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1 Reptile cladogenesis 

Amniota is a remarkably diverse clade of tetrapod vertebrates consisting of 

mammals, non-avian reptiles, and birds. The most recent common amniote ancestor 

likely lived approximately 325 million years ago (Mya) (Burghardt 1970; Shedlock and 

Edwards 2009) (Figure 1).  

 

Figure 1. Simplified Reptilia cladogenesis.  Adapted from (Hedges and Vidal 
2009; Pereiraa and Bakera 2009; Shaffer 2009; Shedlock and Edwards 2009; Vidal et al.  
2009). Abbreviations: C (Carboniferous), P (Permian), Tr (Triassic), J  (Jurassic),  Cr 
(Cretaceous), CZ (Cenozoic), Pg (Paleogene), and Ng (Neogene). Mya (Million years 
ago).  
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Since some reptiles (crocodiles) are more closely related to birds than they are to 

other reptiles (lizards), many modern day scientists prefer to make Reptilia a 

monophyletic group, which also includes birds. Molecular data and fossil records 

suggest that the major lineages of extant reptiles arose in the Permian and Triassic 

periods (299–200 Ma), when land areas were coalesced into the single supercontinent 

known as Pangaea. Squamates diverged from other reptiles approximately (~) 275 Mya 

(Shedlock and Edwards 2009) (Figure 1).  

Nevertheless, there is an extensive debate focused on reptilian evolution. For 

example, disagreeing morphological and molecular results on the origin of turtles has 

been challenging to resolve (Hedges 2012). Historically, turtles are placed as the closest 

relatives of all other living reptiles, with embryological data supporting this view too 

(Benton 1990; Werneburg and Sánchez-Villagra 2009) (Figure 2B). Nonetheless, most 

recent morphological analyses (Schoch and Sues 2015) and additional molecular genetic 

and genomic data (Hedges 1999; Cao et al. 2000; Rieppel 2001; Zardoya and Meyer 

2001; Rest et al. 2003; Iwabe et al. 2005; Shedlock et al. 2007; Shedlock and Edwards 

2009; Janes et al. 2010; Carroll 2013), place turtles with birds (Aves) and crocodilians 

(Figure 2A). Presumably, turtles separated from the crocodilians and birds clade 

approximately 231 Mya, and crocodilians separated from birds ~219 Mya (Shedlock and 

Edwards 2009) (Figure 1). 

 

Figure 2. Uncertain position of turtles in the amniotes tree of life.  A. Turtles as 
sister group of Crocodylia and Aves (Shedlock and Edwards 2009). B. Turtles in the 
base of the Reptilia tree of life.  Abbreviations: C (Carboniferous), P (Permian), Tr 
(Triassic),  J  (Jurassic),  Cr (Cretaceous), CZ (Cenozoic), Pg (Paleogene), and Ng 
(Neogene). Adapted from Shedlock and Edwards 2009. 
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Reptiles are one of the most ecologically and evolutionary remarkable groups of 

living organisms, having successfully colonized most of the planet. The evolutionary 

history of reptiles has given considerable rise to species richness among phylogenetic 

groups. Most reptile diversity is concentrated in the Squamata clade, where lizards and 

snakes represent a 96,4% of the diversity. In contrast, turtles (3.4%) and crocodilians 

(0.2%) are far less diverse (Pincheira-Donoso et al. 2013; Uetz and Hošek 2015). Most of 

the Squamata groups diversified in the Jurassic and Cretaceous roughly 200-66 Mya, 

possibly in response to the breakup of supercontinents. Gekkota clade separated from 

the rest of reptiles ~198 Mya, and Lacertata is said to have split from “Toxicofera” 

(Serpentes, Anguimorpha, and Iguania) reptiles ~180 Mya (Hedges and Vidal 2009). 

Currently, integrated molecular, morphological, and fossil record analyses, propose that 

Iguania is placed with snakes and anguimorphs in the tree of life (Fry 2005; Hedges and 

Vidal 2009; Reeder et al. 2015). Nonetheless, their relative position is still unresolved 

(Figure 3). Higher-level Squamate phylogeny is considered controversial due to conflicts 

between hypotheses based on analyses of morphological (Gauthier et al. 2012) and 

molecular datasets (Townsend et al. 2011; Pyron et al. 2013). However, integrated 

phylogenetic studies combining fossil records, morphological and molecular analysis 

have attempted to resolve these incongruences. Recently, Jones et al. 2013 supports the 

phylogeny suggested by the morphological studies, which considers Iguania as a sister 

group to Serpentes+Anguimorpha (Figure 3A). If this is confirmed, it would mean a 

split ~166 Mya (Jurassic) (Hedges and Vidal 2009). Nevertheless, Reeder et al. 2015 

results of the combined-data analyses, suggest that Serpentes are a sister group to 

Iguania+Anguimorpha, supporting the phylogeny recovered in the molecular analysis 

(Pyron et al. 2013) (Figure 3B). 

Technically, Reptilia denotes birds and nonavian reptiles, as mentioned. However, 

throughout this dissertation, Reptilia will be used to refer to non-avian reptiles. 
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Figure 3. Unresolved Toxicoferan time tree of evolution. Adapted and simplified 
phylogenies from integrated studies by  A. (Jones et al.  2013) Serpentes+Anguimopha 
are a sister group to Iguania and B. (Reeder et al.  2015) Serpentes are in the base of 
the “Toxicofera” tree. 

2 Snakes (Serpentes)  

Snakes belong to the suborder Serpentes, which represent a large radiation of 

terrestrial vertebrates comprising of approximately 3567 extant species distributed 

across every continent except Antarctica (reptile-database.org) (Uetz and Hošek 2015). 

Although snakes are considered as non-model organisms in biological research, the 

tremendous phenotypic and molecular plasticity observed in these animals have made 

them attractive subjects in an array of biological fields ranging from evolution, to 

ecology and behavior, physiology, and medicine.  

Recent phylogenetic analyses of Serpentes have been generated by integration of 

morphological and molecular characteristics (Kelly et al. 2003; Lawson et al. 2005; Vidal 

et al. 2007; Castoe et al. 2009; Pyron et al. 2011; 2013; Reeder et al. 2015) (Figure 4A). 

However these phylogenies are still under significant debate. Boas, pythons and 

Caenophidians (Colubroidea superfamily) make up most of the extant species of snakes, 

with the Boidae and Pythoniedae families splitting from Caenophidia ~104 Mya. Snakes 

belonging to the Boidae and Pythoniedae families are non-venomous and subdue prey 

using a combination of constriction and/or jaw-holding behaviors.  The vast majority of 

extant snakes (>2/3 sp.), including venomous snakes, belong to the Colubroidea super 

family (Vidal et al. 2009; Pyron et al. 2011; Pyron and Burbrink 2012) and are primarily 

distributed into the three major families of Viperidae, Elapidae, and Colubridae. It has 
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been suggested that Viperidae split from the Elapidae and Colubridae families ~54 Mya, 

and Colubridae separated from Elapidae ~46 Mya (Figure 4A). Although the Viperidae 

family only comprises roughly 9% of the total diversity of colubroid snakes, their 

distribution is widespread across all continents except Australia and Antarctica, as well 

as displaying tremendous morphological diversity, occupying a wide variety of niches 

(Greene 1992; Greene et al. 1997). Viperidae is further divided into two major 

subfamilies, the Viperinae (Old World or pitless vipers) and the Crotalinae (pitvipers 

and rattlesnakes). Only Crotalinae species have been found on the American continent, 

and are therefore referred to as New World pitvipers. (Figure 4B).  

 

Figure 4. Snake families distribution along evolution. A. Timetree of snakes, 
adapted from Vidal et al.  2009. B. Diagram of the distribution of Viperidae taxa 
adapted and simplified from Pyron et al.  2013. The distances in B do not correspond 
to evolutionary time.  Abbreviations: J  (Jurassic),  K (Cretaceous), Pg (Paleogene) and 
Ng (Neogene). 

2.1 Vipers foraging strategy and behavior 

Vipers employ a sit-and-wait foraging strategy, where these venomous predators 

strike, envenomate and release prey. Subsequently, chemoreception is used to trail and 

relocate the envenomated prey that may wander several meters or more from the attack 

site (Chiszar et al. 1992). This chemical recognition is characteristically mediated by 

rapid tongue flicking, activated by the detection of volatile chemical cues by the nasal 

olfactory system (Burghardt 1970; Saviola et al. 2010) or by visual or thermal 

stimulation (Chiszar et al. 1981; Saviola et al. 2011; 2012). Consequently, tongue flicking 

delivers volatile and non-volatile stimuli to the vomeronasal organ located in the roof of 

the upper jaw (Halpern 1992; Schwenk 1995). The vomeronasal organ of squamates is 

Eurasian 
vipers 

New World  
pitvipers 

V
ip

er
id

ae
 

Crotalinae 

Viperinae 

Boidae 

Elapidae 

Colubridae 

Viperidae 

Non-snake  
Toxicofera  

A B 

Million year ago 150           100                    50                       0 

Cenozoic 

J Early K Pg Late K 

Mesozoic 

Ng 



Introduction 

    12 

associated with a sophisticated tongue delivery system. When the tongue protrudes 

from the mouth of the snake it collects volatile and non-volatiles molecules, which 

adhere to the moist surface of the tongue. When the tongue is retracted, these molecules 

are carried into the mouth and pass by a disputed mechanism into the openings of the 

vomeronasal ducts in the roof of the mouth, traveling through the ducts to the 

chemosensory epithelium of the vomeronasal organ (Gillingham and Clark 1981; 

Halpern 1992; Young 1993). This ultimately allows for definitive analysis of chemical 

information (Cowles and Phelan 1958; Halpern 1992) (Figure 5). Tongue-flicking is a 

unique synapomorphy among squamate reptiles that has been used in numerous studies 

of squamate behavior as an index of chemosensory response (Cooper 1994; Schwenk 

1995; Desfilis et al. 2002). 

 

Figure 5. Vomeronasal chemoreception mediated by tongue flicking and 
discrimination by the vomeronasal organ. Adapted from the Dan Erickson Illustration 
in (Grzimek 2003).   

Following a viperid predatory strike, prey is released and escapes wandering from 

the attack site. After a few minutes, the snake searches for its prey while rapidly tongue 

flicking, which allows the animal to pick up chemicals in the air and sniff out the trail 

left behind by the prey. Several studies of chemoreception by tongue flicking have 

demonstrated that venomous snakes prefer envenomed to non-envenomed prey 

(Chiszar et al. 1999; Greenbaum et al. 2003; Clark 2004; Chiszar et al. 2008; Saviola et al. 

2010; 2011; 2012), and that prey preference is common in viperids. These studies 
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suggest that after striking the prey, vipers use chemical cues from envenomated tissue to 

a larger extent than chemical cues produced by the prey (e.g., prey scent, urine, or alarm 

pheromones) to locate their prey (Chiszar et al. 1992).  

Recent studies from the laboratory of Professor Stephen Mackessy (University of 

Northern Colorado) tried to identify the compounds in the venom that may assist the 

snake to relocate the prey. Crotalus atrox venom protein fractions were used for 

independent chemoreception studies by tongue flicking. Crotalus atrox responded 

significantly only to the venom fraction, containing disintegrins (Saviola et al. 2013).  

3 Valuable applicability of the snake venom study: from a neglected 

disease to drug discovery 

Venomous Squamates are a particularly significant group for humans since they 

cause tens of thousands of deaths every year (Gutiérrez et al. 2006; 2010; 2015; Habib et 

al. 2015) and yet their venom toxins are a unique resource for diversity of medicines and 

even applied physics (Geim et al. 2003). 

3.1 Snakebites  

In 2015, West Africa was in the media spotlight, and rightly so after nearly 11.000 

people died in the largest Ebola outbreak ever recorded.  However, another deadly killer 

often fails to exist in the public conscience: snakebites (Shultz 2015). Snakebite is a 

major, yet seriously neglected public health issue, not only in Africa, but also in Asia, 

Latin America and parts of Oceania (Gutiérrez et al. 2006). Traditional data suggest that 

between 1.2 and 5.5 million people suffer from snakebites every year, resulting in 25,000 

to 125,000 deaths and leaving approximately 400,000 victims with permanent sequela 

(Kasturiratne et al. 2008; Williams et al. 2010) (http://www.who.int/mediacentre/news/ 

notes/2010/antivenoms_20100504/en/) (Figure 6). 

 



Introduction 

    14 

 

Figure 6.      Annual snakebite mortality. Annual estimates of snakebite-induced 
deaths for 138 countries were obtained from the data published by Kasturiratne et al.  
2008 and depicted on a world map using Epi-info; the darker a country’s colour the 
greater the estimated snakebite mortality – see key for details.  Adapted from Harrison 
et al.  2009. 

These victims are often farmers living in poor rural communities, where the 

consequence of envenomation, such as limb loss, may significantly impact their quality 

of life, and can be devastating for their the entire family. Yet, despite its significant 

impact on human health, snakebite remains largely neglected (Gutiérrez et al. 2006; 

Williams et al. 2010; Gutiérrez et al. 2015; Habib et al. 2015), and in fact, it is currently 

not considered as problematic, or as a neglected tropical disease (NTD) by the World 

Health Organization (WHO) (http://www.who.int/neglected_diseases/diseases/en/). 

Nevertheless, the WHO highlights the critical need for life-saving antivenoms, and are 

included on as an essential medicine on the 19th WHO Model List of Essential 

Medicines (April2015) (http://www.who.int/medicines/publications/essentialmedicines 

/EML2015_8-May-15.pdf?ua=1). However, there is still significant work necessary to 

improve the prevention, first aid and treatment of snakebites, and generating knowledge 

on snake venom composition is essential to produce effective antivenoms (Williams et 

al. 2010; 2011; Gutiérrez et al. 2013; 2014; 2015) (Figure 7).  
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3.2 Applications in biomedicine. Medicines from nature’s superstore  

Historically, snakes venoms have been used in medicinal practices dating back to 

ancient Egypt and Greece, as well as in traditional Chinese and Indian therapies, where 

Cobra venoms were used to treat arthritis for thousands of years. Similarly, Hippocrates 

used bee venom to treat joint pain and arthritis (Seifert 1954; Scarborough J. 2010). 

Venom derived toxins have had several applications in drug discovery where they have 

been used as therapeutic agents (botulinum toxin), or molecular scaffolds in early stages 

of drug design (captopril®), or used as reagents for the identification of therapeutic 

targets (Harvey et al. 1998; Harvey 2001; 2002; Kapoor 2010; Harvey 2014). The first 

clinically successful Angiotensin Converting Enzyme inhibitor, captopril®, used to treat 

hypertension, was developed from peptides isolated from the venom of Bothrops 

jararaca (Ferreira 1965; Cushman and Ondetti 1999), reviewed by Harvey 2014. Other 

drugs derived from animal venoms that are currently clinically approved include 

Aggrastat® (Tirofiban) and Integrilin® (Eptifibatidae) (Granada and Kleiman 2004), 

which are both used to treat acute coronary syndrome, by inhibiting platelet aggregation. 

Additionally, Prialt® (Zicotonida) is a painkiller that blocks calcium ion channels, and 

Byetta® (exenatide), isolated from the venom of the Gila Monster, is used as treatment 

of type-2 diabetes (Scheen 2014). Finally, Batroxobin® (Baquting) is a treatment used for 

perioperative bleeding (King 2011). 

 

Figure 7. Biomedical applications from the study of snake venom. Few examples 
of antivenoms and commercial drugs derived from snake venom proteins. Picture of 
venom extraction by Professor Mackessy at the University of Northern Colorado.  
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In addition, several additional venom peptides are in clinical trials for the 

treatment and/or diagnosis of chronic pain, autoimmunity, cardiovascular syndromes, 

cancer (glioma) or infection (Marsh 2001; Lewis and Garcia 2003; King 2011; Cossins 

2013). For example, pre-clinical data on the peptides known as mambalgins, isolated 

from the venom of the Black Mamba, suggest an analgesic effect as strong as morphine 

(Diochot et al. 2012), and represents a novel pain treatment if it passes  clinical analyses.  

In addition to the development of several major human drugs derived from snake 

venom proteins, an array of critical biological processes have also been revealed using 

toxins in cell-receptor studies in mammals (Figure 7). 

For all these reasons, snake venom research is crucial in many aspects of biological 

and biomedical related research. The knowledge generated based on venom 

composition and individual toxin studies, may provide a foundation for new drug 

development and also help generate improved antivenoms. Furthermore, new biological 

and molecular mechanism might be discovered, which might be conserved in mammals 

(Figure 7).  

