε) for every 1 ≤ i ≤ `,

then inf
λ∈R`

d

(∑̀
i=1

λiv
′
ιi
, x

)
> min

{
1
2
, ε(A,B1)

2

}
> 0. We shall let µ = min

{
1
2
, ε

2
, ε(A,B1)

2

}
> 0.

We let U =
⋂
i∈L

B (vi, ε)
− ∩

(
X \ Sµ [B1]

)++
. We further let Ui = B (vιi , ε) for all 1 ≤ i ≤ `

and D1 = Sµ [B1]. We note that A ∈ U ⊂ V. Moreover, for all future moves, Player

EMPTY is now forced to have kn > 0 and mn > 0, leaving us with nontrivial cases from

move n = 0 onward.

For the third and final trivial case, should Player EMPTY play A a proper closed linear

subspace of X and an open subset of the form V =
m⋂
j=1

(X \Bj)
++ with A ∈ V, then there

exists a point v ∈ A \ {0X} with ‖v‖ = 1. Letting 0 < δ = min

{
1
2
, min

1≤j≤m
ε(A,Bj)

2

}
, we let

V = B (v, δ) and v1 = v. We may forgo appealing to Lemma 4.4 since {v} is a trivially

linearly independent set of vectors in X. We may directly obtain L = {1}, ` = 1, and ε1 = δ.

Now, let M = max
1≤j≤m

sup
b∈Bj
‖b‖ + 1 and u = v1 = v. We appeal to Corollary 4.2 to obtain

M ≥ c > 0 such that d
(
λ1v

′
1, Bj

)
≥ 2 > 1 > 0 whenever 1 ≤ j ≤ m,

∥∥v′1 − v1

∥∥ < c
2
, and

λ1 ∈ R satisfies |λ1| ≥ 2M+2
c

. Obviously,
{
v
′
1

}
is a linearly independent set of vectors in

X. So, we may forgo appealing to Corollary 4.3. We now appeal to Lemma 4.5 to obtain

ε2 such that whenever λ1 ∈ R satisfies |λ1| ≤ 2M+2
c

and whenever v
′
1 ∈ B (v1, ε2), we have

min
1≤j≤m

d
(
λ1v

′
1, Bj

)
> min

1≤j≤m
ε(A,Bj)

2
> 0. We let ε = 1

2
min

{
1, ε1,

c
2
, ε2
}

. Now, whenever v
′
1 ∈

B (v1, ε) and 1 ≤ j ≤ m, we have that inf
λ1∈R

d
(
λ1v

′
1, Bj

)
> min

{
1
2
, min

1≤j′≤m

ε
(
A,B

j
′
)

2

}
> 0. We

let µ = min

{
1
2
, ε

2
, min

1≤j′≤m

ε
(
A,B

j
′
)

2

}
> 0, U = B (v, ε)− ∩

m⋂
j=1

(
X \ Sµ [Bj]

)++
, U1 = B (v, ε),

and Dj = Sµ [Bj] for all 1 ≤ j ≤ m. Note A ∈ U ⊂ V. Moreover, for all future moves,

Player EMPTY is now forced to have kn > 0 and mn > 0, leaving us with nontrivial cases

from move n = 0 onward.

Having attended to the three trivial cases, all other initial choices by Player EMPTY shall

be considered nontrivial, and will thus be considered as the 0th move of Player EMPTY.
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For n = 0, we first note that V0 =
k0⋂
i=1

(V 0
i )
− ∩

m0⋂
j=1

(
X \B0

j

)++
. Subject to the caveats

above, we may assume k0 > 0 and m0 > 0, allowing us to go about finding U0. We

fix v0
i ∈ V 0

i ∩ A0 for each i. We then let v(0) =
(
v0

1, . . . , v
0
k0

)
∈ Xk0 and appeal to the

algorithm used in the proof of Lemma 4.4 to obtain ε0,1, L0 ⊂ {1, . . . , k0}, and `0 = |L0|

such that {v0
i : i ∈ L0} is linearly independent and

⋂
i∈L0

B (v0
i , ε0,1)

