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SUMMARY 

Meat-based palatability enhancers are commonly used by pet food industry to increase 

the acceptability of cat kibbles. The manufacturing of these enhancers involves two 

main steps, an enzymatic digestion and a thermal treatment, leading to many volatiles 

and non-volatiles compounds. It is well established that the performance of palatability 

enhancers can vary depending on raw materials and manufacturing processes 

generating different non-volatile compounds, some of which are considered as tastants. 

However, the reasons that explain the differences in palatability from a biochemical 

point of view are not known. The aim of the current project was to identify groups of 

taste-active compounds that correlate positively to cat palatability. 

First, three raw materials (pork livers) were analysed from a biochemical point of view. 

Proteins, peptides, free and total amino acids, free and total fatty acids, nucleotides and 

minerals were analysed. Most differences between pork livers were observed for 

potential key tastants which concentrations depend on endogenous metabolic. 

Moreover, two palatability enhancers were studied and fractionated to improve their 

characterization. They were analysed from a biochemical point of view focusing on the 

proteomic study of peptides. The analysis of the peptide sequences confirmed the use of 

different proteolytic enzymes during the manufacturing of studied palatability 

enhancers. Finally, the sensory quality of each fraction was evaluated by a new 

technology called Microtiter Operant Gustometer (MOG) using trained rats. The sensory 

evaluation allowed the establishment of a range of palatability among fractions 

confirming the correlation between product composition and animal preferences. 

 

  



  



 

RESUMEN 

Los potenciadores del sabor a base de carne son usados frecuentemente para mejorar la 

aceptabilidad de los piensos para gatos. Los procesos utilizados para la fabricación de 

estos potenciadores consisten fundamentalmente en la licuefacción de las materias 

primas por digestión enzimática seguida de un tratamiento térmico, generándose una 

gran variedad de compuestos volátiles y no volátiles. Está ya bien establecido que la 

eficacia de los potenciadores del sabor depende de las materias primas y de los procesos 

de fabricación que generan distintos compuestos no volátiles, algunos de los cuales son 

moléculas sabrosas. Sin embargo, las razones que explican las diferencias de 

palatabilidad desde el punto de vista bioquímico quedan sin aclarar. Por lo tanto, la 

presente tesis doctoral se centró en la identificación de moléculas sabrosas que afectan 

de forma positiva a la palatabilidad de los piensos para gatos.  

Primero, se analizaron tres materias primas (hígados de cerdo) desde un punto de vista 

bioquímico. Las sustancias analizadas fueron proteinas, péptidos, aminoácidos libres y 

totales, ácidos grasos libres y totales, nucleótidos y minerales. La mayoría de las 

diferencias entre los higados de cerdo se encontraron para moléculas potencialmente 

sabrosas cuyas concentraciones dependen del metabolismo endógeno. Además, se 

estudiaron dos potenciadores del sabor que se fraccionaron para facilitar su 

caracterización. Las fracciones se analizaron en cuanto a su composición bioquímica 

centrando el análisis en el estudio de los péptidos mediante técnicas de proteómica. El 

análisis de las secuencias peptídicas confirmó el uso de distintas enzimas proteolíticas 

durante el proceso de fabricación de los potenciadores de sabor estudiados. Como 

último paso, se evaluó la calidad sensorial de las fracciones mediante una nueva 

tecnología de medida del gusto en placa multipocillo empleando un panel de ratas 

entrenadas para dicho fin. La evaluación sensorial permitió establecer un rango de 

palatabilidad entre las fracciones y establecer una correlación positiva entre la 

composición del producto y las preferencias de los animales.  



  



 

RESUM 

Els potenciadors de sabor a base de carn s'utilitzen sovint per millorar l'acceptabilitat 

dels pinsos per a gats. Els processos utilitzats per a la fabricació d'aquestos potenciadors 

consistixen fonamentalment en la liqüefacció de les matèries primeres per digestió 

enzimàtica seguida d’un tractament tèrmic, generant compostos volàtils i no volàtils. 

Està ja ben establit que l'eficàcia dels potenciadors de sabor depén de les matèries 

primeres i dels processos de fabricació que generen distints compostos no volàtils, 

alguns dels quals són molècules saboroses. No obstant això, les raons que expliquen les 

diferències de palatabilidad des del punt de vista bioquímic queden sense aclarir. La 

present tesi doctoral s'ha centrat en la identificació de molècules saboroses que afecten 

de forma positiva a la palatabilitad dels pinsos per a gats. 

Primer, s’han analitzat tres matèries primeres (fetges de porc) des d'un punt de vista 

bioquímic. Les substàncies analitzades han sigut proteïnes, pèptids, aminoàcids lliures i 

totals, àcids grassos lliures i totals, nucleòtids i minerals. La majoria de les diferències 

entre els fetges de porc s’han trobat per a molècules potencialment saboroses, les 

concentracions de les quals depenen del metabolisme endògen. A més, s’han estudiat 

dos potenciadors del sabor que s’han fraccionat per a facilitar la seua caracterització. Les 

fraccions s’han analitzat d’acord a la seua composició bioquímica centrant l'anàlisi en 

l'estudi dels pèptids mitjançant tècniques de proteòmica. L'anàlisi de les seqüències 

peptídiques ha confirmat l'ús de distints enzims proteolítics al llarg del procés de 

fabricació dels potenciadors de sabor estudiats. Com últim pas, s’ha avaluat la qualitat 

sensorial de les fraccions mitjançant una nova tecnologia de mesura del gust en placa 

multipou emprant un panell de rates entrenades per aquest fi. L'avaluació sensorial ha 

permés establir un rang de palatabilitad entre les fraccions i una correlació positiva 

entre la composició del producte i les preferències dels animals.  
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This PhD project was financed by DIANA Petfood (Division of Symrise Group). The 

company develops innovative solutions for pet food manufacturers, intended to 

improve the palatability of food and the well-being of dogs and cats (http://www.spf-

diana.com/). 

The pet food industry is constantly offering new products to satisfy specific desires and 

needs for animals and pet owners. Among this offer, palatability enhancers, i.e. products 

that contribute to improve the stimulation of taste and/or olfactory system are the main 

products. To stimulate the nose and tongue sensorial sensors of cats and dogs, volatile 

and soluble compounds must be present in palatability enhancers. Hence, many 

processes used to prepare these enhancers are based on transformation of raw 

materials like animal by-products for instance. Processes that are involved are mainly 

product liquefaction via enzymatic hydrolysis, followed or not by a thermal treatment 

that is used initially to ensure the safety of the product.  

The enzymatic hydrolysis releases “simple” products directly coming from the raw 

material like proteins which are not volatile and/or sapid. In a second step, these 

“simple” products can react to each other if a thermal treatment is applied. The Maillard 

reaction is an example of this thermal reaction between an amino acid and a reducing 

sugar, usually requiring high temperature (> 80°C). During this reaction, many flavour 

compounds are generated. Their nature, origin and chemical formulas bring to the final 

enhancers specificities in term of aroma. Consequently, a modification of the process 

and the raw material used to produce the palatability enhancers may directly impact on 

the generation of tastants and flavours. Then, the obtained palatants (in liquid or 

powder form) are dusted at the surface of cat or dog kibbles. The palatability of the final 

product is evaluated directly by animal. In fact, pets preferences for one or another 

product is determined by a trained panel of pets, i.e. cats or dogs, using different 

methodologies of food presentation as it could be done with humans.  
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This project is part of the DIANA Petfood research projects which aim to better 

understand the drivers for palatability in cats. More precisely, it is part of the “gustative” 

chapter dedicated to the identification of the tasty molecules of interest for cats. 

To achieve a molecular understanding of palatant taste perception, several products of 

known and different palatability from DIANA Petfood will be studied trying to isolate 

chemical compounds involved in these differences. The choice was deliberately done 

not to focus on generated aromas, but to study more in depth the tasty fractions and 

their contribution to cat preferences. 



 

 

1. STATE OF ART 
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The domestic cat (Felis silvestris catus) is a carnivorous mammal. Compared to dog, the 

domestication of cat arrived late [1]. The earliest archaeological finds indicate that cats 

were first domesticated in Egypt around 2000 B.C. More recent discoveries suggest that 

the cats’ taming began at least 3500 B.C. in Egypt [2] but, in Cyprus, remains of a cat 

were found in a human grave dated as coming from 9000 to 7500 B.C. [3]. This discovery 

supports the hypothesis that cats’ domestication begun with grains farming in the Fertile 

Crescent when humans used cats to control the rodent population who ate the harvest. 

In 2014, the genome of domestic cat was sequenced and compared with the wild cat 

(Felis silvestris) genome. Significant differences were found between the two species. 

These differences concerned genes involved in memory, fear and search of reward [4]. 

In 2014, there were approximately 400 millions of domestic cats in the world, of which 

more than 90 millions in the U.S.A. and 65 millions in E.U., and around $22 billion were 

spent by U.S. owners for cat food and treats [5]. Cats are now considered as part of the 

family and most owners are searching for the best products. In order to satisfy clients’ 

requests, pet food industries are constantly improving their recipes to offer the better 

tasting and nutritive foods. This improvement is closely correlated with the 

understanding of cat behaviour and taste preferences. 

1.1 Feeding behaviour and taste perception 

1.1.1 Feeding behaviour of cats 

Most studies of cats’ eating behaviour are performed by pet food companies and data 

are mostly empirical. Indeed, it is easier to satisfy specific nutritional requirements when 

ideal alimentary environment and social habits are well known. 
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The domestic cat is considered as obligate carnivore because its survival depends of 

nutrients only found in animal flesh. Thus, it requires a diet of primarily flesh and organs. 

This eating behaviour suggests that cats have a number of special dietary requirements 

that do not apply to many other animals like humans or dogs [6]. Cats’ eating behaviour 

includes several phases from the food research, its recognition and its acceptance to its 

ingestion and digestion.  

Some laboratory tests have shown that if food is provided ad libitum, the domestic cat 

eats many small meals (7 – 20) per day evenly distributed between night and day. The 

quantity of food eaten and the frequency of meals vary among each cat [7–9]. Cats drink 

water as many times as they eat during nights and days [10]. This behaviour is probably 

a heritage of wild cat eating behaviour. In fact, wild cats eat various small preys per day 

to obtain their nutritional requirements [7]. In addition, they are usually considered as 

lonely hunters and this wild behaviour is reflected in domestic cats by an absence of 

strict social rules during meals. They usually eat alone but the presence of another cat 

does not affect their intake. Nevertheless, some studies have shown that a hierarchy 

exists when several cats live in the same house. Females during oestrous cycle and 

higher-ranking cats eat first [11]. When groups of cats are fed ad libitum, only 20% of 

meals involved two cats at the same time. In this case, two meals are considered as two 

only if there is more than one minute between one and another [8]. The behaviour of 

domestic cats before and after feeding by their owners cannot be related to cats’ 

characteristic (sex, age...) since it appears to be highly cat-specific. However, no relation 

has been found between the owner characteristics and the behaviour of cats. It suggests 

that pet cats’ behaviour at feeding is not related to owner attitudes and may be a 

consequence of developmental factors [12]. Even if owner attitudes are not involved, 

the behaviour of cats during feeding is strongly influenced by their environment. They 

need to feel safe and not stressed. A recent study has shown that various parameters 

can influence the behaviour of confined cats [13]. Indeed, attention must be paid to 
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both macroenvironment (room, light, noise) and microenvironment (cage dimensions, 

food and litter) to maintain cat welfare. All these factors have to be monitored when 

constituting a panel of cats for food evaluation. 

During feeding sequence, taste is strongly linked with olfaction. This sequence can be 

resumed in four major steps which involve different senses: food selection (smell), grip 

(sense of touch), chewing (taste) and digestion. These steps must be well understood by 

pet food companies to use the most appropriate raw materials and adapt their 

processes. Post-meal behavioural sequences depend on the food appetence [12]. Most 

frequent behaviour are stand, walk tail up and miaow before meal, and lick lips, groom 

face and groom body after meal. To be more specific, if the cat is highly attracted by the 

food, it comes quickly to the bowl, licks the bowl, then its whiskers and finally, after 

eating, cleans its face after eating. On the contrary, if the cat is not attracted by the 

food, it starts by sniffing food and then licks its nose [14].  

Cats have a kind of “calorie regulator” and, as other mammals, regulate their 

macronutrient intake. For cats, the target composition is estimated at 52% of energy 

brought by protein, 36% by fat and 12% by carbohydrate [15]. Nevertheless, early 

studies showed that dilution of cats’ diet by non-nutritive substances results in a 

maintained bulk intake leading to a decrease in caloric intake. The bad palatability of 

these non-nutritive substances was a possible interpretation for the lack of caloric 

adjustment observed in these studies [16,17]. By contrast, they respond to dilution of 

their diets with water by increasing diet consumption to maintain dry matter intake [18] 

and can regulate energy intake regulation after food dilution when feed by commercial 

food [9,19]. If fed with a low-fat vs. a high-fat diet, cats regulate their daily food intake 

on the basis of energy density [19] . 
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1.1.2 Cat’s taste perception 

Taste is the sensory system devoted primarily to a quality check of food to be ingested 

[20]. The sense of taste in cats appears to be similar to that of other mammals except 

for sweet taste because lacking the sweet taste receptor.  Actually, domestic cats are 

not attracted by sweet taste nor rejected it. The degree of sensitivity of cats for the five 

basic flavours can be classified as follows: sourness > bitterness > saltiness/umami > 

sweetness. The sense of taste is present five days before birth and evolves then [21]. 

Cats have around 475 taste buds much less than dogs (1700) and humans (9000). In 

vertebrates, taste buds are mainly located on the upper face of the tongue but, are also 

present in the mucosa of the palate, the epiglottis and the pharynx [22]. Taste buds 

located on cat tongue are included in the gustatory papillae and each taste bud contains 

polarized neuroepithelial taste cells (Figure 1). Four types of papilla are distributed on 

the cat tongue [23–26]: 

- The filiform papillae are the most abundant and line the whole dorsal surface of 

the tongue. They are highly keratinized and permit the food retention on the 

barbed tongue surface. There are no taste buds in the filiform papillae but. 

- The fungiform papillae usually contain only one or few taste buds at their top. 

They are mixed with the filiform papillae over the tongue. 

- Only 1 to 6 circumvallate papillae are present on cat’s tongue but their role in 

taste perception is very important since they contain up to 1000 taste buds in 

their side walls. They are the biggest papillae and are located on the posterior 

third of the tongue. 

- The foliate papillae (6 to 8 on cat’s tongue) are located on the lateral parts of 

the tongue and are almost deprived of taste buds. 
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Figure 1. Papillae and taste bud (adapted from [27,28]) 

As mentioned before, each papilla contains several taste buds. To understand the role of 

each bud, the taste sensitivity of cat was first studied by stimulation of taste bud, 

connected to cranial nerves, by various substances. After bud stimulation, a neurologic 

signal was registered. Earlier studies attempted to classified taste receptors by 

measuring the electro-physiological responses of neurons innervating taste buds on 

cat’s tongue. Boudreau [29,30] proposed to divide these chemoresponsive tongue units 

in three functional groups: Group I responded to acids; Group II responded to amino 

acids among others; Group III was discharged by nucleotides. Neurophysiological studies 
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were also done on goat and rat geniculate ganglion [31,32]. Chemoresponsive units of 

these species can also be classified in groups and present similarities with those found 

for cats. Thus, a basic model of four model groups was established for mammals: acid 

units, salt units, amino acid units and X units where X can be an alkaloid in the case of 

cats [33]. 

More recently, in mammals, the classification of taste buds was reconsidered based on 

ultrastructural features of taste cells. Taste buds were described as containing four types 

of cells [34]. Type I cells have voltage-dependent outward currents implicated in salt 

taste transduction [35]. Type II cells exhibit G-protein coupled receptors binding sweet, 

bitter or umami compounds [34]. Apparently, type II cells are not stimulated by salty or 

sour stimuli. Type III cells respond directly to carbonated solutions and sour taste 

[36,37]. Type IV cells are largely described as undifferentiated cells and their exact 

importance as cell population remains unexplained. 

In mammals, the transduction of chemical stimuli provided by food into a neural signal 

involves taste receptors located in the taste cell microvilli [22]. These receptors are ionic 

(for salty or sour stimuli) or metabotropic (for sweet, bitter or umami stimuli). In case of 

salty flavour, sodium ions are transported through the membrane by sodium channels 

inducing the depolarization and the liberation of neurotransmitters into the cranial 

nerves. The acid compounds release protons H+ responsible of acid flavour. In this case, 

two types of transduction exist: the H+ acts like a sodium ion as described before, or it 

blocks potassium channels causing an increase of potassium ions concentration into the 

cell, a depolarization and the liberation of neurotransmitters into the cranial nerves. 

Bitter, sweet and umami flavours use the same transduction pathway. This transduction 

is more complex than the others since G protein-coupled receptors, T1Rs and T2Rs, are 

involved. T2Rs are specific of bitter taste. Umami flavour transduction use two receptors 

(dimmers), T1R1 and T1R3, and sweet flavour transduction, T1R2 and T1R3 [38]. In the 
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case of cats, the sweet taste receptor is missing. They are unable to taste sweet 

compounds due to defects in a gene that controls the structure of the sweet taste 

receptor [39]. The mammalian sweet taste receptor is actually made up of two coupled 

proteins generated by two separate genes: known as Tas1r2 and Tas1r3 [40]. In the case 

of cats, Tas1r2 is a pseudogene and the heteromer T1R2/T1R3 cannot be formed [41]. 

Comparison of the domestic cat receptors with their human ortholog has also been 

done to understand cat taste perception, in comparison to human perception, showing 

that umami and bitter receptor functional characteristics were distinct between the two 

species [42,43]. 

1.2 Cat’s food preferences and nutritional 
requirements 

1.2.1 Food preferences 

Cats are very sensitive to the taste, odour and texture of foods and their preferences are 

highly related to its obligate carnivore character. Thus, increasing the protein content of 

a defined food is likely to improve its attractiveness to cats. Taste is an important 

component for cat food preferences and it is very unified to their well developed sense 

of smell [44]. Generally, cats first smell food and if they find it attractive, they taste it. 

Texture and size of kibbles also influence food preferences. Adult cats have 30 teeth 

including 4 sharp and pointy teeth designed to capture prey, 12 small incisors and 14 no-

rounded molars (Figure 2). Consequently, cats are incapable of chewing efficiently so 

they reduce the size of food by cutting it into smaller pieces before swallowed. 

Moreover, they frequently reject kibbles pieces with sharp edges. The temperature of 

food is also an important factor. Cats prefer food at blood temperature (around 35°C) 

certainly due to their original diet composed of fresh preys. They prefer moist food with 
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moisture content similar to that of meat (70-85%) but semi-moist and dry food are also 

accepted. The appetite also influences food choice. In fact, cat will eat a low attractive 

food only if it is very hungry but a high palatable food will be generally tasted in any case 

[14]. 

 

Figure 2. Feline dentition (adapted from [45]) 

Beauchamp et al. also examined flavour preferences in cats [46]. They observed that 

domestic cats do not show any preference concerning sweeteners diluted in water or 

saline solution. Solutions of hydrolyzed protein and amino acids or emulsified fat 

mixtures are preferred to the diluents. This avidity for proteins and fats and not for 

carbohydrates is related to the strict carnivore feature of cats. Eisert [47] proposed that 

the higher protein requirement of domestic cats is a consequence of a high amino acids 

conversion into glucose to supply the needs of brain and tissues. Cats are particularly 

attracted to amino acid stimuli especially proline, cysteine or alanine described as 

“sweet” by human. These amino acids activate amino acids units in cat. However, they 

reject stimuli that taste bitter or very sour to humans such as arginine, phenylalanine or 
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tryptophane which inhibit amino acids units [46]. It has been suggested that cats may 

evaluate the quality of meats by tasting adenosine triphosphate. Moreover, 

monophosphate nucleotides, when accumulated at high level in prey tissues after death, 

inhibit the amino acids units in cats and by this way, may avoid them to feed on carrion 

[6]. Even if cats do not show a large synergism between monosodium glutamate (MSG) 

and/or amino acids and inosine monophosphate (IMP) (unlike mice [48], dogs [49] and 

humans [50]), they are attracted by this “umami combination” which enhances meat 

flavour and food acceptance. In fact, the combination of MSG and IMP activate the same 

response pathway as NaCl in humans [51] and mixes of MSG and/or amino acids and 

IMP are widely used to enhance palatability of cat foodstuffs [52]. Animal protein 

hydrolysates, animal proteins and fat, emulsified meats and acids are flavours generally 

highly preferred by cats. They also are particularly attracted by fish, liver, meat, yeasts 

extract and acidic flavours [53]. Others flavours such as vegetable oils, fibres, vegetable 

proteins have negative effects on acceptance, or at least less positive acceptance [26]. 

Cats also reject medium chain fatty acid and caprylic acid [54]. Cats are indifferent to 

sucrose diluted in water but when NaCl is added, they drink the solution enthusiastically 

[55]. Paradoxically, they prefer milk if sucrose or lactose is added [46]. The optimum pH 

range for increasing salivation is 4.5 - 5.5, and taste response is increased when food 

temperature is about 30°C [26]. 

Feeding past and, especially, early feeding experiences guide individual food preferences 

of adult cats [56]. Two opposite effects of early experiences have been described in the 

literature [9,57–59]. The first effect, also called neophobia, is a propensity to reject 

unfamiliar food and to accept early experienced food in contrast to the second effect, 

called neophilia. Nevertheless, cats are largely described as neophobes more than 

neophiles. Kittens tend to eat and like the same foods that their mother ate during 

pregnancy and lactation and may develop a strong preference for this [60]. This 

neophobia can explain why some owners have difficulties to change their cat’s diet. It 
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can also explain differences of food preferences between domestic and free-ranging 

cats. Farm cats prefer raw beef to canned meat while domestic cats reject raw beef 

probably due to neophobia. In the same way, kibbles are accepted by domestic cats but 

mostly rejected by farm cats [61]. 

1.2.2 Nutritional requirements 

Cats have specific needs of nutrients from animal origin due to their specific 

metabolism. Cat’s nutritional requirements are highly related to his strict carnivore 

behaviour. For example, cats’ metabolism is unable to synthesize some essential 

nutrients such as retinol, taurine and arachidonic acid (ArA) out of vegetable matter and 

rely on animal protein in their diet to supply these elements. The typical energy intake 

repartition of a feral cat is estimated to 52% crude protein, 46% crude fat and only 2% 

N-free extract [62]. 

1.2.2.1 Protein and amino acids 

Cats get most of their protein from animal products such as meat or fish. Animal-based 

proteins are usually easier to digest than plant-based protein and are better suited by 

cat’s digestive system [63]. 

1.2.2.1.1 Protein requirements 

First studies determining the protein requirements of cats were performed using 

foodstuffs or purified compounds and without knowing the amino acid requirements 

[64,65]. Therefore, the protein requirements were about 30% of the diet for kittens and 

about 20% for adult cats. Further studies were done ensuring that all amino acid 

requirements were met [66], thus, the protein requirements were lower, around 18% 

for kittens and between 10 and 16% for adult cats [63,67]. Currently, recommended 

protein concentration in cat food for adult maintenance of body weight is evaluated by 
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the Association of American Feed Control Officials (AAFCO) as 26% based on dry matter 

[68]. As others strict carnivores, cats have higher protein requirements for maintenance 

than omnivores do [10,69,70]. This specificity is not well understood. The most plausible 

reason is the high activity of enzymes involved in the nitrogen metabolism (protein-

degrading) that cannot be shut off. In contrast to most omnivorous, cats have a limited 

ability to reduce nitrogen metabolism enzyme activities when fed diets low in protein 

[71]. Consequently, their rate of nitrogen loss is higher than in omnivorous species. 

Nevertheless, this hypothesis is probably not the only explanation for cats’ high protein 

requirements. More recently, the hypothesis for a relation between protein intake and 

metabolic reactions such as protein oxidation or ureagenesis has been tested but 

unfortunately the reason of the high protein requirement remains unclear and requires 

further research [72,73]. Eisert proposed that glucogenesis from amino acids represents 

a significant metabolic sink for amino acids that increases the minimum protein 

requirements [47]. 

1.2.2.1.2 Essential amino acids 

Proteins include 21 amino acids and only 10 are essential for cats meaning that they 

must be provided in the diet [63]. The deficiency of one of these essential amino acids 

can seriously compromise the health of both kittens and adult cats. Meat including 

organ meats, fish proteins and cereal glutens are the most common source of amino 

acids. Rogers and Morris [70] tested the essentiality of ten amino acids (arginine, 

histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan 

and valine) on growing kittens. Deficiency in any of these amino acids resulted in a 

decrease in food intake, a loss of body weight and a low concentration of the deleted 

amino acid in the plasma. Others health problems due to a deficiency or an excess of 

some of these amino acids are described below. 
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Lysine is important for the synthesis of all proteins. Lack of lysine can result in weight 

loss. Anderson et al. [74] has established requirement estimates for arginine and lysine. 

First, they suggested a requirement of 0.80% for lysine and then, established a 

requirement of 0.83% for arginine at this level of lysine. AAFCO [68] recommends a 

lysine concentration in adult cat food of 0.83% in dry basis. 

Arginine is essential for growth and urea production. However, a diet without arginine 

can provoke hyperammonemia in near-adult cats [75] which causes vomiting, 

hypersalivation and nerve problems. Recommended arginine concentration in adult cat 

food is 1.04% in dry basis [68]. 

Histidine has a structural function in proteins and is also a precursor for some 

neurological compounds such as histamine. In cats, a marginal deficiency during a long 

period of time can result in cataracts [76]. Recommended histidine concentration in 

adult cat food is 0.30% in dry basis [68]. 

Methionine and cysteine are particularly important for the keratin synthesis. 

Nevertheless, kittens do not grow normally when the diet contains 2% or more 

methionine [77]. Their body gain weight is smaller than in control conditions (0.5% Met 

diet). Recommended methionine concentration in adult cat food is 0.2% in dry basis and 

should not exceed 1.5% [68]. Cysteine can be synthetised from methionine but if 

supplied by diet, methionine can be used for other functions. Cysteine is also involved in 

the synthesis of felinine, a putative pheromone precursor excreted in the urine [78,79].  

Threonine is a precursor of active molecules of metabolism such as pyruvate. Threonine 

deficiency can result in weight loss and nervous system issues affecting the mobility 

[80]. Recommended threonine concentration in adult cat food is 0.73% in dry basis [68]. 

Phenylalanine and tyrosine are aromatic amino acids involved in hair pigmentation [81]. 

Only phenylalanine is considered essential since tyrosine can be synthetised from 
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phenylalanine but if tyrosine is supplied by diet, phenylalanine can be used for other 

functions. Phenylalanine and tyrosine are essential for thyroid and adrenal gland 

functions. They ensure an appropriate functioning of the brain and are required for 

reproduction. Signs of deficiency include neurological dysfunction, uncoordinated gait 

and hyperactivity in cats [82]. Recommended phenylalanine-plus-tyrosine concentration 

in kitten food and in adult cat food were, respectively, 1.92% and 1.53% in dry basis [68]. 

Approximately 73% of that concentration can be provided with tyrosine. 

Tryptophan is required for hormone production such as serotonin and melatonin. 

Deficiency can lead to refusal to eat and weight loss. Tryptophan minimal requirement 

of the kitten was evaluated at 1.1 g of tryptophan per kg of diet for a maximal growth 

and nitrogen retention [83]. More recently, AAFCO evaluated the optimal concentration 

of tryptophan in cat food at 0.25% (dry basis) for kitten and at 0.16% for adult cat but 

should not exceed 1.7%. 

Unlike other essential amino acids, taurine does not have any role in protein synthesis 

but deficiency of taurine is associated to serious clinical problems [84]. Retinal 

degeneration is associated with a decrease in taurine in cats [85]. Dietary taurine 

deprivation has an effect on reproduction. Cats feed taurine deficient diets have poor 

reproductive performance [86] associated to congenital birth defects. The maturation of 

the cerebellum is delayed in taurine deprived kittens [87]. Moreover, Pion et al. [88] 

proposed a direct link between decreased taurine concentrations in the myocardium 

and decreased myocardial mechanical function. Taurine myocardial concentrations 

depend on plasma concentration which is modulated by taurine concentrations in diets. 

Recommended taurine concentration in dry cat food is 0.10% in dry basis, and 0.20% for 

canned food. The same concentration is recommended for kitten food [68]. 

Others amino acids are not essential but can have repercussions for cats’ health. For 

instance, glutamic acid at or above 9% of the diet inhibits normal growth in kittens [89]. 



28 | S t a t e  o f  a r t  

 

1.2.2.2 Lipids and fatty acids 

In many commercial pet foods, 50% or more of the energy comes from fat even if the 

recommendation for crude fat in cat foods is around 9% in dry basis [68]. Dietary fats 

supply essential fatty acids that cannot be synthesised in the body and provide the 

necessary environment for absorption of fat-soluble vitamins. Essential fatty acids are 

part of two families: omega-3 and omega-6. In all animals, linoleic acid (omega-6; LA) 

and α-linolenic acid (omega-3; ALA) are essential but contrary to most animals, cats 

were shown to be incapable to convert them into ArA, eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA), respectively [90,91]. This conversion involves the action of 

elongase and desaturase enzymes. Pawlowsky [92] demonstrated that Δ6 desaturase 

activity does exist in the feline but only at low level and, as a consequence, cats need 

foods from animal origin as source of ArA, EPA and DHA. This low activity may be 

another inheritance of their strict carnivorous nature. Essential fatty acids play an 

important role in cell structure and function. Fatty acids are required for maintenance of 

skin and coat, strong immune system and reproductive system [10]. Omega-3 

deficiencies can result in abnormalities in the nervous system like visions problems or 

learning difficulties. Omega-6 deficiencies are associated to physiological issues [93]. 

Minimum requirements of EPA and DHA for cats are not well established. AAFCO 

recommends an ArA concentration in adult cat food of 0.02% in dry basis [68]. 

1.2.2.3 Minerals 

Twelve minerals are essential for cats [63].  

Calcium is necessary for bones and teeth formation and also involved in nerve impulse 

transmission. Deficiency in calcium may compromise growth while excess of this mineral 

results in bones abnormalities and increased bone mineral density. Recommended 

concentration in adult cat food is 6 g/kg in dry basis [68].  
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Potassium is essential to maintain the acid-base balance in cells and to ensure nerve 

pulse transmission. It also plays an important role in the production of energy at cellular 

level. Deficiency in potassium can cause significant retarded growth and neurological 

disorders. Recommended concentration in adult cat food is 6 g/kg in dry basis [68].  

Phosphorus is necessary for strong bones and teeth, energy production and is a 

structural component of DNA and RNA. Deficiency in phosphorus can result in slow 

growth, loss of appetite and locomotion disturbances. Recommended concentration in 

adult cat food is 5 g/kg in dry basis [68].  

Chlorine is important for maintaining the acid-base balance in cells and the osmolarity of 

extracellular fluids. Deficiency in chlorine increases sodium concentration in renal fluid 

and can result in an excess of potassium excretion causing symptoms of potassium 

deficiency. Recommended concentration in adult cat food is 3 g/kg in dry basis [68].  

Sodium is involved in regulation of osmotic pressure and nerve impulse generation and 

transmission. Deficiency in sodium is rare in cats but can be detected by increased heart 

rate and increased urine output. Excess of sodium consumption can cause dry mucous 

membranes. Recommended concentration in adult cat food is 2 g/kg in dry basis [68].  

Magnesium is essential for healthy bone structure and nervous system. Deficiency in 

magnesium can lead to hyperextention of carpal joints and loss of appetite while excess 

in magnesium can result in urinary tract stone formation. Recommended concentration 

in adult cat food is 0.4 g/kg in dry basis [68].  

Iron is essential for oxygen transport as is a vital component of hemoglobin and 

myoglobin. Deficiency in iron can lead to poor growth, pale mucous membranes and 

diarrhea. Very high level of iron can result in vomiting and diarrhea. Iron is also involved 

in many enzymatic reactions. Recommended concentration in adult cat food is 80 mg/kg 

of food in dry basis [68].  
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Zinc is essential for skin and coat health, and for reproductive function. Zinc is also a co-

factor for several enzymes involved in cell replication. Deficiency in zinc can cause skin 

lesions, poor growth and testicular atrophy. Excess zinc can cause seizures in cats. 

Recommended concentration in adult cat food is 75 mg/kg of food in dry basis [68].  

Manganese is involved in the formation of bones and cartilages. It also plays a structural 

role in many enzymes. Manganese deficiency in cats was not studied but it was reported 

that in dogs, deficiency can result in shortening of the front legs during growth. 

Extended manganese excess can cause iron deficiency. Recommended concentration in 

adult cat food is 7.6 mg/kg of food in dry basis [68].  

Copper is necessary for melanin pigment (hair) and myelin (nervous system) formations. 

It also plays a role in iron metabolism and in defending cells against oxidation damage. 

Deficiency in copper can result in anæmia and hair depigmentation. Toxicity is rare 

although copper is stored in liver. Recommended concentration in adult cat food is 5 

mg/kg of food in dry basis [68].  

Iodine is involved in thyroid hormone synthesis impacting growth and metabolic rate 

regulation. Symptoms of deficiency are enlargement of the thyroid glands, hair loss and 

weight gain. Excess iodine leads to same signs to those observed in deficiency. 

Recommended concentration in adult cat food is 0.6 mg/kg of food in dry basis [68].  

Selenium is essential to reduce cellular damage caused by free radicals and as support 

for immune response. Deficiency can result in depression and coma. Excess can appear if 

fed with high amount of fish. Recommended concentration in adult cat food is 0.3 mg/kg 

of food in dry basis [68].  
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1.2.2.4 Vitamins  

Vitamins are organic compounds which can be divided in two families: fat-soluble 

vitamins, including vitamins A, D, E and K and water-soluble vitamins mainly vitamins B 

and C. Some vitamins, such as vitamin A and vitamin B3, cannot be synthesised by cats 

from precursors which must be directly provided by diet. Therefore, vitamin mixes are 

sometimes added to pet food during the process to complete the naturally-present 

vitamins of pet food raw materials. Vitamins have many functions such as vision (vitamin 

A), skin health (B2, B3, B5, B7), formation of blood cells and blood clotting (B9, B12 and 

K), protection of cell membranes from free radicals (vitamin E) and regulation of calcium 

metabolism (vitamin D). As a consequence, deficiencies can result in eyes problems, 

muscle weakness, blood and nerve disorders. Some vitamins are also toxic if consumed 

in high doses such as vitamin A which excess can cause skeletal lesions especially in 

growing kittens [94]. Vitamin C is not essential for cats since they are able to synthesise 

enough by their own.   

Choline is generally classified as a B vitamin even if all animals can synthesise it to some 

degree. In cats, the production does not always cover requirements and choline must be 

provided by diet. Choline may prevent fatty liver disease (in diabetics) and cognitive 

disorder in cats and humans [95,96]. 

Recommended concentrations for vitamins in adult cat food are presented in Table 1. 
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Table 1. Recommended cat food vitamin profile based on dry matter [68] 

Vitamin 
Recommended 
concentration 

A 3332 IU/kg 

D 280 IU/kg 

E 40 IU/kg 

K 0.1 mg/kg 

B1 5.6 mg/kg 

B2 4.0 mg/kg 

B3 60 mg/kg 

B5 5.75 mg/kg 

B7 4.0 mg/kg 

B9 0.8 mg/kg 

B12 0.020 mg/kg 

choline 2400 mg/kg 

 

1.2.2.5 Others nutrients 

1.2.2.5.1 Carbohydrates 

Carbohydrates are not essential in the cat’s diet since cats can synthesise their glucose 

from amino acids but they are an abundant source of energy. In pet food, cereals, 

vegetables and legumes are the main source of carbohydrates and fibres. There is 

neither recommended concentration of carbohydrates/fibres in cat food nor evidence of 

deficiency symptoms. Nevertheless, too much or too little fibre may reduce faeces 

quality and excess carbohydrates can cause diarrhoea or contributes to feline diabetes 

and obesity [97].  
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1.2.2.5.2 Nucleotides 

Nucleotides are not essential in cat’s diet. Nevertheless, they are considered as 

immunomodulatory nutrients [98]. The appropriate quality and quantity of nucleotides 

in cat food are not established. 