4 Snake venom  

Snake venoms are mixtures of biologically active proteins (90% dry weight), salts, 

and organic molecules such as polyamines, amino acids, and neurotransmitters (Fry 

2005; Fox and Serrano 2008a; Casewell et al. 2013). This complex cocktail of bioactive 

compounds (“toxins”) is produced in a postorbital venom gland (Vonk et al. 2008) that 

is present in elapid and viperid snakes. These snakes also contain a small downstream 

accessory gland, however the specific function of this gland is currently unknown (Vonk 

et al. 2013). The most recent definition of venom is “a secretion, produced in a 

specialized tissue (generally encapsulated in a gland) in one animal and delivered to a 

target animal through the infliction of a wound. A venom must further contain 

molecules that disrupt normal physiological or biochemical processes to facilitate 

feeding and/or defense for the animal” (Fry et al. 2009a; 2009b; 2012).  However, this 

definition of “venom” is under much debate, and specifically what constitutes some 

reptiles as venomous or non-venomous species. Snake venom proteins play a number of 
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adaptive roles: immobilizing, paralyzing, killing, and digesting prey, in addition to 

deterring competitors. However, venoms may serve other possible functions, besides 

feeding or defense, are suggested to include in the venom definition (Fox and Serrano 

2005; Kini 2006; Fry et al. 2012; Jackson et al. 2012; Kardong 2012; Weinstein et al. 

2012). Although much debate surrounds the evolution of venomous systems, recent 

evidence suggest that some toxin types appear to be co-expressed in the venom gland 

and other tissues (Casewell et al. 2012; Makran et al. 2012; Junqueira-de-Azevedo et al. 

2014; Reyes-Velasco et al. 2014), complicating the definition and evolution of toxins and 

non-toxins.  

4.1 Snake venom composition 

Venom composition significantly varies, not only between family, genus, and 

species, but also between individuals. Elapid venoms are generally more rapidly acting 

than other Caenophidian venoms, due to the high content of neurotoxic peptides. On 

the other hand, colubrid venoms are generally considered to be much simpler in venom 

composition than Elapidae and Viperidae venoms.  

Although Viperidae venoms may contain an abundance of proteins and protein 

isoforms (Vonk et al. 2011; Fahmi et al. 2012; Casewell et al. 2013), the majority of the 

venom compounds can be grouped into a several major families such as the enzymatic; 

(serine proteinases, Zn2+-metalloproteases, L-amino acid oxidase, PLA2 (fosfolipases A2), 

nucleotidases...) and non-enzyimatic activity (C-type lectins, natriuretic peptides, 

ohanin, myotoxins, CRISP (cysteine-rich secretory protein) toxins, nerve and vascular 

endothelium growth factors, cystatin, Kunitz-type protease inhibitors and disintegrins) 

(Calvete et al. 2007a; Gutiérrez et al. 2009; Fry et al. 2009a; Casewell et al. 2012; 2013; 

Pincheira-Donoso et al. 2013; Junqueira-de-Azevedo et al. 2014; Uetz and Hošek 2015). 

Every Viperidae species produces in their venoms a variable number of these 

components (Markland 1998; Menez 2002; Juárez et al. 2004; Lomonte et al. 2014), 

thought different species venoms exhibit a distinct toxin family distributional profile 

(Figure 8). The functional and biological activities observed in venoms depends on the 

concentration and interaction of these individual components (Aird 2002; Mackessy 

2010; Aird et al. 2015), which exhibit a diversity of biological activities in the context of 
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predator-prey interactions. Specifically, some proteins in the viperid venoms interfere 

with the coagulation cascade, homeostatic system and tissue repair, leading to the 

clotting disorders, hypofibrinogenemia and local tissue necrosis commonly observed in 

humans following envenomation (Markland 1998; Fox and Serrano 2005; Kini 2006). 

 

Figure 8. Modified pie charts comparing relative occurrence of proteins from 
different toxin families in (A) Macrovipera mauritanica and (B) Macrovipera lebetina  
by (Makran et al.  2012) and (C) Cerastes cerastes  by (Fahmi et al.  2012). PI- and PIII-
SVMP, snake venom Zn2 +-metalloproteinase (SVMPs) of classes I and III,  respectively; 
PLA 2, phospholipase A2; svVEGF, snake venom vascular endothelial growth factor; C-
NP, C-type natriuretic peptide; DC-fragment, disintegrin-like/cysteine-rich domain. 
Each toxin family encloses different protein isoforms. 

4.2 Snake venom evolution 

It is hypothesized that venoms evolved from genes that code for ancestral 

endogenous proteins with normal physiological functions that have been recruited into 

the venom proteome (Fry et al. 2004; Fry et al. 2009a; Casewell et al. 2012; 2013; 

Junqueira-de-Azevedo et al. 2014). These genes were shown to be expressed in a variety 

of tissue types as diverse as the venom proteins themselves (Fry 2005; Fry et al. 2012). 

Toxin variability is driven by positive accelerated evolution (Moura-da-Silva et al. 1996; 
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Fry et al. 2003; Ogawa et al. 2005; Juárez et al. 2008; Casewell et al. 2011). When a 

particular gene has been recruited into the venom gland, additional gene duplication, 

combined with protein neo and/or subfunctionalization, are involved as the key 

regulatory processes driving bioactivity. This evolutionary path results in large 

multigene families that encode toxins exhibiting a variety of functional activities and 

potencies in addition to non-functional or pseudogenes (Kordis and Gubensek 2000; 

Fry et al. 2003; Hedges and Vidal 2009; Casewell et al. 2011). That form of multigene 

family evolution, in which new genes are created by gene duplication, where some are 

maintained in the genome, and others are deleted or inactivated is termed as the birth-

and-death evolution model (Tan and Saifuddin 1990; Nei et al. 1997; Nei and Rooney 

2005). This model is used to explain the evolutionary origin of many venom toxins 

(Casewell et al. 2011; 2012; Peichoto et al. 2012; Vonk et al. 2013).  

Despite the increasing number of studies that have conducted transcriptomic and 

proteomic analyses on venoms (reviewed by Calvete 2013a and Ducancel et al. 2014), 

the evolution of venomous systems still remains highly controversial. Some researches 

believe that venom originated only once in the course of the reptilian evolution, giving 

rise to the Toxicofera hypothesis (Vidal and Hedges 2005; Fry et al. 2009a; 2009b; 2012; 

2013), whereas others suggest that the venom has originated independently several 

times in the course of venom evolution. This later hypothesis suggest that venoms 

evolved once at the base of the advanced snakes, once in Heloderma linage, and an 

additional time in monitor lizards (Varanus) (Hargreaves et al. 2014a; 2014b). 

5 ADAMs and Snake Venom Metalloproteinases 

Snake Venom Metalloproteinases (SVMP) comprise a large multigene family that 

are one of the most studied venom protein families due to their significant contribution 

to the hemotoxicity commonly observed in venoms across most extant Viperidae taxa 

(Escalante et al. 2011; Markland and Swenson 2013; Uetz and Hošek 2015). SVMPs are 

zinc-dependent enzymes that belong to the M12 reprolysin family of metalloproteinases, 

and are classified based on domain structure into the PI, PII and PIII classes. PI-SVMPs 

contain only the metalloproteinase domain in the mature protein, whereas PII-SVMPs 
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exhibit an additional disintegrin domain carboxy to the spacer region, which, in many 

PII-SVMPs, is proteolytically cleaved from its precursor and is released in the venom 

(Moura-da-Silva et al. 1996; Calvete et al. 2005; Fox and Serrano 2005; Fry et al. 2008; 

Casewell et al. 2011; Casewell 2012; Casewell et al. 2014). PIII-SVMPs contain in 

addition to the metalloproteinase domain, a disintegrin-like (Dis-like) and a cysteine-

rich (Cys-rich) domain. Some PIII-SVMPs are also post-translational processed, 

releasing the Dis-like and Cys-rich domain (DC domain) into the venom (Fox and 

Serrano 2008b; Takeda et al. 2012) (Figure 9).  

 

Figure 9. Schematic of snake venom metalloproteinases (SVMPs) present in 
Viperidae venoms. SP, signal peptide. PII-SVMP and PIII-SVMP cleavage site of the 
mature protein is indicated. 

The ancestral PIII-SVMPs evolved from a gene encoding the extracellular region 

of a membrane-associated ADAM (a disintegrin and metalloproteinase) molecule, 

which was possibly recruited into the snake venom proteome after the divergence of 

squamate reptiles (Fry et al. 2006; 2012) in the Jurassic, approximately 170–150 Mya 

(Hedges and Vidal 2009). This hypothesis is supported by the presence of PIII-SVMPs 

in the venoms of Viperidae (Fox and Serrano 2005; Lu et al. 2005), Elapidae (Tan and 

Saifuddin 1990), Colubridae (Peichoto et al. 2012) and Atractaspididae (Ovadia 1987) 

snakes, whereas, PII-SVMPs occur only in Viperidae venoms (McLane et al. 1998; 

Calvete et al. 2003; Juárez et al. 2008; Calvete et al. 2009b). Therefore, PII-SVMPs may 

represent a derivation from ancestral PIII-SVMP genes, by a single loss of the cysteine-

rich domain (Calvete et al. 2003; Juárez et al. 2006a; Casewell et al. 2011), subsequent to 

the emergence of Viperidae as a distinct taxonomical group of advanced snakes, 

approximately 37 Mya, in the Cenozoic era (Pyron and Burbrink 2012).  

Proteolytic cleavage 

PII-SVMP disintegrin metalloproteinase propeptide SP 

PI-SVMP metalloproteinase propeptide SP 

PIII-SVMP disintegrin-like metalloproteinase propeptide SP Cys-rich 

Proteolytic cleavage 



Introduction 

    21 

6 Disintegrins function and evolution  

Disintegrins are a broad group of small (40–100 amino acids), cysteine-rich 

polypeptides (Calvete 2010; 2013b; Carbajo et al. 2015), synthesized from short-coding 

mRNAs (Okuda et al. 2002) or released into the venom of Viperinae (vipers) and 

Crotalinae (pitvipers) snakes by the proteolytic processing of PII-SVMP precursors 

(Kini and Evans 1992) (Figure 10). 

 

Figure 10. Cartoon of the disintegrin precursors released in Viperidae venoms. SP, 
signal peptide. The cleavage site is indicated in the snake venom metalloproteinase 
(PII-SVMP). 

6.1 Canonical-disintegrin evolution 

Canonical disintegrins have evolved by positive Darwinian evolution guided by 

the adaptation of a conformational epitope (the integrin recognition loop and the C-

terminal tail) to the active site of the targeted integrin receptors (Juárez et al. 2008). The 

RGD integrin-binding tripeptide has been inferred to represent the ancestral integrin 

recognition motif, which emerged during the Paleogene period of the Cenozoic Era 

(approximately 54–64 Mya) from a subgroup of PIII-SVMP bearing the RDECD 

sequence (Juárez et al. 2008), which originated by recruitment, duplication, and 

neofunctionalization of a cellular ADAM-7 or 28 ancestor gene, (Anolis carolinensis 

lizard genome) (Moura-da-Silva et al. 1996; Fry 2005; Fry et al. 2006; Alföldi et al. 2011; 

Casewell 2012). After the deletion of the PIII-SVMP-lineage-specific cysteine residue 

(RDECD "RDED), conversion of RDE into RGD can be accomplished with a 

minimum of two mutations (Calvete et al. 2009b; Calvete 2010). Furthermore, the lost 

of the cysteine-rich domain along SVMP evolution is supported by BA-5A transcript. 

BA-5A was found in Bitis arietans venom gland, and encodes a SVMP with structure 

similar to those SVMPs of the PIII classification, excluding the cysteine-rich domain, 

although BA-5A is not translated. Structural features of BA-5A have never been 
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reported in snake venoms. BA-5A may thus represent a relic of evolution, being an 

intermediate step in SVMP evolution, between PIII and PII-SVMPs (Juárez et al. 2006a; 

Carbajo et al. 2015) (Figure 11).  

6.2 Disintegrin classification by size and number of cysteine residues 

The disintegrin family comprises four subfamilies that are classified according to 

their polypeptide length and number and pattern of disulfide bonds. Long-chain 

disintegrins contain ~84-residues cross-linked by 7 intramolecular disulfide linkages, 

and medium-sized disintegrins consist of ~70 amino acids and 6 intramolecular cysteine 

sulfide bridge. Homo- and heterodimeric disintegrins consist of subunits of about 67 

residues with 10 cysteines involved in the formation of 4 intra-chain disulfides and 2 

inter-chain cystine linkages, and finally, short disintegrins are composed of 41-51 

residues crosslinked by 4 disulfide bonds (Juárez et al. 2008). Disintegrin activity 

critically depends on the appropriate pairing of cysteines (Juárez et al. 2008).   

The structural diversity of disintegrins, ranging from the ancestral long 

disintegrins to the more recently evolved short disintegrins (Figure 11), occurred after 

the emergence of Viperidae as a distinct taxonomical group of advanced snakes ~37 

million years ago, in the Eocene epoch of the Cenozoic era. It has been suggested that 

short disintegrins evolved as the result of a reduction in the size of the disintegrin fold, 

including the stepwise loss of a pair of cysteine linkages and processing of the N-

terminal region (Calvete et al. 2009b; Calvete 2010). Recent structural analyses of two 

proteoforms of the long disintegrin bitistatin, from Bitis arietans venom, confirm the 

hypothesis that long disintegrins represent the first step in the evolutionary history of 

the disintegrin family through a disulfide bond engineering process (Carbajo et al. 2015). 

Particularly, canonical short disintegrins emerged from short-coding RGD dimeric 

disintegrin precursors and/or short-disintegrin specific PII-SVMP (Sanz et al. 2006; 

Bazaa et al. 2007; Carbajo et al. 2015) (Figure 11). 
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Figure 11. Cartoon of the evolution of the canonical disintegrin family. Scheme of 
the evolutionary path of disintegrins, highlighting the ancestral recruitment of an 
ADAM gene and its transformation into a PIII-SVMP toxin into the venom gland 
(black-filled circle) and the emergence of the disintegrin family (white circle) through 
the successive loss of disulfide linkages. Cysteine residues that are lost along the 
proposed evolutionary pathway are depicted as thick bars and numbered as in ADAM 
molecules. Conserved disulfide bonds between the disintegrin-like domains and 
disintegrins proper of ADAM/PIII-SVMP are colored red. The divergent disulfide-
bonding pattern of albolabrin and salmosin is depicted to the right of the canonical S-
S pattern of medium-sized disintegrins. The topology of the ancestral RSECD motif of 
ADAM and PIII-SVMP molecules, the integrin-binding RGD tripeptide, and the 
derived KGD, MGD, VGD, WGD or MLD tripeptide motifs are indicated, respectively, 
by an orange triangle, a white trapeze and a magenta rhomb. The emergence of the 
integrin-binding loop in PII-disintegrins is highlighted by a loop structure in long, 
medium-sized, dimeric and short disintegrins. EGF, epidermal growth factor domain; 
BA-5A represents a nontranslated transcript found in B. arietans venom gland cDNA 
library (Juárez et al.  2006a). Mne, membrane. Adapted from Carbajo et al.  2015. 

6.3 Disintegrin functional classification 

Due to the presence of disintegrins, and other integrin antagonist, Viperinae and 

Crotalinae venoms have evolved a restricted panel of β1 and β3 integrin inhibitory motifs, 

which have emerged via positive Darwinian evolution (Calvete 2010; Carbajo et al. 

2015). However, it should be noted that integrin α2β1 does not appear to be a binding 

site for disintegrins, and this receptor is only targeted by C-type lectin-like proteins 

(Ogawa et al. 2005; Arlinghaus and Eble 2012) (Figure 12). 

PII-SVMPs 
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Figure 12. Evolutionary adaptation of disintegrin inhibitory motifs to the ligand-
binding sites of integrins. Diagram of the integrin family and the different disintegrin 
tripeptide motifs (in yellow boxes) that block specific integrin-ligand interactions. 
Integrin heterodimers antagonized by snake venom disintegrins are encircled. 
Adapted from Calvete et al.  2007b. 

Integrins are a evolutionary old family of heterodimeric transmembrane receptors 

which are the bridge for cell-cell and cell-extracellular matrix (ECM) interactions 

(Johnson et al. 2009; Sebé-Pedrós et al. 2010), and are composed of α and β subunits. 

Currently, 18 α and 8 β subunits have been identified in mammals cells, whose 

association is limited only to 24 heterodimers that strictly dictate ligand specificity 

(Hynes 2002; Humphries et al. 2006). Integrins play vital roles in many physiological 

functions, participating in developmental and pathological processes (reviewed by 

Melissa Millard 2011). Therefore, selectively blocking specific integrins is a desirable 

therapeutic goal for a number of pathological conditions, including acute coronary 

ischemia and thrombosis (αIIbβ3), tumor metastasis, osteoporosis, restenosis and 

rheumatoid arthritis (αVβ3), bacterial infections and vascular diseases (α5β1), 

inflammation and autoimmune diseases (α4β1, α7β1, α9β1), and tumor angiogenesis (α1β1, 

αVβ3). 