− ⊂
k0⋂
i=1

(V 0
i )
−

. Next, we let

ι0 : {1, . . . , `0} → L0 be one-to-one, onto, and strictly increasing. We let u0 =
(
v0
ι01
, . . . , v0

ι0`0

)
and M0 = max

1≤j≤m0

sup
b∈B0

j

‖b‖ + 1 in order to appeal to Corollary 4.2 and obtain M0 ≥ c0 > 0

such that d

(
`0∑
i=1

λiv
′

ι0i
, B0

j

)
≥ 2 > 1 > 0 whenever 1 ≤ j ≤ m0,

∥∥∥v′ι0i − v0
ι0i

∥∥∥ < c0
2
√
`0

, and

λ = (λ1, . . . , λ`0) ∈ R`0 satisfies ‖λ‖ ≥ 2M0+2
c0

. Note, Corollary 4.3 tells us that whenever

v
′

ι0i
∈ B

(
v0
ι0i
, c0

2
√
`0

)
for every 1 ≤ i ≤ `0, we know v

′

ι01
, . . . , v

′

ι0`0
are linearly independent

also. Finally, we appeal to Lemma 4.5 to obtain ε0,2 such that whenever λ ∈ R`0 satisfies

‖λ‖ ≤ 2M0+2
c0

and v
′

ι0i
∈ B

(
v0
ι0i
, ε0,2

)
for all 1 ≤ i ≤ `0, then min

1≤j≤m0

d

(
`0∑
i=1

λiv
′

ι0i
, B0

j

)
>

min
1≤j≤m0

ε(A0,B0
j )

2
> 0. Letting ε0 = 1

2
min

{
ε0,1,

c0
2
√
`0
, ε0,2

}
, we now have that whenever v

′

ι0i
∈

B
(
v0
ι0i
, ε0

)
for every 1 ≤ i ≤ `0 and whenever 1 ≤ j ≤ m0, inf

λ∈R`0
d

(
`0∑
i=1

λiv
′

ι0i
, B0

j

)
>

min

{
1
2
, min

1≤j′≤m0

ε

(
A0,B0

j
′

)
2

}
> 0. We shall let µ0 = min

{
1
2
, ε0

2
, min

1≤j′≤m0

ε

(
A0,B0

j
′

)
2

}
> 0. We

let U0 =
⋂
i∈L0

B (v0
i , ε0)

− ∩
⋂

1≤j≤m0

(
X \ Sµ0

[
B0
j

])++
. We further let U0

i = B
(
v0
ι0i
, ε0

)
, where

1 ≤ i ≤ `0 and D0
j = Sµ0

[
B0
j

]
for all 1 ≤ j ≤ m0. Note that A0 ∈ U0.

For n > 0, we start by fixing vni ∈ Un−1
i ∩An, for each 1 ≤ i ≤ `n−1 and then fixing vni ∈

V n
i−`n−1

∩An for each `n−1 + 1 ≤ i ≤ `n−1 + kn. We let v(n) =
(
vn1 , . . . , v

n
`n−1+kn

)
. We remem-

ber that, without loss of generality, we may and shall assume that
{
Dn−1
j : 1 ≤ j ≤ mn−1