All these nutritional recommandations do not consider the palatability of the product 

and the economic reality. Moreover, the nutritional contribution of palatability 

enhancers is very low since they only represent from 0.5 to 3% of the final product while 

their sensorial values are essential. 

1.3 Cat food and palatability improvement  

The commercial pet food industry started in England around 1860 with the invention of 

the first dog biscuit by James Spratt. Commercial pet food gained popularity in the 1900s 

with the introduction of canned cat food, dry-meat meals for dogs and then, dry 

expanded type pet foods. Since the 1960s, feeding table scraps was considered as 

“dangerous” and a great range of pet foods emerged. More recently, a new type of pet 

food appeared, called “prescription” foods, especially formulated to meet the needs of a 

certain age group, animals affected by a specific disease or animals with nutritional and 

physiological specific requirements. 

1.3.1 Commercial cat food trends 

Nowadays, most pet owners take for granted that dogs and cats need a balance diets. 

Consequently, commercial pet foods represent more than 90% of the calories consumed 

by pets in North America, Japan, Northern Europe, Australia and New Zealand [53]. 

Emerging countries follow the same trend. They are purchasable in three basic forms 
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long-standing defined by pet food industry: moist, semi-moist and dry food (kibbles). 

Treats and supplements are also available. 

1.3.1.1 Moist food  

Moist pet foods contain between 60 and 87% of water [53]. The other nutrients are 

found in the dry matter part. To avoid the presence of “free” water, gelling agents and 

gums are often used to solidify the loaf and imbibe water in high-moisture foods. A lot 

of moist cat foods contain high levels meat or meat by-products and as a result, the level 

of protein, fat, phosphorus and sodium in these products is generally higher than in dry 

pet foods. These nutrients act enhancing the palatability of moist foods and are 

considered as supplement to the dry main meal [53]. Moreover, palatability enhancers 

such as protein digests can be added during the process. Different packages are found in 

the market of moist foods such as plastic tubes, steel cans or aluminium trays (Figure 3).  

 

 

Figure 3. Examples of moist foods for cats and traditional packaging 
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1.3.1.2 Semi-moist food 

Semi-moist pet foods contain between 25 and 35% of water [53]. To avoid growth mold 

and to control the water activity, humectants are usually added to semi-moist foods. An 

alternative is to acidify the product. This second option gives an acidic note which is very 

appreciated by cats. A lot of semi-moist foods are designed to be attractive to the 

owners, by mixing forms and colours (Figure 4) but have the disadvantage that is not 

healthy for all cats because of its high sugar and its low fibre content [53]. Additionaly, 

some humectants such as propylene glycol, which has been banned as cat food additive 

by the U.S. Food and Drug Administration [99], can damage cat’s red blood cells 

[100,101]. 

 

Figure 4. Examples of semi-moist foods for cats 

1.3.1.3 Dry food 

Dry pet foods contain between 3 and 11% of water [53]. They are usually made by 

extrusion cooking but flaking, baking or crumbling are other possible manufacturing 

methods (Figure 5). In general, protein, fat and mineral contents are lower in dry cat 
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food than in moist cat food (in dry basis). Indeed, some heat-sensitive vitamins can be 

destroyed and protein quality can decrease during the extrusion process [102]. Such 

vitamins and fat, as well as protein hydrolysates, can be sprayed on the kibbles after the 

extrusion process to increase palatability. Dry cat foods are also cheaper to manufacture 

than moist and semi-moist foods based on cost-per-calorie mostly due to the low water 

content. They are accepted by most cats but are generally less attractive than moist 

foods. Dry cat foods are also convenient to use by owners due to long shelflife, low level 

of unpleasant odour compared to moist foods. 

 

Figure 5. Examples of dry foods for cats 

1.3.2 General industrial processing of pet food palatability 
enhancers 

As mentioned before, palatability enhancers can be added to cat foods during 

manufacturing especially to dry foods which are less palatable. In fact, most dry cat food 

kibbles are coated with them. A huge range of ingredients is considered as palatability 

enhancers such as fat, monosodium glutamate, yeasts extracts, cheese powder or whey 

for example. Palatability enhancers may be a single ingredient or a mix of several 
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ingredients, in raw form or processed, natural or synthetic. In this section, the main 

steps of palatability enhancer manufacture are described. 

1.3.2.1 Source of meat by-products 

As defined by AAFCO, meat by-products are the non-rendered, clean parts, other than 

meat, derived from slaughtered animals. It includes, but is not limited to lungs, spleen, 

kidneys, brain, livers, blood, bone, partially defatted low temperature fatty tissue, 

stomachs and intestines freed of their contents. It does not include hair, horns, teeth 

and hoofs. Obviously, it shall be suitable for use in animal food [103]. Meat by-products 

are used as protein sources. 

Among meat by-products, cats are particularly attracted by liver. Beef, pork and chicken 

livers are the more common meat by-products used in pet foods but others species, 

such as lamb, kangaroo, duck or turkey, may be used depending on the regional 

availability. According to U.S. Department of Agriculture nutrient databases, pork liver 

composition (Table 2) is rather different from other pork organ compositions essentially 

due to its high protein content, which is a real asset for cat food palatability. This organ 

is also a good source of iron, zinc and phosphorous and it is relatively rich in 

carbohydrates, especially in glycogen, which is an important reserve of glucose for 

Maillard reaction. Furthermore, many flavour compounds have been identified in both 

raw and cooked liver which reinforce its attractiveness for cats [104–106]. 

As a first step of palatability enhancer manufacturing, meat by-products are grinded 

before being processed as described below. 
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Table 2. Nutrient composition of raw pork liver [107] 

 

Nutrient Unit Value per 100 g Nutrient Unit Value per 100 g

Proximates Lipids
Water g 71.06 Fatty acids

Energy kcal 134 total saturated g 1.17

Energy kJ 561 C14:0 g 0.02

Protein g 21.39 C16:0 g 0.44

Total lipid (fat) g 3.65 C18:0 g 0.7

Ash g 1.44 total monounsaturated g 0.52

Carbohydrate g 2.47 C16:1 g 0.03

Fiber g 0 C18:1 g 0.46

Amino Acids total polyunsaturated g 0.87

Tryptophan g 0.301 C18:2 g 0.35

Threonine g 0.91 C18:3 g 0.03

Isoleucine g 1.085 C20:4 g 0.44

Leucine g 1.906 C20:5 n-3 (EPA) g 0

Lysine g 1.649 C22:5 n-3 (DPA) g 0.03

Methionine g 0.53 C22:6 n-3 (DHA) g 0.02

Cystine g 0.404 Cholesterol mg 301

Phenylalanine g 1.047 Minerals
Tyrosine g 0.729 Calcium mg 9

Valine g 1.321 Iron mg 23.3

Arginine g 1.317 Magnesium mg 18

Histidine g 0.582 Phosphorus mg 288

Alanine g 1.276 Potassium mg 273

Aspartic acid g 1.937 Sodium mg 87

Glutamic acid g 2.782 Zinc mg 5.76

Glycine g 1.239 Copper mg 0.677

Proline g 1.146 Manganese mg 0.344

Serine g 1.157 Selenium µg 52.7

Vitamins
Vitamin A µg (IU) 6502 (21650)

Vitamin B1 mg 0.283

Vitamin B2 mg 3.005

Vitamin B3 mg 15.301

Vitamin B5 mg 6.65

Vitamin B6 mg 0.69

Vitamin B9 µg 212

Vitamin B12 µg 26

Vitamin C mg 25.3
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1.3.2.2 Enzymatic digestion and thermal treatment 

Due to the high protein content of meat by-products, the enzymatic digestion 

contributes to release peptides and free amino acids, among others, largely considered 

as tasting compounds for humans. Meat by-products, and especially viscera, naturally 

contain endogenous proteolytic enzymes, mostly exoproteases but, to produce a high 

palatable digest, meat by-products are treated with selected enzymes, mostly 

endoproteases such as papain or serine proteases [108]. The digestion takes place under 

controlled conditions of pH and temperature which correspond to the optimal values or 

ranges for the enzyme activity.  

Various patents described the recent processing advancements made to improve the 

efficiency of meat digest-based palatability enhancers based on the use of several 

enzymes and sequences on the digest [109–112]. 

Once the digest is obtained, sugars or others compounds may be added and enzymes 

are inactivated usually by heat treatment between 80°C and 120°C. The addition of 

sugars and the temperature rise are an essential condition for thermal reactions, such as 

Maillard reaction, contributing to flavour and taste of the final product [113]. The 

Maillard reaction also named as “non-enzymatic browning” is one of the main pathways 

for the generation of flavour compounds in meat and meat products [114]. This 

browning is the result of the reaction between the carbonyl groups of sugars and the 

amino groups of amino acids when exposed to heat. 

Thus, an effective tissue digestion may lead to favour the Maillard reactions, increasing 

the number of small peptides available to react with sugars present in the mix. It was 

shown that the compounds resulting from the reaction between small peptides (1000-

5000 Da) from soybean hydrolysate and xylose contribute to increase the intensity of 

human mouthfulness in umami solution [115].  
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The effects of the Maillard reaction on the nutritive value of pet foods have been 

discussed highlighting the no-nutritional value of early Maillard reaction products (MRP) 

derived from lysine. In fact, significant amount of lysine (up to 62%) is replaced by these 

early MRP which can be absorbed in the gastrointestinal tract but cannot be used by the 

pet body [116]. 

1.3.2.3 Preparation of liquid and powder forms 

After the digestion, the final product is in liquid form. This hydrolysate may be used 

directly as palatability enhancers after stabilisation or can be spray-dried to obtain 

products in powder form (Figure 6). Before spray-drying, inactive brewer’s yeast extract 

is added to the liquid form product as drying support. These yeasts also contribute to 

enhance the palatability since they contains nucleotides enhancing umami taste [117].  

After extrusion and drying steps, kibbles are coated by fat and, then, palatability 

enhancers. The typical application rates over kibbles or other types of pet food are 1-3% 

for liquid-form and 1-2% for powder-form palatability enhancers [108]. 

 

 

Figure 6. Liquid and powder palatability enhancers 
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1.3.3 Palatability 

In pet food industry, palatants are used to increase the palatability. Wet or dry palatant 

coating is the last processing step to improve smell and taste and thus, attractiveness of 

pet foods. 

1.3.3.1 Definition 

Palatability was first described as the characteristics or the conditions which stimulate a 

selective response by the animal considering that the palatability was inherent to each 

aliment [118,119] and would depend on taste, smell, appearance, temperature and 

texture. However, other criteria may modulate the palatability, such as the feeding 

experience and the metabolic state of the animal [120] and even the appetite [121]. 

Thus, the palatability can be defined as a multi-factorial parameter which characterizes 

the acceptability of food and takes in account physical and chemical factors. 

1.3.3.2 Factors influencing the palatability 

Palatable pet food is the result of four main factors: high quality ingredients, processing 

design, high quality palatants, and uniform application of palatants. In fact, the 

performance of an enhancer depends on raw material and process used to manufacture 

it. Meat by-products are commonly used as palatability enhancers’ raw material 

especially liver, red meat and blood which are highly palatable [53]. Nevertheless, fish 

can be preferred to red meat or rejected by some cats highlighting animal factors effect. 

Thus, the palatability may be affected by sensory factors but also by other factors. 

1.3.3.2.1 Sensory aspects  

Smell 

Cats have a high-developed sense of smell with 21 cm² of olfactory epithelia, more 

developed than humans (until 10 cm²) and less than dogs (until 150 cm²) [122]. Before 
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eating their food, cats always smell it intensively, especially unfamiliar foods, in order to 

discard any unhealthy food. Cats like not only to smell all available foods but also to 

taste them before deciding which to eat [53]. 

Taste 

Obviously, the role of taste in a food acceptance is undeniable. Cats have an extended 

sense of taste. They can detect and respond to some amino acids which contribute to 

meaty and savoury aromas. They also respond to some nucleotides or fatty acids which 

enhance the meaty taste perception. Acidified foods, like dry foods, appeal to cats [53]. 

Texture/mouth feel 

The mouth feel component is very important to take in account when manufacturing cat 

food. The size of kibbles in dry foods and chunks in wet food affect palatability. For the 

same formula, some cats can prefer one shape to another. In fact, cats prefer pieces 

having smooth rather than irregular surfaces and sharp edges. A recent study comparing 

the palatability of different shapes demonstrates that the “O” (disc) is the most 

preferred shape. Moreover, the coating of “O” kibbles with palatability enhancers 

results more homogenous than other shapes. Cats are highly sensitive to the 

homogeneity of palatability enhancers coating [123]. Mouth receptors and movement 

detectors located in the mouth allow cats to evaluate some characteristics such as 

elasticity, viscosity, cohesiveness and hardness. Cats prefer easy-to-chew foods and do 

not appreciate sticky foods [124].  

Vision 

This factor is mostly related with the wild hunting behaviour of cats. Concerning 

commercial pet foods, there is no evidence that colour can influence the acceptance. It 

certainly affects more owners’ preference than pets’ [53]. 
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1.3.3.2.2 Other factors 

On average, moist foods are preferred to dry foods and semi-moist foods are not really 

appreciated by cats. Moreover, cats prefer foods with a high protein level so the 

increase in protein content increases the palatability. Cooking also have a positive effect 

on palatability but overcooking decreases preference. As mentioned before in section 

2.2.1., food experiences influence cat food acceptance. In fact, cats “print” the 

preference of their mother and show preference for foods they received in their early 

age [56,57]. 

1.3.3.3 Measurement of palatability 

As said before, palatability depends of several factors such as physicochemical or 

nutrition factors. Intentionally, in this part, only palatability measurements by sensory 

analysis will be described. 

Palatability measurement tests can be conducted on two types of animal panels: in pet 

centres with expert panels or in an in-home environment with owner’s pets. Expert 

panels have a higher discriminative power but need to be trained before being exposed 

to a large diversity of foods. Quality tests are conducted frequently in expert panels to 

avoid any bias. In-home panels do not have any training and testing conditions are less 

controlled. Moreover, the feeding history of such panels can lack diversity and these 

palatability tests must include at least around 100 animals. Nevertheless, an in-home 

panel permit to obtain “real-life” data [125]. 

In general, the main objective of palatability tests is to quantify the hedonic value of a 

pet food [26]. Two tests are most commonly used to assess palatability in pet food: one-

bowl test and two-bowl test. One-bowl test or acceptance test is used to measure the 

acceptability of a product. In this case, the animals have free access to one product 

during a determined period. Pet food intake is determined by weight difference of the 
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bowl before and after the test. This test is mostly used for product development 

validation. Two-bowl test is used to measure if cats have a preference for one diet 

through quantities of food eaten. For this kind of tests, two identical bowls are 

simultaneously presented to the cats. It compares two products and permits to establish 

a preference based on the difference of quantities eaten in a defined period of time. 

Thus, it is the most common test used in expert pet panels for the development of new 

products when attempting an improvement of a product over another.  

Some complementary indicators provide additional information to the acceptance and 

preference tests described previously but they are mostly described for dogs [126–128]. 

Human or rat taste panels can also be used to optimize the palatability as describing 

flavours and texture of cat food [129]. Recently, the American company Opertech Bio 

Inc. has developed what it calls the Microtiter Operant Gustometer (MOG) which 

consists in an “automated, high-throughput system for rapid characterization of taste 

sensory properties” by rats [130]. Obviously, the use of humans or rats has limitations 

due to the differences in taste and flavour perceptions between these species. 

1.4 Potential non-volatile tastants 

Some molecules, called tastants, stimulate the sense of taste. Among these compounds 

contributing to the taste, non-volatile taste compounds are considered to be relevant. In 

this section, some of the potential non-volatile tastants for humans and/or cats are 

described as they may influence the palatability of food and/or pet food. These tastants 

are naturally present or are generated during industrial processes or ripening processes 

of human foodstuffs and maybe cat foodstuffs. 

Focus is done on the influence of each group of molecules separately and potential 

interactions between groups are not described. Nevertheless, it is important to mention 
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that these interactions exist and may affect food and pet food palatability [131,132]. The 

taste sensation has been divided into five basic tastes based on human description: 

bitterness, sweetness, sourness, saltiness and umami. Cat taste buds are very similar to 

human taste buds even if differences in sensory performance related to nutritional 

requirements may exist [20,43] but only few studies of domestic cat taste perception 

have been published. Thus, most compounds described in this section are tastants for 

humans and, by extrapolation, are considered as putative tastants for cats even if cats 

do not necessarily experiment the same subjective sensation that humans do. As 

mentioned in section 1.1.2., cats are not sensible to sweetness, even if “sweet 

sensation” can activate neural group involved in taste perception, thus carbohydrates 

are not described in this section. The potential influence of organic acids on palatability 

is not discussed either. 

1.4.1 Proteins and peptides 

1.4.1.1 Proteins as potential tastants 

Several plant and animal proteins, such as thaumatins [133], curculin [134] or hen egg 

white lysozyme [135], have been described as tasting sweet or presenting taste-

modifying capacities for humans. The amino acid sequence has been presented as a 

putative reason for protein sweetness, especially the presence of lysine and arginine 

residues at specific sites [136–138]. Nevertheless, no tasting proteins have been 

described in pet foods or meat-based products. Even if the taste may not be directly 

affected by proteins, they may play an important role in texturing a product, affecting 

palatability.  
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1.4.1.2 Peptides as potential tastants 

The knowledge on the taste of peptides was first reviewed in 1969 [139,140]. The same 

year, aspartame (Asp-Phe-OCH3) was discovered [141]. Kirimura (1969) proposed a 

classification in three groups based on taste characteristics of peptides for humans. He 

also pointed the relation between peptide taste and amino acid sequence of the 

peptides. Thus, peptides in Group I had a sour taste and were rich in acidic residues, 

peptides in Group II had a bitter taste and were rich in hydrophobic residues, and 

peptides in Group III with a balanced composition had no or almost no taste. However, 

there are no simple relations between the taste of peptides and the taste of amino acids 

[140]. 

Many peptides with sweet, umami or bitter taste have been described in the literature. 

In opposite to the proteins, lots of tasting peptides have been identified in meat or in 

meat-based products [142] and may affect the taste of palatability enhancers for pet 

food. Others peptides such as γ-glutamyl peptides have no taste but appear to enhance 

sweet, salty and umami tastes. It was reported that glutathione (GSH) enhance beef 

flavour [143] and mouthfullness and may influence the intensities of basic tastes in 

humans [144,145]. GSH has also been described as a kokumi (featured as taste-

enhancing, complex and long-lasting impression) peptide found in several foodstuffs and 

yeast extracts [146].  

Umami peptides 

Many peptides have been identified as umami in food especially in Japanese foodstuffs. 

Most of them are di- or tripeptides. Arai et al. [147] reported that α-glutamyl peptides 

with hydrophilic amino acids such as Glu-Asp, Glu-Thr and Glu-Ser show umami at 

neutral pH for humans. 
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Nevertheless, some authors have suggested that small peptides cannot be considered as 

umami compounds by humans since contradictory results have been obtained. For 

example, Noguchi et al. [148] and Tamura et al. [149] reported that peptides such as 

Asp-Asp, Glu-Asp, Lys-Gly or Glu-Glu-Glu elicited an umami taste. Van den Oord and van 

Wassenaar [150] re-examined these results and did not find any peptides eliciting 

umami taste. In this way, the existence of an independent class of peptides defined as 

umami is not persuasive. Maehashi et al. [151] isolated peptides from food protein 

hydrolysates and characterized their taste properties. They showed that even if the 

hydrolysate possessed umami taste, most of the main peptide components had no 

umami taste but a sour taste and, only a combination of some of them and IMP elicited 

a “full” umami taste for humans. Currently, no published results report the effect of 

umami peptides on food acceptance for cats. 

Bitter peptides 

Bitter peptides have been identified in a large range of foodstuffs. Bitter peptides have 

been found in Japanese products [152,153] and also in cured or fermented products 

such as cheese [154], ham or cured meats [155], since the enzymatic hydrolysis tends to 

produce bitterness [156]. The presence of bitter peptides in meat-based palatability 

enhancers for pet food has not been studied. Nevertheless, since their production is 

mainly based on proteolysis, the presence of these peptides must be taken into account 

when studying their taste characteristics.  

Only few authors have identified bitter peptides and then, synthesized them in order to 

evaluate the taste characteristics of pure peptides. Matoba and Hata [157] suggested 

that the hydrophobicity and the amino acid sequence of the peptides were involved in 

their bitterness. For most of tested peptides, when arginine is contiguous to proline 

(such as in Arg-Pro or Gly-Arg-Pro), a strong bitter taste has been observed for humans 

[158]. However, models are based on human receptor and may not be adequate for cats 
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since response profiles of the cat bitter receptors are distinct from those of human 

bitter receptors [43].  

Sweet peptides 

Up to date, no natural sweet peptide has been identified [159]. Nevertheless, some 

synthetized di- and tri-peptides containing glycine and alanine residues have been 

described as sweet by humans [160]. The most used sweet peptide is the aspartame 

(Asp-Phe-OMe) discovered by accident in 1969 [141]. Logically, models built to 

understand the relationship between structure and sweet taste of peptides were largely 

inspired by the structure of aspartame until the discovery of the human sweet receptor 

and the modelisation of its active sites [161]. 

Sour peptides 

Most of di- and tri-peptides described as sour by humans contain Asp and/or Glu 

residues which can liberate a proton able to react with the salty taste receptors [152]. 

Salty peptides 

Some peptides have been reported as presenting a salty stimuli or a salty after-taste in 

humans such as the L-Ornithyltaurine [151,162,163]. Nevertheless, the existence of salty 

peptides has been discussed because of the presence of sodium ions in the samples 

which could be responsible of the detected salty taste [164]. 

1.4.2 Free amino acids 

The contribution of amino acids to food taste has been widely described since the 

importance of monosodium glutamate in Japanese foodstuffs was demonstrated in 1909 

by Ideka [165]. Several studies have been done to elucidate the taste of each amino acid 

and to understand their contribution to taste in humans. In 1938, the first amino acid 

isolated from gelatine, now known as glycine, was defined as sweet [166]. Later, sensory 
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tests were performed by several groups to evaluate the taste intensity of individual 

amino acid focusing on enantiomeric differences. Solms et al. [167] concluded that L-

amino acids mainly elicit sweet or bitter taste while D-enantiomers have sweet taste in 

aqueous solution. Other studies evaluated the taste qualities of amino acid powders by 

rating them on semantic differential scales with 46 adjective descriptions such as 

repulsive/not repulsive or meaty/not meaty [168,169]. The contribution of amino acids 

to food taste was shown in chicken [170], cheese [171] and Japanese products [139]. 

Taste qualities of amino acids and their thresholds were also evaluated by humans using 

amino acids solutions. However, general relationships between structure and taste 

quality of amino acid were observed, and the authors minimised the influence of 

chirality on the taste of amino acids [172]. More recently, Kawai et al. [173] published a 

complete amino acid sensory characterization established by measuring the human 

gustatory intensity and quality in response to aqueous solutions of amino acids. They 

concluded that hydrophobicity, size, charge, functional groups in the side chain and 

chirality of the alpha carbon may influence the basic taste of each amino acid. 

Differences observed between studies are mainly due to sample preparation and test 

conditions. Latest research focuses on in silico and in vitro binding assays with mutated 

receptors to understand the amino acid taste perception by humans [174]. 

The taste qualities of the L-enantiomers of amino acids are summarised in Table 3. 

Umami amino acids 

They correspond to the sodium salts of aspartic acid and glutamic acid. The most famous 

is the MSG used by the food industry as a flavour enhancer to intensify the meaty and 

savoury flavour of food [175–177]. In cats, the response to umami amino acids has been 

related to the NaCl response [177][176][175]. 
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Bitter amino acids 

Tryptophan, phenylalanine, tyrosine and leucine were reported to elicit bitter taste in 

0.3% aqueous solution tested by humans [140]. This concentration is relatively low 

suggesting that some other amino acids may have a high threshold and may elicit bitter 

taste at high concentration. Tryptophan activated TAS2R4, TAS2R39, TAS2R43 and 

TAS2R49 human bitter receptors. Phenylalanine activated TAS2R1, TAS2R39, TAS2R8 

and TAS2R4 human bitter receptors [174]. Subsequent studies attributed bitter taste to 

a greater number of amino acids: isoleucine, leucine, valine, arginine, methionine, 

phenylalanine, tryptophan, histidine and lysine [152,173]. Authors concluded that 

bitterness was related to the hydrophobicity of the amino acids. Nevertheless, the taste 

of amino acid remains complex to describe by humans because of individual differences 

in bitter sensing in humans and because bitterness can also be detected for some salty 

or sweet amino acids and vice versa or disappear in solution [179]. Cats reject amino 

acids described as bitter by humans such as phenylalanine or tryptophan which inhibit 

amino acid tongue units [180]. 

Sweet amino acids 

Glycine, alanine and proline were reported as sweet by several teams 

[140,152,168,173]. Glycine activated TAS1R2/TAS1R3 human sweet receptor [174]. 

Then, depending on the sample preparation (powder or solution; concentration), others 

amino acids were also described as sweet by humans: serine, glutamine, threonine 

[168], lysine [152], and asparagine [173]. Even if their sweet receptors are non-

functional, cats are particularly attracted by amino acids described as sweet by humans 

especially proline and alanine [180]. Thus, mechanisms of perception may be different 

from those in humans. 
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Sour amino acids 

Only aspartic and glutamic acids in dissociated form elicit a sour taste in humans which 

is due to the interaction between protons from the acid group with taste receptors 

[181]. Even if cats are attracted by acidic food, they reject stimuli that taste very sour to 

humans [182]. 

Salty amino acids 

Salty taste was detected by humans for proline, glutamic acid, lysine-HCl and valine 

[168,183]. However, in another study, only glutamine was described as salty [179]. 

Apparently, the salty taste of amino acids is not well established and, as well as in the 

case of salty peptides, the differences between studies with humans is a consequence of 

the sample preparation conditions with regard to the presence of sodium ions. No 

published results report the effect of salty amino acids on food acceptance for cats. 
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Table 3. L-amino acid taste qualities determined by humans under different 

conditions 

1.4.3 Lipids and fatty acids 

The interest for fat taste in humans increased in the last two decades, since it may be 

linked with fat food consumption involved in the development of obesity. Converging 

 
Taste in aqueous solution Taste in crystal form 

Ser flat
1
, sweet

2,3
, umami

3
 sweet

4,5
 

Gln sweet
2,3

, umami
3
 sweet

4
, meaty

4
, salty

5
, bitter

5 

Gly sweet
1,2,3

, umami
3
 sweet

4,5
 

Thr flat
1
, sweet

2,3
, sour

3
 sweet

4,5
 

Ala sweet
1,2,3

, umami
3
 sweet

4,5
 

Tyr bitter
1
 flat

4,5
 

Val flat
1
, bitter

2,3
, sweet

3
 flat

4
, salty

4
, bitter

4,5
 

Met sulphurous
1
, meaty

1
, sweet

1,3
, bitter

2,3
 bitter

4,5
, sweet

5 

Trp bitter
1,2,3

 bitter
4,5

 

Phe bitter
1,2,3

 bitter
4,5

 

Ile flat
1
, bitter

2,3
 flat

4
, bitter

5
 

Leu bitter
1,2,3

 flat
4
, bitter

5
 

Asp flat
1
, sour

2,3
 sour

4,5
 

Glu unique « glutamate »
1
, sour

2,3
, umami

3
 sour

5
 

Asn sour
2
 bitter

5
, sour

5
 

His flat
1
, bitter

2,3
 bitter

5
 

Arg flat
1
, bitter

2,3
 spicy

4
, bitter

4,5
 

Lys flat
1
, sweet

2
, bitter

2,3
 salty (with HCl)

4
, bitter

4,5
, sour

5
 

Pro flat
1
, sweet

1,2
, bitter

2,3
 salty

4
, sour

4
, sweet

4,5
, bitter

5
 

Cys sulphurous
1
, bitter

2,3
, sweet

3
 sulphurous

4
, bitter

5
, sweet

5
 

1 [140]; 2 [173], low concentration; 3 [173], high concentration; 4 [168]; 5 [179] 
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data suggest that “fatty” may be a taste quality for humans and rodents [168,184–186] 

even if preliminary results for human are very unsatisfactory because of the difficulty in 

isolating a taste component [187]. In fact, fat is often linked with texture modalities and 

flavour generation but not directly with gustatory effect and there are no clear quality 

labels for fat. Since criteria for acceptance or rejection of taste primaries have not been 

clearly articulated, Mattes [188] proposed six minimal elements of a primary taste 

quality: 

- Provide some adaptive advantage; 

- Have a defined class of effective stimuli, and apparently free fatty acids varying 

in chain length and saturation are the stimuli responsible of fat taste [187] and 

triacylglycerol fatty acids are not an effective taste stimulus  

- Have a unique transduction mechanism, involving receptors to convert the 

chemical signal into electrical signal. Three plausible receptors have been 

identified: the delayed-rectifiying potassium channel Kv1.5, the G-protein 

coupled receptor 120 and the receptor-like glycoprotein CD36 [189]. 

Understanding the regulation of this mechanism is also a big challenge for public 

health [190]; 

- Initiates peripheral signals conveyed by gustatory nerves [126]; 

- Is perceptible and independent from other taste qualities; 

- Evokes a functional physiological and/or behavioural response. 

Mattes [188] proposed evidence on “fat taste” related to each of these elements but the 

existence of a unique transduction mechanism and a unique perceptible sensation 

remained questionable. Recently, Running et al. [191] demonstrated that medium and 

long-chain nonesterified fatty acids elicited a unique and perceptible sensation in 
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humans. Short-chain nonesterified fatty acids produced a sour sensation. Medium-chain 

nonesterified fatty acid sensation was characterised as irritancy. Long-chain 

nonesterified fatty acids were unpalatable. They proposed the term oleogustus as a sixth 

taste refering only to the taste quality of long-chain nonesterified fatty acids and 

avoiding confusion with any textural sensation [191].  

In 2008, Dransfield reviewed the taste of fat in meat products highlighting the fact that 

understanding the mechanism of fat taste may have important implications on the 

development of meat products impacting human and animal nutrition [192]. 

1.4.4 Nucleotides and derivatives 

Nucleotides exist in 2’-, 3’- and 5’- isomer forms but only the 5’-nucleotides are taste 

active [193]. IMP and guanosine 5'-monophosphate (GMP) are widely associated to 

umami taste sensation in humans, being generally considered as taste and flavour 

enhancers [194]. They usually are present in large amount in meat and meat-products 

and contribute to their taste and flavour [195]. The degradation of IMP to hypoxanthine 

has been associated to an increase of bitterness in pork meat suggesting that the 

content of hypoxanthine may influence pork meat taste [196]. In the same way, inosine, 

product of the thermal degradation of IMP, has a bitter taste for humans [197]. 

Adenosine 5'-monophosphate (AMP) has been described as “bitter blocker” since it can 

hide the bitter taste by blocking the transduction of the signal on the mouse tongue 

bitter-responsive taste receptor [198]. The degradation and synthesis pathways of some 

nucleotides and nucleosides are presented in Figure 7. 

Synergism has been observed between 5'-nucleotides and peptides or amino acids, 

especially between 5'-nucleotides and glutamate. The study of the mechanisms involved 

in these synergies has been started over the past twenty years. The taste of glutamate is 
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intensified by GMP thanks to an allosteric molecular mechanism at the T1R1 receptor 

level [199] and Kawai et al. [50] showed that umami taste enhancement occurred when 

IMP was added to amino acids such as Ala, Ser or Gly and tested by humans. McGrane et 

al. [42] showed that solutions of histidine and IMP or alanine and GMP were preferred 

over the individual amino acid or nucleotide confirming the synergism between amino 

acids and nucleotides on cat umami receptor. 

Yeasts extracts, are rich in ribonucleic acid which is a natural source of 5'-nucleotides. 

Consequently, yeasts extracts enriched in IMP and GMP are currently used as taste and 

flavour enhancers in a wide range of foodstuffs including pet foods [117,200–202]. 

 

 

Figure 7. Degradation pathways of AMP, IMP and GMP 

1.4.5 Minerals and ions 

Ions are essentially associated to salty and sweet taste sensations in humans. Thus, 

sodium ion Na+ is the lead compound involved in salty taste but other compounds such 

as potassium ion K+ may also be responsible for salty sensation. These cations are 

naturally present in the form of salts, which means together with an associate anion 
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such as Cl-. In general, the taste sensation elicited by a salt is essentially linked with the 

nature of the cation but the anion acts as a modulator [203]. Zinc salts are generally 

characterized by astringency, calcium and magnesium salts are often bitter and iron salts 

evoke a metallic sensation [204]. 

The influence of minerals on human taste has been widely studied in water. Tap water 

with high concentrations of HCO3
-, Ca2+ and Mg2+ were preferred while high 

concentrations of Na+, K+ and Cl- were scored low when tasted by humans [205,206]. 

Taste thresholds for humans have been established in tap water for minerals such as 

copper salts [207]. 

Many amphibians and rodents can detect the taste of calcium but the existence of an 

independent calcium taste quality is still controversial especially in mammals since 

studies have produced a lot of inconsistent results [208]. In fact, calcium taste sensation 

has sometimes been presented as a complex mix of bitterness, sourness and sweetness. 

Recent studies has suggested that mice and humans can detect specific calcium taste 

and that the receptor T1R3 (responsible of sweet and umami tastes) is involved in this 

perception [209,210]. A specific calcium receptor has also been described in rats and 

mice gustatory tissue [211]. Moreover, the bitterness of vegetables has been related 

with their calcium content [212]. 

Sodium and potassium pyrophosphate salts are often used as a pet food additive, 

especially in cat foods and treats where it is considered as a palatability enhancer. They 

have been used in a wide range of patented formulations for both wet and dry cat foods 

by different companies [109,213–216]. 
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1.5 Analysis of potential non-volatile tastants 

The objective of this section is to review the basic principles of the analytical procedures 

commonly used to analyse components listed in section 1.4 and considered as potential 

tastants for cat food. Examples of applications of these procedures for meat and meat-

based product analysis (food and pet food) are listed in the next section (1.6). 

The focus is done on compounds naturally present in liver used as raw material for cat 

food palatability enhancers, and on potential key tastants generated during the 

enzymatic digestion (sees section 1.3.2).  

1.5.1 Proteins and peptides 

1.5.1.1 Proteins 

Proteins are one of the most relevant nutrients when talking about cat food. Thus, to 

ascertain the high protein content of raw material used for cat food palatability 

enhancers is crucial. Total protein can be quantified through methods for measuring 

protein nitrogen [217] or colorimetric protein assays [218–221] widely described in the 

literature. 

1.5.1.2 Peptides 

As described in sections 1.3.2.2 and 1.4.1.2, peptides are generated by enzymatic 

digestion of proteins during pet food palatability enhancer processing and generally do 

have a taste for humans [159]. Thus, the analysis of peptides from pet food palatability 

enhancers may allow the identification of potential tastants for cats. Peptides constitute 

a very complex fraction especially in processed foods and their analysis can be 

accomplished going through extraction, one or more fractionation/separation steps, 

identification and/or quantification [222]. 
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1.5.1.2.1 Peptide extraction 

To analyse peptides, the extraction is a crucial step. First, the sample has to be ground 

and homogenised with an extraction solution. This extraction solution can be bidistilled 

water, dilute saline solutions, acidic solutions, neutral phosphate buffer or 

water/organic solvents solutions. In the case of meat-containing samples, acidic solution 

is the most common extraction solution, especially 0.1 N hydrochloric acid [223,224]. 

After extraction, the homogenate is centrifuged and the supernatant is deproteinised by 

adding different deproteinising agents (organic acids or concentrated acid solutions). 

Sometimes, the extraction and the deproteinisation are made at the same time using 

trichloroacetic acid [225] or perchloric acid [226]. After these steps, the deproteinised 

sample contains soluble compounds such as peptides and amino acids. 

1.5.1.2.2 Peptide fractionation 

Even if smaller peptides can be directly analysed in the deproteinised extract, a 

fractionation is generally necessary before analysis [222]. Fractionation methods are 

based on size, charge or polarity, and they are described below. 

Ultrafiltration 

Ultrafiltration is a preparative technique which allows the peptide fraction of interest to 

be isolated based on size using a semi permeable membrane with an adequate pore 

size. It can also be used to concentrate peptides [227].  