Disintegrin-integrin interactions have been extensively studied (Calvete 2013b), 

and the therapeutic potential of these compounds warrants continued investigation.  

Indeed, two drugs currently available on the market as antiplatelet agents (reviewed by 

Koh and Kini 2012) have been designed based on disintegrin structure, Tirofiban 

(Aggrastat®) and Eptifibatide (Integrillin®). Platelet aggregation is promoted mainly by 

the αIIbβ3 integrin (or GPIIb-IIIa receptor) being mediated by adhesive interaction 
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between αIIbβ3 and fibrinogen. Upon integrin-ligand interaction, integrins are capable of 

transmitting “outside-in” as well as “inside-out” signals across the cell membrane. 

Particularly, “inside-out” signaling is very important for activation of αIIbβ3 integrin, 

which following stimulation of platelets by several agonists undergoes a conformational 

change to bind fibrinogen. “Outside-in” signaling generates signal transductions upon 

activation by ligand binding (Hynes 2002; Harburger and Calderwood 2009; Lin et al. 

2016). Disintegrins that exhibit an Arg-Gly-Asp (RGD) binding motif are able to inhibit 

platelet aggregation by binding the active αIIbβ3 integrin, and thereby blocking the 

fibrinogen-αIIbβ3 integrin interaction (Calvete et al. 1994) (Figure 13). 
 

 
Figure 13. In vivo  platelet aggregation and platelet aggregation inhibition 
mediated by RGD-disintegrin o peptides based on RGD disintegrins (RGD). α I I b  and β3 
denote the integrin subunits and FB, fibrinogen 

Similarly, other disintegrins have been shown to inhibit integrin binding to their 

natural ligands, affecting normal or pathogenic processes.  

Disintegrins are also classified according to the integrin-binding motifs found in 

their active site. The vast majority of single-chain (long, medium-sized and short) 

disintegrins express the canonical RGD sequence, however, a few medium-sized 

disintegrins bear a KGD sequence. Dimeric disintegrins exhibit the largest variability in 

their integrin recognition motifs, including another common motif of MLD, in addition 

to RGD, KGD, VGD, MGD, and WGD (Calvete et al. 2009b; Calvete 2010). On the 

other hand, the KTS and RTS binding-motifs are only observed in short disintegrins 

(Figure 12).  

Except for the KTS/RTS short disintegrins (Calvete et al. 2007b), the most 

parsimonious nucleotide substitutions events required a minimum of three mutations 

for the emergence of all currently known integrin-recognition motifs from the ancestral 
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RGD sequence (Figure 14).   

 

Figure 14. Evolution of the integrin-binding site. Most parsimonious nucleotide 
substitution events required for the emergence of all  known disintegrin’s integrin-
recognition motifs from an ancestral RGD sequence. Arrows indicate mutational 
transitions at the underlined sites. Adapted from Juárez et al.  2008. 

Calvete et al. 2007 suggest that disintegrins evolved in a restricted panel of integrin 

blocking sequences, indicating an evolutionary adaptation of venom disintegrins to the 

specific ligand-binding sites of integrin expressed in their prey items (Figure 15).  

 

Figure 15. Segregation of disintegrin binding motifs (displayed in yellow boxes), 
across the phylogenetic tree of the integrin α-subunits (displayed in coral boxes). 
Branches are not scaled according to evolutionary distance.  The disintegrin motifs 
and their specific α  subunit targets are display in the same color.  Integrin major 
ligands are indicated. α1β1 integrin is a receptor for collagen I and IV (Col I/IV); α2β1 
 binds collagen I; α4β1  interacts with fibronectin and VCAM-1; α4β7  bind the same 
ligands as α4β1  and in addition is a receptor for MdCAM; α5β1  represents the major 
fibronectin (FN) receptor; integrins α3β1 ,   α6β1 ,  and α7β1  represent major laminin 
(LM) receptors; α8β1  and α9β1  bind tenascin (TN); αVβ1  and αVβ3  are major 
vitronectin (VN) receptors; and α I I bβ3   is the platelet fibrinogen (FB) receptor 
involved in platelet aggregation. Branch points linked with the emergence of the 
proteolytic cleavage of integrin α-subunits, and the acquisition of an I-domain, are 
indicated. Adapted from Calvete et al.  2007b. 
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6.4 Disintegrin structure-function studies 

Structural studies on a number of short (echistatin, 1RO3), medium-sized (kistrin, 

1N4Y; flavoridin, 1FVL; albolabrin (Smith et al. 1996); salmosin, 1IQ2, 1L3X; 

rhodostomin, 1Q7J, 1Q7I, 2PJI, 2PJF, 1JYP; trimestatin, 1J2L) and dimeric disintegrins 

(1Z1X, 1RMR, 1TEJ, 3CO5) have revealed that their RGD/KGD integrin inhibitory 

motifs have evolved at the apex of an 11 amino acid mobile loop, protruding 14–17 Å 

from the disintegrin protein scaffold and maintained in the active conformation by the 

appropriate pairing of cysteine residues. Currently known integrin-blocking motifs 

include RGD, which blocks integrins α8β1, α5β1, αVβ1, αVβ3, and αIIbβ3; MLD targets the 

α4β1, α4β7, α3β1, α6β1, α7β1 and α9β1 integrins; VGD and MGD impair the function of the 

α5β1 integrin; KGD inhibits the αIIbβ3 integrin with a high degree of selectivity; WGD has 

been reported to be a potent inhibitor of the RGD-dependent integrins α5β1, αVβ3, and 

αIIbβ3; the adhesive function of the latter integrin is also blocked by MVD (Shimokawa et 

al. 1998; Sanz et al. 2006; Calvete et al. 2009b; Calvete 2010; Carey et al. 2012) (Figure 

12).  

The crystal structure of the extracellular segment of integrin αVβ3 in complex with 

an RGD ligand (Xiong 2002) revealed that the peptide fits into a crevice between the αV 

propeller and the β3 A-domain. The Arg side-chain is held in place by interactions with 

αV carboxylates, the Gly residue makes several hydrophobic interactions with αV, and 

the Asp ligand interacts primarily with βA residues. Thus, the conserved aspartate 

residue might be responsible for the binding of disintegrins to integrin receptors which 

share a β subunit, while the two other residues of the integrin-binding motif (RG, KG, 

MG, WG, ML, MV, VG) may dictate the primary integrin-recognition specificity, with 

residues flanking the active tripeptide finely tuning the potency and integrin receptor 

selectivity of disintegrins (McLane et al. 1996; Wierzbicka-Patynowski et al. 1999), 

reviewed by (Calvete et al. 2005; Calvete 2005). High-resolution NMR studies (Monleón 

et al. 2005) provided a structural ground for the biochemically defined functional 

synergy between the RGD loop and the C-terminal region of echistatin (Marcinkiewicz 

et al. 1997). 
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Short RTS/KTS disintegrins have only been found in Eurasian vipers, selectively 

target the integrin α1β1 (Calvete et al. 2007b), and form a distinct clade within the short 

disintegrin subfamily (Figure  16).  

 

 

Figure 16. Inferred phylogeny within the short disintegrin subfamily. Cladistic 
relationships between the RGD and the KTS/RTS short disintegrins were inferred 
through Neighbor-Joining using maximum-likelihood distances using the PHYML 
program (Guindon and Gascuel 2003), with the disintegrin-like domain of human 
ADAM-7 serving as out-group. This distribution parallels the phylogenetic tree of the 
species in whose venoms short disintegrins have been characterized. Expression of 
RGD-disintegrins appear to be restricted to Echis and Eristicophis  taxa, whereas 
RTS/KTS-disintegrins have been only reported in venoms from Eurasian vipers, 
genera Vipera, Macrovipera ,  and Daboia  (Sanz-Soler et al.  2012) 

 

Compared to all known disintegrin structures, in which the RGD motif is located 

at the apex of an eleven residue hairpin loop, the active RTS/KTS tripeptide is oriented 

towards a side of a nine residue integrin-binding loop (Moreno-Murciano et al. 2003b) 

(Figure 17). Structure-function correlation studies have shown that the selectivity of 

KTS-disintegrins for the α1β1 integrin resides within a conformational epitope 

encompassing the integrin-binding loop and the C-terminal tail (Monleón et al. 2003; 

Moreno-Murciano et al. 2003a; Kisiel et al. 2004; Carbajo et al. 2011). The potency of 

recombinant KTS-disintegrin obtustatin also depends on the residues found carboxy to 

the active motif (Brown et al. 2009) (Figure 17). 
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Figure 17. Comparison of the NMR structures of echistatin and obtustatin. A, 
echistatin (PDB code 1RO3) and, B, obtustatin (PDB code 1MPZ, bottom) are 
rendered in ‘sausage’ representation, where the thickness of the backbone is 
proportional to the structural dispersion (RMSD value) of the backbone atoms 
coordinates. Disulfide bonds and the active tripeptides (RGD in echistatin; KTS in 
obtustatin) are colored yellow and red, respectively. The C-terminal tail  residues (43-
46 in echistatin and 40-41 in obtustatin), represent another functional epitope, are 
colored in dark blue. Adapted from Calvete 2005. 

In the present dissertation we focus on different aspects of the disintegrin family of 

snake venom proteins. Specifically, we studied the disintegrins crotatroxin, a medium 

size RGD-disintegrin, as well as, two short disintegrins, ocellatusin, an RGD-disintegrin 

and jerdostatin, an RTS-disintegrin.  

7 Short disintegrins 

Short disintegrins can be classified as: i) the classical RGD-disintegrins, which 

evolved as previously described in (Figure 12), and might have emerged after the split of 

Asian and New World (NW) Crotalinae and African and Eurasian Viperinae (Juárez et 

al. 2008; Calvete 2013a; Ducancel et al. 2014; Gonçalves-Machado et al. 2015) (Figure 3) 

and ii) RTS/KTS-disintegrins, whose evolution is not clearly understood (Calvete et al. 

2007b).  

7.1 Ocellatusin, an RGD-disintegrin 

 Ocellatusin is a short RGD-containing monomeric disintegrin, present in the 

venom of the African saw-scaled viper, Echis ocellatus. 

Ocellatusin, is encoded by two different transcripts in the venom gland: a 1485 

base pair (bp) mRNA encoding the PII-SVMP Q14FJ4, and a short coding message (384 

bp), that lacks the metalloproteinase domain and most of the propeptide sequence 

[Q3BER1] (Juárez et al. 2006b; Wagstaff et al. 2009) (Figure 18).  

A B 
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Figure 18. Cartoon of ocellatusin precursors found in Echis ocellatus  venom gland 
coding DNA described by (Juárez et al.  2006b). SP, signal peptide. The cleavage site is 
indicated in the snake venom metalloproteinase (SVMP-PII). Amino acid sequence of 
the ocellatusin disintegrin domain; Cysteines are in bold and the active tripeptide in 
red and underlined.  

 Ocellatusin express the RGD tripeptide at the apex of the 11 amino acid integrin-

binding loop and inhibits RGD-dependent integrins, including the integrins α5β1, αVβ3, 

and αIIbβ3 (Smith et al. 2002). These three integrins are involved in many crucial 

physiological processes such as homeostasis and thrombosis, angiogenesis, 

inflammation, bone resorption and wound healing, cell growth and organ development 

(Smith et al. 2002). 

In vitro and in vivo analyses indicate that ocellatusin inhibits ADP-induced 

platelet aggregation, and exhibits a similar potency to those reported for other short 

monomeric disintegrins form the genus Echis (Smith et al. 2002). In addition, it is a 

potent inhibitor of α5β1 integrin.  

7.2 Jerdostatin, an RTS-disintegrin 

Reverse transcription of mRNA isolated from the venom gland of Protobothrops 

jerdonii led to the amplification of cDNA coding for jerdostatin, an RTS disintegrin 

belonging to the KTS/RTS disintegrin family. As suggested by the name, jerdostatin was 

first identified in P. jerdonii venom gland cDNA. Particularly, its nucleotide sequence 

comprises 369 bp (GenBank accession code AY262730) coding for an open reading 

frame of 333 bp, including a signal peptide sequence, propeptide, and short disintegrin 

domain (residues 69 –110) (Sanz et al. 2005) (Figure 19). Short coding mRNA sequence 

for jerdostatin has been cloned from several snake venom glands cDNA (Sanz et al. 

2006; Bazaa et al. 2007) (Figure 19).  

PII-SVMP 

Short coding mRNA 

ocellatusin metalloproteinase propetide SP 

ocellatusin propeptide SP 

 DCESGPCCDNCKFLKEGTICKMARGDNMHDYCNGKTCDCPRNPYKGEHDP ocellatusin 

Proteolytic cleavage 
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Despite the presence of transcripts of the gene coding for jerdostatin in several 

snake venom glands, this protein had not been identified in any venom proteome, to 

date. 

 

Figure 19. Diagram of jerdostatin unique precursor found in Protobothrops 
jerdonii  venom gland coding DNA described by (Sanz et al.  2005). SP, signal peptide. 
Amino acid sequence of the mature disintegrin domain, jerdostatin, is displayed. Cys 
are in bold and the active tripeptide in blue and underlined.  

RTS-jerdostatin amino acid sequence displayed 80% identity with KTS-

disintegrins obtustatin (Marcinkiewicz et al. 2003), lebestatin (Olfa et al. 2005) and 

viperistatin (Kisiel et al. 2004). Recombinant jerdostatin selectively targets the collagen 

IV binding integrin, α1β1, (Sanz et al. 2005; Calvete et al. 2007b). This activity is shared 

by other short KTS-disintegrins: obtustatin (Marcinkiewicz et al. 2003; Brown et al. 

2008), viperistatin (Staniszewska et al. 2009; Momic et al. 2011) and lebestatin (Olfa et al. 

2005). Type IV collagen is an exclusive constituent of basement membranes, where it 

creates complex supramolecular networks that influences cell adhesion, migration and 

differentiation (Khoshnoodi et al. 2008). Specifically, the α1β1 integrin is involved in 

tumor angiogenesis and metastasis (Marcinkiewicz et al. 2000; Jin and Varner 2004; 

Tucker 2006; Garmy-Susini and Varner 2008; Staniszewska et al. 2009; Ghazaryan et al. 

2015); hence selective blocking this receptor is a desirable goal for cancer treatment. 

K/RTS-disintegrins block endothelial cell proliferation and angiogenesis (Olfa et al. 

2005; Brown et al. 2008). Particularly, r-jerdostatin produced in both a mammalian cell 

system (Juárez et al. 2010) and in BL21 Escherichia coli (Bolás et al. 2014), inhibited the 

binding of soluble α1β1 integrin to the CB3 fragment of collagen IV in a dose-dependent 

manner (Figure 20). Further, jerdostatin disrupted the adhesion of glioblastoma (RuGli) 

cells to collagen IV (Juárez et al. 2010) and also affects α1β1-mediated adhesion, 

migration and proliferation of rat aortic smooth muscle cells and angiogenesis (Bolás et 

al. 2014). 

Short coding mRNA jerdostatin propeptide SP 

  CTTGPCCRQCKLKPAGTTCWRTSVSSHYCTGRSCECPSYPGNG jerdostatin 
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Figure 20. Cartoon of the inhibition of α1β1  integrin-binding to the CB3 domain 
(CB3) of the collagen IV by KTS/RTS-disintegrins (RTS). α1  and β1 designs the 
subunits of the integrin.  

NMR studies of a α1β1-blocking short disintegrins KTS-obtustatin (from 

Macrovipera lebetina obtusa), mentioned previously (Brown et al. 2009) and the 

recombinant jerdostatin, wild-type (RTS) and mutants (KTS, RTS∆NG, KTS∆NG) 

(Carbajo et al. 2011) revealed that the integrin binding loop and the C-terminal tail of 

these disintegrins form a conformational functional epitope and display concerted 

motions (Figure 21). The shape and size of its 2 residue shortened integrin-binding loop 

(9 amino acid) respect RGD loop (11 amino acid), along with its composition, flexibility, 

and the distinct (lateral) orientation of the KTS/RTS tripeptide, may underlay the 

structural basis of their unique selectivity and specificity for integrin α1β1 

(Marcinkiewicz et al. 2003; Monleón et al. 2003; Moreno-Murciano et al. 2003a; Calvete 

et al. 2007b; Carbajo et al. 2011) (Figure 21). NMR characterization of jerdostatin 

molecules reported in Carbajo et al. in 2011 highlights the role played by dynamics in 

the integrin-inhibitor recognition process, suggesting that the conformation and 

dynamics of the integrin binding loop of jerdostatin are important for fast recognition 

of integrin α1β1 (Carbajo et al. 2011) (Figure 21). 
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Figure 21. Representation of the backbone superposition of the average structures 
of r-RTSjerdostatin, r-RTSjerdostatin∆NG, r-KTSjerdostatin21, and r-
KTSjerdostatin∆NG. Regions showing low dispersion are narrower and depicted in 
blue, whereas regions exhibiting higher structural dispersion are wider and colored in 
red. Adapted from Carbajo et al.  2011. 