}
⊂{

Bn
j : 1 ≤ j ≤ mn

}
. As before, we start by appealing to the algorithm used in the proof of

Lemma 4.4 to obtain εn,1, Ln ⊂ {1, . . . , `n−1 + kn}, and `n = |Ln| such that {vni : i ∈ Ln} is

linearly independent and
⋂
i∈Ln

B (vni , εn,1)− ⊂
`n−1⋂
i=1

(
Un−1
i

)− ∩ kn⋂
i=1

(V n
i )− ⊂

kn⋂
i=1

(V n
i )−. Note, by

using the algorithm in the proof of the aforementioned Lemma, we have that {1, . . . , `n−1} ⊂
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Ln. Next, we let ιn : {1, . . . , `n} → Ln be a one-to-one, onto, and strictly increasing func-

tion. We let un =
(
vnιn1 , . . . , v

n
ιn`n

)
and Mn = max

1≤j≤mn
sup
b∈Bnj
‖b‖ + 1 in order to appeal to

Corollary 4.2 and obtain Mn ≥ cn > 0 such that d

(
`n∑
i=1

λiv
′
ιni
, Bn

j

)
≥ 1 > 1

2
> 0 whenever

1 ≤ j ≤ mn,
∥∥∥v′ιni − vnιni ∥∥∥ < cn

2
√
`n

, and λ = (λ1, . . . , λ`n) ∈ R`n satisfies ‖λ‖ ≥ 2Mn+2
cn

.

Note, Corollary 4.3 tells us that whenever v
′
ιni
∈ B

(
vnιni ,

cn
2
√
`n

)
for every 1 ≤ i ≤ `n,

we know v
′
ιn1
, . . . , v

′
ιn`n

are linearly independent also. Finally, we appeal to Lemma 4.5 to

obtain εn,2 such that whenever λ ∈ R`n satisfies ‖λ‖ ≤ 2Mn+2
cn

and v
′
ιni
∈ B

(
vnιni , εn,2

)
for all 1 ≤ i ≤ `n, then min

1≤j≤mn
d

(
`n∑
i=1

λiv
′
ιni
, Bn

j

)
> min

1≤j≤mn

ε(An,Bnj )
2

> 0. Letting εn =

1
2

min
{
εn−1, εn,1,

cn
2
√
`n
, εn,2

}
, we now have that whenever v

′
ιni
∈ B

(
vnιni , εn

)
for every 1 ≤ i ≤

`n and whenever 1 ≤ j ≤ mn, inf
λ∈R`n

d

(
`n∑
i=1

λiv
′
ιni
, Bn

j

)
> min

{
µn−1

2
, min

1≤j′≤mn

ε

(
An,Bn

j
′

)
2

}
> 0.

We shall let µn = min

{
µn−1

2
, εn

2
, min

1≤j≤mn

ε(An,Bnj )
2

}
> 0. We let Un =

⋂
i∈Ln

B (vni , εn)− ∩⋂
1≤j≤mn

(
X \ Sµn

[
Bn
j

])++
. We further let Un

i = B
(
vnιni , εn

)
, where 1 ≤ i ≤ `n and Dn

j =

Sµn
[
Bn
j

]
for all 1 ≤ j ≤ mn. Note that An ∈ Un and note that vni ∈ Un

i ⊂ U
n

i ⊂ Un−1
i for

all 1 ≤ i ≤ `n−1.

Using the strategy just defined, we shall take a run of the strong Choquet game on

CLS (X). We shall immediately take stock of the moves made by Player NONEMPTY, i.e.,

the Un sets. Notice that given a fixed n0 and a fixed `n0−1 < i ≤ `n0 , where `−1 = 0,