Gel electrophoresis 

Polyacrylamide gel electrophoresis (PAGE) is the leading method for the separation of 

proteins and peptides. Separation by one-dimension PAGE is based on molecular weight 

(in presence of sodium dodecyl sulfate, SDS as denaturing agent) while separation by 

two-dimensions PAGE is first based on isoelectric point and then on molecular weight. 

PAGE is usually used to separate proteins from 30 to 500 kDa but can also be used to 

separate smaller proteins and peptides from 1 to 30 kDa. The separation of peptides 
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requires an adjustment of acrylamide concentration and the presence of tricine in the 

buffer [228]. This system is also convenient for the isolation of hydrophobic peptides. 

Applications to meat peptides have been reported by Claeys et al. [229]. 

Size-exclusion chromatography (SEC) 

This chromatography allows proteins and peptides to be separated by size. A solution 

containing molecules of various sizes is passed through a stationary phase consisting of a 

bed of porous beads. Smaller molecules diffuse further into the pores and therefore 

move through the bed slowly while larger molecules enter less and are excluded faster. 

Different types of stationary phase, in terms of pore size and solvent compatibility, exist 

and can be used depending on the peptide ranges to be separated [224,225]. The 

elution of peptides is usually made with 0.01 HCl or diluted phosphate buffers at low 

flow rate. Eluted fractions are monitored by ultraviolet absorption at 214, 254, 280 nm 

for the detection of peptide bonds, aromatic rings and proteins, respectively. Fractions 

are usually collected for further peptide identification and/or quantification, and for 

characterisation (sensory and bioactive potential analysis). 

Reverse-phase high performance liquid chromatography (RP-HPLC) 

This HPLC methodology is widely used to analyse peptide extracts since peptides are 

separated depending on their hydrophobicity which is directly related to their amino 

acid composition. Several types of reverse-phase columns are available but those based 

on silica support with octadecylsilane (C18) or octyl (C8) covalently bonded are the most 

often used. For RP-HPLC, the stationary phase is non-polar and the mobile phase is 

polar. The typically-used mobile phase is water containing acetonitrile as organic 

modifier and 0.1% trifluoroacetic acid or formic acid as volatile buffer [230]. Moreover, 

to optimize the separation of the peptides, the hydrophobicity of the mobile phase is 

progressively increased. Hydrophilic peptides elute first while hydrophobic peptides are 

retained in the column and elute later. Eluted peptides are monitored by ultraviolet 
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absorption at 214 and 254 nm for the detection of peptide bonds and aromatic rings, 

respectively. As an example, this technique allows the isolation of peptides to be further 

identified by other specific techniques that will be described later [231,232]. 

The analysis of glutathione (γ-Glu-Cys-Gly) is widely done by HPLC because of its 

convenience, specificity and satisfactory sensitivity. The previous derivatization of the 

GSH may be required to improve separation and detection and the agents used depend 

on the type of detection. GSH can be derivatized by 1-fluoro-2,4-dinitrobenzene [233] or 

iodoacetic acid [234] for UV/Vis detection and o-phthalaldehyde [235] or n-1-(pyrenyl) 

maleimide [236] for fluorimetric detection. GSH can also be analysed by mass 

spectrometry but also requires previous derivatization [237] 

Ion-exchange chromatography (IEC) 

This chromatography is complementary to the RP-HPLC and separates peptides based 

on their charge. Ionic functional groups are present on the stationary phase surface and 

can interact with opposite-charged sample ions. Thus, acid peptides are separated 

better in anion exchange columns [238] while neutral or basic peptides are separated 

better in cation exchange columns [232]. The best results are obtained when a non-

volatile salt as NaCl is used but it may affect the latest mass spectrometry analysis by 

interfering with peptide ionization and adding chemical noise or background in the mass 

spectra. To separate salt from peptides, the ion-exchange separation is usually followed 

by RP-HPLC or hydrophilic interaction chromatography [239]. 

Hydrophilic interaction chromatography (HILIC) 

Hydrophilic interaction liquid chromatography provides an alternative approach to 

separate small polar compounds on polar stationary phases with reversed-phase type 

eluents. HILIC has been used as a complementary method of RP-HPLC to separate small 

polar peptides in meat samples [240,241]. 
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1.5.1.2.3 Peptides identification 

Two different approaches have been developed to identify proteins: the peptide mass 

fingerprinting (PMF) and the identification of peptides after fragmentation to obtain the 

entire or partial amino acid sequence.  

The PMF methodology consists of the previous protein hydrolysis with a known enzyme 

as trypsin and the determination of the list of peptide masses generated (called peptide 

fingerprint) using the mass spectrometer instrument in MS mode. The identified peptide 

masses are then compared with theoretical masses from protein databases, obtained 

using the same enzyme, and the identity of the protein is elucidated in a range of 

confidence previously fixed [242,243]. The correct identification of a protein supposes a 

high number of identified peptide masses which cover a part of the protein sequence 

from the database.  

Several studies focus on the identification of peptides naturally generated by not-

controlled proteolysis processes in complex matrices, such as dry-cured ham [244–246]. 

For this type of identification task, peptide mass fingerprinting cannot be obtained and 

cannot be compared to theoretical masses from database. Therefore, peptides are 

identified by elucidation of their amino acids sequence using tandem mass spectrometry 

(MS/MS). 

Mass spectrometry methodologies 

One of the first methodologies employed to elucidate the amino acid sequence of 

peptides was the Edman degradation which consists in a progressive liberation and 

identification of the N-terminal amino acids [247]. However, this method presents some 

limitations such as the impossibility to work if the N-terminal amino acid has been 

chemically modified or if the sequence to determine is a mix of two or more peptides 

[248].  
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Since the nineties, mass spectrometry is more and more used in biology and 

biochemistry, particularly as a consequence of the development of ionisation methods 

such as electrospray ionization (ESI) [249] or matrix-assisted laser desorption/ionisation 

(MALDI) [250]. These ionisation methods allow the conversion of polar and non-volatile 

macromolecules into ions in gas phase. Several combinations of ionization sources and 

mass analysers were developed but the MALDI source is usually coupled with a time-of-

flight analyser (ToF) whereas ESI is usually associated to quadrupole mass analyser, an 

ion trap or hybrid instruments such as quadrupole ion trap, quadrupole-ToF and triple 

quadrupole.  

A mass spectrometer allows the separation of ions present in a sample based on their 

mass/charge (m/z) ratio. It counts with, at least, one ion source, one mass analyzer and 

one detector. A tandem mass spectrometer is a mass spectrometer that has more than 

one analyser, usually two. Ions are selected in the first analyser and fragmented into the 

second analyser leading to several mass spectrums, one for each selected ion. These 

spectrums give information on the nature and the position of the amino acids in the 

peptidic chain. Thus, the determination of the complete peptide sequence is possible 

when a good fragmentation is performed. Several strategies and bioinformatics tools 

have been developed to interpret spectrums generated by MS/MS. These strategies can 

be de novo sequencing when spectrum is not contained in any of the existing protein 

databases, or by comparison of experimental MS/MS spectrums to the theoretical 

content of databases. 

Main mass spectrometry systems 

MMAALLDDII--TTooFF  mmaassss  ssppeeccttrroommeetteerr  

MALDI is a soft ionization method used in mass spectrometry. In this case, the peptides 

solution is deposed on a metallic slide and uniformly mixed with a large quantity of 

matrix, usually a low molecular weight aromatic acid such as α-cyano-4-hydroxycinnamic 



S t a t e  o f  a r t | 63 

 

acid or 2,5-dihydroxybenzoic acid, which absorbs the radiation of the nitrogen laser, 

helps the ionization and protects the peptides to be cut [250,251]. One of the biggest 

advantages of this technique is the generation of singly-charged ions (M+H)+ (Figure 8). 

Charged ions of various sizes are generated on the sample slide. 

 

Figure 8. Matrix-assisted laser desorption/ionisation 

A potential difference V0 between the sample slide and ground attracts the ions to the 

drift space. The velocity of the attracted ions is determined by the law of conservation of 

energy. As the potential difference is constant with respect to all ions, ions with smaller 

m/z value (lighter ions) move faster through the drift space until they reach the detector 

(Figure 9). 

The use of MALDI-ToF instrument can be adequate for a wide range of molecular masses 

(from 400 to 3000 Da), being mainly used in PMF approaches. 
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Figure 9. Schematic representation of a time-of-flight analyser 

MMAALLDDII--TTooFF//TTooFF  mmaassss  ssppeeccttrroommeetteerr  

The analysers ToF/ToF give a better resolution and precision than ToF. In the first ToF, 

ions are accelerated at a low voltage (7 kV) in conditions favouring the metastable 

fragmentation. Then, selected ions are accelerated at higher voltage (20 kV). The second 

analyser allows ions to be separated based on their m/z. This type of instruments can be 

coupled to a liquid chromatography system (LC). After the separation of peptides by LC, 

each fraction is directly deposited in the MALDI slide. MALDI-ToF/ToF has been widely 

used to identify peptides in food matrices [252–255].  

LLCC--MMSS//MMSS  mmaassss  ssppeeccttrroommeetteerr  

Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is an 

alternative method to separate and identify peptides. In this case, peptides are usually 

purified and separated by HPLC. Then, the eluate is ionized and transferred to the mass 

spectrometer. The most common ionization method used for LC-MS/MS analysis is the 

electrospray ionization (ESI) (Figure 10). 
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Figure 10. Schematic representation of a liquid chromatograph coupled to mass 

spectrometer 

The liquid containing the analytes of interest is dispersed by electrospray into a fine 

aerosol (Figure 11). The sample passes through a capillary exposed to an electric field (5-

10 kV/cm) and charged droplets are generated. The droplets (1 µm diameter) move to 

an electrode through an inert gas moving at counter current and causing solvent 

evaporation until the charged droplet becomes unstable. At this point, the droplet 

deforms due to the electrostatic repulsion of same sign-charges which becomes more 

powerful than the surface tension holding the droplet together. The original droplet 

'explodes' generating smaller and more stable droplets. The new droplets undergo 

desolvation and pass to the analyser. A recent advance of this type of ionisation, named 

nanoelectrospray (nanoESI), allows the analysis of very low sample volumes (1-2 µL) 

optimizing the signal. The nanoESI improves the signal reaching a femtomole-order 

sensitivity [256]. 

 

Figure 11. Electrospray ionization 
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The main difference between ESI and MALDI is that the ESI generates both single and 

multi-charged ions (M + nH)n+. Consequently, different peaks of the mass spectrum can 

correspond to the same peptide sequence but differently charged. 

Main types of LC-MS/MS analysers are Quadrupole/ Ion Trap (Q-ion trap) and 

Quadrupole/ Time of Flight (Q-ToF). Both types of instruments share a Quadrupole MS 

that is used to select the parent ion to be subsequently fragmented in the second MS 

analyser. It consists of four cylindrical rods, set parallel to each other. Each opposing rod 

pair is connected together electrically. Variable potentials of direct current (DC) and 

radio frequency (AC) are applied between one pair of rods and the other. Ions travel 

down the quadrupole between the rods in an oscillating movement depending on the 

applied voltage. Only ions of a defined m/z and oscillating moderately are able to pass 

completely through the canal and reach the detector. Thus, applying determined DC and 

AC potentials, ions of interest can be selected. In this case, the analyser acts as a filter 

and can be used to select only one m/z corresponding to one compound of interest 

(single ion monitoring) or as a ions sweep recovering all ions from a m/z range [257]. 

- Quadrupole/ Ion trap mass spectrometer: An ion trap MS is a quadrupole 

coupled to an ion trap that uses dynamic electric fields to trap charged particles. 

This analyser also uses an electric field for the separation of the ions by mass to 

charge ratios. The analyser is made with a ring electrode of a specific voltage 

and grounded end cap electrodes. The ions enter the area between the 

electrodes through one of the end caps. After entry, the electric field in the 

cavity due to the electrodes causes the ions of certain m/z values to orbit in the 

space. The quadrupole/ Ion trap usually runs a mass selective ejection, where 

the trapped ions are ejected in order of increasing mass by gradually increasing 

the applied radio frequency voltage [257]. Most of proteomics data available in 

literature have been provided by ion traps even if a disadvantage of ion traps is 
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their relatively low mass accuracy [258]. Shipkova showed that large peptides 

generated fewer fragments with higher relative abundance resulting in lower 

limits of detection on the ion trap as compared to those generated on triple 

quadrupole [259]. 

- Quadrupole/ ToF mass spectrometer: a triple quadrupole mass spectrometer 

with the final quadrupole replaced by a time-of-flight device is known as a 

quadrupole time-of-flight instrument (Figure 12). A selected ion is isolated in the 

first quadrupole (Q1) and fragmented in the collision cell (Q2). Then, the 

fragments are analysed in the time-of-flight analyser. Q-ToF MS/MS is generally 

used in metabolomics and for low molecular weight molecules. Q-ToF LC-

MS/MS performance can exceed that of ion-trap systems for protein and 

peptide identification especially in terms of mass accuracy which permits to 

distinguish several peptides apparently having the same mass on ion traps [258]. 

 

Figure 12. Schematic representation of Q-ToF analyser 

1.5.2 Amino acids 

Amino acids are the building blocks of peptides and proteins and their analyses can give 

essential nutritional information. As described in section 1.3.2.2, free amino acids are 
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generated by enzymatic digestion of proteins and peptides during pet food palatability 

enhancer processing and may affect the pet food palatability. 

1.5.2.1 Sample preparation for free amino acid determination 

Sample preparation for free amino acids includes two steps: extraction and 

deproteinization of the sample. The extraction consists in the separation of free amino 

acids from the insoluble part of the matrix and is usually achieved by homogenization in 

an appropriate solvent. Diluted hydrochloric acid is a typical extraction solvent for meat-

based samples. In some cases, stronger acids such as trichloroacetic acid [260] or 

methanol-containing solutions [261] can be used. After centrifugation and filtration, 

amino acids are separated from extracted proteins and polypeptides. This separation is 

called deproteinization and can be achieved through chemical or physical methods. 

Chemical methods consist in mixing the extract with concentrated strong acids 

(trichloroacetic acid or perchloric acid among others) or organic solvents such as 

acetonitrile [262] or methanol to denature proteins. Physical methods consist in 

centrifuging through cut-off membrane filters to retain the largest compounds and 

recover amino acids. 

1.5.2.2 Sample preparation for total amino acid determination - 
Hydrolysis of peptide bonds  

The analysis of total amino acids requires previous total hydrolysis of proteins in the 

sample, generally using boiling 6 N hydrochloric acid [263,264]. In such acidic and 

oxidative conditions, some amino acids may be degraded so it is important to maintain 

an oxygen-free atmosphere in sealed vials and add some protective agent like phenol 

during the hydrolysis to minimize this degradation. Tryptophan is often completely 

destroyed by hydrochloric acid hydrolysis. Hydrochloric acid can contact directly with 
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the sample for liquid-phase hydrolysis or be used for vapour-phase hydrolysis, especially 

recommended when limited amount of sample is available.  

Alkaline hydrolysis is recommended for tryptophan determination but te major 

drawback is the destruction of threonine, serine, cysteine and arginine [265].  

Hydrolysis can be performed in a conventional oven or using microwave technology to 

reduce the duration of the treatment [266]. 

1.5.2.3 Separation and quantification by chromatography 

Different methodologies are available for amino acid separation and quantification in 

food and pet foodstuffs. Some of them are presented below. 

1.5.2.3.1  HPLC 

Ion-exchange chromatography using post-column derivatization and reversed-phase 

chromatography using pre-column derivatization are the most commonly used 

techniques for separating and quantifying amino acids [265]. Derivatization has two 

functions: to increase the hydrophobicity of amino acids (useful for RP-HPLC separation) 

and to improve detection by allowing the use of ultraviolet or visible-absorbance or 

fluorescence. 

Post-column derivatization 

Three reagents have been usually employed for post-column derivatization: 

NNiinnhhyyddrriinn:: this reagent was first used by Roth and Hampaǐ [267] for post-column 

derivatization. It reacts with primary amines, giving a blue reaction product with a 

maximum absorbance at 570 nm, and with secondary amines, giving a brownish product 

with a maximum absorbance at 440 nm. 
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FFlluuoorreessccaammiinnee:: this reagent was introduced for potential improvement of the 

derivatization using ninhydrin [268]. It reacts with primary amines to form a fluorescent 

derivative (λex = 390 nm; λem = 475 nm). The reaction only takes place under alkaline 

conditions whereas the separation is through ion-exchange column. Consequently, a 

second post-column pump must be added to introduce an alkaline buffer before 

fluorescamine. 

oo--PPhhtthhaallddiiaallddeehhyyddee  ((OOPPAA)):: this reagent reacts very fast with primary α-amino groups of 

amino acids (thus, it does not react with proline) in the presence of a thiol group, often 

2-mercaptoethanol [269]. A major advantage of OPA is that it is much more sensitive 

than fluorescamine or ninhydrin [270]. The OPA-amino acid derivative fluoresces 

strongly (λex = 350 nm; λem = 450 nm) but is unstable. OPA can also be used for pre-

column derivatization followed by RP-HPLC. 

Pre-column derivatization 

The most common derivatizing agents for amino acids are described below. All amino 

acid derivatives are usually separated by using a C18 reversed-phase column. 

PPhheennyylliissootthhiiooccyyaannaattee  ((PPIITTCC)):: this reagent was firstly used in protein sequencing as 

Edman’s reagent and was found suitable for amino acid analysis [271]. It reacts with the 

N-terminal of amino acids to produce phenylthiocarbamyl-amino acids which have an 

absorbance maximum at 254 nm. The reaction is largely complete within 20 min and, 

after that, the sample must be dried to remove the excess reagent which may cause 

some damages to the chromatographic column. PTC derivatives are stable for several 

weeks if frozen but only for few hours at room temperature. 

66--AAmmiinnooqquuiinnoollyyll--NN--hhyyddrrooxxyyssuucccciinniimmiiddyyll  ccaarrbbaammaattee  ((AAQQCC)):: this reacts with primary and 

secondary amines from amino acids, peptides and proteins producing highly fluorescent 

derivatives (λex = 250 nm; λem = 395 nm). UV detection at 254 nm can also be used. The 
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reaction is rapid, about 1 min at 55°C and AQC-amino acids are stable at room 

temperature for up to a week. 

99--FFlluuoorreennyyllmmeetthhyyll  cchhlloorrooffoorrmmaattee  ((FFMMOOCC)):: this reagent was initially used as a blocking 

agent in peptide synthesis. It reacts with both primary and secondary amines to produce 

fluorescent derivatives (λex = 260 nm; λem = 313 nm). The reaction is very fast (30 s to 1 

min) and derivatives are stable at 40°C for at least a week. One drawback of FMOC 

derivatization is that the excess of reagent, hydrolysed or decarboxylated, can produce a 

fluorescent alcohol that coelutes with some amino acids [272]. To avoid interferences, 

FMOC/amino acids ratio and reaction time must be optimized very carefully. 

OOPPAA--FFMMOOCC:: OPA is commonly used as derivatizing agent for amino acid analysis (see 

above) but is unable to react with secondary amine. To remedy the situation, a new 

method has been proposed consisting in a two-step derivatization with OPA and FMOC 

[273]. First, all primary amines are derivatized by reacting with OPA for 2 min. Then, the 

secondary amines are derivatized with FMOC for around 1 min. In the optimized 

conditions, FMOC derivatives (FMOC-proline and FMOC-hydroxyproline) elute after OPA 

derivatives and before unreacted FMOC avoiding the interference in the chromatogram 

mentioned previously. This method requires a fluorescence detector capable to switch 

wavelengths during the run since OPA and FMOC derivatives have different excitation 

and emission wavelengths. 

1.5.2.3.2 Gas chromatography 

Gas chromatography is a very high resolution technique and is suitable for amino acid 

analysis [274]. To allow their analysis, amino acids must be turned into volatile and 

thermostable derivatives using reagents such as ethylchloroformate [275] or isobutyl 

chloroformate with pyridine [276]. Amino acids can also be converted into their 

corresponding N(O)-trifluoroacetyl amino acid 1-propyl esters, N(O)-

pentafluoropropionyl amino acid 2-propyl esters [277] or N(O,S)-
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isobutyloxycarbonyl/tert-butyldimethylsilyl derivatives [278]. Nevertheless, GC is not 

extensively used compared to HPLC especially for food samples since it requires a time-

consuming sample derivatization [279]. Currently, detection is mostly done by mass 

spectrometry and some examples involving samples from meat have been described 

[280–282].  

1.5.2.3.3 Capillary electrophoresis 

Capillary electrophoresis (CE) is based on the use of an electric field to separate charged 

compounds such as amino acids. This method offers high efficiency, sensitivity and 

requires a small amount of sample but is not commonly used especially for food analysis 

[283]. Moreover, structure of amino acids does not allowed good separation by CE. In 

fact, an amino acid extract contain basic, neutral and acidic compounds and a good 

separation of these three groups requires different pH conditions. Most amino acids 

should also be derivatized because of their lack of strong detectable properties. 

Derivatized amino acids can be detected by the same detectors used for HPLC. 

1.5.3 Lipids and fatty acids 

Lipids are among the major components of food of animal origin. Thus, precise analysis 

of lipids and fatty acids in foods is important for determining taste and nutritive values 

as well as for understanding the effects of fats on food palatability. 

1.5.3.1 Lipid extraction  

Several lipid extraction techniques are described in the literature and can be classified in 

three major categories depending on the use of organic solvents, non-organic solvents 

or no solvents [284]. The most used are described below. 
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1.5.3.1.1 Extraction by organic solvents  

The most used method for total lipid extraction from meat and meat products is the 

Soxhlet method, even if it is not suitable for samples with very high lipid content [285]. 

Diethyl ether and petroleum are commonly used solvents for single-solvent extraction of 

lipids, especially for dairy products [286]. The drawback of these single-solvent methods 

is that polar lipids and free fatty acids may not be extracted. 

To ensure a complete recovery of lipids, a solvent combination composed of varying 

proportion of polar and non-polar solvents may be used. The greatest improvement of 

the extraction of total lipids from animal tissues was made when Folch described his 

classical extraction procedure [287]. This method remains one of the most commonly 

used around the world. A typical Folch procedure uses a mixture of chloroform and 

methanol in a two-step extraction. First, the sample is homogenized with the solvent 

and the mixture is filtered to eliminate the residue. This step is usually repeated to 

recover about 95% of tissue lipids. The extract is then washed with water or a salt 

solution (KCl or NaCl) until the phases separate. The phase containing lipids is collected. 

Modifications of the method have been proposed. Bligh and Dyer [288] used a mixture 

of chloroforme and methanol but in different proportion. Other solvent mixtures 

containing hexane, isopropanol or dichloromethane [289,290] have been successfully 

used to extract tissue lipids. These solvents were used instead of chloroform to limit 

health hazards. In case of meat and meat products, the Folch method is the most 

appropriate for total lipid quantification since it is suitable for all ranges of lipid content 

[285]. 

With the advent of green chemistry, pressurized liquid extraction (PLE), also called 

accelerated solvent extraction, has been developed to increase the efficiency of 

conventional solvent extraction using lower volumes of organic solvents [291]. The 

solvent consumption can be decreased about 50% by using PLE compared to 
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conventional Folch extraction [292]. These techniques use classical solvent 

combinations, such as chloroform/methanol for meat and meat-based products, to 

extract lipids but close to their supercritical region (high pressure and temperature) 

where they show higher extraction performance [291,293]. However, in this region, the 

high temperature enables high solubility and high diffusion rate of analytes in the 

solvent. This technique is currently considered as a promising technology which could be 

automated, reducing time and solvents consumption [294].  

1.5.3.1.2 Extraction by non organic solvents 

Microwave-assisted extraction 

Microwave-assisted extraction is an improvement of microwave digestion method based 

on heating a solvent [295]. For this purpose, a microwave oven is combined to a closed 

or open vessel containing a classical solvent mixtures and the sample. Microwave energy 

decreases the energy required to break hydrophobic associations, electrostatic forces 

and hydrogen bonding and thus helps to dissolve lipids. The heating speed is 

proportional to the dielectric constant of the solvent. Many organic solvents are 

characterized by a low dielectric constant whereas water is easily heated due to a high 

dielectric constant. Performance of microwave lipid extraction was quantitatively and 

qualitatively comparable to conventional Folch method for both vegetal and animal-

based samples such as beef steaks, chicken breasts, peanuts or croissants [295,296].  

Supercritical fluid extraction (SFE) 

This process of extraction used supercritical fluid as extracting solvent. Several solvents 

have been used such as hexane, pentane or nitrous oxide but carbon dioxide is the most 

common because it is safe, readily available and low cost [297]. It allows supercritical 

operations at relatively low pressures (around 74 bar) and near-room temperatures 

(around 31°C). Co-solvents as ethanol or methanol are sometimes used [298]. The 

extraction efficiency of lipids in wet samples as meat was improved when samples were 
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previously lyophilized. The main drawback of SFE is the equipment cost and the 

extraction of unwanted non-fat compounds in addition to the fat. 

Others 

Some lipid extraction methods without solvents were described for determining fat 

content of fresh milk or oilseeds. These method are based on destabilizing or breaking 

up emulsion releasing fat (fresh milk), or on applying external compression forces 

(oilseeds) [286]. 

Before further analysis, the lipid extract storage and preservation is a very 

critical point since lipids can be oxidized by air and sunlight, especially polyunsaturated 

fatty acids. To prevent oxidation process, antioxidants such as tocopherol or butylated 

hydroxytoluene are added to the lipids extracts [284]. 

1.5.3.2 Fatty acid esterification 

Fatty acids have low volatility owing to polar groups which makes problematic their 

direct analysis by gas chromatography (GC). In fact, they tend to absorb on the 

packaging of the column or to dimerize which can cause peak asymmetry, shouldering or 

tailing. Derivatization of fatty acids results in better separation on the GC columns as the 

ionization of hydroxyl group is blocked, making derivatives to differ more in their 

physiochemical properties than the original fatty acids. Fatty acids are usually converted 

into fatty acid methyl esters (FAME), but butyl or other derivatives are less used [299]. 

Esterification solutions can be divided into the following groups: acid-catalysed, base-

catalysed and diazomethane. 

Acid-catalysed esterification 

Through this derivatization method, free fatty acids are esterified and O-acyl lipids 

transesterified by heating with excess of anhydrous methanol in the presence of an 

acidic catalyst. The most common and most frequently cited acid derivatization reagent 
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for the preparation of methyl esters is anhydrous hydrogen chloride in methanol. Boron 

trifluoride in methanol is another solvent mixture which has been highly used as a rapid 

means of esterifying free fatty acids [300,301].  

Based-catalysed esterification 

O-acyl lipids are transesterified rapidly in anhydrous methanol in the presence of a basic 

catalyst, unlike free fatty acids are not normally esterified in these conditions. Between 

0.5 and 2 M sodium methoxide in anhydrous methanol is the most useful reagent but 

potassium methoxide or hydroxide have also been often used. Nevertheless, potassium 

containing solvents are less recommended due to artefacts formation or hydrolysis of 

lipids [284,302]. 

Diazomethane  

Diazomethane is another esterification solvent. It reacts rapidly with free fatty acids in 

the presence of a little methanol to form methyl esters. However, diazomethane is 

highly explosive and both diazomethane and required intermediates are toxic and 

carcinogenic [299,303]. It is then used in a less extend. 

1.5.3.3 Fatty acid separation, identification and quantification 

Methods for fatty acid derivatives separation and identification were largely reviewed in 

the literature [284,304]. The most commonly used is gas chromatography (GC). 

GC is the first technique that would be chosen for fatty acid analysis. By this technique, 

it is possible to obtain a complete quantitative analysis of fatty acid composition of a 

sample in a short time. Each known fatty acid can usually be identified by GC with 

certainty on the basis of its chromatographic behaviour (i.e. retention time).  The main 

advantages of GC for fatty acid separation from a complex mixture are its separation 

efficiency, speed of analysis, the availability of various capillary columns and the 

sensitivity detectors. The choice of the column is determinant for the resolution of the 
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different fatty acids especially for minor fatty acids. Capillary columns are made of 

flexible fused silica characterized by a very high inertness and compatibility with 

spectroscopic detectors. They are classified in three categories: the porous layer open 

tubular (PLOT) columns, the support coated open tubular (SCOT) columns and the wall 

coated open tubular (WCOT) columns [305]. The choice of one or another type of 

column is conditioned by the complexity of the sample. Traditionally, FAME are 

separated using capillary columns (until 60 m) with polar polyesters as stationary phase 

[284]. Recently, new approaches have been evaluated, especially to improve the 

separation of isomers trans by using longer columns around 100 m and new stationary 

phases [306,307]. However, if the objective of the study is the whole fatty acid set, GC 

analysis may be coupled to other preparative separation techniques such as silver ion-

HPLC.  

The electron capture detector (ECD) and flame ionisation detector (FID) are commonly 

used for fatty acid analysis. FID is very sensitive for organic compound detection and is 

by far the most common GC detection system for FAME. Compounds are pyrolysed in a 

hydrogen-oxygen flame and produce ions in the process. The ECD has high sensitivity for 

fatty acid analysis but is not as selective as FID is. GC coupled to mass spectrometry 

makes a good combination for fatty acid analysis and is used especially for 

determination of double bonds on fatty acids [308,309]. 

1.5.4 Nucleotides and nucleosides 

Nucleotides and nucleosides are present in significant quantity in meat and meat-based 

products and contribute to meat flavour [195]. Since palatability enhancers for pet food 

are mainly made of meat by-products (see section 1.3.2.1), modification of nucleotides 

and/or nucleosides may influence the palatability of pet foods. 
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1.5.4.1 Sample preparation 

Nucleotides and nucleosides are typically extracted by homogenisation with ice-cold 0.6 

N perchloric acid. The extract is then neutralized by adding solid potassium carbonate 

and stored ideally at -80°C to avoid degradation by enzymatic reactions. 

1.5.4.2 Nucleotides and derivatives determination 

Several chromatographic techniques including enzymatic assay [310], RP-HPLC, IEC , CE 

[311] and CE-MS [312] have been developed for nucleotide and nucleoside analysis. The 

relative high cost, the lack of sensitivity, reproducibility and the poor concentration 

sensitivity were the major limitation of the enzymatic assay and CE-MS. However, 

results obtained by IEC were not very conclusive [313,314]. Recently, ion-pairing 

reversed-phase high performance liquid chromatography (IP-RP-HPLC) methods have 

been developed improving separation and resolution for nucleotides analysis [315,316]. 

Even if this technique is more expensive than the previous cited ones, it is now the most 

commonly used for the separation of nucleotides in dairy products and food ingredients 

[317–321]. An ion pair reagent is added to the mobile phase and the analytes are 

separated in a reversed-phase column. Tetrabutylammonium hydrogen sulfate or 

phosphate is the ion pair reagent most used [319]. Depending on mobile phase pH, 

specific side groups of the analytes are ionized and carry positive or negative charges. 

The ion pair reagent acts as a source of counterions forming ion pairs with the analytes 

which then interact with the stationary phase during RP-HPLC. If di- or trinucleotides are 

not present in samples, RP-HPLC with a phosphate buffer/acetonitrile mobile phase is 

the most common technique. Detection is UV at 250 or 260 nm. Peak identification is 

then performed by comparing retention times and spectral characteristics with those of 

standards [322]. 
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1.5.5 Minerals 

The main source of minerals for cats is through dietary intake. As mentioned in section 

1.2.2.3, cats have specific mineral requirements and a lack or an excess of one mineral 

can profoundly affect cats’ health. Therefore, it is necessary to know the mineral 

contribution of each ingredient used to manufacture pet foods. 

1.5.5.1 Sample preparation  

Heterogeneous samples, such as raw meat or palatability enhancers in powder form, 

must be homogenized to obtain a representative sample and to prevent errors. Meat 

samples are usually cut, grinded and submitted to a mineralization to remove any 

organic material. This step is very decisive in the analytical process and can be 

performed by dry ashing and/or by wet decomposition [323–325].  

Dry ashing procedure uses a muffle furnace capable of maintaining elevated 

temperatures around 450-550°C. First, samples are placed in a crucible made of 

porcelain or platinum. Then, due to the high temperature, water and volatile materials 

are vaporized and organic substances are burned in the presence of oxygen. Most 

minerals are converted to oxides, sulphates, phosphates, chlorides or silicates. Some 

minerals are volatile (mercury for example) or semi-volatile (iron or lead for example) 

and may form volatile compounds such as chlorides (FeCl3; PbCl2) at such temperatures. 

To minimize losses of these minerals, closed glass flasks must be used. Apart from the 

potential losses, the main disadvantage of dry ashing is the long time required, around 

12-24 hours [326,327]. 

Wet decomposition is primarily used in the preparation of samples for subsequent 

analysis of specific minerals. It breaks down and removes the organic matrix surrounding 

the minerals so that they are left in an aqueous solution. Nitric, perchloric and sulphuric 

acids are the most commonly used reagents for complete digestion of meat products. 
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Wet decomposition can be carried out at atmospheric pressure in open systems or at 

higher pressures in a closed vessel by conductive or microwave heating [328]. 

Microwave digestion procedure is widely used in food analysis for practical reasons. It is 

a quick method, it provides high sample throughput and the microwave energy can be 

programmed ensuring good reproducibility [329,330]. 

1.5.5.2 Mineral separation, identification and quantification 

Different methodologies are available for mineral analysis. Some of them are presented 

below. 

Classic methods 

Several gravimetric, titrimetric and colorimetric methods are reported for major 

element determination but they are very time consuming and, therefore, are confined 

to specific situations with a limited number of samples [331].  

Ion chromatography 

Ion chromatography connected with conductivity detectors is also used to measured 

concentrations of major anions, such as fluoride, chloride, bromide and iodide, as well 

as major cations, such as sodium, potassium, calcium and magnesium [332]. This special 

type of liquid chromatography requires a meticulous cleaning with bidistilled water of all 

laboratory glassware used to limit interferences. Ions are separated by passing through 

ion-exchange resins. This technique allows simultaneous determination of several ions 

[333]. Electric conductivity detectors are often used and sometimes, chemical 

suppression avoiding mobile phase conductivity is interposed between the column and 

the detector to increase sensitivity, especially for anion analysis. Other types of 

detection such as fluorescence or UV-Vis spectrometric detectors are also described. 

Examples of ion determination in food using ion chromatography have been reviewed 

[334,335]. 
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Atomic spectrometry methods 

Atomic spectrometry methods are often used for determination of minerals and trace 

elements in food [336,337]. They are based on the measurement of radiation absorbed 

(absorption spectrometry) or emitted (emission spectrometry) by the atoms of the 

element to be measured. They are more rapid, precise and accurate than classic 

techniques [338]. Among these methods, atomic absorption spectrometry has been 

widely used for food and pet food analysis [339–343] but one of its disadvantage is that 

only one element can be quantified at a time. Thus, when fast multi-element analysis is 

required, inductively coupled plasma optical emission spectrometry (ICP-OES) is 

preferred. Actually, if the objective is to quantify metals and trace elements in pet foods, 

wet ashing followed by inductively coupled plasma mass spectrometry is recommended 

because of its high sensitivity [344]. ICP-OES is widely employed for food and pet food 

analysis [345–348]. The ICP-OES equipment is divided in an ICP torch and an optical 

spectrometer (Figure 13). The plasma torch is composed of three quartz glass tubes 

surrounded by a radiofrequency (RF) generator. The RF signal produces an intense 

electromagnetic field where argon gas is ionised. The sample is delivered by a peristaltic 

pump to a nebulizer unit where it is changed into mist and then introduced directly 

inside the plasma. The molecules present in the sample break up into atoms which lose 

electrons and recombine repeatedly in the plasma emitting radiation at a specific 

wavelength. In the optical chamber, wavelengths from the emitted light are separated 

and analysed by an array of semiconductor photodetectors such as charge coupled 

devices (CDD). The intensity of the light emitted by each element is measured and 

compared to a standard analysed in the same conditions. 
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Figure 13. Schematic representation of an ICP-OES equipment 

1.6 Analysis of potential key tastants in meat 
by-products used for pet food processing 
and in pet food products 

The aim of this section is to present some applications of the methods presented in 

section 1.5, among others, focusing on the analysis of potential tastants and nutrients in 

meat by-products used as raw material for pet food palatability enhancer manufacturing 

(Table 4) and in pet foodstuffs (Table 5). The focus is done on pork liver since it is one of 

the most used by-products for cat food palatability enhancer manufacturing. Most pork 

liver analyses have been done to compare different genetic lines or for medical 

applications and little information is available about pork liver as ingredient for pet food. 