8 Medium-size disintegrin, crotatroxin 

Crotatroxins are medium-sized monomeric disintegrins released in the venom of 

Crotalus atrox (Western diamondback rattlesnake). Crotatroxin 1 and 2 contain 72 to 

71 amino acids, respectively, which conform their structure with six disulfide bonds. 

The only difference between Crotatroxin 1 (GenBank: AAB24808.1) and 2 is found with 

the Alanine (A) present at the N terminal end of crotatroxin 1 (Figure 22).  

Figure 22. Medium size disintegrins expressed in Crotalus atrox  venom. 
Crotatroxin 1 and 2 amino acid sequences; cysteine are displayed in bold, RGD active 
motif red and underlined. 

Functionally, these disintegrins might be important at clinical level, given that 

crotatroxin inhibited human whole blood platelet aggregation with an IC50 of 17.5 nM, 

inhibit M21 melanoma cell adhesion to fibronectin (Scarborough et al. 1993; Fox and 

Serrano 2005; Kini 2006), and may be inhibitory against integrin α5β1. Further, 

crotatroxin inhibited lung tumor colonization in vivo using a mouse model (Galán et al. 

2008).  On the other hand, in the prey-predator context, crotatroxin contributes to the 

envenomation with its hemorrhagic function. 

R21 S23T22K/R21 T22 S23 

V24 

W20 

G41 
Ct 

Nt 

C1 

1         10           20           30           40           50           60           70      

crotatroxin1 AGEECDCGSPANPCCDAATCKLRPGAQCADGLCCDQCRFIKKGTVCRPARGDWNDDTCTGQSADCPRNGLYG ! 72!
crotatroxin2  GEECDCGSPANPCCDAATCKLRPGAQCADGLCCDQCRFIKKGTVCRPARGDWNDDTCTGQSADCPRNGLYG ! 71!
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Objectives 

In this dissertation we sought to explore the evolutionary relationship of two 

different groups of short disintegrins, RGD- and RTS/KTS-disintegrins, in addition to 

studying the RPTLN gene distribution and its possible function across Reptilia. Hence, 

the following objectives have been addressed in this work: 

1- Investigate the evolutionary history of the RTS/KTS-disintegrin family, 

analyzing RGD- and RTS/KTS-disintegrins structure-function, by generating 

chimeric RTS-RGD-disintegrin mutants. 

 

2- Define essential residues for ocellatusin natural functionality, studying the key 

structure-function determinants in this short disintegrin. 

 

3- Characterize the complete RPTLN gene coding for RTS-disintegrins, in addition 

to exploring the distribution of this gene across Reptilia.  

 

4- Study the distribution of RPTLN gene transcripts across Reptilia and possible 

translation of its disintegrin domain in organs other than the venom gland.  

 

5- Assess a possible new crotatroxin disintegrin functionality in Crotalus atrox 

venom, as an element to relocate prey following the strike-and-release predatory 

strategy, and investigate the possibility that short RGD-disintegrins are 

recognized by Crotalus atrox as a chemoattractant element. 
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1 Genomic DNA extraction, RNA isolation and complementary DNA 

synthesis 

Blood and tissues samples for genomic DNA and RNA extraction and proteins 

isolation were provided or donated by following people and institutions listed in Table 1. 

Table  1. Blood, tissues and fresh venom provided by different people and institutions 

*SoHeVa (Sociedad Herpetológica Valenciana). **UNC (University of Northern Colorado) 

Material Species Provided by 
Blood Ophiophagus Hannah José María López  (SoHeVa)* 
Blood Boa constrictor José María López  (SoHeVa)* 
Blood Timon lepidus José María López  (SoHeVa)* 
Blood Heloderma horridum José María López  (SoHeVa)* 
Blood Uroplatus ebenaui José María López  (SoHeVa)* 
Blood Chamaeleo calyptratus José María López  (SoHeVa)* 
Blood Testudo graeca José María López  (SoHeVa)* 
Blood Testudo Hermanni José María López  (SoHeVa)* 
Blood Stigmochelys pardalis José María López  (SoHeVa)* 
Blood Mauremys annamensis José María López  (SoHeVa)* 
Blood Mauremys sinensis José María López  (SoHeVa)* 
Blood Chelonoidis carbonaria José María López  (SoHeVa)* 
Blood Chelonoidis chilensis José María López  (SoHeVa)* 
Liver Alligator José María López  (SoHeVa)* 
Tail Lacerta hispanica caught in Valencia 
Tail Tarentola mauritanica caught in Valencia 

Tissue Naja haje haje César Olmos (Private zoological, Cullera) 
gDNA Echis ocellatus Dr. Robert A. Harrison (Liverpool, UK) 
gDNA Bothrops asper Dr. Bruno Lomonte (I. Clodomiro Picado, Costa Rica) 
gDNA Bothriechis lateralis Dr. Bruno Lomonte (I. Clodomiro Picado, Costa Rica) 
gDNA Atropoides picadoi Dr. Bruno Lomonte (I. Clodomiro Picado, Costa Rica) 
Tissues Podarcis muralis Dr. Enrique Font (Universitat de Valencia, Valencia) 
Tissues Podarcis hispanica Found in Valencia 
Tissues Mus musculus Our laboratory 
Tissues Rhinechis scalaris Found in IBV (Valencia) 
gDNA Arabidopsis thaliana Anonymous laboratory (Valencia) 
gDNA Homo sapiens sapiens Anonymous laboratory (Valencia) 
Blood Gallus gallus Carlos Núñez (Valencia) 
Blood Alectoris rufa Carlos Núñez (Valencia) 
Blood Anas platyrhychos domesticus Carlos Núñez (Valencia) 

Venom Crotalus atrox Dr. Stephen Mackessy (UNC**, Colorado) 
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1.1 Isolation of genomic DNA  

Blood cells and tissues were incubated overnight at 55˚C in lysis buffer (100 mM 

Tris, 25 mM EDTA, 100 mM NaCl, 0.5% SDS) and 0.2 μg/μL proteinase K (Sigma-

Aldrich®). Genomic DNA (gDNA) was isolated using phenol:chloroform:isoamyl 

alcohol (25:24:1, v/v/v) extraction and precipitated by adding 1/10 vol of 3M sodium 

acetate (pH 5.2) and 2 vol of 100% ethanol. gDNA was resuspended in TE buffer (10 

mM Tris, pH 8, 1 mM EDTA) (modified from Longmire et al. 1997). 

1.2 Tissues preparation, RNA isolation and reverse transcription.  

Organs from Rhinechis scalaris (lung, heart, skeletal muscle, skin), Podarcis 

muralis (bladder, liver, lung, kidney, skeletal muscle, skin, stomach, heart), and Podarcis 

hispanica (liver, lung, skin, stomach, heart, brain) were dissected, minced manually, and 

stored in RNAlater® (Sigma-Aldrich®). Total RNA extraction was performed using the 

TRIzol method following the manufacturer's (Life Technologies, NY, USA) 

recommended protocol. Total RNA was treated with RNAase-free DNAaseI following 

the manufacturer's (Thermo Scientific) protocol. DNAseI-treated total RNA integrity 

was assessed by electrophoresis in a 2% agarose gel. One μg of the RNA was reverse-

transcribed to first strand cDNA, using oligo (dT)18 and the RevertAid H Minus. First 

Strand complementary DNA (cDNA) Synthesis Kit (Thermo Scientific). The cDNA was 

stored at -80˚C until used. Reverse transcriptase minus (RT-) negative control was 

performed to verify the absence of gDNA in the RNA sample. The RT- control 

contained the same reaction mixture used for reverse transcription except for the 

RevertAid reverse transcriptase, which was substituted for 1 μl of RNAse-free water. 

Non-template control (NTC) was also included to discard reagent contaminations. The 

NTC reaction contained the same reagents than the reverse transcription reaction, 

excepting the RNA template. 

1.3 Snake milking, RNA isolation from the venom, and reverse transcription 

Treated material with RNase AWAY® (Sigma), was used for Crotalus atrox 

milking. Immediately, 100 µl of the venom was added to 1 mL TRIzol® solution, 

followed by the RNA isolation procedure described previously. 3´RACE System for 

Rapid Amplification of cDNA Ends (Invitrogen) manufacture protocol was followed for 
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Crotalus atrox cDNA synthesis. Adapter Primer (AP), containing oligo (dT)16 and 

AUAP (Abridged Universal Amplification Primer) sequence was used for the first 

strand cDNA synthesis from total RNA (Modahl et al., in press). 

2 PCR-amplification of DNA and RNA sequences 

2.1 RPTLN and RPTLN-like sequences amplification 

RPTLN sequences were PCR-amplified in a final volume of 25 μL containing 0.02 

units of iProof™ High-Fidelity DNA Polymerase (Bio-Rad), 1.5 mM MgCl2, 0.2 μM of 

each forward SP_jerdostatin 5´-ATGATCCAGGTTCTCTTGGTAACTATATG-3´ 

[MIQVLLVTI] and reverse 3´jerdostatin 5´-TAGCCATTCCCGGGATAACTGG-3´ 

[PSYPGNG] primers (Table 2), and 100 ng of gDNA, or 1 μL of cDNA, RT- or NTC, as 

template. PCR protocol included denaturation at 98˚C for 2 min, followed by 35 cycles 

of denaturation (10 s at 98˚C), annealing (20 s at 58˚C), extension (40 s at 72˚C), and a 

final extension step for 5 min at 72˚C. One μL of Mili-Q® water, without template, was 

used as negative control in every PCR-amplification. The PCR reaction mixture was run 

in 1% agarose gel, and the candidate 333 bp DNA band was excised. 

2.2 PCR-amplification of the housekeeping gene 28S ribosomal RNA 

Amplification of a partial sequence of the 28S ribosomal RNA (rRNA) gene was 

used as an internal control in every RPTLN gene expression study. The forward 

rRNA28S and reverse rRNA28S primers (Table 2) were designed based on the partial 

sequence of Anolis carolinensis 28S ribosomal RNA gene [AY859623]. The homologous 

275 bp sequences of Podarcis muralis [KU556683], Podarcis hispanica and Rhinechis 

scalaris were amplified using the FirePol® DNA Polymerase (Solis BioDyne) protocol. 

PCR-amplification was performed using an initial denaturation step at 94˚C for 5 min, 

followed by 35 cycles of denaturation (20 s at 94˚C), annealing (20 s at 58˚C), extension 

(30s at 72˚C), and a final extension step for 5 min at 72˚C. 

2.3 PCR-amplification of intron 7 of fibrinogen β-chain  

PCR-amplification of a 296 bp fragment of intron 7 of fibrinogen β-chain was 

performed as a double check to confirm the absence of amplicons arising from 

contaminating gDNA. Podarcis muralis and Podarcis hispanicus cDNA were used as 
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templates in the FirePol® (Solis BioDyne) DNA Polymerase protocol, with 

Fw_Intron7FGB_Podarcis and Rv_Intron7FGB_Podarcis as forward and reverse 

primers, respectively (Table 2). These primers were designed from the sequence of 

intron 7 of the Podarcis muralis haplotype B80 β-fibrinogen (FGB) gene [EU269550]. 

PCR-amplification was performed using an initial denaturation step (94˚C for 5 min), 

followed by 35 cycles of denaturation (20 s at 94˚C), annealing (20 s at 60˚C), extension 

(30 s at 72˚C), and a final extension step for 5 min at 72˚C.  Rhinechis scalaris cDNA 

was also subject to PCR-amplification of a 1519 bp sequence of intron 7 of fibrinogen β-

chain [KU556682], using forward Fw_7IFGB and reverse Rv_7IFGB primers (Table 2), 

designed based on the β-fibrinogen intron 7 sequence of Trimeresurus species 

[AF517209]. FirePol® DNA Polymerase (Solis BioDyne) protocol consisted of an initial 

denaturation cycle at 94˚C for 5 min, followed by 35 cycles of denaturation (20 s at 

94˚C), annealing (20 s at 56˚C), extension (90 s at 72˚C), and a final extension step for 5 

min at 72˚C.  

Table  2. RPTLN, housekeeping gene 28S ribosomal RNA, and intron 7 of fibrinogen β-chain 
primers  

3 Purification, cloning and sequencing of PCR products 

DNA candidate fragments, were isolated from the agarose gel and purified by 

GeneClean® TurboKit (MP BioMedicals, LLC) or Illustra GFX Gel Band Purification 

Kit (GE Healthcare, Buckinghamshire, UK) and cloned into a pGEM®-T (Promega, 

Madison, WI, USA), or a pJET1.2/blunt vector (Thermo Scientific). Ligation mixtures 

were transformed in DH5α E. coli strain cells (Novagen, Madison, WI) by 

electroporation using and Eppendorf 2510 electroporator. Positive clones were selected 

Primers Sequence 
SP_jerdostatin ATGATCCAGGTTCTCTTGGTAACTATATG 
3´jerdostatin TAGCCATTCCCGGGATAACTGG 
Forward rRNA28S GTAACGCAGGTGTCCTAAGG 
Reverse rRNA28S CGCTTGGTGAATTCTGCTTC 
Fw_Intron7FGB_Podarcis GGATCATGCTGTCAGGCTGG 
Rv_ Intron7FGB_Podarcis CAGTGGTACCTTGGGTTAAGAAC 
Fw_7IFGB AGAGACAATGATGGATGGTAAG 
Rv_7IFGB AGAGACAATGATGGATGGTAAG 
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by growing the transformed cells in Luria-Broth (LB) medium 2% agar, containing 100 

μg/ml ampicillin, along with beta-galactosidase selection only in the case of pGEM®-T 

clones. Positive clones were confirmed by PCR amplification using vector-specific 

primers; M13, for pGEM®-T, and pJET1.2, for pJET1.2/blunt vector. The PCR-

amplified positive clones were isolated by DNA Purification System Wizard® Plus SV 

Minipreps (Promega) and sequenced (using an Applied Biosystems model 377 DNA 

sequencer) or ABI PRISM-3130XL Genetic Analyzer (Applied Biosystems). 

4 Semiquantitative PCR and Real-time PCR 

4.1 Semiquantitative PCR 

Semiquantitative PCR was performed by electrophoresis in 1% agarose gel 

following the conventional PCR-amplifications of the RPTLN gene and the 28S rRNA 

fragments (previously described), for 25, 30, and 35 cycles. PCR products were run 

arranged by cycle’s number, Tube 1, 25 cycles; tube 2, 30 cycles and tube 3, 35 cycles.  

4.2 Real-time PCR  

Quantitative real-time PCR was performed in duplicate using Light Cycler 

FastStart DNA Master SYBR green I (Roche) in a Light Cycler 480 (Roche), following 

the manufacture’s protocol using SP_jerdostatin and 3´jerdostatin primers (Table 2) for 

RPTLN-like amplification, and forward and reverse rRNA28S primers (Table 2) for the 

housekeeping fragment. 1 µg of total RNA from Podarcis muralis heart (in a final 

volume of 20 μl) was transcribed into cDNA, and 3μL (0.15 μg of RNA) of the reaction 

mixture were used as template. pMD18-T/RPTLN and pJET1.2/28SrRNA plasmids were 

used as positive controls and internal standard, respectively.  

5 Sequence analyses 

5.1 Sequence identification  

Sequence similarity searches were done using BLASTn 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). The DNA sequence chromatograms of the 

RPTLN genes and mutagenized disintegrins were analyzed by Chromass software 
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(Technelysium). The translation of a nucleotide (DNA/RNA) to a protein sequence was 

done using the translate ExPaSy tool (http://web.expasy.org/translate/).  

5.2 Sequences alignment 

Multiple sequence alignment was performed using MEGA (Molecular 

Evolutionary Genetic Analysis; http://www.megasoftware.net). 

Note that the alignment of RPTLN-like sequences became complex in number and 

it included redundant information. Therefore, RPTLN alignment was simplified 

considering as bona fide changes, only the nucleotide substitution observed at least 

twice in different species. To avoid the inclusion of sequencing mistakes, the changes 

found only once were discarded, assuming we might lose some information. 

5.3 RNA secondary structure prediction 

Prediction of RNA secondary structure was performed using the RNAfold 

WebServer (http://rna.tbi.univie.ac.at) at the Institute for Theoretical Chemistry, 

University of Vienna (Mathews et al. 2004; Gruber et al. 2008; Lorenz et al. 2011). 