Un0
i ⊃ Un0+1

i ⊃ Un0+1
i ⊃ · · · and 0 < εn ≤ ε0

2n
and ε0

2n
→ 0. That is, diam

(
Un0+α
i

)
→ 0 as

α → +∞. Therefore, we may let {xi} =
⋂

α>−1

Un0+α
i . Now, let β > 0. Then, we note that

Aβ = span {xi : 0 ≤ i ≤ `β} obeys d
(
Aβ, Bn

j

)
> µn > 0 for all 0 ≤ n and 1 ≤ j ≤ mn. So,

d
(
span {xi : i ∈ N} , Bn

j

)
≥ µn >

µn
2
> 0 for all 0 ≤ n and 1 ≤ j ≤ mn. In other words,

span {xi : i ∈ N} ∈
⋂

0≤n, 1≤j≤mn

(
X \Bn

j

)++
=

⋂
0≤n, 1≤j≤mn

(
X \Dn

j

)++
. All that remains to

show, then, is that span {xi : i ∈ N} ∈
⋂

0≤n, 1≤i≤`n
(Un

i )−. Indeed, for each i ∈ N, we recall

that xi = lim
α→+∞

vni+αi where `ni−1 < i ≤ `ni . So, xi′ ∈ span {xi : i ∈ N}∩Un
i
′+α

i′
for all α ≥ 0

and for all i
′ ∈ N where `n

i
′−1 < i

′ ≤ `n
i
′ . That is, span {xi : i ∈ N} ∈

⋂
0≤n, 1≤i≤`n

(Un
i )−.
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Therefore, span {xi : i ∈ N} ∈
⋂
n≥0

Un. Whence, the strategy used by Player NONEMPTY

was a winning strategy and CLS (X) under τC is strong Choquet. �

Corollary 4.7. The space CLS (X) under the slice topology is strong Choquet.

Proof. Since the slice topology on CLS (X) is in the collection T of topologies on C (X)

defined in Definition 2.2, Theorem 4.6 yields the result. �

4.2.1. Category Results

Corollary 4.8. Given an infinite dimensional Banach space X, the collection of finite

dimensional closed linear subspaces of X is a meager Fσ in CLS (X) under the slice topology.

Proof. First, let F = {A ∈ CLS (X) : dim (A) < +∞}. Also, for each positive integer n,

let Fn = {A ∈ F : dim (A) ≤ n}. Note that F =
⋃
n>0

Fn. All that remains to show now

is that Fn is both closed and nowhere dense for each positive integer n. We shall start by

establishing the former property. To do this, we shall let

Kn =
{

(x1, . . . , xn+1) ∈ Xn+1 : x1, . . . , xn+1 are linearly independent
}

for each positive integer n. Now, we let n be a positive integer. Then, CLS (X) \ Fn =⋃
x=(x1,...,xn+1)∈Kn

n+1⋂
i=1

B (xi, εx)
−, where εx is obtained by Corollary 4.3 for each x ∈ Xn+1.

That is, Fn is closed. All that now remains is to prove the latter property.

By way of contradiction, let us suppose n is a positive integer that satisfies int (Fn) 6=

∅. Let A ∈ int (Fn). Then, there exists V =
k⋂
i=1

V −i ∩
m⋂
j=1

(X \Bj)
++ ⊆ int (Fn), where

V1, . . . , Vk ∈ τX and B1, . . . , Bm ∈ CB (X), that satisfies A ∈ V. Note that A is a circled

closed convex subset of X and that we just stated Bj is a closed bounded convex subset

of X for each 1 ≤ j ≤ m. By Kelley & Namioka [6, p. 118-119], since 0X /∈ A−Bj for

each 1 ≤ j ≤ m, by virtue of A ∈ (X \Bj)
++, then there exists fj, a continuous linear

functional that satisfies sup
α∈A
|fj (α)| < inf

β∈Bj
|fj (β)|. As A ∈ CLS (X) and Bj ∈ CB (X) for all

1 ≤ j ≤ m, we note that sup
α∈A
|fj (α)| < +∞. Thus, for all 1 ≤ j ≤ m, for all λ ∈ R, and for

all α ∈ A, |fj (λα)| = |λ| |fj (α)| < inf
β∈Bj
|fj (β)|, and thus |fj (α)| = 0 for all α ∈ A. That is,
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A ⊆ ker (fj) for each 1 ≤ j ≤ m. Now, let K =
m⋂
j=1

ker (fj). Clearly, A ⊆ K. Let us also note

that for each 1 ≤ j ≤ m, ker (fj) is a closed linear subspace of X. Therefore, K ∈ CLS (X).