Analyses of pet foodstuffs are generally done to evaluate their nutritional quality by 

quantifying specific nutrients and little information is available about tastants in pet 

foodstuffs, previously described in section 1.4. In addition, most analyses are initiated by 

pet food companies and remained confidential. 
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Table 4. Analysis of tastants and nutrients in raw materials used for pet food 

manufacturing 

Raw material 
Tastant / 

Nutrient 
Analytical method Ref. 

pork liver proteome IEC, RP-HPLC, ESI LC-MS/MS [349] 

 proteins 2D-electrophoresis, MALDI-ToF MS [350] 

 peptides IEC, RP-HPLC, ESI Q-ToF MS/MS [351] 

 GSH 
method of Sedlak and Lindsay (colour 
complex formation) 

[352] 

  
LC-MS/MS (stabilization by N-
ethylmaleimide) 

[353] 

 amino acids RP-HPLC (OPA derivatization) [354] 

  automated amino acid analyser [355] 

 taurine automated amino acid analyser [356] 

 fatty acids (FAME) Folch extraction; GC [357] 

 
K, Na, Mg, Ca, Zn, 
Fe, Cu, Mn, (P) 

flame atomic absorption spectrometry 
(spectrophotometry) 

[327] 

 
volatile aroma 
compounds 

solvent-assisted flavour evaporation, 
GC/Olfactometry 

[106] 

pork lungs and kidneys total protein nitrogen analyser [358] 

 fat 
Microwave drying with non-microwave 
solvent extraction (AOAC 985.15) 

[358] 

pork meat 
hypoxanthine, inosine, 
IMP, AMP, ADP, ATP 

IP-RP-HPLC [317] 

hog liver amino acids RP-HPLC [359] 

 fatty acids (FAME) Folch extraction; GC-FID [359] 

bovine liver GSH HPLC [144] 

 taurine automated amino acid analyser [356] 

 
Al, Ca, Cu, Fe, Mg, 
Mn, Zn 

ICP-OES [360] 

chicken viscera total protein nitrogen analyser [358] 

 fat 
microwave drying with non-microwave 
solvent extraction (AOAC 985.15) 

[358] 
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duck liver fatty acids (FAME) GC-FID [361] 

enzymatic protein 
hydrolysates 

umami peptides SEC, HPLC, protein sequencer [362] 

 amino acids automated amino acid analyser [355] 

 free amino acids IEC [362] 

yeast extract, beef-
flavored broth 

GMP, IMP IP-RP-HPLC [363] 

 

 

Table 5. Analysis of tastants and nutrients from pet foodstuffs 

Pet foodstuff 
Tastant / 

Nutrient 
Analytical method Ref. 

foods for dogs and cats crude protein  [364,365] 

 amino acids (lysine) RP-HPLC (ninhydrin derivatization) [366] 

 taurine  [364,365] 

 fat; LA; ArA  [364,365] 

 
Ca, P, Mg, Na, K, Cu, 
Zn, Mn, Fe, I, Se 

 [364,365] 

 
Cu, Ni, Pb, Fe, Mn, Cr, 
Cd 

flame atomic absorption spectrometry [342] 

 
Al, Ca, Cd, Cr, Cu, Ba, 
Fe, K, Mg, Mn, P, S, Sr, 
Z 

ICP-OES [345] 

 iodine alkaline ashing, titration method [367] 

 vitamin A RP-HPLC [368] 

 

ash, crude fibre, 
vitamins A, D, E, B1, 
B2, B3, B5, B6, B9, B12, 
choline 

 [364,365] 

 
vitamins A, E, B1, B2, 
B6, B12 

RP-HPLC [369] 

 
volatile aroma 
compounds 

headspace- solid phase microextraction, 
GC-MS 

[370] 
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The main objective of this project is to fractionate and characterise interesting fractions 

of DIANA Petfood palatants by means of separation and analytical techniques, evaluate 

these fractions by means of palatability evaluation, and establish a correlation between 

product composition and animal preferences. The final goal is to achieve a better 

comprehension of the compounds involved in taste improvement of cat food. 

The approach followed for this general objective includes: 

1. The chemical and biochemical characterisation of different pork livers used as 

raw material for cat food palatability enhancers focusing on biochemical 

compounds that can constitute potential non-volatile tastants. 

2. The chemical and biochemical characterisation and comparison of two different 

palatability enhancers focusing on biochemical compounds that can constitute 

potential non-volatile tastants, with a special emphasis on the proteomic study 

of peptides present in these palatability enhancers. 

3. The evaluation of the two palatability enhancers based on their biochemical 

characterisation and their sensory evaluation by a new technology called 

Microtiter Operant Gustometer (MOG) using trained rats in order to establish a 

correlation between product composition and animal preferences. 

 



 

 

 



 

 

3. MATERIALS AND METHODS 
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3.1 Raw materials and palatability enhancers  

The raw materials and products were supplied by DIANA Petfood (Elven, France). 

3.1.1 Pork liver homogenates 

Raw materials consisted in three grinded pork liver homogenates (PLWL, PLW, L). Each 

homogenate was composed of three pork livers supplied by a slaughter house (Brittany, 

France). Livers were grinded in a cutting system (Karl Schnell, Winterbach, Germany) 

using a 3 mm hole plate, frozen stored and sent to the laboratory. 

Differences between each liver homogenate were based on pork breed, diet and 

slaughter age. The diet of animals was controlled. A partial description is presented in 

Table 6.  

Table 6. Characteristics of pigs used for pork liver homogenates 

 

PLWL PLW L

50% Pietrain/25% Large 

White/25% Landrace

50% Pietrain/50% Large 

White
100% Landrace

175 175 193

protein (%) 15 15 15

fat (%) 2 2.6 2.5

ashes (%) 4.1 4.49 4.4

iron (ppm) 75 77.5 20

copper (ppm) 12 12.4 10

zinc (ppm) 90 93 50

Breed

Age (days)

Diet
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3.1.2 Palatability enhancers 

Two powders (NEp and OEp) were obtained from grinded pork livers which were 

submitted to two different enzymatic processes. Pork lungs were also used as raw 

material for OEp manufacturing (in addition to liver) but not for NEp. The general 

process curve is presented in Figure 14. The first process involved an enzyme which was 

called “Old enzyme”; the second process involved a “New enzyme”. 

 

 

Figure 14. General process curve with ingredients incorporation. Presentation of 

the main steps of a taste-enhancer production at Diana Petfood and the key ingredients 

for powder form products (NEp or OEp). 

3.2 Analytical methods 

Pork liver homogenates’ proximal composition was analysed. Then, biochemical 

analyses were performed for both pork liver homogenates (PLWL, PLW, L) and 
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palatability enhancers (NEp and OEp). Each analysis described in this section was 

performed in triplicate. 

3.2.1 Proximal composition  

3.2.1.1 Moisture 

Moisture content of pork liver homogenates (PLWL, PLW, L) was determined by drying 

(method 24003 (a), [371]). Five grams of pork liver were homogenised with 15 g of 

washed sand and 5 mL of ethanol in a preweighed porcelain dish. Most of the ethanol 

was evaporated at room temperature for 10 min and the sample was dried in an oven at 

100-102°C for 24 hours. Results are expressed in percentage.  

3.2.1.2 Total proteins  

Total protein content of pork liver homogenates (PLWL, PLW, L) was determined using 

the Kjeldahl method [217]. First, 0.5 g of sample was mixed with 3.5 g potassium sulfate 

and 0.4 mg copper sulphate 5-hydrate, and the mixture was homogenized with 10 mL of 

96% concentrated sulphuric acid and 2 mL of 30% hydrogen peroxide in a digestion 

tube. The digestion tube was heated during 1h at 250°C followed by 2h more at 410°C. 

Then, the distillation and titration of ammonia were performed using a Kjeltech analyzer 

(2300 Kjeltech Analyzer Unit, FOSS, Denmark). Three digestions were performed for 

each sample. Protein content was estimated by multiplying the nitrogen content by a 

6.25 factor. Results are expressed in percentage. 

3.2.1.3 Fat  

Total lipids were extracted from pork liver homogenates (PLWL, PLW, L) according to 

Folch et al. [287] using dichloromethane: methanol (2:1) and with 0.05% 

butylhydroxytoluene instead of chloroform: methanol (2:1). The sample was 
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homogenised by using an Ultra-turrax T 25 basic (IKA Werke GmbH & Co, Germany) at 

15000 rpm for 1 min. Then, it was filtered by paper Whatmann N°1 under vacuum. The 

filter was cleaned using Folch mixture to recover all the lipids. The filtrate was recovered 

in a separatory funnel and 20 mL of 0.73% sodium chloride was added. The separation of 

the two phases was done overnight at 4°C. The organic phase was recovered and 

“clarified” by using acetone. The extract obtained was evaporated in a rotating vacuum 

evaporator and weighed to determine the total lipid content. Then, it was diluted in 5 

mL of chloroform and stored at -20°C until fatty acids profile analyses. Results are 

expressed in percentage. 

3.2.1.4 Ashes 

The ashes content of pork liver homogenates (PLWL, PLW, L) was analysed using the 

international standard ISO/R 936. Five grams of pork liver were placed in a preweighed 

porcelain dish with 1 mL of 15% magnesium acetate solution. First, each dish containing 

sample was heated on a hot-plate until sample carbonization. Then, they were heated in 

a muffle furnace (L 9/11/B170, Nabertherm, Germany) at 550°C for 5 hours up to obtain 

white ashes. Results are expressed in percentage. 

3.2.2 SDS-PAGE protein and peptide profiles 

Protein and peptide profiles from pork liver homogenates (PLWL, PLW, L) and 

palatability enhancers (NEp, OEp) were obtained by sodium dodecyl sulfate (SDS) 

polyacrylamide gel electrophoresis. First, two grams of sample were homogenized with 

20 mL of 0.1 M disodium phosphate buffer pH 7.4 containing 0.7 M potassium iodide 

and sodium azide (0.02%) in a stomacher (IUL Instrument, Barcelona, Spain) for 8 min. 

The homogenate was centrifuged at 4 °C for 20 min and 12,000 g. The supernatant 
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containing proteins, peptides and free amino acids was filtered through glass wool and 

kept at 4 °C until further analyses. 

Total proteins and/or peptides content in the extracts were quantified using a BCA 

Protein Assay Kit (Sigma-Aldrich, Saint Louis, MO, USA) using bovine serum albumin 

(BSA) as standard. 

Proteins extract were diluted twice with a sample buffer (SB) composed of 50 mM Tris 

buffer, pH 6.8, containing 8 M urea, 2 M thiourea, 75 mM dithiothreitol, 3% (w/v) SDS 

and 0.05% bromophenol blue, submitted to 95°C for 4 min and put in ice rapidly. Protein 

concentration in samples was adjusted to 1 mg/mL with the SB and 10 µl each were 

loaded into a 12% polyacrylamide gel reserving one lane for a molecular markers 

mixture (SDS-PAGE molecular weight standards, Broad range, Sigma-Aldrich). The 

elution buffer was composed of 50 mM Tris, pH 8.6, 0.384 M glycine and 0.1% SDS. 

Electrophoresis was performed using computer controlled electrophoresis power supply 

Model 3000 Xi (Bio-Rad, Hercules, CA, USA) at a variable voltage (max. 120 V) and 

constant current (50 mA for two gels). Resulted bands were stained by silver nitrate 

using a ProteoSilverTM plus silver stain kit (Sigma-Aldrich). Each protein extract was 

analyzed in triplicate. 

3.2.3 Soluble proteins, peptides and amino acid extracts 

Extracts from pork liver homogenates (PLWL, PLW, L) and palatability enhancers (NEp, 

OEp) were prepared according to Escudero et al. [372]. Two grams of sample were 

homogenized with 20 mL of 0.01 N hydrochloric acid in a stomacher (IUL Instrument) for 

8 min. The homogenate was centrifuged at 12,000 g and 4°C for 20 min. The 

supernatant contained soluble proteins, peptides and free amino acids. It was filtered 

through glass wool and kept at 4°C until further analyses. 
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3.2.4 Molecular mass fractionation  

Deproteinised extracts from palatability enhancers (F0 NEp and F0 OEp) were 

fractionated by gel filtration (GFC) according to their molecular mass. For this purpose, 

soluble proteins and peptides extracts from palatability enhancers (F6 NEp and F6 OEp; 

section 3.2.3) were deproteinised by adding 3 volumes of ethanol and maintaining the 

sample 20 h at 4°C. After that, the sample was centrifuged (12,000 g for 20 min at 4 °C) 

and the supernatant was filtered under vacuum using a 0.45 µm nylon membrane filter 

(Teknokroma, Barcelona, Spain). The ethanol was eliminated using a rotary evaporator 

and the sample was dried under vacuum. The dried deproteinised extract was dissolved 

in 0.01 N hydrochloric acid to adjust its concentration at 10 mg/mL, filtered through a 

0.45 μm nylon membrane syringe filter (Teknokroma, Barcelona, Spain) and stored at 

− 20°C until use.  

Samples containing approximately 50 mg of peptides (5 mL) were injected into a 

Sephadex G25 column (2.6 × 70 cm, GE Healthcare, Uppsala, Sweden), previously 

equilibrated with 0.01 N hydrochloric acid. The separation was performed at 4 °C using 

0.01 N hydrochloric acid as eluent, at a flow rate of 15 mL/h. Five millilitres fractions 

were collected during 50h using an automatic fraction collector and further monitored 

by ultraviolet (UV) absorption at 214 nm, 254 nm and 280 nm. Fractions were pooled 

together according to the elution profiles in four major fractions, lyophilised and stored 

at -20°C until analysis. 

3.2.5 Amino acids analyses 

Amino acids were analysed by RP-HPLC using pre-column o-phtalaldehyde/9-

fluorenylmethyloxycarbonyl (OPA/FMOC) derivatization.  
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3.2.5.1 Samples preparation for total amino acids analysis 

In order to analyse total amino acids, pork liver homogenates (PLWL, PLW, L) and 

palatability enhancers (NEp, OEp) were previously hydrolysed using 6 N hydrochloric 

acid in a  Pico Tag® work station system (Waters, Millford, MA, USA). Thus, 200 mg of 

sample were put in a vial supplied with the system and dried under vacuum. Then, 2 mL 

of 6N hydrochloric acid containing 1% phenol were poured in direct contact with the 

samples. Vials were placed in the system and submitted to three cycles of 

vacuum/nitrogen to remove completely the oxygen from the vial. The vial was closed 

during the last vacuum step and placed into the oven at 110°C for 22 hours. 

After complete hydrolysis, the sample was evaporated to dryness, diluted in 1.5 mL of 

bidistilled water and centrifuged at 14,000 g for 5 minutes. The amino acids in the 

supernatant were analysed by HPLC (section 3.2.5.3).  

The same protocol was used to quantify total amino acids of major fractions from the 

GFC (F1-F4) using 50 µL of fraction, dried before adding 500 µL of 6N hydrochloric acid 

containing 1% phenol. After hydrolysis and evaporation of HCl, 2.5 mL of bidistilled 

water to dilute the sample after hydrolysis. 

3.2.5.2 Samples preparation for free amino acids analysis 

Free amino acids were analysed in the peptides extracts (section 4.2.3.) after 

deproteinisation as described by Aristoy and Toldrá [262]. Thus, extracts were mixed 

with 2.5 volumes of acetonitrile and kept for one hour at room temperature. Then, the 

samples were centrifuged at 14,000 g for 5 minutes and free amino acids from the 

supernatants were analysed. Fractions from GFC were directly analysed without 

deproteinisation. 
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3.2.5.3 Derivatization by o-phtalaldehyde/9-
fluorenylmethyloxycarbonyl (OPA/FMOC) and high-
performance liquid chromatography analysis  

The derivatization was done as described by Schuster [373]. To this end, the reagents for 

the derivatization were prepared as follows: (1) 50 mg de OPA was dissolved in 1 mL of 

methanol. 50 µL of 3-mercaptopropionic acid (MPA) was added and the mixture taken 

to 10 mL with borate buffer (0.4 M boric acid with 0.6% of Brij (35%) adjusted at pH 10.4 

with potassium hydroxide). This solution was stored in an amber vial during a maximum 

of one week adding MPA every 2 or 3 days. (2) The FMOC reagent was prepared in 

acetonitrile at 6.25 mg/mL. This reagent was prepared daily. Derivatization reaction was 

automatised in the HPLC autosampler device as follows: 1 µL of sample was mixed with 

5 µL of the OPA reagent and let to react for 2 min. Then, 1 µL of the FMOC reagent was 

added to the mix and injected into the chromatograph.  

Calibration curves were generated for each amino acid ranking from 10 µM to 100 µM. 

An Agilent 1200 Series HPLC (Agilent Technologies, Santa Clara, CA, USA) with 

autosampler and fluorescence detector was used. Derivatized amino acids were 

separated in a Hypersil ODS (250 x 4.0 mm; 5 µm) column (Agilent Technologies) 

conditioned at 45°C. The solvents and the gradients used are detailed in Table 7. The 

flow rate was fixed at 1 mL/min. The column was stabilised for 8 min at initial conditions 

before each new injection. The detection of the eluted amino acids was done by 

fluorescence in two different conditions. First, the excitation was fixed at 230 nm and 

the emission at 455 nm. Then, at t=32 min, the excitation was turned to 266 nm and the 

emission to 315 nm for the FMOC-proline and hydroxyproline detection. 

Sarcosine and Norvaline (0.1 mM) were used as internal standards for quantification of 

proline and the other amino acids, respectively. The results were expressed in mg/100 g 

of product as the mean of three replicates. 
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Table 7. Mobile phases and gradient for the analysis of amino acids by RP-

HPLC 

Time (min)  
Mobile phase (%) 

 A B 

 1 100 0 

 10 91 9 

 41.5 40 60 

 42 0 100 

 51 0 100 

 A:   20 mM Sodium Acetate in water 
with 0.018% triethylamine at pH 7.2 
and 0.3% tetrahydrofuran (v/v) 

 B: Acetonitrile: methanol: 100 mM       
Sodium Acetate (40:40:20) 

3.2.6 Glutathione and cysteine analysis 

Concentrations of glutathione (GSH), its oxidised form (GSSG) and cysteine were 

determined by UPLC-MS/MS (Ultrahigh Performance Liquid Chromatography and Mass 

Spectrometry in tandem) after alkylation by N-ethylmaleimide (NEM) [374]. 

Two grams of palatability enhancer (NEp, OEp) or pork liver homogenate (PLWL, PLW, L) 

were homogenized in 20 mL of 5 mM NEM (Phosphate-buffered saline, PBS) and 

centrifuged for 20 min at 12,000 g and 4°C. Supernatants were filtered through glass 

wool. Extracts from pork livers were diluted 20 times in 5 mM NEM (PBS); extracts from 

powders were diluted 100 times in 5 mM NEM (PBS). Then, perchloric acid (PCA) 70% 

was added to each sample in order to obtain a final concentration of 6% of PCA. Samples 

and standards were stored at -80°C before analyses.  
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Calibration curves were generated for each analyte, ranging from 25 nM to 1000 µM for 

GSH, from 1.25 nM to 50 µM for GSSG, from 0.5 nM to 20 µM for Cys and from 0.48 nM 

to 19.4 µM for Cis. GSH standard solution was prepared in 50 mM NEM (PBS 10x). GSSG 

and Cys standards solutions were prepared in PBS 10x. Cis standard solution was 

prepared in bidistilled water. 

Samples were injected in an Acquity UPLC coupled to a Xevo TQD from Waters. 

Chromatographic separations were carried out at 30°C using an Acquity UPLC BEH C18 

(2.1 x 50 mm, 1.7 µm) from Waters. The solvents and the gradients used are detailed in 

Table 8. 

Table 8. Mobile phases and gradient for the analysis of GSH, GSSG, cysteine and 

cystine content by RP-HPLC 

Time (min)  
Mobile phase (%) 

 A B 

 0 100 0 

 2.5 100 0 

 4.4 35 65 

 6 35 65 

 6.1 100 0 

 10 100 0 

 A:   0.1 % formic acid in water   

 B:  Acetonitrile 

 

Positive ion electrospray MS/MS was recorded using the conditions detailed in Table 9. 
. 
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Table 9. Mass spectrometry operating parameters for GSH, GSSG, cysteine and 

cystine analysis 

Capillary voltage (kV) 33.5 

Source temperature (°C) 120 

Cone gas flow (L/h) 25 

Nebulization gas flow (L/h) 700 

3.2.7 Lipid analyses 

Total and free fatty acids must be converted into volatile compounds for its analysis by 

gas chromatography. In this case, fatty acids were methylated to be converted in fatty 

acids methyl esters (FAME). 

3.2.7.1 Total lipids extraction 

Total lipids were extracted as described in section 3.2.1.3. 

3.2.7.2 Sample preparation for total fatty acids analysis 

Total fatty acids (TFA) were extracted from 10 mg of total lipids and methylated 

according to Berry et al. [375]. Heneicosanoic acid (C21:0) was used as the internal 

standard (540 µg). Samples were dried under nitrogen, dissolved in 5 mL of Berry 

solution methanol: 12 N HCl: 2,2-dimetoxipropane (25:2.5:1) and heated at 70°C during 

4 hours. Two millilitres of hexane was added to the mix and this organic phase was 

cleaned by using water (1 mL x 3). The hexanic phase was dried under nitrogen and total 

fatty acids were dissolved in 300 µL of hexane. Samples were stored at -20°C until 

analysis of FAME by GC-FID. 
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3.2.7.3 Sample preparation for free fatty acids analysis 

The free fatty acids (FFA) were separated from the total lipid fraction by ion-exchange 

resin (Amberlyst A26 OH, Dow Chemical, Midland, MI, USA) as described by Needs et al. 

[376]. One millilitre of total lipids extract and 540 µg of C21:0 were dried under nitrogen 

and dissolved in acetone: methanol (2:1). The adsorption of FFA on the resin was done 

with the aid of magnetic stirrer during 30 minutes. Then, the sample was filtered under 

vacuum. The filter was cleaned by acetone: methanol mixture (5 mL x 5). FFA were 

converted into FAME using 1.5 mL of boron fluoride-methanol (Sigma-Aldrich) and 

agitating for 10 min. Then, 3 mL of hexane was added to the mix and this organic phase 

was cleaned with water (1.5 mL x 3). The hexanic phase was dried under nitrogen and 

later dissolved in 300 µL of hexane. Samples were stored at -20°C before analysis of 

FAME by gas chromatography (GC-FID). 

3.2.7.4 Chromatographic conditions for FAME analysis 

Analysis of FAME from TFA and FFA was carried out using a gas chromatograph (GC) 

(7890A, Agilent Technologies) equipped with a flame ionization detector (FID) and a split 

injector (split ratio 100:1) according to Olivares et al. [377]. The separation was 

performed in a capillary column CP-SIL88 (Agilent Technologies; 100 m, 0.25 mm i.d., 0.2 

µm film thickness). The oven temperature program began at 140 °C for 10 min, ramped 

to 190 °C at 4 °C/min, held at 190 °C for 10 min, ramped to 220 °C at 2 °C/min, and 

finally held at 220 °C for 5 min. Helium was used as carrier gas at a flow rate of 17.7 

cm/s. Detector and injector temperatures were 240 and 220 °C respectively. FAMEs 

were identified by comparing their retention times with those of standard fatty acid 

methyl esters (Supelco® 37 Component FAME Mix, Sigma-Aldrich). For quantification, 

the response factors of the standard FAME respect to the internal standard were used. 

The results were expressed in mg/100 g of product as the mean of three replicates. 
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3.2.8 Lactic acid analysis 

Sour taste is commonly associated with the presence of acids in foods and cats are very 

sensitive to sour taste. Among organic acids, lactic acid is metabolised mostly in the 

liver. Thus, some organic acids were analysed as potentially contributing to sour taste in 

pet foodstuffs but only lactic acid was quantified. 

Lactic acid in pork livers homogenates (PLWL, PLW, L) and palatability enhancers (NEp, 

OEp) was quantified by a Lactate Assay Kit® from Sigma-Aldrich. In this assay, lactate 

concentration is determined by an enzymatic assay which results in a colorimetric 

product that is proportional to the lactate present in the sample. The kit contains four 

reagents: lactate assay buffer, lactate probe, lactate enzyme mix and L(+)-Lactate 

standard. 

Fifty milligrams of sample were homogenised in 1 mL of lactate assay buffer and 

centrifuged at 13.000 g for 10 min. The supernatant was recovered and filtered using a 

centrifugal filter device 10 kDa (Millipore) at 10.000 g for 30 min. The enzymatic reaction 

was performed in a 96-wells plate. To each well containing 50 µL of the sample, was 

added 50 µL of a reaction mixture (lactate assay buffer/ lactate enzyme mix/ lactate 

probe 46/2/2). After 30 min of incubation at room temperature, the absorbance was 

measured at 570 nm. The results were expressed in mg/100 g of product as the mean of 

three replicates. 

3.2.9 Nucleotides and derivatives analyses 

Nucleotides and derivates were analysed in pork liver homogenates (PLWL, PLW, L) and 

in palatability enhancers (NEp, OEp) by HPLC. Pork liver homogenates were previously 

lyophilized. To prepare the extracts, 2.5 grams of sample were homogenized in 15 mL of 

0.6 M perchloric acid in a stomacher for 10 min at 4°C. The homogenate was centrifuged 
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for 20 min at 4 °C at 10,000 g. The supernatant was filtered through glass wool, 

neutralized by adding carbonate potassium and stored at -20°C until use. 

Calibration curves were generated for adenosine monophosphate, hypoxanthine, 

xanthine, uridine, inosine, guanosine ranking from 30 µM to 150 µM. Standards 

solutions were prepared in neutralized 0.6 M perchloric acid. 

An Agilent 1200 Series HPLC (Agilent Technologies) with diode array detector 

(λ = 254 nm) was used. Separation was performed at 45 °C using a Gemini-NX C18 

column (4.6 × 150 mm, 3 μm) from Phenomenex (Torrance, CA, USA). The mobile phase 

consisted of two solvents: solvent A, 100 mM potassium phosphate buffer, pH 4.5 or pH 

3; solvent B, methanol 75%. The flow rate was 0.8 mL/min. The separation was initiated 

with 100% solvent A for 5 min followed by a gradient to 50% B in 10 min. The column 

was washed with 100% B for 7 min and returned to the initial conditions for a new 

injection after 7 min of equilibration. The results were expressed in µmol/g of product as 

the mean of three replicates.  

3.2.10 Minerals analysis 

Minerals were analysed by two different methods: ion chromatography and ICP-OES 

analysis. 

3.2.10.1 Ion chromatography analysis 

Soluble molecules from pork liver homogenates (PLWL, PLW, L) and palatability 

enhancers (NEp, OEp) were extracted. Three grams of sample (pork livers or powders) 

were homogenised with 30 mL of bidistilled water in a stomacher (IUL Instrument), for 

10 min. The homogenate was centrifuged at 12,000 g for 20 min at 4°C. The supernatant 

was recovered through glass wool and diluted 5 times with bidistilled water. Samples 
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were stored at -20°C until use. Cations analysis (Na+, K+, Ca2+, Zn2+) was performed in an 

ion chromatograph 861 Advanced compact IC (Metrohm, Schiedam, the Netherlands)  

using a Metrosep C3 250 (Metrohm; 250 x 4.0 mm; 5 µm) column and 3 mM nitric acid 

as mobile phase. The flow rate was fixed at 1.2 mL/min. Anions analysis (F-, Cl-, (HPO4)2-) 

was performed in an ion chromatograph 761 Compact IC (Metrohm) using a Metrosep A 

Supp 5 (Metrohm; 250 x 4.0 mm; 5 µm) column and 1 mM sodium bicarbonate/ 3.2 mM 

sodium carbonate as mobile phase . The flow was fixed at 0.7 mL/min. Ions were 

identified by comparison of their retention time with standards ones. In both cases, 

conductivity detection was used but, in the case of anions, chemical suppression before 

detection was performed. The concentration of each ion was determined from its 

respective calibration curve (ranking from 0.5 to 50 ppm), using a set of standard 

solutions (Sigma-Aldrich). The results were expressed as mg/100 g of product as the 

mean of three replicates. 

3.2.10.2 ICP-OES analysis (Inductively coupled plasma optical 
emission spectrometry) 

Minerals were quantified in pork liver homogenates (PLWL, PLW, L)  and palatability 

enhancers (NEp, OEp) after acid digestion based on Vázquez et al. [378]. Thus, 200 mg of 

sample were homogenized with 4 mL of concentrated nitric acid and 1 mL of hydrogen 

peroxide in a Teflon tube. The digestion was carried out in a microwave oven at 800 W 

and 180°C for 45 min. The extract was recovered in a test tube and diluted to 15 mL with 

bidistilled water. Samples were stored at 4°C until analyses by ICP-OES. The results were 

expressed as mg/100 g of product as the mean of three replicates.  

An ICP-OES (Optima 5300 DV, Perkin Elmer, Shelton, CT, USA) equipped with a cross-

flow nebulizer and a Scott spray chamber was used for determining the concentrations 

of the elements. The optical system was purged with argon, and the operating 

conditions are listed in Table 10. Rhenium (197.248 nm) was used as internal standard. 
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Table 10. ICP-OES operating parameters for minerals quantification in pork 

liver homogenates (PLWL, PLW, L) and palatability enhancers (NEp and OEp) 

RF generator 1300 W 

Nebulization gas flow 0.8 L min-1 

Auxiliary argon flow 0.2 L min-1 

Plasma argon flow 15 L min-1 

Sample flow rate 1.0 L min-1 

Wavelengths (nm) 

396.153 (Al); 249.772 (B); 233.527 (Ba); 

315.887 (Ca); 327.393 (Cu); 239.562 (Fe); 

766.490 (K); 279.077 (Mg); 257.610 (Mn); 

589.592 (Na);  214.914 (P); 407.771 (Sr); 

206.200 (Zn) 

3.2.11 Enzymatic activity 

Peptidase activity was assayed exclusively in pork livers homogenates (PLWL, PLW and 

L). 

3.2.11.1  Exopeptidase activity 

Exopeptidase activity was measured as described by Toldrá and Flores [379]. Four grams 

of sample (PLWL, PLW, L) were homogenized with 20 mL of 50 mM disodium phosphate 

buffer pH 7.5 containing 5 mM ethylene glycol tetraacetic acid (EGTA), using a Polytron® 

PT 2100 (Kinematica, Luzern, Switzerland) for 3x20 s at 27,000 g. The sample was 

centrifuged at 10,000 g and 4°C for 20 min and filtrated through glass wool. The 

supernatant (enzymatic extract) was recovered. Then, three reaction buffers were 

prepared: (1) for alanyl aminopeptidase (AAP) activity, 100 mM phosphate buffer pH 6.5 

containing 2 mM 2-mercaptoethanol and 1 mM alanine-amido-4-methylcoumarin 

(AMC); (2) for arginyl aminopeptidase (RAP) activity, 50 mM phosphate buffer pH 6.5 
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containing 0.2 M NaCl, 0.1 mM  arginine-AMC and 0.25 mM puromicine; (3) for 

methionyl aminopeptidase (MAP) activity, 100 mM phosphate buffer pH 7.5 containing 

10 mM dithiothreitol, 0.15 mM  alanine-AMC and 0.05 mM bestatine. The enzymatic 

activity was measured by mixing 250 µL of reaction buffer and 50 µL of enzymatic 

extract. For AAP and RAP measurements the enzymatic extract was previously diluted 5 

and 2 times, respectively. A Fluoroskan Ascent Fl from Thermo Scientific (λex = 355 nm, 

λem = 460 nm) was used. The activity was measured at t=0 and after 15 min of incubation 

at 37°C. Results are the mean of four measures and are expressed in µmol/hour*g of 

sample. 

3.2.11.2  Endopeptidase (cathepsins) activity 

Cathepsins activity was measured as described by Toldrá and Etherington [380]. In order 

to prepare the enzymatic extract, 2.5 g of sample (PLWL, PLW, L) were homogenized 

with 25 mL of 50 mM sodium citrate containing 1 mM  ethylenediaminetetraacetic acid 

(EDTA) and  0.2% Triton X-100, pH 5.0 using a Polytron for 3x20 s at 27,000 g. The 

sample was centrifuged at 10,000 g and 4°C for 20 min and filtrated on glass wool. The 

supernatant was recovered. Then, three reaction buffers  were prepared: (1) for 

cathepsin B activity, 40 mM phosphate buffer pH 6.0 containing 0.4 mM EDTA, 10 mM 

cysteine and 0.05 mM Z-arginyl-arginine-AMC; (2) for cathepsin B+L activity, 40 mM 

phosphate buffer pH 6.0 containing 0.4 mM EDTA, 10 mM cysteine and 0.05 mM N-CBZ-

L-phenylalanyl-L-arginine-AMC; (3) for cathepsin H activity, 40 mM phosphate buffer pH 

6.8 containing 0.4 mM EDTA, 10 mM cysteine and 0.05 mM arginine-AMC. The 

enzymatic activity was measured by mixing 250 µL of reaction buffer and 50 µL of 

enzymatic extract. The activity was measured at t=0 and after 15 min of incubation at 

37°C using a Fluoroskan Ascent Fl from Thermo Scientific (λex = 355 nm, λem = 460 nm). 

Results are the mean of four measures and are expressed in µmol/hour*g of sample. 
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3.3 Proteomics tools 

3.3.1 Peptides extraction and molecular mass fractionation 

Peptides were extracted from palatability enhancers (NEp, OEp) and separated by gel 

filtration (GFC) as described in sections 3.2.3 and 3.2.4. Thus, after complete drying, the 

peptides extract was diluted in 20 mL of HCl and 5 mL were injected into the Sephadex 

G25 column (2.6 × 70 cm, GE Healthcare). The eluted fractions were collected using an 

automatic collector in 5 mL fractions. They were pooled together according to the 

elution profiles in four major fractions (F1, F2, F3, F4). Each major GFC fraction was dried 

under vacuum, resuspended in 1 mL of 0.1% trifluoroacetic acid (diluted in bidistilled 

water) and stored at -20°C until use. 

3.3.2 Fractionation by RP-HPLC 

Each major fraction from GFC was analysed by RP-HPLC (Agilent Technologies) using the 

method described in Escudero et al. [372] with modifications. Samples to analyse were 

filtered through syringe nylon filters (0.45 µm) and the filtrate (50 µL) was injected in a 

Symmetry C18 (250 x 4.6 mm; 5 µm) column (Waters) at 30°C. Solvents and gradient 

used are detailed in Table 11 and the flowrate was fixed at 1 mL/min. Eluted 

components were detected in the UV range at 214 nm, 254 nm and 280 nm. Each major 

fraction from GFC was injected three times in HPLC and two eluated fractions were 

collected per injection (from 0 to 10 min and from 10 to 20 min). In total, 48 fractions (4 

fractions from GFC x 3 injections x 2 times) were obtained from HPLC. Each fraction was 

lyophilised, diluted in 200 µL of trifluoroacetic acid 0.1% (samples “dilution 1:1”) and 

stored at -80°C until analysis. 
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Table 11. Mobile phases and gradient for the analysis of GFC fractions (F1-4) 

from palatability enhancers (NEp and OEp) by RP-HPLC 

Time (min)  
Mobile phase (%) 

 A B 

 0 100 0 

 65 72.7 27.3 

 66 0 100 

 76 0 100 

 80 100 0 

 A:   0.1% trifluoroacetic acid in water   

 B: Acetonitrile: water (60:40) with 
0.085% trifluoroacetic acid 

3.3.3 Peptides profile using MALDI-ToF analysis 

The fractions obtained by RP-HPLC (section 3.3.2) were analysed by MALDI-ToF mass 

spectrometry. To optimize the concentration of the sample, two different 

concentrations were tested: 

- Samples “dilution 1:1” in 0.1% trifluoroacetic acid.  

- Samples from “dilution 1:1” were diluted 10 times in 0.1% trifluoroacetic acid 
and called “dilution 1:10”. 