6 Sequences accession codes 

All nucleotide sequences gathered in this work have been deposited with the NCBI 

database under accession codes KU556682 (partial 1519 bp sequence of intron 7 of 

fibrinogen β-chain of P. scalaris), KU556683 (partial 275 bp sequence of 28S ribosomal 

RNA from Podarcis muralis) and KU563546-KU563619 (RPTLN 2-21 sequences from 

different organisms listed in table 1S (p.171) and table 2S (p.172). 

7 Protein extraction and Western blotting 

7.1 Protein extraction 

For total protein extraction, 5 mm-thick portions of minced tissues or organs 

where homogenized in lysis buffer (10 mM Tris, pH 7.5, 1 mM EDTA, 1 mM MgCl2, 

10% glicerol, 5 µM β-mercaptoetanol, containing a tablet of EDTA-free protease 

inhibitor (Roche) per 50mL of lysis buffer and 0.4 mM Pefabloc SC (AEBSF) (Roche), 

using an Ultra-Turrax® (Ika® Werke) homogenizator. SDS was added to a final 
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concentration of 2% (w/v). The samples were vortexed for ~15 seconds, incubated for 

10 min on ice. This process was repeated twice. Immediately, the samples were 

centrifuged at 14,000xg for 20 min at 4˚C, and the supernatants were transferred to 

clean tubes. The protein extracts were suspended in loading sample buffer in reducing 

conditions and heated 5 minutes at 95°C, prior loading in polyacrylamide gel. 

7.2 Protein analysis and Western blotting 

Aliquots of 40-60 µg of total proteins extracted from 200 µg of organ/tissue 

homogenates of R. scalaris (liver, skeletal muscle, kidney, heart, lung, skin), P. muralis 

(bladder, liver, skeletal muscle, stomach, skeletal muscle, kidney, lung, heart), and P. 

hispanicus (skin, stomach, skeletal muscle, brain, lung, heart) and 50 ng of r-jerdostatin 

were analyzed in a 10% Tris-tricine SDS-PAGE gel under reducing conditions. Replicate 

gels were i) stained with Coomasiee Blue R250 and ii) electrotrasferred to PVDF 

membrane (Hybond-P, GE Healthcare) using a semi-dry electrotransfer device. PVDF 

membranes were blocked in 5% (w/v) non-fat dried milk in PBS (20 mM Na2HPO4, 150 

mM NaCl, pH 7.5) overnight at 4˚C, and incubated for 1 h at 25˚C with a 1:500 (v/v) 

dilution of anti-PEP160 polyclonal antibodies (against jerdostatin, see in detail below), 

in 5% non-fat dried milk/PBS-Tween (20 mM Na2HPO4 pH 7.5, 150 mM NaCl, 0.1% 

(v/v) Tween-20). The membranes were then washed three times with PBS-Tween 

followed by incubation (1 h at 25˚C) with a 1:5000 (v/v) dilution of peroxidase-

conjugated anti-rabbit IgG (Sigma) in PBS/5% non-fat dried milk. After 3 times washing 

with PBS-Tween, the membranes were developed using the chemiluminescence ECL 

Prime kit (GE Healthcare).  

 Another set of total protein extracts were fractionated into ≥ 10 kDa, 10-3 kDa, 

and ≤ 3 kDa fractions using Microcon® YM-10K (Amicon Bioseparations, Millipore) 

and Amicon Ultracel®-3K (Merck Millipore Ltd.) centrifugal filters. These fractions 

were run in a 10%Tris-tricine–SDS-PAGE gel, electroblotted onto PVDF membrane, 

and the blots developed as described above.  

Recombinant soluble r-jerdostatin was produced in transformed BL21 Escherichia 

coli and isolated as described in Gema Bolás dissertation (and Sanz-Soler et al. 2012). 

Antiserum PEP160 against the C-terminal tail of jerdostatin (35CKPSYPGNG43) was 
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generated in rabbit by Abintek Biopharma, S.L. (Parque Tecnológico de Bizkaia, Derio, 

Bizkaia, Spain) using a standard immunization protocol and the synthetic peptide 

CKPSYPGNG conjugated to keyhole limpet hemocyanin (KLH) as immunogen. Anti-

CKPSYPGNG antibodies were affinity-purified on a peptide-Sepharose column (Juárez 

et al. 2010). 

Scheme 1 summarizes and introduces the various methodological approaches 

(described in detail earlier) employed in this study to address specific questions about 

the evolution and possible function(s) of the RPTLN genes (Chapter II). 

 

Scheme 1.    Summary of the various methodological approaches (described in detail in the 

Methodology section) employed in this study to address specific questions about the evolution and 
possible structure-function correlations of the reptile-specific RPTLN genes. 

8 Generation of expression plasmids for recombinant disintegrin 

production.  

8.1 Design and cloning of recombinant disintegrins 

8.1.1 Design and cloning of recombinant ocellatusin 

The short disintegrin wild-type RGD-ocellatusin was PCR-amplified from E. 

ocellatus venom gland cDNA (Juárez et al. 2006a) using forward, BglII_TEV_ocellatusin 

and reverse primer, HindIII_Ocellatusin, including respectively, BglII and HindIII 

restriction sites. The sequence coding the TEV protease cleavage site [ENLYFQG] was 

Blood / tissue / organ homogenates (Table1) 
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included in the forward primer, and a stop codon in the reverse primer (Table 3). The 

PCR-amplification protocol included initial denaturation at 94 °C for 2 min, followed 

by 35 cycles of denaturation (94°C for 30 s), annealing (60°C for 30 s), extension (72°C 

for 30 s) and a final extension step for 7 min at 72°C. The resulting PCR product was 

purified, cloned in the vector pGEM®-T, (Promega, Madison, WI, USA), selected, 

confirmed and sequenced, as mentioned above. 

Table  3. Primers for ocellatusin and crotatroxin cloning.  

*Modahl et al., in press 

 

8.2 Determination of the crotatroxin nucleotide sequence and cloning of 
crotatroxin for its recombinant expression  

8.2.1 Cloning and sequence identification of crotatroxin-coding DNA  

For the crotatroxin-coding DNA sequences determination, PCR-amplification was 

performed, using our Crotalus atrox venom cDNA library, and the forward degenerated 

primer, disintegrinUV, coding for the N-terminal disintegrin sequences and the reverse 

primer AUAP (Abridged Universal Amplification Primer) from the 3´RACE Invitrogen 

kit. AUAP primer hybridized onto the oligo(dT16) containing the adapter primer, with 

which the cDNA library was generated (Modahl et al., in press). HiFidelity DNA 

polymerase master mix (Invitrogen) was used for that PCR-amplification. Touchdown 

58-55 PCR protocol included an initial denaturation step at (94°C for 1 min 30sec) 

followed by 10 cycles of denaturation (30 s at 94°C), annealing (45 s at 58°C), and 

extension (1min at 68°C); 25 cycles starting with the above conditions, decreasing the 

annealing temperature by 0.12°C (reaching 55°C in cycle 25); and a final extension for 5 

min at 68°C. PCR-amplification product was purified by PCR Clean-up system 

(Promega) and cloned in pGEM®-T vector, (Promega, Madison, WI, USA). Positive 

Primers Sequence 
Fw_BglII_TEV_ocellatusin GGAGATCTCGAGAATCTTTACTTCCAAGGAGACTGTGAATCTGGACC 

Rv_HindIII_ocellatusin  GTAAGCTTCTACGGATCATGTTCGCCTTTG 

Fw_disintegrinUV* GAGGTGGGAGAAGAWTGYGACTG  

AUAP (3´RACE Invitrogen) GGCCACGCGTCGACTAGTAC 

Fw_BglII_TEV_crotatroxin2 GGAGATCTCGAGAATCTTTACTTCCAAGGAGGAGAAGAATGTGACTGTGG 

Rv_EcoRI_crotatroxin2 GTGAATTCTTAGCCATAGAGGCCATTTCTGGG 
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clones were sequenced and compared with the known crotatroxin2 amino acid sequence 

[AAB24808.1] (Modahl et al., in press).  

8.2.2 Design and cloning of recombinant crotatroxin sequence 

Equal crotatroxin PCR-amplification mixture and protocol (Touchdown 58-55) 

was followed, using Crotalus atrox venom cDNA and Fw_BglII_TEV_crotatroxin2 and 

Rv_EcoRI_crotatroxin2 specific primers (Table 3), which were designed based in our 

crotatroxin2 nucleotide sequence, including BglII and EcoRI restriction sites, 

respectively, in addition to TEV cleavage site, similar to ocellatusin construct. PCR 

resulting product was cloned in pGEM®-T vector (Promega, Madison, WI, USA), as 

shown earlier in section 3 of Methodology.  

8.3 Cloning TEVcleavage site and disintegrin in pET32a(+) expression vector 

To construct an expression vector of disintegrin-thioredoxin-His6 fusion protein 

the pGEM-T/TEV-disintegrin plasmids and the pET32a(+) vector (Novagen, Madison, 

WI) were respectively digested with BglII/HindIII (ocellatusin) and BglII/EcoRI 

(crotatroxin) restriction enzymes for 24 h at 37°C. The disintegrin fragments and the 

linear pET32a(+) vector were purified by agarose gel electrophoresis as mentioned 

previouly, and ligated with T4 DNA ligase (Invitrogen) overnight at 4°C. E. coli DH5a 

strain cells were transformed with this construct, and positive clones were confirmed 

and sequenced as described above (Figure 23).  

 

Figure 23. Expression plasmid pET32a(+)/TEV-disintegrin for expression of 
recombinant disintegrins and detail  of the fusion protein: Histidine tail  (His6),  
thioredoxin A (trxA), sequence coding the TEV protease cleavage site [ENLYFQG] and 
sequence coding for the mature disintegrin domain. BglII,  HindIII and EcoRI 
restriction sites are indicated. Amp denotes the sequence ampiciline restistance and 
ori,  Origen of replication sequence. 

Am
p 

ori 

trxA 

pET32a/
TEVDisintegrin 

6000 pb 
BglII HindIII/EcoRI 

disintegrin TEV trxA His6 
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8.4 Site-directed mutagenesis for RTS-ocellatusin generation 

Hybrid (“Frankenstein”) ocellatusin–jerdostatin constructions were generated by 

site-directed mutagenesis, using as template pET32a(+)/TEV-ocellatusin or new 

generated pET32a(+)/TEV-Frankenstein-disintegrin constructs. To this end, iProofTM 

High Fidelity Master Mix was used for PCR-amplification (denaturation at 94°C for 2 

min, followed by 12 cycles of denaturation for 30 s at 94°C, annealing for 60 s at 55°C, 

extension for 12 min at 68°C, and a final extension for 10 min at 68°C), using different 

complementary primers for each mutant (Table 4). Additionally, to obtain the jerdloop-

ocellatusin mutant an intermediate construct, pET32/K21W-M22R-A23T-R24S 

ΔG25D26-ocellatusin, was generated and served as template. Forward and reverse 

primers used are listed in Table 4. PCR products were treated with DpnI restriction 

enzyme, which is specific for methylated DNA, to digest the template plasmid in the 

PCR mix (Figure 24). These PCR products were used to transform electrocompetents E. 

coli DH5a cells. Plasmids were isolated and sequenced as described formerly, to confirm 

the mutations. 

 

Figure 24. Simplified site-directed mutagenesis diagram. Primers and punctual 
mutations are display by green lines and red crosses, respectively. DNA synthesis 
direction is indicated. Me, show template plasmid metilation. 

 

XGD-ocellatusin mutants (SGD, TGD and GGD) were generated using identical 

site-directed mutagenesis protocol (Figure 24). The primers for the generation of the 

mutants R24S-, R24T- and R24G-ocellatusin are noted in Table 4. 
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9 Expression and purification of recombinant disintegrins  

For r-jerdostatin expression and purification was followed the protocol described 

by Bolas, G., in her dissertation, as mentioned previously. The procedure is comparable 

to the disintegrin expression and purification protocol of r-ocellatusin, r-crotatroxin, 

Frankenstein ocellatusin and XGD-ocellatusin mutants, which were expressed and 

purified by the procedure described below.   

9.1 Expression of recombinant disintegrins in E.coli 

E. coli BL21 strain cells (Novagen, Madison, WI) were transfected with the 

corresponding pET32a(+)/TEV-disintegrin construct (Figure 23) for each recombinant 

disintegrin. The presence of the disintegrin–thioredoxin fusion constructs in positive 

clones was checked by PCR using specific primers. Positive E. coli BL21 clones were 

grown overnight at 37°C in LB medium containing 100 µg/ml ampicillin, followed by a 

1:50 (v/v) dilution in the same medium until an OD600 of around 0.8–1 was reached. 

Expression of the recombinant fusion proteins was then induced by addition of 

isopropyl-D-thiogalactosidase (IPTG) to a final concentration of 0.75-1 mM, and 

incubation of the cell suspensions for 4 h at 37°C or overnight at 21°C for some of the 

mutants. Cells were pelleted by centrifugation (4000 for 30 min), resuspended in the 

same volume of 20 mM sodium phosphate, 150 mM NaCl, pH 7.4 buffer, washed twice 

with this buffer, and resuspended in 50 mL of 20 mM sodium phosphate, 250 mM NaCl, 

pH 7.4 (Figure 25).  

 

Figure 25. Simplified diagram of the recombinant disintegrins expression protocol.  
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9.2 Purification of recombinant disintegrins 

Cells were lysed by sonication (15 cycles of 15 s sonication/1 min resting) in an ice 

bath. The lysates were centrifuged at 10,000×g for 30 min at 4°C twice. Soluble and 

insoluble fractions were analyzed by SDS-PAGE using 12% polyacrylamide gels under 

reducing conditions. Disintegrin-thioredoxin-His6 fusion proteins were purified from 

the soluble fraction of the lysate by affinity chromatography using an ÄKTA Basic 

chromatograph equipped with a 5 ml HisTrap HP column (Amersham Biosciences) 

equilibrated in 20 mM sodium phosphate, 250 mM NaCl, pH 7.4. Bound protein was 

eluted with a linear gradient of 50–500 mM imidazole. Eluted fractions were checked by 

SDS-PAGE and those containing the fusion protein were pooled, dialyzed against 20 

mM sodium phosphate, 250 mM NaCl, pH 7.4, and digested overnight at 4°C with 

TEV-His6 protease (1:20, w/w) (Tropea et al. 2009). Recombinant disintegrins were 

separated from thioredoxin-His6 and TEV-His6 by chromatography on a HisTrap 

column (as above). The flow-through fractions were concentrated using Amicon 

filtration membranes with a pore size of 3000 Da (Millipore, MA, USA) and the r-

disintegrins purified by reverse-phase HPLC on a C18 column (4.6×250 mm, 5 µm, 

SunFireTM, Waters, MA, USA) equilibrated with 5% acetonitrile 0.05% TFA in water 

(solution A) and eluted with a 45 min linear gradient of 5–70% acetonitrile in 0.05% 

TFA (Figure 26). The purity of the isolated protein was assessed by SDS-PAGE and 

electrospray-ionization mass spectrometry. Disintegrin were lyofilized and resuspended 

in PBS buffer (20 mM Na2HPO4, 150 mM NaCl, pH 7.5). Soluble protein concentration 

was determined using bicinchoninic acid protein method (BCATM Protein Assay, Pierce). 

 
Figure 26. Simplified diagram of the recombinant disintegrin purification 
protocol. Soluble and insoluble fraction are displayed as S and I,  respectively; TEV 
protease by TEV. His-Trap, denotes the purification steps of the affinity 
chromatography, in which His6 tagged proteins bind Nickel Sepharose affinity column 
(HisTrap HP, Amersham Biosciences). MS, Mass spectrometric measurement and SDS-
PAGE to test purify. 
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10 Isolation of snake venom proteins  

10.1 Isolation of lebestatin from Macrovipera lebetina venom 

Lebestatin was isolated from the venom of Macrovipera lebetina by HPLC. Two 

mg of crude venom were dissolved in 300µl water containing 0.1% TFA and applied to a 

reverse phase C18 column (250×4.6 mm, 5 µm, Europa® Teknokroma), as shown in 

(Makran et al. 2012). The purity of the disintegrin was assessed by SDS-PAGE and Mass 

spectrometry in native conditions. 

10.2 Isolation of RTS-disintegrin from Daboia russelli venom  

Two miligrams of crude venom samples were dissolve in 300µL water containing 

0.1% TFA (solution A). Soluble venom proteins were separated by reverse-phase HPLC 

on a C18 column (250×4.6 mm, 5 µm, Europa® Teknokroma), equilibrated with 5% 

acetonitrile 0.05% TFA in water (solution A) and eluted with linear gradient of 5–20% 

(in 20min), 20%-45% (in 110min) and 45-70% (30min) acetonitrile in 0.05% TFA. 