Moreover, for each 1 ≤ j ≤ m, codim (ker (fj)) = 1 since fj is a continuous linear functional.

As K is the finite intersection of these kernels, 1 ≤ codim (K) ≤ m < +∞. Therefore,

dim (K) is not finite. However, we again appeal to Kelley & Namioka [6, p. 118-119] to

obtain that 0X /∈ K −Bj for each 1 ≤ j ≤ m. That is, there exists 0 < ε (K,Bj) < d (K,Bj)

such that Sε(K,Bj) [K] ⊆ X \ Bj. That is, K ∈
m⋂
j=1

(X \Bj)
++. Moreover, as A ⊆ K and

A ∈
k⋂
i=1

V −i , then K ∈
k⋂
i=1

V −i . That is, K ∈ V ⊆ int (Fn). However, this contradictorily

states that K is finite dimensional. Therefore, int (Fn) = ∅ for all positive integers n.

Therefore, for each positive integer n, we have shown that Fn is a closed nowhere dense

subset of CLS (X) under the slice topology. Whence, F is a meager Fσ under the slice

topology. �

Corollary 4.9. The collection of closed linear subspaces of an infinite dimensional Banach

space X that have infinite dimension are a dense Gδ subset of CLS (X) under the slice

topology. Moreover, this collection forms a strong Choquet space under the slice topology.

Proof. This is the complement of the collection from Corollary 4.8. Hence, it is a dense

Gδ subset of CLS (X) under the slice topology. Consequently, Corollary 4.7 and Theorem

3.5 tell us that this collection is strong Choquet under the slice topology. �

Corollary 4.10. The collection of closed linear subspaces of an infinite dimensional Ba-

nach space X that have infinite co-dimension is a dense Gδ subset of CLS (X) under the slice

topology. Moreover, this collection forms a strong Choquet space under the slice topology.

Proof. First, let n be a fixed positive integer. Let Sx1,...,xn = (X1 \B1) ∩ span (x1, . . . , xn)

for x1, . . . , xn linearly independent vectors of X. Notice that each Sx1,...,xn is the unit sphere

of an n dimensional linear subspace of X, and is thus compact. Let

Cx1,...,xn =
{

span (x1, . . . , xn) ∩B (x, 1/2) : x ∈ Sx1,...,xn
}
,
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a cover in span (x1, . . . , xn) of the compact Sx1,...,xn , and let Fx1,...,xn be a finite subcover.

Then, as Fx1,...,xn ⊂ CB (X) is finite,
⋂

B∈Fx1,...,xn
(X \B)++ is a basic open subset of CLS (X).

Moreover, we shall let CDn =
⋃

x1,...,xn∈X lin. indep.

⋂
B∈Fx1,...,xn

(X \B)++, which is an open subset

of CLS (X). Notice that CDn is the collection of all closed linear subspaces of X which are a

positive distance from some Sx1,...,xn , where x1, . . . , xn are linearly independent vectors of X.

In other words, CDn is the collection of co-dimension n or greater closed linear subspaces

of X. Since CDn contains the finite dimensional linear subspaces of X, CDn is dense in

CLS (X) under the slice topology according to Lemma 2.7. Moreover, the construction of

CDn is clearly open. Now, let CD∞ =
∞⋂
n=1

CDn. By Corollary 4.7 and Theorem 3.5, we know

not only that CD∞ is a dense Gδ subset of CLS (X) under the slice topology, which shows

it to be co-meager, but also that CD∞ is itself a strong Choquet space. �

Corollary 4.11. The collection of closed linear subspaces of an infinite dimensional Ba-

nach space X that have both infinite dimension and infinite co-dimension is a dense Gδ

subset of CLS (X) under the slice topology. Moreover, this collection forms a strong Choquet

space under the slice topology.