After optimization of the methodology, each sample was analysed by MALDI-ToF mass 

spectrometry to obtain its peptide profile. Analyses were performed using a 5800 

MALDI-ToF/ToF (AB Sciex Instruments, MA, USA). MALDI plates were prepared as 

follows. First, 1 µL of sample was located on the plate. Then, 0.75 µL of matrix (5 mg/mL 

α-cyano-4-hydroxycinnamic acid in 0.1% trifluoroacetic acid – acetonitrile/H2O (7:3, v/v)) 

was added to each µL of sample. The mix sample-matrix was air-dried and analysed for 

two mass ranges from 150 to 800 m/z and from 800 to 3500 m/z. The plate and the 
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acquisition method were calibrated using 1 µL of the calibration mix CM5 (AB Sciex 

Instruments, MA, USA) for 13 positions. 

3.3.4 Peptides identification by nanoliquid chromatography and 
mass spectrometry in tandem (nanoLC-MS/MS) 

Deproteinised extracts from NEp and OEp, and major fractions from GFC (F1-F4) were 

analysed by nanoLC-MS/MS. The nanoLC-MS/MS was performed using an Eksigent 

Nano-LC Ultra 1D Plus system (Eksigent of AB Sciex, CA, USA) coupled to a Q-ToF 

TripleTOF® 5600+ system (AB Sciex Instruments, MA, USA) with a nanoelectrospray 

ionisation source.  

For the analysis of deproteinised extracts from NEp and OEp and major fractions from 

GFC (F1-F4), lyophilised samples were diluted at 0.1 mg/mL with 0.1% trifluoroacetic 

acid. A total of 5 µL of each sample were injected and preconcentrated on an Eksigent 

C18 trap column (350 x 0.5 mm; 3 µm) at 3 µL/min for 5 min and using 0.1% 

trifluoroacetic acid as mobile phase. Then, the trap column was automatically switched 

in-line onto a nano-HPLC capillary column C18-CL (120 x 0.075 mm; 3 µm, Nikkyo 

Technos, JPN) equilibrated with 0.1% formic acid – acetonitrile/H2O (5:100, v/v). 

Peptides elution was carried out using a liner gradient from 5% to 35% of solvent B in 

120 min at 30°C and 0.30 µL/min. The column outlet was directly coupled to a 

nanoelectrospray ionisation system. The Q-ToF was used in positive polarity and data-

dependant acquisition mode, in which a 0.25-s TOF MS scan in the range 150 – 1250 m/z 

was performed followed by 0.05-s product ion scans in the range 100 – 1250 m/z on the 

50 most intense 2 – 5 charged ions (or 1 – 5 charged for mono-charged ions analysis). 
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3.3.5 Data analysis 

For MALDI-ToF data analysis, spectral comparison was performed using mMass v5.5.0 

software (Martin Strohalm). For MS/MS data analysis, ProteinPilot v5.0 search engine 

(AB Sciex Instruments, MA, USA) default parameters were used to generate a peak list 

directly from TripleTOF® 5600 system wiff files. The Paragon algorithm of ProteinPilot 

was used to search in NCBInr protein database with the following parameters: no 

enzyme specificity, no cys-alkylation and taxonomy Metazoa. The ProteinPilot false 

discovery rate (FDR) analysis tool algorithm provided a global FDR of 1% and a local FDR 

at 5% in all cases. The identification of protein of origin of peptides was done with a 

significance threshold p < 0.05 and a tolerance on the mass measurement of 100 ppm in 

MS mode and 0.3 Da for MS/MS ions.  

3.4 Sensory analysis 

Palatability and taste qualities of soluble protein and peptide extracts (F6 NEp and F6 

OEp; see section 3.2.3), deproteinised extracts (F0 NEp and F0 OEp) and the four major 

fractions from GFC (F1-4 NEp and F1-4 OEp; see section 3.2.4) from both OEp and NEp 

were evaluated at Opertech Bio Inc. (PA, USA) using the rMOG technology detailed in 

Annex 1 (http://www.opertechbio.com/). Two cohorts of MOG-trained rats were used. 

One cohort had been trained to discriminate a bitter taste cue (quinine) from other taste 

stimuli representative of basic taste modalities, and the other was trained to 

discriminate an umami cue. Using the MOG system, measures for palatability and taste 

quality were simultaneously captured for all the samples and compared to those taste 

properties of the basic taste stimuli and water.  
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3.4.1 Training  

Bitter and umami cohorts were used to evaluate the taste properties of the samples. 

Bitter and umami cohorts consisted of 4 rats each. The bitter cohort was trained using 

the MOG to discriminate the taste of 1 mM quinine from water (Evian®), 100 mM NaCl, 

100 mM sucrose and 10 mM citric acid. The umami cohort was trained to discriminate 

the taste of a standard taste cue composed of 2 mM inosine phosphate and 6 mM 

glutamic acid (IMP+Glu 2/6 mM) from water, NaCl, sucrose, citric acid and quinine. All 

rats were maintained in test-ready condition by regular training sessions in which 

earning 45 mg grain-based food pellet reinforcers was contingent upon responding on 

the appropriate taste-associated lever for all trials. Test-readiness was defined as 

consistently achieving 90% or greater performance accuracy under these conditions. 

3.4.2 Testing 

All the samples were dried under vacuum, diluted in Evian® bottled water and tested at 

a single concentration of 1 mg/mL in the presence of 100 µM amiloride to block the 

epithelial sodium channels and avoid sodium influence on palatability. Amiloride was 

also added to half of all wells designated for control tastants as an additional control. 

The plate configuration for the umami cohort is shown in Figure 15. An essentially 

identical configuration was used for the bitter cohort with the exception that the 

numbers of wells designated for the standard taste cue were switched (i.e., 6 wells each 

for quinine and quinine+A, and 4 wells each for umami and umami+A). The number of 

licks per trial was taken as the measure of palatability, and the taste quality was 

determined by the percentage of presses occurring on the lever associated with the 

taste standard for the cohort (i.e., the quinine or umami cue). 
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Figure 15. Plate configuration for the umami cohort. NaCl, sucrose and quinine = 

100 mM NaCl, 100 mM sucrose and 1 mM quinine respectively; Umami = IMP+Glu 2/6 

mM. Water = Evian® bottled water. A = 100 µM amiloride. Fn+A = sample + amiloride. 

3.5 Statistical analyses  

All results are expressed as the mean of three replicates and standard deviation. The 

differences among pork liver homogenates used for the manufacture of palatability 

enhancers were studied. Also the effect of different processing conditions used to 

obtain palatability enhancers (new enzyme vs. old enzyme) was determined. The 

samples were compared in terms of composition and biochemical characterization by 

analysis of variance (ANOVA) using the statistic software XLSTAT, 2011, v5.01 (Addinsoft, 

Barcelona, Spain). Significant effects (p < 0.05) were compared using Fisher’s least 

significant difference test (p < 0.05). 
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4.1 Characterisation of pork livers used as raw 
material for palatability enhancers 
processing 

Pork liver is one of the most common by-products for pet food industry. It is known as a 

good source of proteins and, as a consequence, very palatable for cats. Nevertheless, 

very little information relative to key tastants in pork liver as ingredient for pet food 

industry has been reported [381]. 

The purpose of this section was to achieve Objective 1 by characterising and comparing 

three pork liver homogenates used as raw material in pet food industry with regard to 

their proximal composition and key tastants (amino acids, glutathione, fatty acids, lactic 

acid, nucleotides and minerals) as well as proteolytic activity since this may significantly 

affect amino acid composition. 

4.1.1 Proximal composition 

The proximal composition of pork livers PLWL, PLW and L was analysed by the methods 

described previously in section 3.2.1. No significant differences were found among pork 

liver homogenates in protein, fat and ashes levels as shown in Table 12. Carbohydrates 

were not analysed. The proximal composition of pork liver homogenates were 

consistent with U.S. Department of Agriculture databases [107] and were not affected 

by breed or farming conditions. Nevertheless, many different studies have shown that 

the diet and the breed of pigs affect the composition of pork meat [382–388]. In 

addition, several studies showed the negative impact of slaughter age on meat sensory 

quality [389,390]. The constant composition of liver as main raw material ensures, to 

DIANA Petfood, a constant quality of its products. 
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Table 12. Proximal composition of pork liver homogenates PLWL, PLW and L 

(expressed in percentage) 

 

Cats need a high protein intake [10]. The high protein content of pork liver makes it an 

interesting raw material to be used as palatable enhancer in formulations for cat feed. 

Moreover, based on amino acids bioavailability, the quality of pork liver proteins were 

described as very high compared to beef or chicken by-products [391]. Proteins of PLWL, 

PLW and L were separated by electrophoresis to obtain the protein profile of each 

homogenate. The three pork liver homogenates had the same protein profile: several 

high molecular proteins and polypeptides from 25 kDa to 200 kDa, high concentration of 

60 kDa proteins, few peptides from 15 to 25 kDa, several peptides from 10 to 14 kDa 

and very low quantity of peptides below 8 kDa (Figure 16). 

M SD M SD M SD

Moisture 70.3 b ± 0.1 70.0 c ± 0.1 70.5 a ± 0.1 ***

Protein 22.6 ± 0.2 22.5 ± 0.4 22.6 ± 0.6 ns

Fat 5.8 ± 0.6 6.1 ± 1.3 5.6 ± 0.5 ns

Ashes 1.3 ± 0.0 1.3 ± 0.0 1.3 ± 0.0 ns

P ##Item

## p value : ns , not significant; *** P < 0.001

PLWL PLW L

Results are expressed as means (M) and standard deviation (SD).
a-c Means in the same row with the same letter do not differ significantly at the 0.05 level of probability
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Figure 16. Electrophoretogram of proteins and peptides in pork liver 

homogenates PLWL, PLW and L. (Stds) molecular weight standards; on sodium 

dodecyl sulfate-polyacrylamide gel (12%) 

4.1.2 Potential key tastants 

Water-soluble compounds such as free amino acids, peptides, some free fatty acids, 

nucleotides and derivatives and inorganic ions have an important role in cat food 

acceptance and nutrition [53]. Before the evaluation of these free key tastants in the 

liver homogenates, total amino acid and fatty acid were quantified to discard differences 

among the raw material used. 

4.1.2.1 Amino acid content 

Total and free amino acids were analysed and quantified in the three liver homogenates 

PLWL, PLW and L, and results are presented in Table 13 and Table 14. 
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Total amino acid content of pork liver homogenates was quantified and no significant 

difference was observed which confirms the similar total protein content of pork liver 

homogenates (Table 13). Only few significant differences in the content of several amino 

acids (Ser, Thr, Arg, Tyr, Ile and Lys) were observed although these differences were low.  

Table 13. Total amino acid content (mg/ 100 g product) in pork liver 

homogenates PLWL, PLW and L 

  

M SD M SD M SD

Amino acids

Asx1 1480.0 ± 77.7 1443.0 ± 5.9 1445.2 ± 37.2 ns

Glx1 2012.3 ± 114.4 1890.6 ± 31.7 1942.5 ± 41.3 ns

Ser 590.7 a ± 26.1 546.2 b ± 18.1 561.6 a ± 14.4 *

His 294.7 ± 91.4 367.8 ± 64.5 316.5 ± 53.8 ns

Gly 1222.9 ± 50.6 1160.6 ± 24.7 1181.9 ± 36.4 ns

Thr 746.1 a ± 27.7 687.7 b ± 28.9 716.8 a ± 20.1 **

Ala 1031.9 ± 41.2 996.5 ± 17.9 994.8 ± 21.1 ns

Arg 1173.7 a,b ± 41.3 1093.3 b ± 37.5 1123.6 a ± 41.2 *

Tyr 673.7 a,b ± 22.6 610.4 b ± 89.2 673.2 a ± 17.9 *

Val 1043.1 ± 33.4 1027.5 ± 21.1 1016.4 ± 25.8 ns

Met 468.5 ± 15.6 520.2 ± 88.5 455.3 ± 13.0 ns

Phe 924.7 ± 32.5 895.5 ± 4.4 888.1 ± 21.2 ns

Ile 869.2 a,b ± 27.8 827.7 b ± 28.0 838.5 a ± 20.9 *

Leu 1649.5 ± 60.0 1550.7 ± 99.7 1591.6 ± 40.0 ns

Lys 1833.1 a,b ± 66.9 1730.3 b ± 14.2 1760.2 a ± 54.3 *

Pro 704.7 ± 29.6 671.8 ± 10.1 731.4 ± 111.1 ns

Total 16718.6 ± 639.6 16169.7 ± 85.9 16237.5 ± 383.4 ns

1 Asx = Asp + Asn; Glx = Glu + Gln

## p value : ns , not significant; * P < 0.05; ** P < 0.01

PLWL PLW L
P  ##

 Results are expressed as means (M) and standard deviation (SD).

a;b Means in the same row with the same letter do not differ significantly at the 0.05 level of probability
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Several amino acids were exclusively identified and quantified as free amino acids (Asn, 

Gln and Trp) since they are degraded during acid hydrolysis treatment for total amino 

acid analysis. Free amino acid content in pork liver homogenates was higher in PLWL 

than in PLW and L (p < 0.01) (Table 14): free amino acids represented 0.48% of total 

amino acids in PLWL whereas in PLW and L they represented 0.38% of total amino acids. 

These results indicate a low post mortem exopeptidase activity which is lower in PLW 

and L than in PLWL. Significant differences were observed for several of the free amino 

acids especially for Gln, Ser, Ala, Arg, Ile, Thr and Pro.  

The post mortem storage of pork meat affects the metabolism in muscles. Morzel et al. 

[392] reported that the storage at 4°C during 72h caused changes in protein content of 

Large White Longissimus Lumborum. These changes were due to sarcoplasmic proteins 

proteolysis. The high enzymatic activity in liver [393] suggests that these post mortem 

changes occur in liver too and could affect protein content of pork livers during 

transport (even short time) from the slaughterhouse to Diana Petfood. All samples 

received the same treatment, so the difference in free amino acid content observed 

must be due to the intrinsic nature of the pigs and must be correlated with different 

proteolytic activity. 
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Table 14. Free amino acid content (mg/ 100 g product) in pork liver homogenates 

 

4.1.2.2 Proteolytic activity 

The proteolytic activity was studied for endopeptidases (cathepsins B, B+L and H) and 

exopeptidases (alanyl, argynil and methionyl aminopeptidase) and results are shown in   

M SD M SD M SD

Amino acids

Asp + Glu 10.38 a ± 0.35 7.88 b ± 1.32 8.05 b ± 0.73 **

Asn 1.27 a ± 0.12 1.01 b ± 0.10 1.02 b ± 0.08 **

Ser 3.26 a ± 0.30 2.27 b ± 0.25 2.10 b ± 0.22 ***

Gln 2.69 a ± 0.25 2.05 b ± 0.25 0.96 c ± 0.17 ***

His

Gly 5.70 a ± 0.61 4.04 b ± 0.42 4.13 b ± 0.48 **

Thr 2.36 a ± 0.22 1.65 b ± 0.22 1.70 b ± 0.20 **

β-Ala 0.41 ± 0.03 0.42 ± 0.03 0.33 ± 0.03 ns

Ala 5.88 a ± 0.61 4.36 b ± 0.45 4.10 b ± 0.35 ***

Tau 0.26 ± 0.01 0.20 ± 0.05 0.24 ± 0.04 ns

Arg 4.90 a ± 0.49 3.48 b ± 0.64 2.40 c ± 0.40 ***

Tyr 2.70 ± 0.18 2.28 ± 0.29 2.31 ± 0.22 ns

Val 4.23 a ± 0.33 3.44 b ± 0.36 3.75 a ± 0.28 *

Met 2.95 ± 0.20 2.54 ± 0.34 2.62 ± 0.20 ns

Orn 1.25 ± 0.07 1.12 ± 0.14 0.99 ± 0.05 ns

Trp 2.34 ± 0.09 2.09 ± 0.22 1.92 ± 0.21 ns

Phe 6.64 ± 0.31 5.86 ± 0.77 6.10 ± 0.65 ns

Ile 4.24 a ± 0.23 3.34 b ± 0.42 3.39 b ± 0.25 **

Leu 11.75 ± 0.55 10.02 ± 1.42 9.87 ± 0.78 ns

Lys 3.43 ± 0.17 2.69 ± 0.61 2.44 ± 0.43 ns

Pro 3.27 a ± 0.38 2.55 b ± 0.22 2.94 a ± 0.30 **

Total FAA 79.92 a ± 5.09 62.28 b ± 7.98 61.70 b ± 6.04 **

ND, not detected

PLWL PLW L
P ##

ND ND ND

## p value : ns , not significant; * P < 0.05; ** P < 0.01; *** P < 0.001

Item

Results are expressed as means (M) and standard deviation (SD).
a-c Means in the same row with the same letter do not differ significantly at the 0.05 level of probability
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Table 15. Cathepsins B and B+L activities were higher in PLW followed by PLWL and L 

while cathepsin H activity was higher in PLWL than in the other liver homogenates. 

These results suggest that PLW and PLWL would be richer in peptides, which 

consequently would be substrates for further exopeptidase activity. Moreover, post 

mortem exopeptidase activity was higher in PLWL than in PLW and L (p < 0.001). These 

exopeptidase activities can explain the highest amount of free amino acids found in 

PLWL. Especially AAP and RAP would be responsible for the high release of amino acids 

such as Ala and Arg, respectively [394,395]. In this way, enzyme preferences and 

differences in proteolytic activities may affect the profile of amino acids that would be 

released during the industrial process of palatants affecting the palatability of the final 

product. In the tested pork liver homogenates, the most abundant free amino acids 

were Leu, the sum of Asp and Glu, and Phe which have been characterized by humans as 

bitter, sour/umami and bitter, respectively [396]. However, cats are particularly 

attracted by amino acids described as sweet by humans (Pro or Ala) and reject amino 

acids described as bitter (Phe,Trp or Arg) or very sour stimuli which inhibit amino acid 

tongue units [46,180]. In the analysed pork liver homogenates most of the free amino 

acids quantified were described as bitter by humans (43.6% of free amino acids in PLWL, 

37% in PLW and 48.6% in L). However, the total amino acid content of proteins is a 

source of amino acid described as sweet by humans (36.7% of total amino acids in PLWL, 

31.7% in PLW and 36.6% in L without taking into account the glutamine converted in 

glutamic acid during the sample preparation) which are liberated during the process. 
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Table 15. Exopeptidase and endopeptidase activity (µmol/hour*g product) in 

pork liver homogenates# 

 

4.1.2.3  Glutathione content 

The glutathione (GSH) is a natural tripeptide that may have an impact in aroma and 

taste. This compound can be hydrolysed to generate its aminoacid components; Glu, Gly 

and Cys which is a sulphur-containing aminoacid. GSH and sulphur-containing 

aminoacids (Cys and Met) can act as precursors of “meat flavour”. Jung et al. [143] 

reported that adding GSH could reinforce “beef flavour” of beef soup. It can also 

contribute to the kokumi taste (savoury taste), be involved in the generation of volatile 

compounds which can act as antioxidant and prevent rancidity [144,397,398]. 

Moreover, addition of glutathione Maillard reaction products (GMRP) in beef soup also 

reinforce “beef flavor” but metallic and astringent notes appeared [399]. GSH/ glucose 

Maillard reaction products presented higher roasted flavour than cysteine/glucose 

Maillard reaction products [397]. 

M SD M SD M SD

AAP 6.72 a ± 0.28 6.06 b ± 0.20 6.01 b ± 0.20 ***

RAP 3.66 a ± 0.07 2.58 c ± 0.04 2.74 b ± 0.16 ***

MAP 1.18 a ± 0.04 0.96 c ± 0.03 0.98 b ± 0.03 ***

Cathepsin B 1.53 b ± 0.07 1.71 a ± 0.16 1.44 c ± 0.10 ***

Cathepsins B+L 2.37 b ± 0.12 2.69 a ± 0.20 1.98 c ± 0.12 ***

Cathepsin H 0.85 a ± 0.03 0.74 b ± 0.05 0.73 b ± 0.04 ***

Item
PLWL PLW L

P  ##

Exopeptidase activity 1

Endopeptidase activity

1  AAP, alanyl aminopeptidase; RAP, arginyl aminopeptidase; MAP, methionyl aminopeptidase 

## p value : *** P < 0.001

a-c Means in the same row with the same letter do not differ significantly at the 0.05 level of probability

Results are expressed as means (M) and standard deviation (SD).
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GSH was analysed in PLWL, PLW and L by HPLC after derivatization by UPLC-MS/MS. 

Strong differences among them were found. GSH content was higher in PLWL than in 

PLW and L (Table 16). PLW and L GSH contents were similar to GSH content in several 

foodstuffs reported by Ueda et al. [144] and Balogh et al. [352]. Oxidised glutathione 

(GSSG) was higher in PLWL than in PLW and L. 

The high differences of GSH content in pork liver homogenates can influence the taste 

and the volatile compound composition of manufactured products, and may be diet-

related. For instance, a methionine or cysteine-supplemented diet resulted in an 

increase of GSH concentration in plasma and tissues [400]. The feeding of the pigs used 

to obtain the pork liver homogenates was the same in terms of protein content (Table 6) 

but it has been reported that glutathione synthesis in liver can be regulated by 

metabolic pathways or cysteine transport in hepatocytes and not only by diet [400]. 

Table 16. Glutathione content (mg/ 100 g product) of pork liver homogenates 

 

  

M SD M SD M SD

GSH 41.25 a ± 0.60 6.50 b ± 0.49 5.37 c ± 0.24 ***

GSSG 0.41 a ± 0.04 0.35 b ± 0.02 0.30 b ± 0.01 ***

PLW L
P ##

Results are expressed as means (M) and standard deviation (SD).
a-c Means in the same row with the same letter do not differ significantly at the 0.05 level of probability
## p value : *** P < 0.001

Item
PLWL
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4.1.2.4 Fatty acid content 

Fatty acid composition in animal foods has been shown as essential for their effect on 

flavour [401]. Thus, free (FFA) and total (TFA) fatty acids were extracted from pork liver 

hydrolysates PLWL, PLW and L and analysed by GC-FID. Results are presented in Table 

17 and Table 18. 

No significant difference was observed for TFA (Table 17). Nevertheless, differences had 

been observed among the different classes of fatty acids. PLW contained the greatest 

amount of monounsaturated fatty acids (MUFA) (p < 0.05) while L contained the 

greatest amount of polyunsaturated fatty acids (PUFA) (p < 0.001) but no significant 

difference was observed for saturated fatty acids (SFA) among liver homogenates. The 

calculated PUFA:SFA ratios for PLWL, PLW and L were 0.92, 0.90 and 1.03, respectively. 

These PUFA:SFA ratios are consistent with those reported in the literature and highlight 

the high PUFA content of liver when compared with muscle or subcutaneous tissue 

[357]. Several studies have shown the impact of diet and breed on fat composition in 

pork meat. In term of diet, the addition of flax in the pork diet resulted in an increase of 

liver linolenic acid content (30%) and a decrease of linoleic acid (13%) [357]. Also it 

produced an increase of n-3 polyunsaturated fatty acids in pork-based manufactured 

products like sausages or paté [402]. However, the decrease of the daily protein intake 

resulted in a decrease of polyunsaturated fatty acids in liver and in semimembranosus 

muscle [403]. On the other hand, the genetic line affected the fat composition in the 

Longissimus lumborum muscle [404] as it was observed a higher saturated and 

monounsaturated fatty acid contents in Large White pigs than in Pietrain pigs. 

The ratio between monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA) 

content in PLWL (0.57), PLW (0.61) and L (0.42) was lower than the ratio MUFA/PUFA in 

Iberian pigs’ liver (1.09) [405]. This lower PUFA percentage described by Parra et al. can 

be due to a low protein diet. 
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Table 17. Total fatty acid content (mg/ 100 g product) in pork liver homogenates 

 

Free fatty acids content of pork liver homogenates was higher (about double) in PLW 

than in PLWL or L (p < 0.001) (Table 18). This result indicated a higher lipolitic activity in 

PLW and a more active fat metabolism.  

During the storage at 4°C, free fatty acid content increases in Large White and Pietrain 

Longissimus lumborum due to an increase of lipolysis [404]. The high enzymatic activity 

M SD M SD M SD

Fatty acids

C12:0 1.4 ± 0.7 2.1 ± 0.9 1.1 ± 0.1 ns

C14:0 23.1 ± 9.8 31.5 ± 11.3 20.6 ± 1.6 ns

C15:0 4.2 b ± 1.0 5.6 a ± 1.0 5.7 a ± 0.1 *

C16:0 687.1 ± 104.2 783.2 ± 114.9 736.5 ± 32.1 ns

C17:0 26.0 ± 4.6 29.9 ± 4.8 30.6 ± 0.9 ns

C18:0 926.6 b ± 32.1 978.6 a ± 36.8 906.5 b ± 25.4 **

saturated 1668.4 ± 150.4 1830.8 ± 167.6 1701.1 ± 59.9 ns

C16:1 60.0 a,b ± 18.5 76.7 a ± 21.1 50.8 b ± 2.9 *

C17:1 7.8 ± 2.5 10.3 ± 2.7 7.6 ± 0.8 ns

C18:1 n9t 7.2 a ± 0.5 7.3 a ± 0.3 3.6 b ± 0.6 ***

C18:1 n9c + C18:1 n7 771.4 a,b ± 119.8 896.5 a ± 140.6 650.3 b ± 49.8 **

C20:1 n9 19.2 c ± 2.2 21.8 b ± 2.7 34.8 a ± 0.9 ***

monounsaturated 865.6 a,b ± 142.8 1012.9 a ± 167.0 747.0 b ± 54.3 *

C18:2 n6t 2.9 ± 0.5 3.3 ± 0.4 2.7 ± 0.2 ns

C18:2 n6c 585.2 c ± 67.5 664.8 b ± 80.8 792.2 a ± 22.4 ***

C18:3 n6 2.8 ± 1.1 3.7 ± 1.2 2.3 ± 0.1 ns

C20:2 n6 13.0 b ± 1.2 14.5 b ± 1.4 23.9 a ± 1.0 ***

C20:3 n6 6.3 c ± 0.3 6.8 b ± 0.3 9.5 a ± 0.2 ***

C20:4 n6 671.8 b ± 37.7 707.9 a ± 23.5 630.5 c ± 15.1 ***

C22:4 n6 29.3 b ± 1.5 31.7 a ± 1.8 18.6 c ± 0.4 ***

C18:3 n3 9.7 b ± 0.4 10.7 a ± 0.4 8.7 c ± 1.0 ***

C20:5 n3 25.6 a,b ± 5.2 23.9 b ± 4.8 30.5 a ± 0.6 *

C22:5 n3 148.5 b ± 12.9 150.5 b ± 9.4 190.2 a ± 3.2 ***

C22:6 n3 34.4 c ± 1.8 36.6 b ± 1.3 51.2 a ± 1.1 ***

polyunsaturated 1529.5 c ± 85.0 1654.3 b ± 86.2 1760.4 a ± 41.5 ***

Total 4063.6 ± 397.7 4498.0 ± 463.4 4179.7 ± 107.3 ns

Results are expressed as means (M) and standard deviation (SD).
 a-c Means in the same row with the same letter do not differ significantly at the 0.05 level of probability
## p value : ns , not significant; * P < 0.05; ** P < 0.01; *** P < 0.001

Item
PLWL PLW L

P ##
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in liver suggests that these postmortem changes occur in liver too and could have 

affected protein and fat contents of pork livers during transport from the 

slaughterhouse to Diana Petfood, as it could have affected free amino acid content. 

Moreover, further degradation of these FFA generated by lipolysis through lipid 

oxidation reactions produces volatile compounds as aldehydes which can modify meat 

products flavor [406]. 

Cats rejected diet containing medium-chain triglycerides and caprylic acid [54] but this 

fatty acid was not detected in PLWL, PLW or L. In contrast, cats are very dependent on 

dietary sources of arachidonic acid (20:4 n6), and possibly eicosapentaenoic acid (20:5 

n3) and docosahexanoic acid (22:6 n3), thus the rate of Δ6 desaturase activity in feline 

liver is limited [407]. Pork liver homogenates are a suitable source of fatty acids for cats 

since the arachidonic acid represented 16.5%, 15.7% and 15.1% of total fatty acids in 

PLWL, PLW and L, respectively. 
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Table 18. Free fatty acid content (mg/ 100 g product) in pork liver homogenates 

 

 

M SD M SD M SD

Fatty acids

C12:0 0.35 b ± 0.02 1.18 a ± 0.12 0.38 b ± 0.03 ***

C14:0 5.69 b ± 0.40 17.12 a ± 0.70 6.28 b ± 0.55 ***

C15:0 3.51 a,b ± 2.15 5.52 a ± 3.11 0.98 b ± 0.11 **

C16:0 126.29 c ± 4.43 269.28 a ± 14.90 140.85 b ± 12.32 ***

C17:0 3.11 b ± 0.44 6.84 a ± 0.39 3.37 b ± 0.41 ***

C18:0 95.32 b ± 1.98 141.80 a ± 7.05 81.40 c ± 10.61 ***

saturated 234.16 b ± 6.75 441.73 a ± 22.60 233.25 b ± 23.80 ***

C16:1 12.44 c ± 1.35 35.85 a ± 1.07 15.12 b ± 1.26 ***

C17:1 1.16 c ± 0.16 3.93 a ± 0.23 1.40 b ± 0.15 ***

C18:1 n9t 1.46 b ± 0.16 2.64 a ± 0.14 0.82 c ± 0.20 ***

C18:1 n9c + C18:1 n7 136.24 b ± 6.06 309.41 a ± 8.11 121.03 c ± 14.99 ***

C20:1 n9 4.39 c ± 0.45 8.84 b ± 0.31 11.70 a ± 1.00 ***

monounsaturated 155.69 b ± 8.10 360.68 a ± 8.61 148.14 b ± 16.56 ***

C18:2 n6t 0.78 ± 0.41 0.64 ± 0.17 0.83 ± 0.06 ns

C18:2 n6c 2.42 b ± 5.58 4.50 a ± 4.02 1.58 c ± 12.07 ***

C18:3 n6 0.44 c ± 0.06 1.61 a ± 0.06 0.69 b ± 0.05 ***

C20:2 n6 2.77 c ± 0.11 5.24 a ± 0.17 4.39 b ± 0.51 ***

C20:3 n6 0.74 b ± 0.06 1.14 a ± 0.03 1.19 a ± 0.11 ***

C20:4 n6 50.56 b ± 5.85 70.88 a ± 2.43 55.00 b ± 4.52 ***

C22:4 n6 3.10 b ± 0.20 4.97 a ± 0.15 2.39 c ± 0.24 ***

C18:3 n3 2.42 b ± 0.21 4.50 a ± 0.23 1.58 c ± 0.25 ***

C20:5 n3 2.57 b ± 0.37 2.78 b ± 0.12 3.86 a ± 0.32 ***

C22:5 n3 11.88 b ± 0.95 16.67 a ± 0.54 16.10 a ± 1.53 ***

C22:6 n3 2.32 c ± 0.20 3.91 a ± 0.12 3.22 b ± 0.33 ***

polyunsaturated 148.20 c ± 13.34 273.39 a ± 7.55 220.02 b ± 19.63 ***

Total FFA 526.06 b ± 28.87 1054.29 a ± 39.34 583.84 b ± 61.85 ***

Results are expressed as means (M) and standard deviation (SD).
 a-c Means in the same row with the same letter do not differ significantly at the 0.05 level of probability
## p value : ns , not significant; * P < 0.05; ** P < 0.01; *** P < 0.001

Item
PLWL PLW L

P ##
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4.1.2.5 Lactic acid content 

As mentioned in section 1.4.2, cats are very sensitive to sour taste associated to organic 

acids which they reject if too concentrated. Among organic acids, lactic acid is 

metabolised mostly in the liver [408,409]. Thus, lactic acid was quantified in PLWL, PLW 

and L using an enzymatic kit. There was no significant difference among PLWL, PLW and 

L in term of lactic acid content (Table 19) which was in the same range as in an aqueous 

extract of beef muscle [410].  

Table 19. Lactic acid content (mg/ 100 g product) in pork liver homogenates 

 

4.1.2.6 Nucleotide and derivatives content 

Pork liver is known to contain a large amount of purines which are often associated to 

umami taste [411]. Thus, nucleotides and derivatives were quantified by RP-HPLC. GMP 

and IMP are the key components of umami taste in humans whereas they inhibit the 

amino acid units of cat’s tongue [33] and thus can be considered as unpalatable by cats. 

None of these compounds were present in the liver homogenates while their derivatives 

AMP, Ino, Hx, X, U, and G were found. Their contents are given in Table 20. AMP was the 

only nucleotide detected in our samples unlike meat where ATP, ADP, IMP and GMP are 

present [317]. Significant differences were observed for hypoxanthine (p < 0.05), 

xanthine, AMP (p < 0.01), uridine and inosine (p < 0.001) but the guanosine content was 

similar for all three samples. Hypoxanthine and xanthine are the final products of ATP 

M SD M SD M SD

Lactic acid 296.8 ± 44.0 296.5 ± 41.1 264.8 ± 21.2 ns

## p value : ns , not significant

P  ##PLWL PLW L
Item

Results are expressed as means (M) and standard deviation (SD). 
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degradation and were the most abundant purine derivatives found in pork liver 

homogenates. The hypoxanthine accumulation that occurs in pork meat aging, that was 

related to the postmortem pH since it affects metabolism, was associated to an 

enhancement of bitter taste [196]. However, the bitter taste is likely not appreciated by 

cats, even if it can be counter-balanced by other tastants. 

Table 20. Nucleotide and derivatives content (µmol/ 100 g product) in pork liver 

homogenates 

 

  

M SD M SD M SD

AMP 8.6 b ± 0.4 6.0 c ± 0.8 9.5 a ± 0.1 **

Hypoxanthine 230.6 a,b ± 0.9 218.2 b ± 1.5 220.3 a ± 4.0 *

Xanthine 217.5 c ± 0.9 224.5 b ± 2.0 223.9 a ± 1.7 **

Uridine 26.8 a ± 0.4 19.6 b ± 0.5 16.1 c ± 0.4 ***

Inosine 75.6 a ± 0.0 59.3 c ± 0.5 59.1 b ± 0.2 ***

Guanosine 15.8 ± 0.2 16.5 ± 0.0 13.8 ± 1.1 ns

## p value : ns , not significant; * P < 0.05; ** P < 0.01; *** P < 0.001

Item
PLWL PLW L

P  ##

Results are expressed as means (M) and standard deviation (SD).
a-c Means in the same row with the same letter do not differ significantly at the 0.05 level of probability
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4.1.2.7 Mineral content 

Minerals are also potential tastants for cats since some inorganic salts like NaCl or KCl 

are associated to meat taste and can stimulate their taste system at low concentration 

[33]. Minerals were analysed by two methods. First, the most relevant ions were 

quantified in the pork liver homogenates (PLWL, PLW and L) by ion chromatography 

(Table 21). Then, minerals were quantified by ICP-OES in order to complete the analysis 

(Table 22). The abundance of each mineral in the pork liver homogenates was in 

accordance with the results published by Tomović et al. [327] except for Zn and Fe. 

Moreover, according to Tomović et al. [327], ashes content in liver do not change from 

one pig genetic line to another. 

Table 21. Mineral content in pork liver homogenates PLWL, PLW and L (mg/ 100 

g product) quantified by ion chromatography 

 

  

M SD M SD M SD

Na+ 52.6 ± 0.5 54.7 ± 1.6 58.7 ± 6.1 ns

K+ 281.4 a ± 3.2 284.7 a ± 4.9 265.9 b ± 11.5 *

Ca2+ 6.0 ± 0.3 7.6 ± 0.9 7.2 ± 0.0 ns

Zn2+

Mg2+ 7.0 b ± 0.5 10.6 a ± 0.6 9.2 a ± 0.5 *

F- 26.7 a ± 1.4 24.6 a ± 2.2 20.9 b ± 1.0 **

Cl- 81.0 a ± 0.4 77.4 b ± 2.3 84.1 a ± 2.0 ***
(HPO4)2-

583.2 b ± 25.2 693.1 a ± 38.3 675.0 a ± 22.3 ***

PLW L
P  ##

## p value : ns , not significant; * P < 0.05; ** P < 0.01; *** P < 0.001

ND ND ND

Results are expressed as means (M) and standard deviation (SD).
a;b Means in the same row with the same letter do not differ significantly at the 0.05 level of probability

Item
PLWL

ND, not detected
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Table 22. Mineral content in pork liver homogenates PLWL, PLW and L (mg/ 100 

g product) quantified by ICP-OES 

 

As shown in Table 21, the most abundant mineral in the liver homogenates was 

phosphorous (25.0%, 24.3% and 29.1% of total ash for PLWL, PLW and L, respectively) 

followed by potassium and sodium. Phosphorous is the most needed mineral for cat’s 

body after calcium [412]. 