Protein detection was performed at 215 nm and peaks were collected manually. Possible 

disintegrin peaks were used directly for mass spectrometry in native conditions and 

dried in a Speed-Vac (Savant), dissolved in water, and further loaded in SDS-PAGE 

separation in 12% gels, under reducing conditions.  

11 Molecular mass determination and collision-induced fragmentation by 

nESI-MS/MS  

11.1 Mass spectrometry (MS) in native conditions 

The purity and identity of the isolated recombinant disintegrins, as well as, 

possible disintegrin peaks isolated from snake venom were assessed by Electrospray-

ionization mass spectrometry using a QTrap 2000 instrument (Applied Biosystems) (Le 

Blanc et al. 2003) equipped with a nanoelectrospray source (Proxeon, Denmark). 

Electrospray-ionization mass spectrometric characterization was performed on the 

native (nonreduced) proteins, obtaining ESI-MS isotope-averaged molecular mass of 

HPLC-purified disintegrins (Figure 26). The protein molecular mass can be obtained 

determining the charge state of the peaks in the spectrum. For that, one may assume 
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that the two adjacent peaks are from the same compound and they differ by a single 

charge. If the two peaks are related and differ by one proton then more specifically we 

can write: m+1=808,3×(z+1) and m=942,7×(z) (example, Figure 27). Since m is assumed 

to be the same for both peaks we can set the two equations equal to each other 

808,3z+807.3=942,7×z and solve z= 6. Now that the charge (z) is known, we obtained 

the accurate protein mass and standard deviation (Calvete 2014) (Figure 27). 

 

Figure 27. Electrospray-ionization mass spectra. ESI_MS m/z, mass-to-charge; 
M=molecular mass of the protein; Charge (z) Proton mass (H+=1.00794u). The 
equation necessary to obtain the protein molecular mass is displayed. 

Theoretical disintegrin monoisotopic mass with 4 disulfide bonds was calculated 

using Paws® software, considering native cysteine disulfide bridge formation.  

 

11.2 In-gel enzymatic digestion and collision-induced fragmentation by nESI-
MS/MS  

Protein bands of interest were excised from a Coomassie Brilliant Blue-stained 

SDS-PAGE and subjected to automated reduction with DTT and alkylation with 

iodoacetamide, and in-gel digestion with sequencing grade bovine pancreas trypsin 

(Roche) using a ProGest digestor (Genomic Solutions) following the manufacturer's 

instructions.  

For peptide sequencing, the protein-digested mixture was loaded in a nanospray 

capillary column and subjected to electrospray-ionization mass spectrometric analysis 
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of selected peptides from the MALDI-TOF mass fingerprint spectra were analyzed in 

Enhanced Resolution MS mode and the monoisotopic ions were fragmented using the 

Enhanced Product Ion mode with Q0 trapping and QTrap 2000 instrument (Applied 

Biosystems). Enhanced Resolution was performed at 250 amu/s across the entire mass 

range. Settings for MS/MS experiments were as follows: Q1-unit resolution; Q1-to-Q2 

collision energy — 30–40 eV; Q3 entry barrier — 8 V; LIT (linear ion trap) Q3 fill time 

— 250 ms; and Q3 scan rate — 1000 amu/s. CID spectra were interpreted manually or 

using the online form of MASCOT program at www.matrixscience.com.  

12 Inhibition of soluble α1β1 integrin binding to CB3 

12.1 Human α1β1 integrin ectodomain expression and issolation 

Recombinant soluble human α1β1 integrin ectodomain was produce in transfected 

Drosophila Schneider cells. The established clone was grown in a biofermenter to a 

density of 12×106cells/ml, then, α1β1 integrin expression was induced with 0.8 mM Cu2+ 

ions for five days. For α1β1 integrin isolation, the cell supernatant was harvested, 

concentrated, and loaded onto a CB3 [IV] affinity column. Soluble α1β1 integrin was 

eluted by 10 mM EDTA as previously described by Eble et al. 2006. Its concentration 

and purity were determined by BCA test (Pierce) and SDS-PAGE. The Collagen IV 

fragment CB3 was generated as described by Kern et al. 1993. 

12.2 Inhibition of soluble α1β1 integrin binding to CB3 by Frankenstein disintegrins 

The collagen type IV fragment CB3 was immobilized on a 96-well plate overnight 

at 4°C in TBS/Mg2+ (20 mM Tris, 150 mM NaCl, pH 7.5 containing 2 mM MgCl2) at a 

concentration of 5 µg/ml (100µL). The plate was washed three times with binding buffer 

(TBS/Mg2+) and non-specific binding sites blocked with 1%(v/v) BSA in TBS/Mg2+ at 

room temperature for 1 h. Then, 3.5 µg/ml of soluble α1β1 integrin, dissolved in 100µL 

TBS/Mg2+, were mixed with 100µL of increasing concentrations of recombinant 

disintegrins. The mixtures were added to the plate and incubated for 2 h at room 

temperature. The plate was then washed twice with 50 mM HEPES (pH 7.5) containing 

150 mM NaCl, 2 mM MgCl2 and 1 mM MnCl2, and the bound integrin was fixed with 

2.5% (v/v) glutaraldehyde in the same buffer for 10 min at room temperature. For α1β1 
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integrin detection a primary rabbit anti-β1 antiserum (1:2000) was employed. After 3 

times washing with PBS, goat anti-rabbit IgG conjugated with alkaline phosphatase (AP, 

1:2000) was added. 4-nitrophenyl phosphate disodium salt hexahydrate (Sigma) was 

used as AP substrate, color was developed at room temperature and quantified in an 

ELISA plate reader at 405 nm. CB3 coated wells were incubated with the integrin either 

in the absence of disintegrin (positive control) or in the presence of 10 mM EDTA 

(negative control). Lebestatin purified from Macrovipera lebetina transmediterranea and 

r-jerdostatin were used as positive control for α1β1 integrin binding inhibition. 

13 Platelets aggregation assay. Inhibition of collagen I-induced platelets 

aggregation assay 

13.1 Platelets isolation. Preparation of washed platelets suspensions 

Human platelets were isolated from fresh blood from healthy volunteers not 

having taken any drug known to interfere with platelet responses in the previous 2 

weeks. For preparation of washed platelets, blood was collected 6:1 (v/v) in ACD 

anticoagulant (117 mM trisodium citrate, 78 mM citric acid, 282 mM dextrose), and 

centrifuge at 200 ×g for 15 minutes at 37 °C obtaining platelet-rich-plasma (PRP). PRP 

was draw off, transfer to a clean tube and centrifuge again. Aliquots of PRP were 

distributes in 2 mL tubes with addition of 200 ng/mL PGE1 (Prostaglandin E1) final 

concentration, and centrifuge at 10,000 ×g for 60 seconds at room temperature (RT). 

Platelet pellets were resuspended in modified calcium-free Tyrode buffer A (134 mM 

NaCl, 2.9 mM KCl, 3 mM NaH2PO4, 1 mM MgCl2, 10 mM HEPES, 5 mM dextrose, 50 

ng/ml PGE1, pH 6.2) from Antunes et al. 2010. This procedure was repeated once more. 

Finally, platelet pellets were resuspended in Tyrode buffer B containing calcium (134 

mM NaCl, 2.9 mM KCl, 3 mM NaH2PO4, 1 mM MgCl2, 10 mM HEPES, 5 mM dextrose, 

2 mM CaCl2, pH 7.4) and the suspension was maintained at 37 °C. The platelet counts 

were determined using a Neubauer chamber and adjusted to 2 ×108/mL for starting the 

assay. Modified from Antunes et al. 2010; Navdaev et al. 2011. 
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13.2 Platelet aggregation assay.  

Human platelet aggregation was monitored, by light transmission aggregometry 

(LTA), in an platelet aggregometer profiler PAP-E8 (MöLab GMbH), with continuous 

stirring at 1100 rpm and constant temperature at 37°C in eight channels at the time. 

Platelets aggregation studies were performed at counts of 200,000 platelets/µL, 250 µL of 

those platelets in Tyrode buffer B, were pre-incubated stirring at 37 °C for 2 minutes till 

the signal is stable. Straightaway, platelets aggregation was induced by addition of 10 µL 

of 100 µg/mL Collagen I (Col I). Then, 1 minute after, disintegrins in PBS (20 mM 

Na2HPO4, 150 mM NaCl, pH 7.5), or negative control (PBS), were added. Platelets 

aggregation reaction was allowed to proceed for at least 5 min. r-ocellatusin wild-type 

was our positive control and PBS maximum aggregation (MA) was used as a reference 

of 100% platelets aggregation. The results were expressed in percentage of platelet 

aggregation through optical measurements of turbidity (Figure 28). Platelets in Tyrode 

buffer B was used as blank in the tests with washed platelets suspension.  

 

Figure 28. Platelets aggregation cartoon and its profile of aggregation, together 
with the profile of platelets aggregation inhibition by an aggregation inhibitor (e.g. 
RGD-ocellatusin). Platelet aggregation profile with (10µl ocellatusin) and without 
(10µl PBS buffer) inhibitor are indicated in yellow and green, respectively. The 
simplified cartoon presents the process of collagen I-induced platelets aggregation, 
and each tube indicates different points of the PBS platelet aggregation profile.  Col I,  
denotes 10µL of 100µg/mL Collagen I.  PBS buffer (20 mM Na2HPO 4, 150 mM NaCl, 
pH7.5) 
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In our studies we used Maximum Aggregation to compare different 

concentrations and different disintegrins inhibitory potencies. The percentage of 

platelet aggregation was recorded and used to calculate the concentration necessary to 

reduce the induced platelet aggregation by 50% with respect to control (IC50 value).  

 

14 Rattlesnakes behavior trials 

14.1 Experimental animals. Crotalus atrox and Mus musculus 

Behavioral trials were performed as approved by the Institutional Animal Care 

and Use Committee (IACUC) of the University of Northern Colorado. Eight Crotalus 

atrox, all adult long-term captive snakes, were housed individually in glass aquaria (61.0 

× 41.0 × 44.5 cm) containing a paper floor, water bowls and hide boxes, and maintained 

on a 12:12 L:D (Light:Dark) cycle at 26 ± 2°C.  All snakes were healthy and fed bi-weekly 

on pre-killed inbred Swiss/Webster mice (Mus musculus). Snakes were never fed on the 

day of trials, which occurred at least 7 to 10 days after the last feeding session, and all 

behavioral trials were separated by at least 14 days. On testing days, similar size and sex 

mice were selected and euthanized by cervical dislocation just before r-disintegrin 

injection and subsequent testing. Although M. musculus is not a natural prey item of C. 

atrox, it has been shown that the magnitude of the snakes chemosensory response, 

termed strike-induced chemosensory searching (SICS), is no different towards natural 

rodent prey such as Peromyscus maniculatus (deer mice) when compared to lab mice (M. 

musculus) (Furry et al. 1991). Therefore, the strain of laboratory mice used will not 

influence the results.  

14.2 Crotalus atrox behavior trials using recombinant disintegrins 

For behavioral trials, strike-induced chemosensory searching was induced by 

allowing C. atrox to strike and envenomate a prey carcass suspended from long forceps 

(Chiszar et al. 1992). Since rattlesnakes release prey immediately after the strike, the 

envenomated mouse carcass was removed without ever touching the floor or walls of 

the snakes cage, and discarded. The testing apparatus consisted of a flat 4 × 10 cm metal 

base with two wire mesh baskets approximately 4.0 cm apart. One wire mesh basket 
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contained the “envenomated” mouse carcass which was injected with 1.5mg in 100 μL 

of reconstituted recombinant disintegrin in PBS, whereas the other basket held the 

“non-envenomated” (control) mouse, injected with 100 μL of PBS (20 mM Na2HPO4, 

150 mM NaCl, pH 7.5) (Chiszar et al. 1999; 2008). We used the terminology 

“envenomated” (E) and “non-envenomated” (NE) mice according to previous 

behavioral studies (Saviola et al. 2013). In addition, the 100 μL volume of reconstituted 

venom is comparable to the volume of venom injected during a predatory strike (Hayes 

et al. 1992). Two injections, each containing 50 μL, were made in the thoracic region, 

dorsal and ventral to the shoulder blade, as these are the regions most commonly struck 

during rattlesnake predatory episodes (Kardong 1986). The testing apparatus containing 

both the E and NE mice was placed in the opposite end of the snake cage, and to 

account for human disturbance of opening and closing the cage, a 2-minute 

undisturbed acclimation period occurred before the start of the trial. It should be noted, 

that during this acclimation period, none of the snakes approached the testing apparatus 

containing the E and NE carcasses. Following this 2-minute acclimation period, 10 

minute trials were recorded on a JVC Everio GZ-MG330 30GB HDD Camcorder with a 

35x optical zoom lens. Videos were analyzed and data was recorded as the number of 

tongue flicks directed within 1 cm of either the E or the NE mouse. In squamates, 

tongue flicking represents a stimulus-seeking behavior and is the main process for 

delivering volatile and non-volatile cues to the vomeronasal organ (Schwenk 1995). 

Since tongue flicking is activated by the detection of volatile cues by the nasal olfactory 

system, or visual, thermal or vibratory stimuli, measuring the rate of tongue flicking is 

an accurate and convenient assay of nasal as well as vomeronasal chemoreception in 

snakes (Schwenk 1995; Saviola et al. 2012). Data was recorded with the observer blind to 

the conditions, therefore, the observer was unaware of which mouse carcass was 

injected with the control or recombinant disintegrin sample. Cages and test apparatus 

were thoroughly cleaned with Quatricide® (Pharmacal) and 70% ethanol between trials.  
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Figure 29. Testing apparatus containing envenomated (E) and non-envenomated 
(NE) mice. E and NE mice were injected with r-disintegrin and PBS (20 mM Na2HPO 4, 
150 mM NaCl, pH 7.5), respectively. The mice were denoted as circle and star as the 
data were recorded with the observer blind to the conditions. In the picture, Crotalus 
atrox  flicks towards Mouse “circle”. The picture was extracted from one of the videos 
analyzed in this dissertation. 

 

14.3 Tongue flicks statistics analyses 

The mean number of tongue flicks directed towards the E and NE mouse carcasses 

for the recombinant disintegrin and the PBS control were analyzed using a two-sample 

t-test. The number of tongue flicks was also converted to percentages (that is, percent of 

tongue flicks emitted to E and NE mice) by dividing the number of tongue flicks aimed 

at the E carcass by the total number of tongue flicks for both carcasses. These data were 

then analyzed by single sample t-tests in which the mean percent of tongue flicks 

directed toward E mice were compared to 50%, as 50% is the expected value of tongue 

flicks directed towards each of the E and NE mice under the null hypothesis. Rate of 

tongue flicking can be highly variable among snakes, so converting rate of tongue 

flicking to percentages places all snakes on the same scale  (Chiszar et al., 2008; Saviola 

et al., 2013). 
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Chapter I. Recombinant expression and functionality of the 

“Frankenstein” 1  and XGD ocellatusin mutants 

1The term Frankenstein used here as a synonym for “a chimeric protein made with pieces from different molecules”, 

is a tribute to Mary W. Shelley’s “Frankenstein, or, the Modern Prometheus”, Lackington, Hughes, Harding, Mavor & 

Jones, Gradifco, Switzerland, 1818. 

 

It is known that short RGD-disintegrins appear to be restricted to African and 

Asian Echis and Eristicophis species, and represent the most recent members of the 

disintegrin family (Juárez et al. 2008; Calvete 2010). This also suggest that short RGD-

disintegrins may have evolved after the radiation of Viperinae during the late Oligocene 

or the early Miocene, between 22 and 24 Mya (Castoe et al. 2009), at a time when 

eastern North America and Eurasia were widely separated across the Atlantic, whereas 

northeastern Asia and Alaska remained connected via the Bering land bridge. The 

existence of two distinct messengers coding for the short disintegrin ocellatusin (Figure 

18 p.30) suggest key events of the evolutionary emergence of the short disintegrin 

ocellatusin from a short-coding dimeric disintegrin precursor genes (Juárez et al. 2006b).  

 

 

Figure 30.  Superposition of the integrin-binding loops of echistatin (red) and 
obtustatin (blue), highlighting their different size and the different topology of their 
active motifs,  RGD and KTS. Adapted from Moreno-Murciano et al.  2003a.  