Proof. Let the collection from Corollary 4.9 be labelled I and let the collection from Corol-

lary 4.10 be labelled IC for the moment. Note that the collection referenced in the present

corollary is I ∩ IC, a dense Gδ subset of CLS (X). Hence, Corollary 4.7 and Theorem 3.5

again tell us that this collection I∩IC is a strong Choquet space under the slice topology. �

Corollary 4.12. Given a proper, closed linear subspace Y of a Banach space X, CLS (Y )

is a closed, nowhere-dense subset of CLS (X) under the slice topology.

Proof. We first note that CLS (Y ) is closed by Lemma 2.5. To see that CLS (Y ) has

an empty interior, we shall assume it has a nonempty interior and derive a contradiction.

Suppose V =
n⋂
i=1

V −i ∩
m⋂
j=1

(X \Bj)
++, where Vi open in X and Bj ∈ CB (X) for each i and

j, satisfies ∅ 6= V ⊂ int (CLS (Y )). Let yi ∈ Vi ∩ Y for each i. Then, by Lemma 4.4, there

exists a set L ⊂ {1 . . . , n} such that {yi : i ∈ L} is linearly independent with a span equal to
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that of {y1, . . . , yn} and there exists an ε > 0 such that
⋂
i∈L

B (yi, ε)
− ⊂

n⋂
i=1

V −i . Furthermore,

the results from Lemma 4.1 through Lemma 4.5 produce an ε′ > 0 such that, so long as

‖xi − yi‖ < ε′ for each i ∈ L, then the span of {xi : i ∈ L} is in V. Let i1 ∈ L be minimal.

There is an xi1 ∈ B (yi, ε
′) such that xi1 6∈ Y . Moreover, if ` = |L| and i1 < i2 < · · · < i` for

{i1, . . . , i`} = L, then if A is the span of {xi1 , yi2 , . . . , yi`}, A is not in CLS (Y ). However,

A ∈ V, contradicting the fact that V ⊂ int (CLS (Y )) ⊂ CLS (Y ). The only remaining

options are V =
n⋂
i=1

V −i for some Vi open in X, which is immediately contradicted by noting

there is an x1 ∈ V1 \ Y and the span of {x1, y2, . . . , yn} is not in CLS (Y ) but is in V,

or V =
m⋂
j=1

(X \Bj)
++ for some Bj ∈ CB (X), which is contradicted by the existence of

x ∈ B (y, ε) \ Y that yields the span of x is in CLS (X) \ CLS (Y ) and in V for sufficiently

small ε > 0. Ergo, int (CLS (Y )) = ∅. �

Corollary 4.13. Given a proper, infinite dimensional, closed linear subspace Y of an

infinite dimensional Banach space X, A = {A ∈ CLS (X) : Y ⊂ A} is a closed, nowhere-

dense subset of CLS (X) under the slice topology.

Proof. Suppose, by way of contradiction, that V =
n⋂
i=1

V −i ∩
m⋂
j=1

(X \Bj)
++, where Vi open

in X and Bj ∈ CB (X) for each i and j, satisfies ∅ 6= V ⊂ int (A). Then, let ai ∈ Vi for

each i such that the span of {a1, . . . , an}, call it A, is in
m⋂
j=1

(X \Bj)
++. So, A ∈ V \ A,

a contradiction. Suppose V =
n⋂
i=1

V −i , for some Vi open in X, is in int (A). Again, let

ai ∈ Vi for each i such that the span of {a1, . . . , an}, call it A, is in
m⋂
j=1

(X \Bj)
++. So,

A ∈ V \ A, a contradiction. Lastly, suppose V =
m⋂
j=1

(X \Bj)
++, for some Bj ∈ CB (X),

satisfies V ⊂ int (A). Then, there exists x ∈ X such that A = span (x) is in V. Moreover,

A is finite dimensional, so it misses A, a contradiction. Having exhausted all the possible

cases, we know that A is nowhere-dense in CLS (X) under the slice topology. Furthermore,

Lemma 2.6 says that A is closed in CLS (X). �
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