Five elements (Na, K, Ca, Zn, Mg) were analysed by both methods. No significant 

difference was observed between the results from the two methods for Na and K. 

However, the standard deviations obtained for K quantified by ICP-OES were higher than 

those obtained by ion chromatography analyses; this can be the reason for not detecting 

differences among liver homogenates in K content by ICP-OES. 

Concerning Ca and Mg, results obtained by ICP-OES were different from those obtained 

by ion chromatography. Ca from L sample was not detected by ICP-OES. This method 

seems not to be suitable to analyse Ca. Mg content was twice higher in PLWL and PLW 

M SD M SD M SD

Na 57.6 b ± 5.1 55.6 b ± 6.9 73.0 a ± 3.6 *

K 280.2 ± 29.0 263.6 ± 37.3 311.5 ± 13.9 ns

Ca 8.4 ± 2.4 4.7 ± 1.2 ns

Zn 0.7 ± 0.1 0.7 ± 0.1 0.8 ± 0.1 ns

Mg 19.4 b ± 2.3 18.2 b ± 2.6 30.4 a ± 7.3 *

P 324.7 ± 32.0 315.9 ± 34.5 378.5 ± 4.4 ns

Cu 0.09 b ± 0.0 0.12 a ± 0.0 0.14 a ± 0.0 **

Fe 1.5 ± 0.2 1.9 ± 0.3 1.7 ± 0.1 ns

ND

## p value : ns , not significant; * P < 0.05; ** P < 0.01

ND, not detected

Results are expressed as means (M) and standard deviation (SD).
a;b Means in the same row with the same letter do not differ significantly at the 0.05 level of probability

Item
PLWL PLW L

P  ##
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when analysed by ICP-OES, and more than three times higher for L. However, no 

conclusion could be made about which of the two methods is better for Mg 

quantification. In contrast, Zn could not be quantified by the ion chromatographic 

method for coeluting with Ca. 

Fe, Zn and Cu were quantified by ICP-OES. Concerning Fe and Zn content, there were no 

significant differences among liver homogenates. Cu content was significantly higher in 

PLW and L than in PLWL. Cu content decreases in pork liver all along their growth [413]. 

It has been reported that Cu, Fe and Zn concentrations increase when diet is 

complemented with these minerals [414,415]. Nevertheless, diets supplied to PLWL and 

to PLW animals were richer in Fe, Cu and Zn than the diet supplied to L animals (Table 

6). Thus, the diet did not have any effect on these mineral contents in the analysed 

livers. 

Mineral content of bovine liver has been reported by Trevizan et al. [360]. Ca content 

was similar in pork liver homogenates PLWL, PLW and L and in bovine liver but Cu, Fe, 

Mg and Zn were higher in bovine liver than in pork liver homogenates. Mineral content 

differences may be due to species specificity but may also vary before and after 

slaughtering or depending upon the liver section from which the sample was collected 

[416]. 
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4.2 Characterisation of two palatability 
enhancers used in cat food processing  

Palatability enhancers are essential ingredients for pet food industry. They improve 

smell and taste and thus, attractiveness of pet foods. Nevertheless, very little 

information relative to key tastants in palatability enhancers has been reported. In fact, 

analyses of pet foodstuffs are generally done to evaluate their nutritional quality by 

quantifying protein, minerals or vitamins (Table 5, section 1.6). 

The purpose of this section was to achieve Objective 2 by characterising and comparing 

two meat-based palatability enhancers for cat food focusing on their potential key 

tastants. 

4.2.1 Protein and peptide profile 

Total proteins in extracts (section 3.2.2) and peptides from deproteinised extracts 

(section 3.2.3) both from NEp and OEp were estimated by BCA Protein Assay Kit (Table 

23) in order to adjust concentration for further SDS-PAGE electrophoresis of total 

proteins and RP-HPLC of peptide extracts. According to this method, there was no 

significant difference between protein content of NEp and OEp even if OEp protein 

content tended to be lower than NEp. According to SPF data, both NEp and OEp protein 

content should be similar and close to 50% which suggested that they might have been 

underestimated in our study. The proportion of peptides in relation to total proteins was 

higher in OEp (75.3%) than in NEp (69.6%). 

Cats need a high protein intake and are attracted by high-protein content foodstuffs 

[10].  Thus, although the main role of these products in cat food is not nutritive, NEp and 

OEp are interesting palatable enhancers to be sprayed on kibbles or included in moist 

foods for cats. Moreover, spray-dried pork liver has high protein quality [355].  
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Table 23. Protein and peptide content (mg/ g powder) in NEp and OEp 

 

Then, extracts containing both myofibrillar and sarcoplasmic proteins from OEp and NEp 

were separated by electrophoresis (Figure 17). Notable differences were observed 

between samples, especially a non-separated group of bands in the higher part of the 

electrophoretogram of NEp corresponding to fragments bigger than 200 kDa, which was 

not visible for OEp. These fragments corresponded to proteins or polypeptides which 

were not hydrolysed during the manufacturing of NEp and OEp suggesting that the 

endopeptidase activity was higher for the enzymes used to manufacture NEp than OEp. 

Free amino acids or/and small peptides (< 5 kDa) content appear to be higher in OEp 

than in NEp but peptides between 5 kDa and 20 kDa were more abundant in NEp than in 

OEp. Sephton et al. [417] prepared hydrolysates from beef liver using the commercial 

proteolytic enzyme Alcalase 2YL. They found that the resultant hydrolysate contained 

low molecular weight peptides in the range 0.3-3 kDa. But, obviously, the protein 

fragmentation depends on the enzymes and on the conditions used for the enzymatic 

digestion. 

 

M SD M SD

Protein content 423.2 ± 39.7 357.1 ± 45.9 ns

Peptide content 294.5 ± 4.8 269.0 ± 7.5 ***

P  ##

## p value: ns , not significant; ***  P < 0.001

Item
NEp OEp
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Figure 17. Electrophoretogram of proteins and peptides in powders NEp and 

OEp. (Stds) molecular weight standards; on sodium dodecyl sulfate-polyacrylamide gel 

(12%) 

NEp and OEp were also analysed by RP-HPLC to compare peptide profile based on 

peptides polarity. Thus, deproteinised extracts (F0 NEp and F0 OEp) were injected and 

chromatograms were compared (Figure 18). Qualitative differences were observed 

between NEp and OEp chromatograms especially for elution time between 4 and 20 

min. In fact, average peak height and area were higher for F0 NEp than for F0 OEp from 

4 to 12 min and higher for F0 OEp than for F0 NEp from 12 to 20 min. These results 

suggested that F0 OEp was richer in hydrophobic compounds, including peptides, than 

F0 NEp. Hydrophobic peptides contain hydrophobic amino acids and are generally 

considered as bitter by humans [153,157,159,418]. Even if cat and human bitter taste 
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receptors respond differently when stimulated by the same compound [43], cats usually 

reject foods which taste very bitter for humans. The presence of bitter peptides in OEp 

and not in NEp could decrease the palatability of OEp. 

However, free hydrophobic amino acids Tyr, Phe and Trp, identified in the 

chromatograms of Figure 18, were more abundant in NEp than in OEp probably due to 

the higher hydrolysis degree of NEp (internal DIANA Petfood data). Since cats generally 

reject bitter amino acids such as Phe or Trp [180], their relative abundance in F0 NEp 

compared to F0 OEp could be correlated to a low palatability of NEp compared to OEp. 

Nevertheless, free amino acids cannot be individually considered responsible for a 

different palatability between NEp and OEp. The influence of free amino acids is 

discussed in more detail in section 4.2.2. 
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Figure 18. Chromatograms of deproteinised extracts (F0) from NEp and OEp 

obtained by RP-HPLC 

4.2.2 Amino acid content 

Total and free amino acids were quantified in NEp and OEp by RP-HPLC and results are 

presented in Table 24 and Table 25. 

Significant difference was observed for total amino acid content between NEp and OEp 

(Table 24). This result apparently disagreed with total protein content. Nevertheless, the 
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quantitative difference of total amino acid content between NEp and OEp was mainly 

due to significant difference observed for arginine (p < 0.001).  Moreover, the efficiency 

of the acid hydrolysis used to prepare total amino acid samples may have been higher 

for OEp than for NEp. Total amino acid (TAA) content in NEp (41.6% in dry matter basis) 

and OEp (38.0%) was similar to TAA reported in spray-dried cooked chicken (41.8%), and 

lower than in spray-dried cooked chicken liver (60.7%) and spray-dried pork liver (63.1%) 

typically used in pet food manufacturing [355]. These differences of TAA between 

palatability enhancers NEp and OEp and spray-dried raw materials may be due to the 

addition of yeasts during the manufacturing process of NEp and OEp. In fact, NEp and 

OEp contain inactive dry brewer’s yeast used as drying support. These inactive yeasts 

contain around 40% of protein. Thus, mixing grinded raw material and yeasts may affect 

the global protein content of the final powder product by decreasing the total protein 

content. 

The most abundant amino acids were Asp, Leu and Val in both NEp and OEp. Significant 

difference observed for individual amino acids was due to the use of different by-

products to manufacture NEp and OEp providing different types of proteins. As 

indicated in section 3.1.2, pork liver was the main raw material but pork lung was also 

used for OEp manufacturing. No significant difference was observed for Glu, Ser, Ile, Leu, 

Lys and Pro. Lys content in NEp (31.4 mg/g powder) and OEp (30.9 mg/g powder) was 

higher than Lys content in extruded cat foods (16.4 mg/ g extruded food) [366]. This 

difference is certainly due to the limited lysine content of extruded cat food raw 

materials such as cereals [419]. Moreover, lysine content varies from one protein source 

to another. As examples, Lys content is evaluated at 16.5 mg/ g pork liver, 14.3 mg/ g 

pork heart, 13.3 mg/ g chicken liver and 10.3 mg/ g pork lungs [107]. Trp decomposed 

during acid hydrolysis, thus not detected. Based on the amino acid composition of pork 

liver [107] and of inactive dry brewer’s yeast (supplier data), Trp should be the least 

represented.  
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Table 24. Total amino acid content (mg/ g powder) in NEp and OEp 

 

  

SD SD

Amino acids

Asp ± 0.62 ± 0.46

Glu ± 0.32 ± 1.12

Ser ± 0.04 ± 0.07

His ± 0.71 ± 0.69

Gly ± 0.42 ± 0.18

Thr ± 0.04 ± 0.05

Ala ± 0.24 ± 0.24

Arg ± 0.17 ± 0.32

Tyr ± 0.24 ± 0.20

Val ± 0.43 ± 0.33

Met ± 0.12 ± 0.11

Trp ND ND

Phe ± 0.35 ± 0.27

Ile ± 0.33 ± 0.25

Leu ± 0.61 ± 0.47

Lys ± 0.40 ± 0.26

Pro ± 0.15 ± 0.14

Total ± 4.09 ± 4.64

Item

## p value: ns , not significant; * P  < 0.05; ** P  < 0.01; *** P  < 0.001
 ND, not detected

415.78380.42

17.08

30.94

46.59

24.46

28.66

16.94

31.41

45.84

24.50

27.49

11.0510.32

34.5133.55

22.05

19.63

6.696.60

30.3214.78

22.9121.47

4.964.76

NEp OEp

21.12

30.0929.52

48.6247.30

31.1725.20

25.66

ns

ns

ns

ns

**

M M

***

*

P  ##

**

***

***

ns

ns

***

*

**

***

***
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Higher free amino acid content was released in NEp than in OEp (p < 0.001) certainly as 

a consequence of the enzyme mixture used during manufacture process (Table 25). Free 

amino acids represent 21.5% of total amino acids in NEp whereas in OEp they represent 

7.9% of total amino acids. This result indicates an efficient enzymatic hydrolysis of pork 

by-products used as raw material for NEp and OEp manufacture. Moreover, it highlights 

a higher exopeptidase activity during the manufacturing process of NEp than OEp.  

Free amino acids were three times more abundant in NEp than OEp. The most abundant 

free amino acids were Leu, Val and Phe in both NEp and OEp. Based on Table 3, amino 

acids can be classified in four groups according to their taste quality described by 

humans: sweet, bitter, sour/umami and sweet/bitter. In the present study, most free 

amino acids in NEp (71.5%) and OEp (63.7%) were considered as bitter by humans. 

Sweet, sour/umami and sweet/bitter amino acids represented 13.2%, 6.4% and 8.9%, 

respectively in NEp, 14.1%, 8.8% and 13.4% respectively in OEp. Cat bitter receptors are 

different from human bitter receptors and cats lack sweet receptors. Thus, the influence 

of free amino acids generated during the process on palatability is difficult to predict. 

NEp may be more “tasty” than OEp due to its high free amino acid content and this may 

partially explain the difference in acceptability between these powders.  

The analysis of total amino acids and free amino acids was done directly on powders and 

on the soluble extract of NEp and OEp which contain proteins and peptides soluble in 

0.1 N HCl, respectively (section 3.2.3). The amount of peptides obtained by subtracting 

the free amino acids (Table 25) from the total amino acids (Table 24) resulted in a higher 

concentration of peptides in OEp (382.7 mg/g of powder) than in NEp (298.7 mg/g of 

powder) while lower content of free aminoacids was found in OEp. The high peptide 

content present in OEp and not in NEp could be responsible for a differential palatability 

between NEp and OEp.   
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Table 25. Free amino acid content (mg/ g powder) in NEp and OEp 

 

4.2.3 Glutathione content 

Glutathione and cysteine were quantified in NEp and OEp by LC-MS (Table 26). On one 

hand, GSH was higher in NEp than in OEp. Pork liver has been used as raw material for 

both NEp and OEp manufacturing. Other meat by-products, such as pork lungs, have 

been used for OEp manufacturing. GSH content and glutathione reductase activity in rat 

SD SD

Amino acids

Asp ± 0.08 ± 0.01 ***

Glu ± 0.11 ± 0.05 **

Ser ± 0.05 ± 0.01 ***

His ± 0.13 ± 0.05 ***

Gly ± 0.15 ± 0.05 ***

Thr ± 0.04 ± 0.01 ***

Ala ± 0.20 ± 0.05 ***

Arg ± 0.01 ± 0.04 ***

Tyr ± 0.21 ± 0.03 ***

Val ± 0.35 ± 0.03 ***

Met ± 0.10 ± 0.04 ***

Trp ± 0.01 ± 0.00 ***

Phe ± 0.28 ± 0.03 ***

Ile ± 0.29 ± 0.02 ***

Leu ± 0.52 ± 0.06 ***

Lys ± 0.09 ± 0.13 **

Pro ± 0.14 ± 0.02 ***

Total FAA ± 2.57 ± 0.40 ***

##  p value : ** P < 0.01; *** P < 0.001

Item

2.67

7.78

2.32

3.50

0.12

1.77

3.03

81.68

4.13

1.60

9.12

17.48

2.53

1.13

33.05

1.65

1.32

10.04

0.36

4.03

10.52

NEp OEp
P  ##

M M

0.57

6.87

0.34

5.20

0.96

3.59

1.21

1.00

3.17

2.06

0.30

1.38

0.33

0.32

2.34
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lungs are lower than in rat liver [420,421]. Moreover, NEp and OEp were manufactured 

following two different processes. The influence of raw material, temperature and 

residence time are known to influence the Maillard reaction in foods and feeds 

[366,422]. Thus, glutathione at different concentrations in raw materials may have 

differently be degradated by reacting with others compounds such as glucose to 

produce GMRP and volatile flavour compounds which may influence the palatability of 

NEp and OEp. GSH is also considered as palatable for humans since it may enhance 

sweet, salty and umami tastes [144]. The difference GSH content between NEp and OEp 

could be part of a differential acceptability of these powders. 

On the other hand, no significant difference was observed for cysteine content, defined 

as sulphurous-taste amino acid [168], between NEp and OEp.  

Table 26. Glutathione and cysteine content (mg/ g powder) in NEp and OEp 

 

4.2.4 Lactic acid content 

Lactic acid was quantified in NEp and OEp using an enzymatic kit (Table 27). There was 

no significant difference between NEp and OEp in term of lactic acid content. Cats are 

very sensitive to sour taste associated to organic acids which they reject if too 

concentrated [182]. Among organic acids, lactic acid is metabolised mostly in the liver. 

SD SD

GSH ± 0.04 ± 0.01 ***

GSSG ± 0.00 ± 0.00 ***

Cys ± 0.36 ± 0.38 ns

NEp OEp
P ##

0.79 0.60

0.04 0.02

2.00 1.65

Item

## p value : ns , not significant; *** P < 0.001

M M
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Nevertheless, the lactic acid content of NEp and OEp remained very low compared to 

raw meats, such as beef muscle [410], which are usually accepted by cats as obligate 

carnivores [6]. When comparing to the concentration found in pork liver homogenates 

in dry basis (results presented in wet basis in Table 19), the lactic acid content was lower 

in NEp and OEp than in pork liver homogenates (p < 0.01). This lower content in 

palatability enhancers suggested that lactic acid may have been degraded during 

manufacturing when the temperature reached 100°C since lactic acid has been reported 

as very stable in aqueous solution until 80°C [423]. The addition of inactive yeasts to the 

by-product digest during the manufacturing could explain the decrease of lactic acid 

concentration. 

Table 27. Lactic acid content (mg/ g powder) in NEp and OEp 

 

4.2.5 Nucleotide and derivatives content 

Nucleotides and derivatives were analysed in NEp and OEp by HPLC and AMP, 

hypoxanthine, xanthine, uridine, inosine and guanosine were quantified in both 

powders NEp and OEp (Table 28). There was no significant difference between NEp and 

OEp for hypoxanthine and xanthine content. Nucleoside content (uridine, inosine and 

guanosine) was higher in OEp than in NEp and may contribute negatively to the 

palatability of OEp since inosine elicit bitter taste for humans [424] which is generally 

rejected by cats [197]. Moreover, the high content of uridine, inosine and guanosine in 

M SD M SD

Lactic acid 8.0 ± 1.3 7.7 ± 1.0 ns

## p value : ns , not significant

NEp OEp
P  ##Item
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OEp may be due to a higher hydrolysis of UMP, IMP and GMP, respectively, increased at 

lower pH during manufacturing [425]. The hydrolysis of AMP, known as “bitter blocker” 

in mouse [198], was slightly more abundant in NEp than in OEp suggesting that AMP 

content of raw materials used for NEp manufacturing was higher than OEp;  another 

hypothesis could be that AMP was less degraded during the manufacturing of NEp than 

OEp. Moreover, AMP acting as “bitter blocker” may partially counterbalance the 

negative effect of bitter amino acids in NEp. Differences between NEp and OEp could 

not be due to yeasts addition because same quantities of inactive yeasts were added 

during both NEp and OEp manufacturing process. 

When comparing to the concentration found in pork liver homogenates in dry basis 

(results presented in wet basis in Table 20), AMP, uridine and guanosine contents were 

higher in NEp and OEp (from twice to ten times higher) which could be due to the 

addition of inactive dry brewer’s yeats rich in nucleotides and nucleosides during 

palatability enhancers manufacturing. Moreover, the addition of yeasts during the 

process may impact the flavour of the final product since GMP is an active flavour 

enhancer and AMP is a precursor of IMP, known as flavour enhancer [194]. Nucleotides 

and nucleosides hydrolysis may also generate free ribose and ribose phosphate which 

are involved in Maillard reaction during processing of meat products [426]. The high 

guanosine content may be due to the degradation of GMP during the thermal treatment 

of the by-products used as raw material for NEp and OEp. The thermal treatment may 

be responsible for the hydrolysis of IMP into inosine and hypoxantine [425]. 

Nevertheless, hypoxanthine and xanthine content were lower in NEp and OEp than pork 

liver homogenates. Inosine content was higher in OEp and lower in NEp than pork liver 

homogenates. Thus, these low hypoxanthine and xanthine contents in NEp and OEp 

might have been degraded during NEp and OEp manufacturing. Nucleotide 

supplementations have also been shown to improve a range of immune responses in 

fish [427,428], infant [429,430], dogs [431] and cats [432] so nucleotides present in NEp 
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and OEp may influence the palatability of these products but also improve their 

nutritional profiles. 

Table 28. Nucleotide and derivatives content (µmol/ g powder) in NEp and OEp 

 

4.2.6 Mineral content 

Mineral content were analysed by two methods. First, several relevant ions were 

quantified by ion chromatography (Table 29) and minerals were quantified by ICP-OES in 

order to complete the results (Table 30). IC and ICP-OES have been used as 

complementary methods for mineral quantification. In the present study, ICP-OES was 

especially useful for metallic and trace element quantification. 

Four elements (Na, K, Ca, Zn) were detected by both methods. No significant difference 

was observed between the two methods for Na and K. Concerning Zn content, results 

obtained by ICP-OES were much lower than those obtained by ion chromatography. The 

quantification of Zn by ion chromatography was not really precise due to interference 

between Zn and Ca. Even though, in the case of NEp and OEp, the amount of Ca was 

much lower than in pork livers which allowed somehow detect Zn. Na and F contents 

M SD M SD

AMP 0.82 ± 0.03 0.60 ± 0.01 *

Hypoxanthine 3.35 ± 0.04 3.21 ± 0.16 ns

Xanthine 7.01 ± 0.02 6.71 ± 0.14 ns

Uridine 1.68 ± 0.01 5.91 ± 0.10 ***

Inosine 1.50 ± 0.01 7.00 ± 0.07 ***

Guanosine 1.03 ± 0.02 6.68 ± 0.08 ***

P  ##
OEp

## p value : ns , not significant; * P < 0.05; ** P < 0.01; *** P < 0.001

NEp
Item
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were higher in NEp than in OEp (p < 0.001; p < 0.01). Mg, Mn, Fe, Zn and Cu were 

quantified by ICP-OES. Concerning Fe and Zn content, there was no significant difference 

between each sample while Cu content was higher in OEp than in NEp (p < 0.01).  

The principal source of minerals in NEp and OEp is the pork liver used as raw material for 

their manufacture. Pork liver is particularly rich in K and P (Table 22) which may explain 

that these minerals were the most abundant in NEp and OEp. The difference of 

phosphorus content between NEp and OEp, although was not significant, could be due 

to some enzymes used during the process which may catalyse the hydrolysis of 

phosphorylated compounds such ATP and liberate (HPO4)
2-. The higher Na content in 

NEp is due to the neutralisation step using NaOH during the manufacture of NEp but not 

during the manufacture of OEp (Figure 14, section 3.1.2). The higher Cu content in OEp 

may be due to the variability of Cu content in raw materials used to manufacture NEp 

and OEp. 

Mineral content in meat and fish-flavour pet food have been reported by Duran et al. 

[342] and da Costa [345]. Both authors reported similar ranges and in accordance with 

nutrient profiles published by AAFCO [68].  However, the comparison of the present 

study remains difficult since palatability enhancers only represent 1-3% of the final pet 

foodstuffs and are not the unique source of minerals in these products. Based on the 

presented results, the contribution of the palatability enhancers to the final product 

mineral content must be considered, from a nutritional point of view, especially in 

specific diets such as low mineral formulas for urinary tract. 
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Table 29. Mineral content (mg/ g powder) in NEp and OEp quantified by ion 

chromatography 

 

Table 30. Mineral content (mg/ g powder) in NEp and OEp quantified by ICP-

OES 

  

M SD M SD

Na+ 16.23 ± 2.36 3.24 ± 0.09 ***

K+ 9.53 ± 0.72 10.11 ± 1.06 ns

Ca2+ 0.81 ± 0.09 0.68 ± 0.07 ns

Zn2+ 0.53 ± 0.16 0.57 ± 0.02 ns

F- 3.53 ± 0.86 1.70 ± 0.42 **

Cl- 8.67 ± 1.16 8.20 ± 1.55 ns

(HPO4)2- 7.70 ± 1.57 8.50 ± 1.92 ns

P  ##NEp OEp

 ## p value:  ns , not significant; ** P < 0.01; *** P < 0.001

Item

M SD M SD

Ca 0.62 ± 0.04 0.54 ± 0.04 ns

Cu 2.1E-03 ± 1.1E-04 2.9E-03 ± 1.6E-04 **

Fe 0.04 ± 2.3E-03 0.04 ± 2.1E-03 ns

K 10.07 ± 0.68 10.55 ± 0.63 ns

Mg 0.87 ± 0.05 0.78 ± 0.05 ns

Mn 8.2E-04 ± 4.5E-05 7.7E-04 ± 4.0E-05 ns

Na 15.63 ± 0.95 3.56 ± 0.20 ***

P 10.49 ± 0.48 10.37 ± 0.54 ns

Zn 0.02 ± 8.5E-04 0.02 ± 9.4E-04 ns

 ## p value:  ns , not significant; ** P < 0.01; *** P < 0.001

Item
NEp OEp

P  ##
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4.3 Fractionation and identification of peptides 
of interest in palatability enhancers  

As shown in section 4.2.1, peptides from NEp and OEp seemed quantitatively and 

qualitatively different. Thus, the aim of this section was to complete Objective 2 by 

fractionating NEp and OEp using GFC in order to study those fractions showing the 

highest palatability-enhancing potential for cats. Selected key-tastants like amino acids 

and sodium were analysed in NEp and OEp fractions and peptides were identified using 

proteomic tools (see section 3.3). 

4.3.1 Fractionation of NEp and OEp 

Deproteinised extracts of NEp and OEp (F0 NEp and F0 OEp) were fractionated by gel 

filtration chromatography. Fractions of 5 mL were collected. The absorbance of each 

fraction was measured by UV spectrophotometry and data was recorded at 214, 254 

and 280 nm. The elution profiles of the NEp and OEp deproteinised extracts are 

presented in Figure 19 and Figure 20, respectively. Similar GFC profiles have been 

reported for water-soluble raw pork meat extract [142]. 

Between the excluded volume (Ve) and the permeation volume (Vperm), the molecules 

were preferently eluted according to their molecular mass. The largest peptides were 

eluted earlier than the smallest. The exclusion volume of the column used was 5000 Da 

according to the specifications of the manufacturer (section 3.2.4).  
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Figure 19. Elution profile of F0 NEp fractionation by GFC 

 

Figure 20. Elution profile of F0 OEp fractionation by GFC 

Differences in the range of molecular mass were observed between samples from OEp 

and NEp. NEp presented a smaller amount of peptides than OEp in the initial fractions 

up to 225 mL of elution, corresponding to the peptides between 1 kDa and 2.5 kDa, as 
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shown by the lower intensity of the signal on the elution profile of these fractions. 

Nevertheless, after 225 mL of elution, the absorbance value corresponding to the 

product NEp was higher than that of OEp due to eluted peptides and free amino acids in 

the permeation volume (250 mL). The peptides which were eluted afterwards, were 

retained in the column by unspecific interactions due to aromatic amino acids like 

tyrosine, phenylalanine or tryptophan which were present either in peptides or as free 

amino acids. This absorbance could correspond to other compounds, like nucleotides 

that also contain aromatic moieties and absorb at the same wavelenght. In any case, the 

sample NEp was richer in this type of compounds than the sample OEp, especially in 

aromatic amino acids. These results agreed with results of section 4.2.1 (Figure 17 and 

Figure 18). According to the elution profiles, fractions were pooled in 4 major fractions 

called F1, F2, F3 and F4 (corresponding to elution volumes from 120 mL to 225 mL; from 

225 mL to 315 mL; from 315 mL to 405 mL and from 405 mL to 750 mL) for a separate 

study in both OEp and NEp products. 

4.3.2 Amino acid content in fractions F1-4 from NEp and OEp 

Total and free amino acids were quantified in F1-4 from NEp and OEp by RP-HPLC and 

results are presented in Table 31 and Table 32. 

Significant differences were observed for total and free amino acids in the four fractions 

(F1-4) from NEp and OEp. When considering the total amount, there was no significant 

difference between F1 NEp and F1 OEp in term of free amino acid content. Significant 

differences observed when comparing free amino acids from F1 NEp and F1 OEp one by 

one were not discussed due to the very small amount of free amino acids in these 

fractions. The content of total and free amino acids in F4 OEp was very low and could 

not be quantified. The observed absorbance of F4 in GFC could be due to free Trp (more 

than 70% of free amino acids in F4 is Trp) or small peptides containing it. It was not 
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posible to be more precise as Trp was almost destroyed by acid hydrolysis during total 

amino acid sample preparation. In the same way, the absorbance observed for F3 in GFC 

would be due to Tyr, which was the main free amino acid found in this fraction (more 

than 80 % of free amino acids in F3 was Tyr) together with small peptides containing it. 

Total amino acid contents in F3 were about twice higher in NEp than OEp due to Tyr 

content whereas peptides in F3 OEp contained more Glu, Gly and Pro than those of NEp. 

The highest amount of free amino acids and peptides were in F2. Indeed, more than 90 

% of the free amino acids and more than 70 % of total amino acids in both products 

were contained in F2. Thus, F2 was considered as the most interesting fraction to 

explain palatability differences between NEp and OEp based on its highest peptide and 

amino acid content. Most abundant amino acids were Leu, Asp and Val in F2 NEp and 

Glu, Asp and Lys in F2 OEp (Table 31). Principal differences were observed between free 

amino acid content in F2 NEp and F2 OEp (Table 32). In fact, free amino acid content was 

almost three times higher in F2 NEp than in F2 OEp. Most abundant free amino acids 

were Leu, Val and Glu. Moreover, the difference between the content of total and free 

amino acids in each fraction would correspond to the content of soluble proteins and 

peptides. In this case, F2 OEp was richer in peptides (lower than 1000 Da; 54.5 mg/g of 

powder) than NEp (16.6 mg/g of powder). Since small peptides may be considered as 

tastants [139], the differences in peptides content between OEp and NEp could be 

responsible for palatability differences between NEp and OEp. 
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Table 31. Total amino acid content (mg/ g in powder) of fractions F1-4 from NEp 

and OEp 

 

M SD M SD M SD M SD

Amino acids Amino acids

Asp 3.71 ± 0.04 3.17 ± 0.22 Asp 12.12 ± 0.11 9.13 ± 0.05

Glu 1.62 ± 0.11 2.44 ± 0.67 Glu 5.15 ± 0.41 9.71 ± 0.66

Ser 0.21 ± 0.00 0.28 ± 0.03 Ser 1.11 ± 0.01 0.78 ± 0.09

His 1.57 ± 0.14 2.20 ± 0.23 His 3.75 ± 0.43 6.72 ± 0.08

Gly 2.37 ± 0.07 3.26 ± 0.34 Gly 4.85 ± 0.24 7.76 ± 0.06

Thr 0.23 ± 0.00 0.29 ± 0.02 Thr 1.12 ± 0.01 0.79 ± 0.00

Ala 1.01 ± 0.01 1.28 ± 0.10 Ala 6.87 ± 0.06 3.64 ± 0.02

Arg 1.39 ± 0.02 1.54 ± 0.13 Arg 1.52 ± 0.01 4.45 ± 0.03

Tyr 0.55 ± 0.00 0.55 ± 0.04 Tyr 1.09 ± 0.02 1.55 ± 0.01

Val 2.14 ± 0.02 2.66 ± 0.20 Val 11.05 ± 0.08 7.78 ± 0.05

Met 0.33 ± 0.00 0.44 ± 0.03 Met 3.36 ± 0.03 1.30 ± 0.01

Trp Trp

Phe 0.87 ± 0.01 0.86 ± 0.06 Phe 8.42 ± 0.07 2.52 ± 0.01

Ile 1.41 ± 0.02 1.67 ± 0.12 Ile 7.84 ± 0.06 4.88 ± 0.03

Leu 2.29 ± 0.03 2.53 ± 0.19 Leu 15.69 ± 0.12 7.45 ± 0.05

Lys 3.12 ± 0.03 2.91 ± 0.26 Lys 5.30 ± 0.08 8.47 ± 0.06

Pro 2.35 ± 0.03 2.60 ± 0.17 Pro 5.21 ± 0.05 7.46 ± 0.04

Total 25.17 ± 0.28 28.67 ± 2.37 Total 96.07 ± 3.03 84.39 ± 1.02

M SD M SD M SD M SD

Amino acids Amino acids

Asp 0.31 ± 0.01 0.32 ± 0.00 Asp 0.12 ± 0.01

Glu 0.18 ± 0.05 Glu 0.09 ± 0.01

Ser Ser

His His

Gly 0.25 ± 0.02 0.40 ± 0.00 Gly 0.11 ± 0.01

Thr Thr

Ala Ala

Arg Arg

Tyr 7.44 ± 0.06 3.03 ± 0.01 Tyr 0.13 ± 0.01

Val 0.09 ± 0.00 Val

Met Met

Trp Trp 0.13 ± 0.01

Phe 1.18 ± 0.00 0.91 ± 0.00 Phe

Ile Ile

Leu Leu

Lys Lys

Pro 0.08 ± 0.01 0.14 ± 0.04 Pro 0.04 ± 0.00

Total 9.33 ± 0.09 4.98 ± 0.05 Total 0.56 ± 0.09

ND

ND

* ND

ND ND ND ND

***
## p value: ns , not significant; * P  < 0.05; ** P  < 0.01; *** P  < 0.001
 ND, not detected

ND ND ND ND

ND

ND ND

*** ND ND

ND

ND ND ND

ND ND ND ND

*** ND

ND ND ND

ND ND ND ND

ND ND NDND

*** ND

ND ND ND ND

ND ND ND ND

ND

ND ND ND ND

F4 OEp
P  ##

ns ND

ND

Item
F3 NEp F3 OEp

P  ## Item
F4 NEp

ns ***

* ***

* *

ns ***

** ***

* ***

** ***

*** ***

ND ND ND

** ***

* ***

ns ***

Item
F1 NEp F1 OEp 

P  ## Item
F2 NEp

** **

** ***

** ***

** **

F2 OEp
P  ##

** ***

* **
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Table 32. Free amino acid content (mg/ g powder) in fractions F1-4 from NEp and 

OEp 

 

M SD M SD M SD M SD

Amino acids Amino acids

Asp 0.01 ± 0.00 0.02 ± 0.00 Asp 5.30 ± 0.17 1.08 ± 0.01

Glu 0.01 ± 0.00 0.01 ± 0.00 Glu 7.69 ± 0.94 3.53 ± 0.03

Ser Ser 1.50 ± 0.05 0.28 ± 0.00

His His 2.24 ± 0.64 0.85 ± 0.04

Gly 0.01 ± 0.00 Gly 4.55 ± 0.18 1.06 ± 0.03

Thr 0.00 ± 0.00 Thr 1.21 ± 0.03 0.27 ± 0.00

Ala 0.01 ± 0.00 0.01 ± 0.00 Ala 6.32 ± 0.15 2.65 ± 0.03

Arg 0.03 ± 0.00 0.03 ± 0.01 Arg 0.85 ± 0.03 1.64 ± 0.02

Tyr 0.01 ± 0.00 Tyr

Val 0.02 ± 0.00 0.02 ± 0.00 Val 9.87 ± 0.23 2.67 ± 0.03

Met 0.02 ± 0.00 0.01 ± 0.00 Met 3.16 ± 0.11 1.31 ± 0.01

Trp Trp 0.03 ± 0.00

Phe 0.01 ± 0.00 0.01 ± 0.00 Phe 6.37 ± 0.14 2.36 ± 0.03

Ile 0.01 ± 0.00 0.01 ± 0.00 Ile 7.35 ± 0.15 1.92 ± 0.02

Leu 0.18 ± 0.02 0.16 ± 0.04 Leu 14.00 ± 0.30 6.58 ± 0.06

Lys 0.08 ± 0.00 0.03 ± 0.01 Lys 5.26 ± 0.26 2.38 ± 0.07

Pro 0.01 ± 0.00 0.00 ± 0.00 Pro 3.73 ± 0.12 1.30 ± 0.02

Total 0.39 ± 0.02 0.33 ± 0.08 Total 79.43 ± 1.58 29.89 ± 0.29

M SD M SD M SD M SD

Amino acids Amino acids

Asp 0.04 ± 0.00 Asp 0.01 ± 0.00

Glu 0.05 ± 0.00 Glu

Ser Ser

His His

Gly Gly 0.04 ± 0.00

Thr Thr

Ala 0.02 ± 0.00 Ala

Arg Arg

Tyr 6.68 ± 0.29 1.93 ± 0.41 Tyr

Val Val

Met Met

Trp Trp 0.19 ± 0.01 0.05 ± 0.00

Phe 0.88 ± 0.03 0.46 ± 0.09 Phe

Ile Ile

Leu 0.03 ± 0.00 Leu

Lys Lys

Pro Pro 0.01 ± 0.00

Total 7.70 ± 0.34 2.39 ± 0.51 Total 0.26 ± 0.01 0.05 ± 0.00

F4 OEpF4 NEpF3 OEpF3 NEp
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4.3.3 Peptide-mass mapping by MALDI-ToF/ToF 

After fractionation of NEp and OEp by GFC, each major fraction (F1-4) were fractionated 

by RP-HPLC. Two fractions containing the most hydrophilic peptides were selected 

(Figure 21) as they were considered as the most interesting peptides to analyse for the 

present study. Fractions from RP-HPLC were submitted to MALDI-ToF/ToF analysis and 

their spectra were compared using mMass v5.5.0 software. The samples “dilution 1:10” 

were analysed by MALDI-ToF mass spectrometry for two ranges of m/z: from 150 to 800 

Da and from 800 to 3500 Da in order to cover a wide range of molecular weights. 