RGD-echistatin   ECESGPCCRNCKFLKEGTICKRSRGDDMDDYCNGKTCDCPRNPHKGPAT!
KTS-obtustatin        CTTGPCCRQCKLKPAGTTCWKTS--LTSHYCTGKSCDCPLYPG !
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Furthermore, the most parsimonious nucleotide substitution model required for 

the emergence of all known XXD disintegrin’s integrin inhibitory sequences from an 

ancestral RGD motif (Juárez et al. 2008) involves a minimum of three mutations 

(Calvete 2010) (Figure 14 p.26). However, circumstantial evidence suggests that 

KTS/RTS disintegrins may not follow this canonical evolutionary scenario. Hence, i) no 

putative dimeric disintegrin precursor has been found in the few species from which 

KTS/RTS-disintegrins have been isolated from their venoms or cloned from their cDNA 

venom glands in the species shown in Table 5, ii) whereas the integrin-inhibitory loops 

of XXD disintegrins are absolutely conserved in residue length (11 amino acids) and 

harbor the active tripeptide at the tip. However, the active tripeptides of jerdostatin 

(RTS, Carbajo et al. 2011) and obtustatin (KTS, Monleón et al. 2003; Moreno-Murciano 

et al. 2003b) are oriented towards the side of nine-residue integrin-binding loops. 

(Figure 30).   

Table  5. Existing KTS/RTS-disintegrins released in snake venoms, and coding DNA cloned 
from their venom gland cDNA libraries.  

Disintegrin´s KTS and RTS integrin-binding motifs are indicated. cDNA RTS denotes the cloned 
sequences from the snake venom glands. 

The striking similar functional requirements (synergy between the integrin 

binding loop and the C-terminal tail) and structural differences between RGD and 

RTS/KTS short disintegrins prompted us to investigate a possible transformation route 

of RGD-ocellatusin into RTS-jerdostatin.  

Snake species 
KTS/RTS-
disintegrin 

Accession 
code 

References 

Macrovipera lebetina 
M.mauritanica 

 lebestatin (KTS) Q3BK14.1 
(Olfa et al. 2005;  

Makran et al. 2012)) 

M. lebetina obtusa obtustatin (KTS) P83469.1 
( Marcinkiewicz et al. 2003; 

Moreno-Murciano et al. 2003a) 
Daboia paleastinae viperistatin (KTS) P0C6E2.1 (Kisiel et al. 2004) 

Daboia russelii russellistatin (RTS) Q7ZZM2.1 
At this dissertation (Chapter II) 

(Sanz-Soler et al. 2012) 
Protobothrops jerdonii cDNA RTS  Q7ZZM2.1 (Sanz et al. 2005) 

Daboia russelii cDNA RTS FF277034.1 Unpublished data 

Macrovipera mauritanica        cDNA RTS AM261813.1 (Bazaa et al. 2007) 
Echis ocellatus cDNA RTS AM286798.1 (Bazaa et al. 2007) 
Cerastes vipera cDNA RTS AM114012.1 (Sanz et al. 2006) 
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To elucidate the RGD-disintegrin and KTS/RTS-disintegrin evolutionary 

correlation, minimal requirements to transform RGD-disintegrin in KTS/RTS-

disintegrin were studied. For that matter, RGD-ocellatusin and RTS-jerdostatin were 

selected, expressed and purified.  

1 Expression, purification and identification of recombinant disintegrins  

1.1 Cloning of RGD ocellatusin 

Firstly, in order to express a short RGD disintegrin, the complete disintegrin 

domain, wild-type RGD-ocellatusin (Figure 31) nucleotide sequence, together with the 

sequence coding for the cleavage site for the tobacco etch virus (TEV) protease in 5´, 

was cloned in the pET32a(+) expression vector (Novagen, Madison, WI) (Figure 31 and  

Figure 23, p.50). 

 
Figure 31. Cloned ocellatusin nucleotide and amino acid sequence and TEV 
(tobacco etch virus) cleaveage recognizing site in N-terminal.  The exact cleavage site 
is displayed.  

Once we created this pET32a(+)/TEV-ocellatusin expression construct, we 

designed ocellatusin mutants by site-directed mutagenesis (Figure 24, p.51), as it is 

explained below.  

1.2 Expression of recombinant disintegrins  

The different recombinant disintegrins were overexpressed in BL21(DE3) 

expression strain transformed with the pET32a(+)/TEV-disintegrin plasmids. Every 

individual BL21_pET32a(+)/TEV-disintegrin strain overexpressed soluble His6-

thioredoxin-TEV-disintegrin fusion protein (Figure 32A). Co-expressed thioredoxin in 

tandem with the disintegrins catalyze a proper cystine linkage, challenging the reducing 

conditions in the bacterial cytoplasm, and assisting a correct disintegrins folding.  

TEV cleavage site 
gagaatctttacttccaaggagactgtgaatctggaccatgttgtgataactgcaaattt!
 E  N  L  Y  F  Q  G  D  C  E  S  G  P  C  C  D  N  C  K  F!
ctgaaggaaggaacaatatgcaagatggcaaggggtgataacatgcatgattactgcaat!
 L  K  E  G  T  I  C  K  M  A  R  G  D  N  M  H  D  Y  C  N!
ggcaaaacttgtgactgtcccagaaatccttacaaaggcgaacatgatccgtag!
 G  K  T  C  D  C  P  R  N  P  Y  K  G  E  H  D  P  *!
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Recombinant disintegrin purification method consists in two-steps of affinity 

chromatography, on a His-Trap column, including in-between, His6-trxA-TEV-

disintegrin digestion by the r-TEV-protease (Tropea et al. 2009) and followed by a 

reverse-phase chromatography (Figure 32). Purification yields of r-disintegrins were 

approximately 0.5-1 mg/L of cell culture.  

 
Figure 32. Purification of recombinant disintegrins. r-ocellatusin purification 
steps. A. Soluble fraction of lysated of E.coli  BL21 cells expressing the His6-
thioredoxin-TEV-disintegrin fusion protein was loaded in the first step of His-Trap 
affinity chromatography. To identify the fraction containing our construct, eluted 
fractions were loaded in 12% SDS-PAGE. An arrow points the fusion protein fraction. 
B. Second step of His-Trap affinity chromatography after the digestion of the 
construct (fraction 4) by r-TEV-protease. The retained and non-retained protein 
identities are specified. The flow through fraction, containing the recombinant 
disintegrin was concentrated.  C. The concentrate fraction was injected in a reverse-
phase chromatography column. The purified r-disintegrin peak is denoted. D. 
Analysis by Tris–Tricine–(10%)SDS-PAGE of the overexpression and purification 
steps of ocellatusin. Lanes I and S, insoluble and soluble fractions, respectively, of 
lysates of E. coli  BL21 cells expressing the disintegrin fusion protein. Lane ND (Non-
digested), HisTrap affinity-purified disintegrin-thioredoxin-His6 (24 kDa). Lane D, 
digestion products of ocellatusin-TEV-thioredoxin-His6 fusion protein after 
incubation with TEV protease, plus His6-TEV protease (28,6 kDa).  Lane oc, r-
ocellatusin purified by reverse-phase HPLC from the flow-through of the HisTrap 
affinity column of the protein mixture shown in lane D. Lanes S, molecular weight 
markers (Mark12T M, Invitrogen), whose apparent molecular mass is indicated at the 
left side of the gels.   
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1.3 Disintegrin identification by MS spectrometry  

The purity of the isolated recombinant disintegrins was assessed by Tris-tricine-

SDS-PAGE (Figure 32 D). Then, recombinant disintegrins were identified by 

electrospray-ionization mass spectrometry (Figure 33).  

 

Figure 33. Electrospray-ionization mass spectrometry of reverse-phase HPLC-
purified recombinant wild-type ocellatusin. ESI-MS is the experimental mass and 
calculated molecular mass corresponds to fully oxidized (4 disulfide bonds) 
monoisotopic species.  

Mass spectrometry is perhaps the best-suited technique for counting cysteine 

residues, discriminating free cysteine residues (SH) and disulfide bonds (S-S) (Calvete et 

al. 2007a). Accordingly, electrospray-ionization mass spectrometry proved that our 

experimental molecular masses accurately matched the calculated masses for the 

recombinant disintegrins with fully oxidized cysteine (S-S) residues content. These data 

confirmed the correct r-disintegrins primary sequence (Figure 33) (Table 6 and 7).  

1.4 Recombinant RGD-disintegrins functionality. Inhibition of collagen-induced 
platelet aggregation by recombinant ocellatusin 

Short RGD disintegrins bind different kinds of integrins, blocking the binding of 

the α5β1, αVβ3, αIIbβ3 integrins to their natural ligands. These major integrin (α5β1, αVβ3 

and αIIbβ3) ligands are fibronectin, vitronectin and platelet fibrinogen, respectively. 

Integrin αIIbβ3 is implicated in platelet aggregation, therefore, one common method to 

study and compare different activities of the RGD-disintegrins is measuring the 

inhibition of the platelet aggregation induced by ADP or Collagen I (McLane et al. 1996; 
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Sanchez et al. 2009; Yang et al. 2015). Accordingly, to test our recombinant ocellatusin 

functionality, inhibition of platelet aggregation induced by collagen I (Col I) was 

measured (Figure 34). 

 

Figure 34. Inhibitory activity of recombinant ocellatusin. Concentration-
dependent blocking of collagen-induced platelet aggregation by r-ocellatusin.   

Recombinant ocellatusin inhibited the collagen I-induced aggregation of human 

washed platelets, in a dose dependent manner, with an IC50 of 3.6 ±0.6×10-8 M (Figure 

34). Thus, evidences that r-ocellatusin inhibited platelet aggregation (collagen I-

induced) with a potency similar to that reported for the natural short RGD-disintegrin 

echistatin (IC50 of 3 ×10-8M) (Gan et al. 1988). Furthermore, r-ocellatusin has similar 

potency to natural ocellatusin, which has an ADP-induced platelet rich plasma 

aggregation IC50 of 16.8 ±2×10-8 M, which is similar to the reported for echistatin, 13.6 ± 

2.9×10-8 M (Smith et al. 2002). These result strongly suggests that the recombinant 

disintegrin may have been folded into the same biologically-active conformation as the 

venom-isolated ocellatusin and its homologue echistatin (1RO3, Monleón et al. 2005).  

2 Design and generation of recombinant RTS-ocellatusin mutants 

To approach the evolutionary path of XXD versus KTS/RTS-disintegrins, 

structure-function analyses were performed. Considering that it might exist a possible 

evolutionary pathway from XXD-disintegrins towards KTS/RTS-disintegrins, we 

explored the minimal requirements to transform the RGD-ocellatusin into the α1β1-

blocking RTS-jerdostatin.  
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For that aim, recombinant “Frankenstein” disintegrins (hybrid ocellatusin-

jerdostatin constructs) were designed, generated and functionally tested. “Frankenstein” 

RTS-ocellatusin constructs were generated by site-directed mutagenesis using as a 

template the wild-type expression vector, pET32a(+)/TEV-ocellatusin, or some of the 

generated mutants (Table 4, p.52 and 53) (Figure 35).  

 

2.1 Generation of recombinant loop-mutated RTS-ocellatusin disintegrins  

The disintegrin active sites have been significantly studied (reviewed by Calvete 

2013b), and the integrin-binding loop is the first determinant of the epitope that 

provides the disintegrin functionality. Therefore, the RGD integrin-binding motif was 

substituted for the RTS sequence (r-R24-G25T-D26S-ocellatusin) in the tip of the loop, 

(as is located in the ocellatusin). In addition, mutants r-D26R-N27T-M28S-ocellatusin, 

r-G25R-D26T-N27S-ocellatusin, r-A23R-R24T-G25S-ocellatusin and r-M22R-A23T-

R24S-ocellatusin were designed to vary the topology of the engineered RTS motif from 

the tip to the loop towards lateral position, as occurs in the jerdostatin loop  (Figures 30 

and 35). The 11 amino acid length of the integrin-binding loop of ocellatusin was 

preserved in these five Frankenstein mutants, since our aim was to discover the minimal 

necessary substitutions to transform ocellatusin in to an active RTS-disintegrin. Besides, 

we generated the mutant, r-M22R-A23T-R24S-G25_D26del-ocellatusin, which was 

designed to shorten the length of the integrin-binding loop from 11 to 9 residues (as in 

jerdostatin) while maintaining the lateral topology of the RTS motif (Figures 30 and 35). 

In addition, the full sequence of the inhibitory loop of ocellatusin was replaced by 

the complete amino acid sequence of jerdostatin´s integrin-binding loop in the r-

jerdloop-ocellatusin mutant [20CWRTS--VSSHYC32] (Figure 35). r-ocellatusin mutants 

containing this sequence in the disintegrin loop are labeled as “jerdloop” to simplify 

terminology. 
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Figure 35. Amino acid sequences and nomenclature of wild-type jerdostatin, wild-
type r-ocellatusin and the “Frankenstein” r-RTS-ocellatusin mutants. Cysteine 
residues are in bold, and the RTS and RGD motifs are underlined and denoted in blue 
and red, respectively, according to the figure 30. The substitutions in the mutants are 
in indicated in italics and colored in blue, according to jerdostatin assigned color. 
Residue labeled -1 corresponds to the last residue of TEV protease cleavage site, 
ENLYFQG, inserted between the His6-thioredoxin tag and the disintegrin sequence. 
The length, in amino acids, of each disintegrin is indicated. 

 

Each of these r-RTS-ocellatusin mutants were expressed, purified, and isolated in a 

soluble form, and identified by SDS-PAGE and mass spectrometry, similarly to the wild 

type r-ocellatusin (Table 6) (Figure 32 and Figures 25 and 26, p.54 and 55). 

 

Table  6. Experimental (ESI-MS) and calculated molecular masses of the recombinant 
disintegrins listed in Figure 35. Calculated masses correspond to fully oxidized (4 disulfide bonds) 
monoisotopic species. 

 -11    5    10    15    20   25    30    35   40    45    50  

jerdostatin    CTTGPCCRQCKLKPAGTTCWRTS--VSSHYCTGRSCECPSYPGNG 43 

r-ocellatusin  GDCESGPCCDNCKFLKEGTICKMARGDNMHDYCNGKTCDCPRNPYKGEHDP 50 

r-M22R-A23T-R24S-oc  GDCESGPCCDNCKFLKEGTICKRTSGDNMHDYCNGKTCDCPRNPYKGEHDP 50 

r-M22R-A23T-R24S-G25D26del-oc   GDCESGPCCDNCKFLKEGTICKRTS--NMHDYCNGKTCDCPRNPYKGEHDP 48 

r-A23R-R24T-G25S-oc  GDCESGPCCDNCKFLKEGTICKMRTSDNMHDYCNGKTCDCPRNPYKGEHDP 50 

r-G25T-D26S-oc  GDCESGPCCDNCKFLKEGTICKMARTSNMHDYCNGKTCDCPRNPYKGEHDP 50 

r-G25R-D26T-N27S-oc  GDCESGPCCDNCKFLKEGTICKMARRTSMHDYCNGKTCDCPRNPYKGEHDP 50 

r-D26R-N27T-M28S-oc  GDCESGPCCDNCKFLKEGTICKMARGRTSHDYCNGKTCDCPRNPYKGEHDP 50 

r-jerdloop-oc  GDCESGPCCDNCKFLKEGTICWRTS--VSSHYCNGKTCDCPRNPYKGEHDP 48 

Recombinant disintegrins ESI-MS (Da) 
Calculated monoisotopic 

mass (Da) with 4 S-S bonds 
r-jerdostatin 4764.7±0.5 4765.4 
r-ocellatusin 5650.8±0.5 5650.3 
r-M22R-A23T-R24S-ocellatusin 5636.7±1.5 5636.2 
r-M22R-A23T-R24S ΔG25D26-ocellatusin 5465.0±0.7 5464.1 
r-A23R-R24T-G25S-ocellatusin 5710.9±0.7 5710.3 
r-G25T-D26S-ocellatusin 5666.7±1.3 5666.3 
r-G25R-D26T-N27S-ocellatusin 5708.6±0.2 5708.4 
r-D26R-N27T-M28S-ocellatusin 5634.9±0.3 5634.3 
r-jerdloop-ocellatusin 5435.1±1.0 5435.0 
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3 Inhibition of soluble α1β1 integrin-binding to CB3 by wild-type and        
r-RTS-ocellatusin mutants 

In contrast to the short RGD disintegrins, KTS/RTS-disintegrins uniquely inhibit 

the binding of integrin α1β1 to its natural ligands, the CB3 fragment of collagen IV, 

being the most specific ligand, and also collagen I (Figure 20, p.32). In agreement with 

previous studies (Juárez et al. 2010), both r-jerdostatin and lebestatin (Olfa et al. 2005) 

(our positive controls) blocked the high-affinity interaction between the soluble 

heterodimeric ectodomain of integrin α1β1 and the CB3 fragment of collagen IV in a 

concentration-dependent and divalent ion-independent manner (Figure 36). In contrast, 

wild-type r-ocellatusin, our negative control, did not show any inhibitory activity, as 

expected. Similarly, none of the Frankenstein r-RTS-disintegrins blocked the binding of 

the α1β1 integrin to the CB3 fragment (Figure 36).  