MALDI-ToF/ToF was very useful to have an idea of the most ionisable peptides and their 

molecular weight distribution. Nevertheless, it is not the most adequate technique to 

compare different samples since the ionisation of peptides directly is strongly affected 

by the heterogeneity of the matrix-sample crystal formation and laser shots [433]. 

Peptides molecular mass distribution obtained by MALDI-ToF/ToF allowed the 

optimisation of ESI-LC-MS/MS parameters for more accurate peptide identification and 

sequencing (as indicated in section 3.3.4).  
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Figure 21.Chromatogram of F1 from NEp 

 Two fractions were collected during HPLC separation: 0-10 min and 10-20 min. 

4.3.4 Peptide identification in deproteinised extracts from NEp 
and OEp by nano-ESI-LC-MS/MS 

Peptides were identified in deproteinised extracts F0 NEp and F0 OEp by nanoLC-MS/MS 

using NCBInr as reference database (Table 33). A new database was created using 

Metazoa and Yeasts taxonomies. A total of 732 peptides were identified in NEp sample 

(464 from Metazoa and 268 from Yeasts) and 187 in OEp sample (164 and 23, 

respectively). Only 12 peptides in common were identified in both samples. Most 

peptides were lower than 2000 Da (also due to the deproteinisation step).  

Since many of the identified peptides came from yeasts, which were added equally in 

NEp and OEp after enzymatic digestion, another database was created including only 

Metazoa species in order to focus the research on the difference between NEp and OEp 
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generated by the hydrolysis. A total of 745 peptides were identified in F0 NEp and 417 in 

F0 OEp samples. Among these peptides, only 11 were coincident in both samples. Most 

peptides were lower than 2000 Da in both samples. 

Table 33. Number of identified peptides in deproteinised extracts (F0) from NEp 

and OEp 

 

4.3.5 Peptide identification in fractions F1-4 from NEp and OEp 
by nano-ESI-LC-MS/MS 

The objective was to identify peptides in the major fractions (F1-4) obtained after gel 

filtration chromatography of NEp and OEp. The analysis was performed by nanoLC-

MS/MS using NCBInr as reference database. A new alternative database was created 

including Metazoa taxonomy. 

4.3.5.1 Identified peptides and BIOPEP database 

Considering all identified peptides, a total of 1161 peptides were identified in NEp 

fractions and 1541 peptides in OEp fractions by nanoLC-MS/MS. The fractionation 

increased the sensibility of the analysis and, as a consequence, the number of identified 

peptides. 

Some savoury di- and tri-peptides described in BIOPEP database and literature 

[159,434–438] matched with fragments of peptide sequences identified in NEp and OEp 

Database
Number of identified 

peptides in F0 NEp

Number of identified 

peptides in F0 OEp

Number of common 

peptides

Metazoa and Yeasts 

taxonomies
732 187 12

Metazoa taxonomy 745 417 11
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fractions. Some of these di- or tri- peptides may have been generated during the 

enzymatic digestion, and their presence would influence the palatability of NEp and 

OEp. A comparison between some identified peptides from the most represented 

proteins and previously described savoury-related di- or tri-peptides is presented in 

Annex 2 and Annex 3. These tables include the protein of origin of the identified 

peptides, their sequences, di- or tri- peptides from literature, their sensory quality and 

references. The GFC fractions where the peptides have been identified are indicated in 

grey. 

Most savoury di- or tri- peptides from BIOPEP database elicit a bitter taste for human. 

However, the presence of these di- or tri- peptides in some sequences cannot lead to a 

conclusion for identified peptides’ taste qualities. The putative presence of more bitter 

di- or tri- peptides in OEp fractions than in NEp fractions could affect negatively the 

palatability of OEp in comparison with NEp. In fact, collagen peptides, which have mostly 

been described as bitter by humans [158,160,439], were more abundant in fractions 

from OEp than NEp (Figure 22). 

4.3.5.2 Identified peptides with a confidence higher than 90% 

Identified peptides (with a conf. > 90%) are presented in Annex 4 and Annex 5. These 

tables show the protein of origin of the identified peptides, their observed and 

calculated masses together with the charge states and their sequences. Common 

peptides identified in both NEp and OEp are indicated in black and those fractions where 

the peptides have been identified are indicated in grey. 

A higher number of peptides were identified in fractions from OEp (258) than NEp (193) 

distributed as presented in Table 34. The distribution of peptides number, free amino 

acid content (mg/ g powder) and content of amino acids derived from peptides (mg/ g 

powder) in each GFC fraction are shown in each fraction (Table 34). Some of these 
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peptides were identified in two or three fractions (from gel filtration chromatography). 

The number of common peptides identified in both products NEp and OEp was low and 

thus, 255 unique peptides were identified in OEp and 153 in NEp. In NEp, most identified 

peptides were in fractions 1 and 2 while in OEp, peptides were distributed in all 

fractions. A higher number of peptides was identified in F2 NEp (74) than F2 OEp (44). 

Nevertheless, there were less amino acids coming from peptides in F2 NEp (16.7 mg/g of 

powder) than F2 OEp (54.5 mg/g of powder) as calculated from Table 31 and Table 32. 

Free amino acid content was higher in F2 NEp than F2 OEp. More peptides were 

identified in F3 and F4 from OEp than F3 and F4 from NEp. These peptides may have 

generated bitter peptides during the enzymatic digestion which may affect negatively 

the acceptability of OEp. 

Table 34. Distribution of the number of identified peptides in each GFC fraction, 

free amino acid content (FAA) (mg/g powder) and content of amino acids (AA) 

derived from peptides (mg/g powder) in each fraction1 

1
 NCBI metazoa protein database 

The identified proteins in NEp and OEp fractions were very similar but the distribution of 

peptides according to their proteins of origin was different (Figure 22). They are all 

proteins present in pork liver or in other potential raw materials such as pork lungs 

[349,393]. Collagen and actin were the most represented proteins in OEp whereas 

number of 

identified 

peptides

FAA
AA from 

peptides 

number of 

identified 

peptides

FAA
AA from 

peptides

F1 111 0.4 24.7 98 0.3 28.3

F2 74 79.4 16.7 44 29.9 54.5

F3 6 7.7 1.6 72 2.4 2.6

F4 2 0.3 0.3 44 0.05 ~ 0

F6 81.7 298.7 33.1 382.7

fractions

NEp OEp
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betaine-homocysteine methyltransferase (BHMT) and hemoglobin were the most 

represented in NEp. Collagen peptides were the most abundant in F1 OEp and F2 OEp, 

and the second more represented in F3 OEp after actin. BHMT and hemoglobin peptides 

were the most numerous in F1 and F2 NEp. When considering each fraction separately, 

the distribution of peptides according to their proteins of origin was very similar to the 

distribution observed when considering all fractions together. The high number of 

peptides from collagen or cardiac actin in OEp was certainly due to the use of different 

raw materials, like lungs with residual heart pieces, in addition to liver (section 3.1.2). 

Moreover, collagen protein sequence is rich in Gly and Pro, around 12% and 10% in 

humans, respectively [440], forming a repeated GP motif, considered as a bitter di-

peptide for humans [158] which would be rejected by cats. Thus, the release of this 

peptide during the enzymatic digestion might negatively affect the palatability of OEp. 

Nevertheless, Gly and Pro as free amino acids were more abundant in NEp than in OEp. 
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Figure 22. Distribution of peptides from NEp and OEp fractions according to 

their proteins of origin 

 

The molecular weight distribution of the identified peptides from GFC fractions is shown 

in Figure 23. The general distribution is relatively similar between NEp and OEp but 

confirms a lower amount of peptides below 2.7 kDa for NEp as observed in previous 

studies done by gel electrophoresis (SDS-PAGE) (see section 4.2.1). The degree of 
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hydrolysis was higher in NEp than OEp (internal DIANA Petfood data). This data was 

confirmed by the higher ratio FAA/TAA for NEp (0.21) in comparison with OEp (0.08) and 

calculated from Table 31 and Table 32. Moreover, no peptides lower than 800 Da and 

higher amounts of free amino acids were identified in NEp fractions. 

The identified peptide sequences (Annex 4 and Annex 5) show the putative release of N-

terminal and C-terminal amino acids by the action of aminopeptidases and 

carboxypeptidases, respectively, leading to the reduction of peptide length as it has 

been previously reported to occur in dry-cured ham peptides generated during natural 

proteolysis [253,441,442]. On the one hand, Gln, Ala, Gly, Ile and Leu would be the most 

released amino acids from the N-terminal site during NEp manufacture whereas Val 

would be the most released during OEp manufacture. On the other hand, Leu, Phe, Gln 

and Arg would be the most released amino acids from the C-terminal site during NEp 

manufacture whereas Phe, Leu, Thr would be the most released during OEp 

manufacture. In addition, more amino acids would be released during NEp than OEp 

manufacture. According to the results presented in section 4.2.2, the free amino acid 

content was higher in NEp than OEp and Leu, Val and Phe were the most abundant free 

amino acids in both NEp and OEp.  

The putative effect of di- and tri- peptidylpeptidases was also observed in the identified 

peptide sequences. However, the release of di- and tri-peptides from the C-terminal part 

of the sequence would occur to a lesser extent. Moreover, amino acids and di-peptides 

released from peptides identified in OEp would be mainly hydrophobic which may affect 

negatively the palatability of OEp in comparison with NEp. 

In view of these results, the mix of enzymes used in OEp manufacture seems to contain 

a wide range of endopeptidases but low tri- and di-peptidylpeptidases as well as amino- 

and carboxypeptidases, whereas the mix of enzymes used for NEp manufacture would 
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contain a wide range of endopeptidases but lower than OEp, as well as amino-, 

carboxypeptidases, di- and tri-peptidylpeptidases in higher proportion than OEp. 

 

Figure 23. Molecular weight distribution of the identified peptides from GFC 

fractions - confidence > 90% 

4.4 Evaluation of fractions’ palatability using a 
rat panel 

The purpose of this section was to achieve Objective 3. Sensory analysis to evaluate the 

palatability of cat foodstuffs is generally performed using a trained-cat panel with a 

minimum of 30 cats to ensure statistical robustness. This type of analysis supposes very 

time-consuming training and replicate tests [125]. Moreover, this type of evaluation has 

been designed to measure palatability or taste quality as independant assays. Thus, the 

needed quantity of sample is preferably obtained at pilot-plan scale since preparation at 

laboratory scale would not provide enough quantity. In our study, the palatability and 

the taste quality of each fraction (F0, F1-4, F6) were evaluated by rats using the MOG 

technology allowing high efficient assays with a very low amount of samples (around 
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200 µL per well). Before sending fractions to Opertech Bio, sodium content was 

quantified in F2 NEp and F2 OEp in order to improve the experiment design and know if 

the addition of amiloride was necessary in all samples since NaCl may influence the 

palatability of a solution for cats and rats [55]. Also some taste properties of MSG and 

sucrose may overlap for rats if the taste of sodium ions of MSG is not reduced by 

amiloride [443]. 

4.4.1 Sodium content in fractions 2 from NEp and OEp 

According to their content in peptides and free amino acids, F2 NEp and F2 OEp were 

expected to be the most palatable for cats. Martínez-Arellano et al. [444]determined the 

NaCl content of a dry-cured ham at different ripening times and previous study done at 

the laboratory (no published results) showed that most NaCl from dry-cured ham 

deproteinised extract was eluted between 200 and 300 mL of the GFC which mainly 

correspond to fraction F2 in the present study. Moreover, sodium may strongly 

influence the palatability of foodstuffs for cats and/or rats [55] and potentially of NEp 

and OEp fractions. 

To verify if NaCl was concentrated in F2, sodium was quantified in F2 NEp and F2 OEp by 

ion chromatography (Table 35). Sodium content was about twice higher in F2 NEp than 

in F2 OEp and this can skew the sensory evaluation by rats. 
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Table 35. Sodium content (mg/ g fraction) in fractions F2 from NEp and OEp 

 

4.4.2 Sensory analysis at Opertech Bio. 

Palatability and taste quality of soluble protein and peptide extracts (F6 NEp and F6 

OEp), deproteinised extracts (F0 NEp and F0 OEp) and fractions from GFC (F1-4 NEp and 

F1-4 OEp) from NEp and OEp were evaluated by rats at Opertech Bio. To avoid the 

influence of NaCl, amiloride was added to each sample before sensory evaluation by rats 

increasing their NaCl taste detection threshold [445]. The main advantages of the 

methodology developed by Opertech Bio. compared to usual methodologies are: (1) the 

simultaneous and efficient measure of both taste quality and palatability of (2) several 

tastant solutions (3) prepared at laboratory scale and (4) evaluated by a limited number 

of trained subjects (4 rats) [130]. 

Thus, rats provided information about palatability which was correlated with the 

number of licks per trial, and about taste quality which was measured by the percentage 

of presses occurring on the lever associated with the taste standard for the cohort (i.e., 

the quinine or umami cue). 

The two main conclusions were as follows: 

- Fractions indicated a range of palatabilities based on licks rates from relatively 

appetitive to neutral or even midly aversive (Figure 24). 

M SD M SD

Na+ 7.24 ± 0.11 3.28 ± 0.06 ***

Item
F2 NEp F2 OEp

P  ##

 ## p value:  *** P < 0.001
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As expected, fractions 2 from NEp (F2 NEp) followed by F2 OEp were considered 

as the most palatable fraction from GFC by rats. F6 NEp was preferred to F2 NEp 

and F6 OEp. F3 NEp was preferred to F3 OEp. These results were in line with the 

higher free amino acid content and the lower bitter peptide content arising from 

collagen in NEp than in OEp, and the hypothesis than NEp would be more 

palatable than OEp. Nevertheless, F0 OEp was preferred to F0 NEp. Fractions 1 

and 4 from NEp and OEp were considered as the less palatable fraction from 

GFC by rats. Fractions 4 taste quality was close to water taste which confirmed 

the very low concentration of key tastants in F4 NEp and F4 OEp. 

 

Figure 24. Range of peptide fractions palatabilities  

 

- Although the lick rates for several fractions clearly indicated a taste response, 

the sensory quality of the taste response cannot be readily ascertained from the 

current datasets. As evidenced by the percentage of taste standard-appropriate 

lever presses, umami rats did not regard the fractions as umami-like. Similarly, 
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little indication of bitter taste quality among the fractions was observed in the 

bitter cohort. Thus, although some of the fractions appeared to be palatable, 

and some perhaps were mildly aversive, their taste qualities appeared to be 

relatively unique. Finally it is noteworthy to draw attention to the apparently 

consistent, unexpected impact of 100 μM amiloride on the taste responses to 

non-sodium controls. The data suggested that amiloride under the conditions of 

the current study might have been detected by the rats, perhaps as a 

consequence of relatively greater and prolonged exposure resulting from the 

many trials of amiloride-containing samples incorporated into the experimental 

design. In fact, amiloride is considered as a bitter compound [446,447] and may 

have affected the perception of rats. 

 



 

 

CONCLUSIONS 
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1. Pork livers used as raw material for cat food palatability enhancers did not differ 

based on proximal composition. Most differences between pork livers were 

observed for potential key tastants which concentrations depend on 

endogenous metabolic and/or enzymatic activities. Based on their chemical 

composition, pork livers were considered as high potential raw material to 

enhance cat food taste while meeting cat’s nutritional requirements. This part of 

the project was in line with the will of DIANA Petfood to ensure consistency of 

the product from batch to batch. 

 

2. Palatability enhancers differed based on their potential non-volatile tastants 

composition. The different compositions were a direct consequence of the 

manufacturing which involved enzymatic digestion and Maillard reaction. The 

gel filtration fractionation of NEp and OEp permitted a more accurate 

identification of peptides in these products. Putative hydrophobic peptides from 

collagen, considered as bitter by humans and avoided by cats, were identified in 

fractions from OEp and could negatively impact the palatability of OEp. On the 

other hand, high free amino acid content, abundant di- and tri- peptides and 

sodium salt content might have impacted positively the palatability of NEp. 

Based on analytical and proteomic results, the mix of enzymes used for OEp 

manufacturing certainly contained a wide range of endopeptidases but low di- 

and tri-peptidylpeptidases as well as amino- and carboxypeptidases, whereas 

the mix of enzymes used for NEp manufacturing would contain a wide range of 

endopeptidases but lower than OEp, as well as amino-, carboxypeptidases, di- 

and tri-peptidylpeptidases in higher proportion than OEp. 

 

3. The evaluation of the palatability and the taste quality of meat-based 

palatability enhancers by trained rats allowed the establishment of a correlation 
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between product composition and animal preferences. Each gel filtration 

fraction from NEp and OEp elicited a complex unique taste and could not be 

described as bitter nor umami. Two of the gel filtration fractions (F2 NEp 

followed by F2 OEp) were considered at least as palatable as the full palatability 

enhancers (F0 and F6) when evaluated by trained rats. Furthermore, these two 

fractions (F2 NEp and F2 OEp) were characterized by a high content of free 

amino acid and small peptides (< 1 kDa). These results will permit DIANA 

Petfood to improve their manufacturing by selecting raw materials and enzyme 

mixtures which generate soluble compounds responsible for a better 

palatability. 
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Annex 1. Details of the rMOG technology developed by Opertech Bio Inc. 

All these details and more are available on http://www.opertechbio.com/#!rmog/lh5zf.  

Taste quality measurement is achieved through the experimental paradigm of operant 

taste discrimination. Rats are trained to press two levers for a food pellet reward after 

they have tasted sample solutions presented to them in a 96-well plate. To receive the 

reward, the rats must press the right lever if the solution is a standard (for example, a 

sweet sugar solution) and the left lever if the solution presented has any other taste. By 

comparing the percentage of the presses on the right (standard) lever, the degree of 

similarity between a novel taste stimulus and the taste standard can be quantified. 

Palatability of the sample solutions in the 96-well plate is determined by a laser beam 

counting the number of times a rat licks the sample. The more licks the more palatable.  

Because of its ability to measure both taste quality and palatability in a high throughput 

capacity, the rMOG has proven particularly useful in the discovery of new flavor 

ingredients. MOG-trained rats are exceptionally efficient at screening large collections of 

natural products or other compounds for desirable taste properties. They also provide 

the ability to evaluate compounds not yet approved for use by humans 
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Schematic diagram depiction of the central components of the Microtiter 

Operant Gustometer (MOG), the first high throughput chemosensory system for 

in vivo testing.  
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Annex 2. Comparison of identified peptides (from NEp fractions) with di- and 

tri- peptides (from literature) that could potentially be generated from them and 

their savoury properties 

 

F1 F2 F3 F4

BHMT AAVEHPEAVRQL AA sweet Ishibashi et al., 1988

VE bitter; umami; sour Ishibashi et al., 1988

AEELAPERGFLPPA AE umami Noguchi and al., 1975

EE umami; salty; bitterness supressing Kuramitsu et al., 1996; Kim et al., 2015

EL bitter; sour; umami Arai et al., 1973; Tamura et al., 1990; Temussi, 2012

EEL umami Monastyrskaia et al., 1999

FL bitter Ishibashi et al., 1987; Upadhyaya et al., 2010

GF bitter Otagiri et al., 1985; Upadhyaya et al., 2010

PP bitter Otagiri et al., 1985

RG bitter Otagiri et al., 1985

AGPWTPEAAVEHPEAVRQ AA sweet Ishibashi et al., 1988

GP bitter Otagiri et al., 1985

VE bitter; umami; sour Ishibashi et al., 1988

AGPWTPEAAVEHPEAVRQL AA sweet Ishibashi et al., 1988

GP bitter Otagiri et al., 1985

VE bitter; umami; sour Ishibashi et al., 1988

IDLPEFPF DL bitter; sour Kuramitsu et al., 1996; Tamura et al., 1990

EF bitter Arai et al., 1973

FP bitter Ishibashi et al., 1987; Park et al., 2002

FPF bitter Ishibashi et al., 1987

PF bitter Ishibashi et al., 1987

IDLPEFPFGLEPR DL bitter; sour Kuramitsu et al., 1996; Tamura et al., 1990

EF bitter Arai et al., 1973

FG bitter Otagiri et al., 1985

FP bitter Ishibashi et al., 1987; Park et al., 2002

FPF bitter Ishibashi et al., 1987

GL bitter Ishibashi et al., 1988

LE bitter Ohyama et al., 1988

IDLPEFPFGLEPRVA DL bitter; sour Kuramitsu et al., 1996; Tamura et al., 1990

EF bitter Arai et al., 1973

FG bitter Otagiri et al., 1985

FP bitter Ishibashi et al., 1987; Park et al., 2002

FPF bitter Ishibashi et al., 1987

GL bitter Ishibashi et al., 1988

LE bitter Ohyama et al., 1988

LPEFPFGLEPR EF bitter Arai et al., 1973

FG bitter Otagiri et al., 1985

FP bitter Ishibashi et al., 1987; Park et al., 2002

FPF bitter Ishibashi et al., 1987

GL bitter Ishibashi et al., 1988

LE bitter Ohyama et al., 1988

PF bitter Ishibashi et al., 1987

RQVADEGDAL AD bitter Ohyama et al., 1988

ADE sweet; sour; bitter Maehashi et al., 1999

DA bitter; umami Kuramitsu et al., 1996; Noguchi and al., 1975

DE sour; umami; salty Kuramitsu et al., 1996

EG bitter Kuramitsu et al., 1996

SGRPYNPSMSKPDAW DA bitter; umami Kuramitsu et al., 1996; Noguchi and al., 1975

GR bitter Otagiri et al., 1985

GRP bitter Otagiri et al., 1985

KP bitter Otagiri et al., 1985

RP bitter Otagiri et al., 1985

SGRPYNPSMSKPDAWGV DA bitter; umami Kuramitsu et al., 1996; Noguchi and al., 1975

GR bitter Otagiri et al., 1985

GRP bitter Otagiri et al., 1985

GV bitter Ishibashi et al., 1992

KP bitter Otagiri et al., 1985

RP bitter Otagiri et al., 1985

SGRPYNPSMSKPDAWGVTK DA bitter; umami Kuramitsu et al., 1996; Noguchi and al., 1975

GR bitter Otagiri et al., 1985

GRP bitter Otagiri et al., 1985

GV bitter Ishibashi et al., 1992

KP bitter Otagiri et al., 1985

RP bitter Otagiri et al., 1985

VEHPEAVRQ VE bitter; umami; sour Ishibashi et al., 1988

VEHPEAVRQL VE bitter; umami; sour Ishibashi et al., 1988

VVIGDGGFVF DG umami Noguchi and al., 1975

FV bitter Ishibashi et al., 1987

GDG umami Temussi, 2012

GF bitter Otagiri et al., 1985; Upadhyaya et al., 2010

GGF bitter Otagiri et al., 1985

IG bitter Ishibashi et al., 1988

VF bitter Ishibashi et al., 1987

VI bitter Ishibashi et al., 1988

ReferenceProtein of origin Peptide sequence
Fractions Peptides from 

BIOPEP [434]
Sensory quality
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Annex 2 (continued) 

 

  

Hemoglobin, alpha ASLDKFLA FL bitter Ishibashi et al., 1987; Upadhyaya et al., 2010

KF bitter Ishibashi et al., 1987

LD bitter Ohyama et al., 1988

DDLPGAL DD sour; umami; salty Kuramitsu et al., 1996

DL bitter; sour Kuramitsu et al., 1996; Tamura et al., 1990

DPVNFKLL LL bitter Ishibashi et al., 1988

DP sour Park et al., 2002

GKKVADAL AD bitter Ohyama et al., 1988

DA bitter; umami Kuramitsu et al., 1996; Noguchi and al., 1975

KLRVDPVNFKLL LL bitter Ishibashi et al., 1988

DP sour Park et al., 2002

VD bitter; umami; sour Ishibashi et al., 1988

KLRVDPVNFK VD bitter; umami; sour Ishibashi et al., 1988

DP sour Park et al., 2002

LRVDPVNFK VD bitter; umami; sour Ishibashi et al., 1988

DP sour Park et al., 2002

LRVDPVNF VD bitter; umami; sour Ishibashi et al., 1988

DP sour Park et al., 2002

RVDPVNF VD bitter; umami; sour Ishibashi et al., 1988

DP sour Park et al., 2002

RVDPVNFKLL LL bitter Ishibashi et al., 1988

DP sour Park et al., 2002

VD bitter; umami; sour Ishibashi et al., 1988

VDPVNFKLL LL bitter Ishibashi et al., 1988

DP sour Park et al., 2002

VD bitter; umami; sour Ishibashi et al., 1988

VDPVNF VD bitter; umami; sour Ishibashi et al., 1988

DP sour Park et al., 2002

PVNFKLL LL bitter Ishibashi et al., 1988
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Annex 3. Comparison of identified peptides (from OEp fractions) with di- and 

tri- peptides (from literature) that could potentially be generated from them and 

their savoury properties 

 

F1 F2 F3 F4

actin (cardiac) QEYDEAGPSIVH DE sour; umami; salty Kuramitsu et al., 1996

EY bitter Arai et al., 1973

GP bitter Otagiri et al., 1985

IV bitter Ishibashi et al., 1988

actin (cytoplasmic) DEAQSKRGILTL DE sour; umami; salty Kuramitsu et al., 1996

GI bitter Ishibashi et al., 1988

IL bitter Ishibashi et al., 1987

RG bitter Otagiri et al., 1985

QEYDESGPSIVH DE sour; umami; salty Kuramitsu et al., 1996

DES salty; sour; umami; bitterness supressing Maehashi et al., 1999; Kim et al., 2015

ES umami: bitter supressing Arai et al., 1972; Kim et al., 2015

EY bitter Arai et al., 1973

GP bitter Otagiri et al., 1985

IV bitter Ishibashi et al., 1988

actin (skeletal muscle) ASGRTTGIVLDSGDGVTHNVPIYEG DG umami Noguchi et al., 1975

EG bitter Kuramitsu et al., 1996

GDG umami Temussi, 2012

GI bitter Ishibashi et al., 1988

GR bitter Otagiri et al., 1985

GV bitter Ishibashi et al., 1989

IV bitter Ishibashi et al., 1988

LD bitter Ohyama et al., 1988

VL bitter Ishibashi et al., 1988

DLAGRDLTDYL DL bitter; sour Kuramitsu et al., 1996; Tamura et al., 1990

GR bitter Otagiri et al., 1985

DSGDGVTHNVPIYEG DG umami Noguchi et al., 1975

EG bitter Kuramitsu et al., 1996

GDG umami Temussi, 2012

GV bitter Ishibashi et al., 1989

EKIWHHTF IW bitter Asao et al., 1987

EK umami; sour Temussi, 2012

IGMESAGIHETTYN ES umami: bitter supressing Arai et al., 1972; Kim et al., 2015

GI bitter Ishibashi et al., 1988

IG bitter Ishibashi et al., 1988

LAGRDLTDYL DL bitter; sour Kuramitsu et al., 1996; Tamura et al., 1990

GR bitter Otagiri et al., 1985

LTEAPLNPKANREKMTQIM PK bitter Ishibashi et al., 1988

EK umami; sour Temussi, 2012

PL bitter Asao et al., 1987

RVAPEEHPTL EE umami; salty; bitterness supressing Kuramitsu et al., 1996; Kim et al., 2015

SVWIGGSIL IG bitter Ishibashi et al., 1988

IL bitter Ishibashi et al., 1987

SYVGDEAQSKRGILT DE sour; umami; salty Kuramitsu et al., 1996

GI bitter Ishibashi et al., 1988

IL bitter Ishibashi et al., 1987

RG bitter Otagiri et al., 1985

VG umami, bitter Ishibashi et al., 1988; Asao et al., 1987

YASGRTTGIVL GI bitter Ishibashi et al., 1988

GR bitter Otagiri et al., 1985

IV bitter Ishibashi et al., 1988

VL bitter Ishibashi et al., 1988

YSFVTTAER AE umami Noguchi and al., 1975

FV bitter Ishibashi et al., 1987

collagen alpha-1(I) chain-like GAPGASGGQGAPGL GL bitter Ishibashi et al., 1988

IGEPGPQGAPGPPGQ GE bitter Ohyama et al., 1988

GP bitter Otagiri et al., 1985

IG bitter Ishibashi et al., 1988

PGP bitter Ishibashi et al., 1988

PP bitter Otagiri et al., 1985

PPG bitter Ishibashi et al., 1988

collagen alpha-1(IV) chain AKSEG EG bitter Kuramitsu et al., 1996

GAQGTPGIPGY GI bitter Ishibashi et al., 1988

GY bitter Ishibashi et al., 1987; Park et al., 2002

PGI bitter Ishibashi et al., 1988

PAGPQGY GP bitter Otagiri et al., 1985

GY bitter Ishibashi et al., 1987; Park et al., 2002

collagen alpha-1(VII) chain ASGPLGPIGP GP bitter Otagiri et al., 1985

IG bitter Ishibashi et al., 1988

LG bitter Ishibashi et al., 1988

PL bitter Asao et al., 1987

GPPGMPGPEGKPGVPGPL EG bitter Kuramitsu et al., 1996

GP bitter Otagiri et al., 1985

GV bitter Ishibashi et al., 1989

KP bitter Otagiri et al., 1985

PGP bitter Ishibashi et al., 1988

PL bitter Asao et al., 1987

PP bitter Otagiri et al., 1985

PPG bitter Ishibashi et al., 1988

ReferenceProtein of origin Peptide sequence
Fractions Peptides from 

BIOPEP [434]
Sensory quality
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Annex 3 (continued) 

 

  

collagen alpha-1(XI) chain-like PGLKGDSGPKGEKGPPGP GE bitter Ohyama et al., 1988

GL bitter Ishibashi et al., 1988

GP bitter Otagiri et al., 1985

EK umami; sour Temussi, 2012

KG salty; umami; bitter Temussi, 2012

KGD sweet Nakata et al., 1995

PGP bitter Ishibashi et al., 1988

PK bitter Ishibashi et al., 1988

PP bitter Otagiri et al., 1985

PPG bitter Ishibashi et al., 1988

collagen alpha-1(XIX) chain GIPGAPGPTGPPGLLG GI bitter Ishibashi et al., 1988

GL bitter Ishibashi et al., 1988

GLL bitter Ishibashi et al., 1987; Upadhyaya et al., 2010

GP bitter Otagiri et al., 1985

LG bitter Ishibashi et al., 1988

LL bitter Ishibashi et al., 1988

LLG bitter Ishibashi et al., 1987

PGP bitter Ishibashi et al., 1988

PP bitter Otagiri et al., 1985

collagen alpha-2(V) chain EGYGEEIACT EE umami; salty; bitterness supressing Kuramitsu et al., 1996; Kim et al., 2015

EG bitter Kuramitsu et al., 1996

EI bitter; sour Arai et al., 1973; Tamura et al., 1990

GE bitter Ohyama et al., 1988

GY bitter Ishibashi et al., 1987; Park et al., 2002

GYG bitter Ishibashi et al., 1987

YG bitter Ishibashi et al., 1987

QGIDGEPGVPGQPGS DG umami Noguchi et al., 1975

GE bitter Ohyama et al., 1988

GI bitter Ishibashi et al., 1988

GV bitter Ishibashi et al., 1989
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Annex 4. Identified peptides in fractions F1-4 from NEp with a confidence higher 

than 90% 

 

F1 F2 F3 F4
Actin (cytoplasmic) 703.83 2 1405.65 GFAGDDAPRAVFPS

Actin (cytoplasmic) 852.43 2 1702.85 YELPDGQVITIGNER

Actin (cytoplasmic) 770.90 2 1539.79   ELPDGQVITIGNER

Actin (cytoplasmic) 672.29 2 1342.56 QEYDESGPSIVH Gln->pyro-Glu (N-term)

Actin (cytoplasmic) 616.77 2 1231.53    EYDESGPSIVH

Amine oxidase B 828.89 2 1655.76 GKIPEDEIWQSEPE

Argininosuccinate synthase 768.91 2 1535.81 GIPIPVTPKNPWSM

Argininosuccinate synthase 664.33 2 1326.65 ENPKNQAPPGLY

Argininosuccinate synthase 674.84 2 1347.67 QDPAKAPNSPDIL Gln->pyro-Glu (N-term)

Argininosuccinate synthase 619.32 2 1236.63    DPAKAPNSPDIL

Argininosuccinate synthase 689.37 2 1376.73 SRGIYETPAGTIL

Arylsulfatase G 851.88 2 1701.76 GDQRCPLGPWPWCR DiOX (C) 

ATP synthase subunit beta 484.26 2 966.50 DEGLPPILN

ATP synthase subunit beta 747.41 2 1492.81 DSGAPIKIPVGPETL

ATP synthase subunit beta 640.35 2 1278.68 DSGAPIKIPVGPE

ATP synthase subunit beta 582.83 2 1163.65    SGAPIKIPVGPE

Betaine--homocysteine S-methyltransferase 598.30 2 1194.59 GEVVIGDGGFVF

Betaine--homocysteine S-methyltransferase 569.79 2 1137.57    EVVIGDGGFVF

Betaine--homocysteine S-methyltransferase 505.27 2 1008.53      VVIGDGGFVF

Betaine--homocysteine S-methyltransferase 686.68 3 2057.02 AGPWTPEAAVEHPEAVRQL

Betaine--homocysteine S-methyltransferase 648.99 3 1943.94 AGPWTPEAAVEHPEAVRQ

Betaine--homocysteine S-methyltransferase 393.21 3 1176.62                           VEHPEAVRQL

Betaine--homocysteine S-methyltransferase 504.75 2 1007.49 GGVSQTPSYL

Betaine--homocysteine S-methyltransferase 952.50 2 1902.98 GFIDLPEFPFGLEPRVA

Betaine--homocysteine S-methyltransferase 867.44 2 1732.88 GFIDLPEFPFGLEPR

Betaine--homocysteine S-methyltransferase 838.93 2 1675.86    FIDLPEFPFGLEPR

Betaine--homocysteine S-methyltransferase 850.45 2 1698.89      IDLPEFPFGLEPRVA

Betaine--homocysteine S-methyltransferase 765.40 2 1528.79      IDLPEFPFGLEPR

Betaine--homocysteine S-methyltransferase 708.86 2 1415.71        DLPEFPFGLEPR

Betaine--homocysteine S-methyltransferase 651.35 2 1300.68           LPEFPFGLEPR

Betaine--homocysteine S-methyltransferase 679.86 2 1357.70             PEFPFGLEPRVA

Betaine--homocysteine S-methyltransferase 594.81 2 1187.60             PEFPFGLEPR

Betaine--homocysteine S-methyltransferase 489.25 2 976.49       IDLPEFPF

Betaine--homocysteine S-methyltransferase 748.89 2 1495.76 AEELAPERGFLPPA

Betaine--homocysteine S-methyltransferase 713.37 2 1424.73    EELAPERGFLPPA

Bile acid-CoA:amino acid N-acyltransferase 784.92 2 1567.82 LPPGEGPFPGIIDLF

Bile acid-CoA:amino acid N-acyltransferase 711.39 2 1420.76 LPPGEGPFPGIIDL

Bile acid-CoA:amino acid N-acyltransferase 557.79 2 1113.57       GEGPFPGIIDL

85/88 kDa calcium-independent phospholipase A2 641.82 2 1281.62 LDGGGIKGLVLIQ

Calmodulin 720.82 2 1439.63 DTDSEEEIREAF

Calmodulin 612.77 2 1223.53      DSEEEIREAF

Calreticulin 438.69 2 875.37 DDEFTHL

Calreticulin 631.29 2 1260.56 EDDWDFLPPK

Carbamoyl-phosphate synthase 719.89 2 1437.77 IGENIDEKPLPTL

Carbamoyl-phosphate synthase 663.35 2 1324.69  GENIDEKPLPTL

Carbamoyl-phosphate synthase 606.81 2 1211.60  GENIDEKPLPT

Carbamoyl-phosphate synthase 625.83 2 1249.65     ENIDEKPLPTL Glu->pyro-Glu (N-term)

Carboxylesterase 475.24 2 948.46 GGDPGSVTLF

Catalase 770.38 2 1538.74 MPPGIEPSPDKMLQ

Catalase 607.81 2 1213.60         GIEPSPDKMLQ

Catalase 543.77 2 1085.53         GIEPSPDKML

Catalase 487.24 2 972.46         GIEPSPDKM

Catalase 538.24 2 1074.46 QEDPDYGLR Gln->pyro-Glu (N-term)

Catalase 486.22 2 970.42 GNYPSWTF

CG4744 911.43 2 1820.84 QQQPLQFQQPMLPQQ Gln->pyro-Glu (N-term)

Collagen alpha-1(XVI) chain 893.43 2 1784.84 GATGPMGQQGIPGIPGPPGP

Collagen alpha-1(XXVIII) chain-like 708.33 2 1414.64 DRGDQGPAGPYGPK DEA (Q)

Collagen alpha-3(V) chain 709.33 3 2124.97 PPGERGPHGLPGDIGPLGQMGS

Collagen alpha-5(IV) chain-like 758.35 3 2272.04 PGRYGYQGLPGLPGLKGDTYY DEA (Q)

Cytochrome c1 727.33 2 1452.65 SDYFPKPYPNPE

Dihydropyrimidinase 754.89 2 1507.77 GPPLRPDPSTPDFL

Disintegrin and metalloproteinase 462.80 2 923.58 IAIVGLILL

Disintegrin and metalloproteinase 567.80 2 1133.59 LPQINTQHAL

Dyslexia-associated protein 601.29 2 1200.57 RSRDDHGIVF

Egalitarian 747.31 2 1492.60 NNSSQQTQQVQTQ DEA (N); DEA(Q); DEA (Q)

Electron transfer flavoprotein 779.92 2 1557.82 DAYKGLLPEELTPL

Electron transfer flavoprotein 627.87 2 1253.72 DVAPISDIIAIK

Erythrocyte band 7 integral membrane protein 551.31 2 1100.61 STIVFPLPID

Exoribonuclease 656.33 2 1310.64 SIVPSSLASNHSL

Fibrinogen alpha chain 541.23 2 1080.44 DEVNQDFTN

Fructose-1,6-bisphosphatase 619.64 3 1855.89 STNEPSEKDALQPGRNL DEA (N)

Fructose-bisphosphate aldolase A 653.83 2 1305.64 QQNGIVPIVEPE Gln->pyro-Glu (N-term); DEA (N)

Fructose-bisphosphate aldolase A 589.31 2 1176.60    QNGIVPIVEPE Gln->pyro-Glu (N-term)

Fructose-bisphosphate aldolase B 653.83 2 1305.64 QQNGLVPIVEPE Gln->pyro-Glu (N-term); DEA (N)

Fructose-bisphosphate aldolase B 589.31 2 1176.60    QNGLVPIVEPE Gln->pyro-Glu (N-term)

Fructose-bisphosphate aldolase B 534.28 2 1066.55       NGLVPIVEPE DEA (N)

Fumarylacetoacetase 782.91 2 1563.80 AVPNPEQDPKPLPY

Fumarylacetoacetase 747.38 2 1492.75   VPNPEQDPKPLPY

Fraction from GFC
Protein of origin Obs m/z Theor z Obs MW Peptide sequence 

a
Modification 

cb
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Fumarylacetoacetate hydrolase domain-containing protein 755.42 2 1508.82 EQNVPVPKEPIIF

Fumarylacetoacetate hydrolase domain-containing protein 682.38 2 1362.75   QNVPVPKEPIIF Gln->pyro-Glu (N-term)

78 kDa glucose-regulated protein 633.83 2 1265.65 TVVGIDLGTTY Lys-add (N-term)

78 kDa glucose-regulated protein 570.83 2 1139.64 LEEIVQPIIS

Glutamate dehydrogenase 707.33 2 1412.65 DGSIWNPDGIDPK

Glutamate dehydrogenase 635.27 2 1268.52 DDGSWEVIEGY

Glutamate dehydrogenase 726.00 3 2174.99 GFIGPGIDVPAPDMSTGEREM

Glutamate dehydrogenase 766.87 2 1531.73 NGPTTPEADKIFLE DEA (N)

Glyceraldehyde-3-phosphate dehydrogenase 866.42 2 1730.83 ASCTTNCLAPLAKVIND Cys->Dha(C); DiOX (C)

Glyceraldehyde-3-phosphate dehydrogenase 830.90 2 1659.79   SCTTNCLAPLAKVIND DiOX (C); Cys->Dha (C) 

Glyceraldehyde-3-phosphate dehydrogenase 820.36 2 1638.70 ISWYDNEYGYSTR DEH (S); Trp->Kynurenin (W)

Glyceraldehyde-3-phosphate dehydrogenase 770.82 2 1539.63   SWYDNEYGYSTR

Glyceraldehyde-3-phosphate dehydrogenase 692.77 2 1383.52   SWYDNEYGYST

Glyceraldehyde-3-phosphate dehydrogenase 634.27 2 1266.52         YDNEYGYSTR

Glyceraldehyde-3-phosphate dehydrogenase 826.47 2 1650.92 SSIFDAAAGIPLNDNF

Glyceraldehyde-3-phosphate dehydrogenase 752.90 2 1503.79 SSIFDAAAGIPLNDN

Haptoglobin 696.88 2 1391.75 QKVPVNERVMPI Gln->pyro-Glu (N-term)

60 kDa heat shock protein 650.34 2 1298.67 SKPVTTPEEIAQ

60 kDa heat shock protein 586.31 2 1170.61 SKPVTTPEEIA

60 kDa heat shock protein 581.77 2 1161.52 NDELEIIEGM

60 kDa heat shock protein 582.26 2 1162.50 NDELEIIEGM DEA (N)

Heat shock protein HSP 90-alpha-like 675.77 2 1349.53 QPMEEEEVETF Gln->pyro-Glu (N-term)

Hemoglobin, alpha 2 480.27 2 958.52 LRVDPVNF

Hemoglobin, alpha 2 522.81 2 1043.60     VDPVNFKLL

Hemoglobin, beta 643.83 2 1285.65 GKVNVDEVGGEAL

Hemoglobin, beta 551.77 2 1101.53 GKVNVDEVGGE

Hemoglobin, beta 664.36 2 1326.71           VDEVGGEALGRLL

Hemoglobin, beta 614.80 2 1227.59               DEVGGEALGRLL

Hemoglobin, beta 607.28 2 1212.54 DKLHVDPENF

Hemoglobin, beta 552.29 2 1102.56              VDPENFRLL DEA (N)

Hemoglobin, delta 533.28 3 1596.83 SEGLNHLDNLKGTFA DEH (S)

Hemoglobin, delta 433.23 2 864.44                 DNLKGTFA

Insulin-like growth factor 1 receptor 796.91 2 1591.81 SLSTAQIRATYNGPN

Inter-alpha-trypsin inhibitor heavy chain 606.82 2 1211.62 QEVANPLMSAVA Gln->pyro-Glu (N-term)

Liver carboxylesterase 1-like 648.39 2 1294.76 LGVPFAKPPLGSL

Liver carboxylesterase 1-like 483.61 3 1447.81 KYLGGTDDPVKKK

Long-chain-fatty-acid--CoA ligase 681.91 2 1361.80 QPTIFPVVPRLL Gln->pyro-Glu (N-term)

Long-chain-fatty-acid--CoA ligase 568.82 2 1135.63 QPTIFPVVPR Gln->pyro-Glu (N-term)

Macrophage migration inhibitory factor 687.02 3 2058.03 TNVPRASVPDGFLSELTQQ

Macrophage migration inhibitory factor 851.44 2 1700.87 TNVPRASVPDGFLSEL

Macrophage migration inhibitory factor 800.92 2 1599.82   NVPRASVPDGFLSEL

Myosin regulatory light chain 2 615.78 2 1229.55 NGTDPEDVIRN DEA (N)

NAD(P) transhydrogenase 690.88 2 1379.74 KDGEVIFPAPTPK DEH (D)

NAD(P) transhydrogenase 821.88 2 1641.75 DEINHDFPDTDLVL

Phosphatidylethanolamine-binding protein 412.21 4 1644.82 TDPDAPSRKDPKYR

Protein EFR3 homolog A 732.90 2 1463.78 LRQLVLEVMHNL

Pyruvate kinase PKM-like 440.21 2 878.40 GWRPGSGY

Recombination activating protein 476.75 2 951.49 EEITLGKY

Regucalcin 502.22 2 1002.43 GESPVWEEA

Retinal dehydrogenase 434.73 2 867.45 GNPLTPGVN

Retinal dehydrogenase 568.27 2 1134.53 SNVTDEMRIA

Retinoic acid receptor RXR-alpha 950.90 2 1899.79 SPMNGLGSHFSVISSPMH OX (M)

SEC14-like protein 461.26 2 920.50 QPPEVIQK Gln->pyro-Glu (N-term)

Selenium-binding protein 606.31 2 1210.60 GTWERPGGAAPL

Sloppy paired 843.89 2 1685.76 GLPGLPGPPGPQGPPGPPP DEA (Q)

Solute carrier family 2, facilitated glucose transporter member 11-like 789.39 3 2365.16 VIASEFNRLNFRKQERTGQA DEA (N); DEA (N)

Stretchin-Mlck 644.81 2 1287.60 SVDLDDGDEPVK

4-trimethylaminobutyraldehyde dehydrogenase 571.29 2 1140.56 GEHIQLPGGSF

Triose phosphate isomerase 745.07 3 2232.18 GFLVGGASLKPEFVDIINARQ DEA (N); DEA (Q)

Triose phosphate isomerase 677.04 3 2028.10      LVGGASLKPEFVDIINARQ DEA (N); DEA (Q)

Triose phosphate isomerase 639.35 3 1915.01        VGGASLKPEFVDIINARQ DEA (N); DEA (Q)

Triose phosphate isomerase 559.32 2 1116.62      LVGGASLKPEF

Ubiquitin-60S ribosomal protein L40 520.27 3 1557.78 EVEPSDTIENVKAK

UDP-glucuronosyltransferase 2A3 697.84 2 1393.66 DFEFPRPYLPN

UDP-glucuronosyltransferase 2B31-like 655.86 2 1309.70 DLEFPRPLLPN

UDP-glucuronosyltransferase 2B31-like 672.85 2 1343.69 DFEFPRPLLPN

Uncharacterized protein LOC105888413 806.93 2 1611.85 VESGGGLVQPGGSLRLS

Uncharacterized protein LOC105891059 590.30 2 1178.59 ENVIRDAVTY

Uncharacterized protein LOC105891059 399.49 4 1593.93 LRDNIQGITKPAIR

Uncharacterized protein LOC105891059 494.62 3 1480.84   RDNIQGITKPAIR

Uncharacterized protein LOC105891059 544.78 2 1087.54 NDEELNKLL DEA (N)

Uncharacterized protein LOC105891059 535.81 2 1069.61 QKSTELLIR Gln->pyro-Glu (N-term)

Uncharacterized protein LOC105891644 533.29 2 1064.57 LEETLGQYI

Zinc finger protein 28 homolog 631.26 2 1260.50 SREQLPASDRC

a  Amino acids in bold are those affected by the modifications;  b Common peptides present in fractions from NEp and OEp;  c  DEA: deamidated;  DEH: dehydrated; DiOX: dioxidation; OX: oxidation;                                   

Confidence higher than 95%
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Annex 5. Identified peptides in fractions F1-4 from OEp with a confidence higher 

than 90% 

 

 

F1 F2 F3 F4

Actin (cardiac muscle) 664.30 2 1326.57 QEYDEAGPSIVH Gln->pyro-Glu (N-term)

Actin (cytoplasmic) 424.70 2 847.39 FAGDDAPR

Actin (cytoplasmic) 672.29 2 1342.57 QEYDESGPSIVH Gln->pyro-Glu (N-term)

Actin (cytoplasmic) 611.31 2 1220.59 SYELPDGQVIT

Actin (skeletal muscle) 541.95 3 1622.83 SYVGDEAQSKRGILT

Actin (skeletal muscle) 574.81 2 1147.60 RVAPEEHPTL

Actin (skeletal muscle) 555.04 4 2216.13 LTEAPLNPKANREKMTQIM OX (M); OX (M)

Actin (skeletal muscle) 893.44 3 2677.30 YASGRTTGIVLDSGDGVTHNVPIYEG

Actin (skeletal muscle) 839.09 3 2514.24   ASGRTTGIVLDSGDGVTHNVPIYEG

Actin (skeletal muscle) 780.35 2 1558.69                            DSGDGVTHNVPIYEG

Actin (skeletal muscle) 626.32 2 1250.61 DLAGRDLTDYL

Actin (skeletal muscle) 537.27 2 1072.52 YSFVTTAER

Actin (skeletal muscle) 852.45 2 1702.85 YELPDGQVITIGNER

Actin (skeletal muscle) 514.74 2 1027.46 ASLSTFQQM OX (M)

Alcohol dehydrogenase 604.02 3 1809.02 SIGEGVTTVKPGDKVIPL

Aldehyde dehydrogenase 541.76 2 1081.50 GGPWGNKGYF

Aldehyde dehydrogenase 468.22 2 934.43 GGPWGNKGY

Aldehyde dehydrogenase 568.28 2 1134.53 SNVTDEMRIA

Aldehyde dehydrogenase 461.23 2 920.43 EEIFGPVM

Alpha-aminoadipic semialdehyde dehydrogenase 730.88 2 1459.73 DRPGNYVEPTIVT

Alpha-tectorin 492.19 2 982.40 NETFWTGE

Amyloid beta A4 precursor protein-binding 551.93 3 1652.86 LQNQGEKLWKANAPG

APC membrane recruitment protein 578.29 2 1154.51 DALYDLYADP

Arf-GAP with Rho-GAP domain, ANK repeat and PH domain-containing protein 628.78 2 1255.60 TREDFQKFW

Argininosuccinate synthase 585.34 2 1168.66 QHGIPIPVTPK Gln->pyro-Glu (N-term)

Argininosuccinate synthase 561.26 2 1120.51 DENLMHISY

Aspartate aminotransferase 786.36 2 1570.71 WYNGTNNKNTPVY DEA (N)

Ataxin-2-like protein 463.20 2 924.33 ESDMSNGW

ATP synthase subunit beta 924.48 2 1846.95 LGIYPAVDPLDSTSRIM

ATP-binding cassette sub-family A member 12 628.78 2 1255.55 LTHDQSVAEAW

AT-rich interactive domain-containing protein 495.20 2 988.39 GAAPSSSSGPTA

Betaine--homocysteine S-methyltransferase 534.75 2 1067.48 YASEDKLEN

Betaine--homocysteine S-methyltransferase 535.76 2 1069.49 QVADEGDALVA Gln->pyro-Glu (N-term)

Betaine--homocysteine S-methyltransferase 688.85 2 1375.67 IGPEGDLHGISPGE AM (C-term)

Betaine--homocysteine S-methyltransferase 736.40 2 1470.79 LPEFPFGLEPRVA

Betaine--homocysteine S-methyltransferase 441.24 3 1320.68 KEYWENLRIA

Betaine--homocysteine S-methyltransferase 597.30 2 1192.59    EYWENLRIA

Cadherin-12 745.34 2 1488.67 AITGETGDITFYSD

Calmodulin 643.31 2 1284.60 VFDKDGNGYISA

Calreticulin 583.98 3 1748.93 RFEPFSNKGQTLVVQ

Carbamoyl-phosphate synthase 556.77 2 1111.53 YMESDGIKVA

Carbamoyl-phosphate synthase 694.37 2 1386.71 FVDPNKQNLIAE

Carbamoyl-phosphate synthase 629.85 2 1257.67 FVDPNKQNLIA

Carbamoyl-phosphate synthase 735.35 2 1468.65 QAGEFDYSGSQAVK Gln->pyro-Glu (N-term)

Carbamoyl-phosphate synthase 1041.08 2 2080.12 LKQADTVYFLPITPQFVT

Carbamoyl-phosphate synthase 542.79 2 1083.56 LKQADTVYF

Carbamoyl-phosphate synthase 581.83 2 1161.64                       FLPITPQFVT

Carbamoyl-phosphate synthase 568.97 3 1703.87 FSDKLNEINEKIAPS

Carbamoyl-phosphate synthase 713.91 2 1425.81 GQIPNNLAVPLYK

Carbamoyl-phosphate synthase 719.90 2 1437.77 IGENIDEKPLPTL

Carbamoyl-phosphate synthase 663.35 2 1324.69 IGENIDEKPLPT

Carbamoyl-phosphate synthase 612.83 2 1223.64 IGENIDEKPLP

Carbamoyl-phosphate synthase 784.89 2 1567.76 SDWLNANNVPATPVA

Catalase 655.80 2 1309.56 DVVFTDEMAHF

Catalase 561.31 2 1120.60 NNTPIFFIR

Catalase 525.26 2 1048.50 DFWSLRPE

Catalase 515.27 2 1028.52 IEPSPDKML

CG13972 686.30 2 1370.60 DEQFEDKKDAF

CG33770 608.85 2 1215.68 NIVNAAKINLF

CG9184 455.25 2 908.48 PGPPPPPGPP

Collagen alpha-1(II) chain 592.82 2 1183.60 GPGGAPGVPGPPGAP

Collagen alpha-1(IV) chain 509.22 2 1016.49 GAQGTPGIPGY

Collagen alpha-1(VIII) chain 788.40 2 1574.80 EPGPRGPPGPPGLPGHG

Collagen alpha-1(XIII) chain 362.22 2 722.42 GLPGPIGL

Collagen alpha-1(XIV) chain 539.28 2 1076.53 GVPGPQGPSGQP

Collagen alpha-1(XVI) chain-like 629.24 2 1256.47 TRGDVGPEGLAGE

Collagen alpha-2(I) chain 504.28 2 1006.54 SVGPVGPAGPIG

Collagen alpha-2(I) chain 920.52 1 919.51   VGPVGPAGPIG

Collagen alpha-2(I) chain 411.23 2 820.45      GPVGPAGPIG

Collagen alpha-2(I) chain 689.33 2 1376.69 GSVGEPGPLGISGPPG

Collagen alpha-2(V) chain 697.81 2 1393.65 QGIDGEPGVPGQPGS

b Fraction from GFC
Protein of origin Obs m/z Theor z Obs MW Peptide sequence 

a
Modification 

c
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Collagen alpha-3(V) chain 418.20 2 834.46 GPIGPLGAPG

Collagen alpha-3(VI) chain 544.76 2 1087.51 GSRKDMGIPQ

Collagen alpha-4(IV) chain 889.43 2 1776.92 RGQPGPPGPQGPIGPLGPP DEA (Q); DEA (Q)

Collagen alpha-5(IV) chain 481.75 2 961.49 GPTGPLGPLGP

Collagen alpha-5(IV) chain 418.20 2 834.46 GPLGPLGPAG

Collagen alpha-5(IV) chain 354.18 2 706.40 GPLGPLGP

Collagen alpha-5(IV) chain 397.20 2 792.41 GPLGPAGPAG

Collagen alpha-5(IV) chain 354.18 2 706.40 GPIGPLGP

Collagen alpha-5(IV) chain 354.18 2 706.40 GPLGPIGP

Collagen alpha-5(IV) chain 362.22 2 722.42 GPLGPLGI

Collagen alpha-6(IV) chain 439.21 2 876.51 GPLGPLGPIG

Collagen alpha-6(IV) chain 439.21 2 876.51 GPLGPLGPLG

Complement component C6 483.19 2 964.36 YDTCYDW

Cytochrome b 566.43 2 1130.74 LLILLSLLHP

Cytochrome oxidase subunit 1 476.25 2 950.45 WASMVGTSL

Cytochrome oxidase subunit 1 336.14 2 670.27 AYTMW

Cytochrome oxidase subunit I 555.79 2 1109.50 LYFMFGFW

Cytosol aminopeptidase 441.59 3 1321.72 KGITFDSGGISLK

Cytosolic endo-beta-N-acetylglucosaminidase 507.77 4 2027.06 TIPPVGWTNAAHRHGVCVL

Dedicator of cytokinesis protein 570.63 3 1708.79 PVMYQHHTDLNPIE OX (M)

Dermatan-sulfate epimerase-like protein 458.21 3 1371.60 VDGWTNFNPGHE

Dipeptidyl peptidase 657.33 2 1312.65 YVWNNDIYVK

Disintegrin and metalloproteinase 527.76 2 1053.50 YGPWTKCTV

 DnaJ homolog subfamily B member 5 462.24 2 922.48 ADDIKKAY

DnaJ homolog subfamily B member 5 514.23 2 1026.44 DDPFGPWGH

Dumpy 646.26 3 1935.77 CLASDPCALNAECYGRNH

E3 ubiquitin-protein ligase CBL-C 507.75 2 1013.44 ELYCEIGST

Early nodulin-75-like 726.85 2 1451.69 PQEEQPQKDQPQ DEA (Q)

Electron transfer flavoprotein 563.82 2 1125.63 LDVAPISDIIA

Electron transfer flavoprotein 721.39 2 1440.76 INKDPEAPIFQVA

Electron transfer flavoprotein 710.88 2 1419.73 DLFKVVPEMTEI

Elongation factor 1 alpha 573.33 2 1144.65 LPLQDVYKIG

Elongation factor 1-alpha 1 602.84 2 1203.65 FAPVNVTTEVK

Elongation factor 1-alpha 1 659.88 2 1317.74 VIILNHPGQISAG

Endoplasmin 743.38 2 1484.75 GVVDSDDLPLNVSR

Fatty aldehyde dehydrogenase 569.68 3 1705.97 QEEIFGPILPIVPVK Formyl (N-term)

Fatty aldehyde dehydrogenase 646.93 2 1291.83         IFGPILPIVPVK

F-BAR domain only protein 561.30 2 1120.60 LNMQALTAFL

Fibrillin-2 377.55 3 1129.64 RGFIPNIRTG

Folylpolyglutamate synthase 471.28 2 940.54 GQLPLAPVF

Fructose-bisphosphate aldolase 642.36 2 1282.70 LAIQENANALAR

Fructose-bisphosphate aldolase 658.37 2 1314.72 LEGTLLKPNMVT

Fructose-bisphosphate aldolase 537.31 2 1072.60     GTLLKPNMVT

Fumarylacetoacetase 792.87 2 1583.73 EDSDFPIHNLPYGV Glu->pyro-Glu (N-term)

Fumarylacetoacetase 801.88 2 1601.74 EDSDFPIHNLPYGV

Fumarylacetoacetase 752.34 2 1502.67 EDSDFPIHNLPYG

Fumarylacetoacetase 737.36 2 1472.69   DSDFPIHNLPYGV

Fumarylacetoacetase 577.24 2 1152.47 DYTDFYSSR

78 kDa glucose-regulated protein 866.46 2 1730.90 IIANDQGNRITPSYVA

78 kDa glucose-regulated protein 723.41 2 1444.80 QDIKFLPFKVVE Gln->pyro-Glu (N-term)

Glued protein 577.78 2 1153.55 NQQKSGAHSTP

Glutamate dehydrogenase 599.30 2 1196.58 GFFDRGASIVE

Glutamate dehydrogenase 613.30 2 1224.59 YTDNELEKIT

Glutamate dehydrogenase 860.09 3 2576.20 KGFIGPGIDVPAPDMSTGEREMSW

Glutamate dehydrogenase 713.86 2 1425.70 MTPGFGDKTFVVQ

Glutamate dehydrogenase 588.30 2 1174.59 GPTTPEADKIF

Glutamate dehydrogenase 788.43 2 1574.84 IMVIPDLYLNAGGVT

Glutamate dehydrogenase 666.37 2 1330.71      VIPDLYLNAGGVT

Glutathione S-transferase Mu 1 626.76 2 1251.52 DAPDYDRSQW

Glutathione S-transferase Mu 2-like 500.76 2 999.50 DKITYVDF

Glyceraldehyde-3-phosphate dehydrogenase 596.33 2 1190.63 AAFNSGKVDIVA

Glyceraldehyde-3-phosphate dehydrogenase 760.40 2 1518.76 AADGPLKGILGYTED

Glyceraldehyde-3-phosphate dehydrogenase, testis-specific 634.27 2 1266.52 YDNEYGYSTR

Glyceraldehyde-3-phosphate dehydrogenase, testis-specific 495.22 2 988.43      NEYGYSTR

Glyceraldehyde-3-phosphate dehydrogenase-like 410.24 2 818.47 VKVGVNGF

Glyceraldehyde-3-phosphate dehydrogenase-like 647.82 2 1293.62 AINDPFIDLNY

Glyceraldehyde-3-phosphate dehydrogenase-like 566.29 2 1130.56 AINDPFIDLN

Glyceraldehyde-3-phosphate dehydrogenase-like 640.82 2 1279.63 GILGYTEDQVVS

Glyceraldehyde-3-phosphate dehydrogenase-like 721.91 2 1441.79 FRVPTPNVSVVDL

Glyceraldehyde-3-phosphate dehydrogenase-like 665.36 2 1328.71 FRVPTPNVSVVD

Glyceraldehyde-3-phosphate dehydrogenase-like 1026.56 1 1025.54      VPTPNVSVVD

Glycerol kinase 436.67 2 871.32 DNYHHW DEA (N)

G-protein coupled receptor 26-like 485.74 2 969.45 MCALLFSW

Grasp65 425.22 2 848.42 GFGYLHR

GUK-holder 515.72 2 1029.47 TDDAPERLN
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Hemoglobin, beta 636.83 2 1271.61 SMWGKVNVDEVG DET (M)

Hemoglobin, beta 551.78 2 1101.55        WGKVNVDEVG

Hemoglobin, beta 598.32 2 1194.62 VVYPWTQRF

Hemoglobin, beta 548.78 2 1095.55    VYPWTQRF

Hemoglobin, beta 397.20 2 792.38    VYPWTQ

Hemoglobin, beta 499.25 2 996.48       YPWTQRF

Hemoglobin, beta 425.72 2 849.41       YPWTQR

Hemoglobin, beta 694.32 1 693.31       YPWTQ

Hemoglobin, beta 533.74 2 1065.51 DKLHVDPEN

Hemoglobin, beta 580.31 2 1158.61            VDPENFRLLG

Hemoglobin, beta 551.80 2 1101.59            VDPENFRLL

Hexosaminidase 721.81 2 1441.61 CTAEGEMVAGLQYA

Hexosaminidase 669.31 2 1336.58 QVLGGEVCMWSE

Histone-lysine N-methyltransferase SMYD1-like 543.26 2 1084.54 VSYVDYLNL

Homeobox protein Hox-C8 519.24 2 1036.46 YGPGGSAPGFQ

5-hydroxyisourate hydrolase-like 652.80 2 1303.58 SPWSYTTYRGS

Hypothetical protein 739.85 2 1477.67 ADGNGTIDFPEFLT DEH (D)

Hypothetical protein 638.79 2 1275.57 AELQDMINEVD

Hypoxanthine-guanine phosphoribosyltransferase 616.83 2 1231.64 DIKVIGGDDLST

Hypoxanthine-guanine phosphoribosyltransferase 560.26 2 1118.50 LDYNEYFR

Ino80 522.19 2 1042.35 QDDYDAGEM

Integrin beta-4 477.69 2 953.37 VCAYGAQGEG

Kinetochore-associated protein 455.21 2 908.43 LMPLFSDS

Latent-transforming growth factor beta-binding protein 425.22 2 848.42 GFGYCFR

Liver carboxylesterase 1-like 567.80 2 1133.59 INKQEFGWI

Liver carboxylesterase 1-like 511.26 2 1020.50 INKQEFGW

Liver carboxylesterase 1-like 771.46 2 1540.90 VFLGVPFAKPPLGSL

Liver carboxylesterase 1-like 648.39 2 1294.76      LGVPFAKPPLGSL

Liver carboxylesterase 1-like 545.25 2 1088.49 YEFQYRPS

L-lactate dehydrogenase A-like 592.35 2 1182.69 IIVSNPVDILT

L-lactate dehydrogenase A-like 541.83 2 1081.64 IIVSNPVDIL

Mediator of RNA polymerase II transcription subunit 12 552.26 2 1102.52 ALMHVCVGHH

Meiosis arrest female protein 1-like 417.72 2 833.42 CLGSGSPVD

Metalloprotease TIKI2-like 494.24 2 986.50 SLPADDRIT

Metastasis-associated protein MTA1-like 867.93 2 1733.84 CARGLVAPQGPAGPVGPVG DiOX (C)

Metazoa galactosyltransferase 417.23 2 832.44 ADEVLTAD

Methylmalonate-semialdehyde dehydrogenase 588.35 2 1174.68 VNVPIPVPLPM

Mitochondrial sodium/hydrogen exchanger 9B2-like 530.23 2 1058.50 HAVGFAGAGGLC

Monocarboxylate transporter 9 482.27 2 962.52 IASPICSACV

Muscle-specific protein 300 kDa 593.25 2 1184.49 DMQALQDSFD OX (M)

Myosin regulatory light chain 2 668.83 2 1335.63 DQTQIQEFKEA

Na+/H+ hydrogen antiporter 457.22 2 912.45 EPPFWQK Glu->pyro-Glu (N-term)

Neuroblast differentiation-associated protein 577.79 2 1153.53 VKGEYDVTMP OX (M)

NF-kappa-B essential modulator 636.31 2 1270.56 ECEALQQQHSV

Nik-related protein kinase 569.77 2 1137.53 PEQQRQGQAP

Nuclear fragile X mental retardation-interacting protein 627.80 2 1253.63 QILPGAQPPFDA DEA (Q)

Nucleophosmin 755.40 2 1508.72 AEAMNYEGSPIKVT

Nucleophosmin 621.36 2 1240.71 LGGFEITPPVVL

Olfactory receptor 2T2-like 441.30 2 880.52 ILLTVHW

Ornithine carbamoyltransferase 527.81 2 1053.61 IPIINGLSDL

PFTAIRE-interacting factor 482.22 2 962.44 EPEKATCVS

PHD finger protein 320.17 2 638.25 YGVDGE

Phosphoenolpyruvate carboxykinase (GTP) 875.99 2 1749.96 TVIVTPSQRDTVPLPAG

Phosphoenolpyruvate carboxykinase (GTP) 583.84 2 1165.58 YVLPFSMGPVG

Phosphoenolpyruvate carboxykinase (GTP) 533.26 2 1064.49 AINPENGFFG

Phosphoenolpyruvate carboxykinase (GTP) 554.76 2 1107.50 DFWEQEVR

Polyubiquitin-B 592.78 2 1183.54 SDYNIQKEST

Probable ATP-dependent RNA helicase DDX10 569.78 2 1137.55 MEVYNEFVR DET (M)

Protein disulfide-isomerase A3 832.89 2 1663.75 MDATANDVPSPYEVR

Protein NipSnap homolog 2 667.28 2 1332.57 TWYGEQDQAVH

Protein NLRC3-like 378.20 2 754.39 FTEPVY

Protein polybromo-1 586.28 2 1170.55 LGLNGMNGNPGAG

Recombination activating protein 552.26 2 1102.47 SVYVCTLCDT

Retinal dehydrogenase 984.50 2 1966.98 FIQPTVFSNVTDEMRIA

Retinal dehydrogenase 622.34 2 1242.66 VVNIVPGYGPTAG

Rho GTPase-activating protein 619.78 2 1237.55 CTFQAQRQQE

Roundabout homolog 3 554.31 2 1106.55 LSSHEGRPAGP

Selenium-binding protein 510.26 2 1018.50 LDGETFEVK DEH (D)

Selenium-binding protein 557.92 3 1670.73 YDFWYQPRHNVM OX (M)

Selenium-binding protein 741.92 2 1481.82 QIFLGGSIVKGGPVQ Gln->pyro-Glu (N-term)

Selenium-binding protein 522.81 2 1043.60 QIFLGGSIVK Gln->pyro-Glu (N-term)

serine--pyruvate aminotransferase 540.76 2 1079.50 YDWRDIVN

Serotransferrin 592.86 2 1183.70 LAPYNLKPVVA

Serum albumin 665.84 2 1329.66 LFEKLGEYGFQ

Serum albumin 471.24 2 940.47        KLGEYGFQ

Serum albumin 643.27 1 642.27                EYGFQ
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Sodium/calcium exchanger 502.20 3 1503.63 EVCGHGFESGELGPS

Solute carrier family 35 member F2 449.19 3 1344.65 MLGFILYCSTPT

Sorbitol dehydrogenase 719.87 2 1437.71 NYPIPEPGPNEVL

Sorbitol dehydrogenase 467.71 2 933.40 SDVHYWQ

Speedy protein C 429.18 2 856.35 AMEPSHW

Superoxide dismutase [Mn] 545.26 2 1088.50 GIDVWEHAY

Superoxide dismutase [Mn] 516.74 2 1031.47    IDVWEHAY

T-box transcription factor TBX4 508.25 2 1014.38 ACMYGGVEGE

Titin-like 354.67 2 707.33 DADACTL

Titin-like 571.98 3 1712.92 EFRIRAKNSAGALSPP

Trinucleotide repeat-containing gene 6A protein 376.67 2 751.33 KFTNGW

Triosephosphate isomerase 462.94 3 1385.79 LKPEFVDIINAK

Tyrosine transporter hoepel2 437.16 3 1308.67 SFGFLTVQPQVS

Ubiquilin-2 714.86 2 1427.71 SGPPGAPGTPGLPGIPG

Ubiquitin-60S ribosomal protein 557.97 3 1670.87 LEVEPSDTIENVKAK

Ubiquitin-60S ribosomal protein 736.88 2 1471.74 LEVEPSDTIENVK

Ubiquitin-60S ribosomal protein 566.28 2 1130.53 LEVEPSDTIE

Ubiquitin-60S ribosomal protein 671.34 2 1340.65   EVEPSDTIENVK Glu->pyro-Glu (N-term)

Ubiquitin-60S ribosomal protein 675.70 3 2024.07 IQDKEGIPPDQQRLIFAG

Ubiquitin-60S ribosomal protein 633.01 3 1896.01 IQDKEGIPPDQQRLIF

Ubiquitin-60S ribosomal protein 587.32 3 1758.92 SDYNIQKESTLHLVL

UDP-glucuronosyltransferase 2B4-like 725.88 2 1449.73 IPLFADQPDNIAH

Uncharacterized protein C19orf43 homolog 523.23 2 1044.47 GPAGGGGSGSRW

Uncharacterized protein LOC102943242 320.50 3 958.42 NPPLDSMW

Uncharacterized protein LOC105887344 650.30 2 1298.59 NEFGYSNRVVD

Uncharacterized protein LOC105891059 596.83 2 1191.65 LIYEETRGVL

Uncharacterized protein LOC105895406 459.21 2 916.40 PTSFSCIY

Uncharacterized protein LOC105895406 420.27 2 838.41 KQYRMN

Uncharacterized protein LOC105895784 604.32 2 1206.63 DLITKFQDLD

vesicular GABA transporter 566.31 2 1130.62 HIAAAVFKAGF

WNK homolog 826.89 2 1651.74 QPQNQQPQPQTQQT DEA (Q); DEA (Q)

Zinc finger protein 451 484.23 2 966.55 SEGPLRPVL

Zinc finger protein 471 429.18 2 856.35 QWMNPAQ Gln->pyro-Glu (N-term)

a  Amino acids in bold are those affected by the modifications;  b Common peptides present in fractions from NEp and OEp;  c  AM: amidated; DEA: deamidated;  DEH: dehydrated; DET Dethiomethyl; DiOX: 

dioxidation; OX: oxidation;                 Confidence higher than 95%