 

Figure 36. Inhibitory activity of recombinant disintegrins. Inhibition of the 
integrin α1β1 binding to CB3 fragment of collagen IV by incubating soluble integrin 
α1β1 (3.5 μg/mL) with increasing concentrations r-RTS-jerdostatin and KTS-lebestatin 
positive r-RGD-ocellatusin and r-RTS-ocellatusin mutants in 96-wells plates coated 
with 5 μg/mL of CB3. Bound integrin was detected by ELISA. Lebestatin/r-jerdostatin 
and wild-type r-ocellatusin were used as positive and negative inhibition controls, 
respectively. 

The lack of inhibitory activity strongly suggests that neither the insertion of the 

RTS motif in different positions of the integrin-binding loop of an XXD short-

disintegrin scaffold, nor the lateral position of RTS motif in a 9 or 11 amino acids loop, 

are sufficient for conferring α1β1 integrin-binding specificity. Not even the replacement 

of the whole RGD-loop of ocellatusin [20CKMARGDNMHDYC32] by the RTS-loop of 
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jerdostatin [20CWRTS--VSSHYC32] is enough to provide α1β1 integrin-binding 

specificity. Clearly, factors other than the integrin-binding loop sequence may modulate 

its active conformation and/or provide additional elements involved in determining the 

disintegrin’ selectivity and specificity for integrin α1β1.  

4 Design and generation of Frankenstein-C-terminal-ocellatusin (r-RTS- 

C-terminal-ocellatusin) mutants 

In this respect, it is worth mentioning that the integrin-binding loop and the C-

terminal tail of both (K/R)TS-disintegrins (Monleón et al. 2003; Carbajo et al. 2011), 

and the RGD disintegrin echistatin (Monleón et al. 2005) display concerted motions. 

Replacement of echistatin’s C-terminal end sequence 44HKGPAT49  with that of the 

RGD-disintegrin eristostatin (WNG) decreased but did not abolish the inhibitory 

potential when examining ADP-induced platelet aggregation (Wierzbicka-Patynowski 

et al. 1999; Chen et al. 2012). As a whole, these data indicate that the C-terminal tail may 

act in synergy with the integrin-binding loop to modulate the high affinity and 

selectiveness of disintegrins for their target integrin receptors. 

4.1 Generation of Frankenstein-C-terminal-ocellatusin mutants  

Structure-function studies in our laboratory confirmed that RTS-disintegrin loop 

and the C-terminal tail of jerdostatin form an integrin-binding conformational epitope 

(Carbajo et al. 2011). Consequently, further mutants were designed to address the 

contribution of the C-terminal region for transforming a disintegrin scaffold from the 

RGD clade into another form the RTS/KTS clade. With this object, and given that the 

C-terminal end is longer in ocellatusin than in jerdostatin, we generated shortened C-

terminal tail mutants. Initially, r-ocellatusin and each Frankenstein r-RTS- and r-

jerdloop-ocellatusin mutants were shortened by 4 amino acids [47EHDP50] in the C-

terminal end, generating r-E47_P50del-ocellatusin, r-RTS-E47_P50del-ocellatusin and 

r-jerdloop-E47_P50del-ocellatusin mutants (Figure 37).  
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In order to generate an active “r-jerdostatinloop-C-terminal” integrin-binding 

epitope, additional C-terminal tail mutants were generated using the jerdloop-

E47_P50del-ocellatusin mutant as a template. Primarily, two mutants were generated; r-

jerdloop-Y44G-K45N-E47_P50del-ocellatusin, replacing partially ocellatusin C-

terminal end, [39CPRNPYKG46], for jerdostatin C-terminal tail, [39CPRNPGNG46], and, 

r-jerdloop-R41S-N42Y-Y44G-K45N-E47_P50del-ocellatusin, which includes the 

complete jerdostatin C-terminal end sequence [39CPSYPGNG46] (Figure 37). This 

sequence might be critical to conform the proper C-terminal tail synergy with the 

jerdostatin integrin-binding loop (Carbajo et al. 2011).  

Further analyses (Carbajo et al. 2011) indicates that the r-jerdostatin-N45_G46del 

mutant, combined with a shortened C-terminal end sequence [39CPSYPG44] increases its 

activity in relation to the jerdostatin wild-type, with IC50’s of 80nM and 180nM, 

respectively. Therefore, r-jerdloopR41S-N42Y-Y44G-K45_P50del-ocellatusin mutants 

with this shortened C-terminal tail [39CPSYPG44] were produced (Figure 37) (Table 7). 

Considering the structural requirements and the RTS-, KTS- and RGD amino acid 

sequence conservation (Figure 38), other “Frankenstein” mutants were generated, 

including changes around the jerdostatin loop. First, N33T substitution was included in 

the mutant jerdostatin loop [19ICWRTSVSSHYCT33], which contains the jerdostatin C-

terminal sequence, [39CPSYPGNG46], resulting the r-N33T-jerdloop-R41S-N42Y-Y44G-

K45N-ΔEHDP-ocellatusin mutant (Figure 37 and 40). 

Figure 38. RGD-ocellatusin and KTS/RTS-disintegrins. RGD non-conserved sites 
in KTS/RTS-disintegrins nucleotide sequence are double underlined in the ocellatusin 
sequence. Cysteine residues are in bold and RGD and (R/K)TS are in red and blue, 
respectively, according to the figure 30. Amino acids around the loop included in our 
mutants are highlighted in grey. 

 
1     5    10    15    20    25     30    35    40    45    50 

ocellatusin DCESGPCCDNCKFLKEGTICKMARGDNMHDYCNGKTCDCPRNPYKGEHDP 
jerdostatin  CTTGPCCRQCKLKPAGTTCWRTS--VSSHYCTGRSCECPSYPGNG 
obtustatin  CTTGPCCRQCKLKPAGTTCWKTS--LTSHYCTGKSCDCPLYPG 
viperestatin  CTTGPCCRQCKLKPAGTTCWKTS--RTSHYCTGKSCDCPVYQG 
lebestatin   CTTGPCCRQCKLKPAGTTCWKTS--RTSHYCTGKSCDCPVYQG 
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Beyond the sequence conservation, jerdostatin structure analyses indicate that the 

C-terminal tail of the RTS/KTS-jerdostatin is in close proximity to the loop, permitting 

structural linkages through hydrophobic interactions (Carbajo et al. 2011). The amino 

acid T19, in N-terminal of the jerdostatin loop, is one of those residues involved in 

hydrophobic interactions. This indicates that T19, together with additional amino acids 

in this loop (W21, H28, Y29) and the C-terminal tail (P38, P41, G42), are involved in 

the active conformation of jerdostatin (Carbajo et al. 2011) (Figure 39).  

 
Figure 39. Detail of the KTS-jerdostatin structure, highlighting the network of 
hydrophobic interactions linking the active loop and the C-terminal tail  of rJerK21. 
The side chains of T1 9 and W 2 1 (in green) interact with residues H 2 8 and Y2 9 (in yellow), 
which at the same time interact with P3 8 (orange) and the C-terminal residues P4 1 and 
G 4 2 (red). Adapted from Carbajo et al.  2011. 

Considering these interactions, I19T mutants were generated, containing the 

jerdloop sequence [19TCWRTSVSSHYCN33] and two different jerdostatin C-terminal 

sequences, [39CPSYPGNG46] or [39CPSYPG44] (Figure 40).  

 

Figure 40. Alignment of KTS/RTS-disintegrin, ocellatusin, I19T-jerdloop-R41S-
N42Y-Y44G-K45_P50del-ocellatusin (r-I19T-jerdloop-Ct-oc) and N33T-jerdloop-
R41S-N42Y-Y44G-K45N-E47_P50del-ocellatusin (r-N33T-jerdloop-Ct-oc) mutants. In 
the mutants, RGD- and (K/R)TS-disintegrin characteristic sequences are colored in 
red and blue, respectively, according to figure 30. Cysteine residues are in bold and 
the RGD and RTS motifs are underlined. 

P41 

G42 
P38 

H28 

Y29 

W21 

T19 

 

 
1     5    10    15    20    25     30    35    40    45    50 

ocellatusin DCESGPCCDNCKFLKEGTICKMARGDNMHDYCNGKTCDCPRNPYKGEHDP 
r-I19T-jerdloop-Ct-oc DCESGPCCDNCKFLKEGTTCWRTS--VSSHYCNGKTCDCPSYPG 
r-N33T-jerdloop-Ct-oc DCESGPCCDNCKFLKEGTICWRTS--VSSHYCTGKTCDCPSYPGNG 
jerdostatin   CTTGPCCRQCKLKPAGTTCWRTS--VSSHYCTGRSCECPSYPGNG 
lebestatin  CTTGPCCRQCKLKPAGTTCWKTS--RTSHYCTGKSCDCPVYQG 
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Similar to both the r-ocellatusin (Figure 32 and 33, p.70 and 71) and r-RTS-

ocellatusin mutants, recombinant C-terminal ocellatusin mutants were obtained by 

overexpression in bacteria, purified by several affinity purification steps (Figure 25 and 

26, p.54 and 55) and identified by SDS-PAGE and mass spectrometry (Table 7). 

Table  7. Experimental (ESI-MS) and calculated molecular masses of the Frankenstein 
recombinant rRTS-, jerdloop-C-terminal ocellatusin mutants. Calculated masses correspond to fully 
oxidized (4 disulfide bonds) monoisotopic species. 

 

4.2 Inhibition of soluble α1β1 integrin-binding to CB3 by Frankenstein r-RTS- and 
r-jerdostatinloop-C-terminal-ocellatusin mutants  

Similar to the previous r-RTS-ocellatusin and r-jerdloop-ocellatusin mutants, 

none of the jerdloop-C-terminal-ocellatusin mutants blocked α1β1 binding to the CB3 

collagen IV fragment (Figure 41) (Figure 20, p.32). The lack of binding inhibition imply 

that neither the complete jerdostatin C-terminal sequences, [39CPSYPGNG46] or the 

shortened sequence [39CPSYPG44], plus the jerdostatin loop [18CWRTSVSSHYC32], nor 

its combination with the improved jerdostatin loops, [19ICWRTSVSSHYCT33] or 

[19TCWRTSVSSHYCN33], are sufficient enough to achieve functionality similar to the 

KTS/RTS disintegrins.  

Recombinant disintegrins ESI-MS (Da) 
Calculated 

monoisotopic mass 
(Da) with 4 S-S bonds 

r-ocellatusin-E47_P50del 5174.6 ±2.4 5171.8 
r-M22R-A23T-R24S- E47_P50del-ocellatusin  5158.3±0.7 5157.7 
r-M22R-A23T-R24S ΔG25D26-E47_P50del-ocellatusin 4986.2±0.3 4985.6 
r-A23R-R24T-G25S-E47_P50del-ocellatusin 5232.2±0.6 5231.8 
r-G25T-D26S-E47_P50del-ocellatusin 5188.2±2 5187.8 
r-G25R-D26T-N27S-E47_P50del-ocellatusin 5230.1±0.5 5229.9 
r-D26R-N27T-M28S-E47_P50del-ocellatusin 5156.6±1 5155.8 
r-jerdloop-E47_P50del-ocellatusin 4957.1±1 4956.5 
r-jerdloop Y44G K45N-E47_P50del-ocellatusin 4836.9±0.5 4836.3 
r-jerdloop R41S N42Y Y44G K45N-E47_P50del-ocellatusin 4816.8±0.6 4816.3 
r-I19T-jerdloopR41S N42Y Y44G K45N-E47_P50del-oc 4803.7±1.1 4804.3 
r-N33T jerdloop R41S N42Y Y44G K45N-E47_P50del-oc 4803.8±1.3 4803.3 
r-jerdloop R41S N42Y Y44G-K45_P50del-ocellatusin 4644.7±0.9 4645.2 
r-I19T jerdloop-R41S-N42Y-Y44G-K45_P50del-ocellatusin 4632.3±0.3 4633.1 
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Figure 41. Inhibitory activity of recombinant disintegrins. Inhibition of the 
integrin α1β1 binding to CB3 fragment of collagen IV by incubating soluble integrin 
α1β1 (3.5 μg/mL) with increasing concentrations of r-RTS-ocellatusin-C-terminal 
mutants in 96-wells plates coated with 5 μg/mL of CB3. Bound integrin was detected 
by ELISA. r-jerdostatin and wild-type r-ocellatusin were used as positive and negative 
inhibition controls,  respectively. 

These results suggest that other elements beyond: i) the integrin-binding loop 

sequence, ii) the C-terminal tail and iii) the amino acids around the loop, might 

modulate the active conformation of jerdostatin. Comparison of the amino acid 

sequences of RGD-ocellatusin and KTS/RTS-disintegrins (Figure 37), combined with 

our results, indicate that the non-conserved amino acids located at the N-terminal 

region of the loop and/or the Serine36 are required to conform a functional (R/K)TS-

disintegrin. Previous studies examining disintegrin structure fail to address these amino 

acid regions as a key element for selectivity and specificity for their integrin receptors. 

Nonetheless, it is worth mentioning that there is 100% conserved sequence identity in 

the N-terminal region of every KTS/RTS-disintegrins (Figure 38). These N-terminal 

sequences may be essential for a proper conformation of disintegrins involved in the 

α1β1 integrin-binding inhibition.  

In addition, our results may be suggestive that i) (K/R)TS-disintegrins may have 

diverged from a common precursor to the RGD-disintegrins in an unusually accelerated 

pace, or ii) (K/R)TS-disintegrins have been recruited independently of the canonical 

XXD disintegrins. The second hypothesis is supported by structural data of RTS- and 

RGD-disintegrins. When the structure of RTS-jerdostatin (Carbajo et al. 2011) is 

compared to RGD-echistatin (Chen et al. 1994; McLane et al. 1996; Marcinkiewicz et al. 

1997), distinct chemical and physical features modulate the integrin inhibitory motif, 
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permitting the different integrin-binding strategies observed in each of these 

disintegrins. Therefore, it is likely that RGD- and RTS-disintegrin scaffolds evolved 

independently. 

Furthermore, all disintegrins with exception of KTS/RTS-disintegrins bind 

integrins which emerged early in evolution, preceding first metazoans (Sebé-Pedrós et al. 

2010), and none of these integrins contain the I-domain (or A-domain) “insertion” in 

the α subunit (αI) (Figure 13 A). The insertion of the αI domain occurred approximately 

500 Mya in Chordate. The presence of the αI domain permits additional flexibility in 

regards to ligand recognition by integrins (Chouhan et al. 2014) (Figure 42B). Therefore, 

novel sources with epitopes that are targeted by αI-integrins (Figure 42B) may have 

been an adaptation in venoms to the presence of the αI domain in the prey of venomous 

snakes. This may be the case of RTS/KTS-disintegrins and C-type lectin, which inhibit 

the binding of integrins αI1β1 and αI2β1 (Figure 42B) to collagen, respectively (Ogawa et 

al. 2005; Calvete et al. 2007b). Interestingly, KTS/RTS-disintegrins, which we propose 

evolved independently from other disintegrins (XXD-type), are unique in the aspect 

that they inhibit α1β1 integrin-collagen IV/I binding. Further, KTS/RTS-disintegrins are 

not able to block non-αI-integrin (Figure 42A) binding (Figure 12, p.24). This may 

support our hypothesis of an independent evolutionary origin of the RTS/KTS and the 

RGD short disintegrins clades.  

 

Figure 42. Schematic representation of 
integrin heterodimers. Integrins are large 
heterodimeric, bi-directionally signaling, cell  
surface receptors that consist of a large 
extracellular ectodomain, a transmembrane 
region and relatively short intracellular ‘ ‘tails’’  
(right). Integrins with (B) and without (A) I-
domain in α  domain (αI).  The αI domain 
contains the highly solvent-exposed MIDAS site 
(Mg2 +).  Cartoon of the disintegrin RGD motif is 
presented in the integrin-binding site (A). 
Adapted from Chouhan et al.  2014. 
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5 Residues responsible for the functional activity of ocellatusin.  

From these results, and the high RTS/KTS-disintegrin sequence conservation 

necessary to inhibit α1β1 integrin-binding to its natural ligand, we decide to examine 

how r-ocellatusin function was depleted in our r-RTS-ocellatusin mutants. Hence and 

alternatively to the α1β1 integrin-binding inhibition assay, RGD-disintegrin functionality 

of the “Frankenstein” mutants was studied.  

Similar to the activity analysis of r-ocellatusin (Figure 34), we measured the ability 

of r-RTS-ocellatusin mutants (Figure 35) to inhibit platelet aggregation (Figure 43). 

Results show, that out of all the disintegrins tested, only r-M22R-A23T-R24S-ocellatusin 

[20CKRTSGDNMHDYC32] inhibits the collagen I-induced aggregation of washed 

human platelets in a dose dependent manner, with an IC50 of 1.046×10-6 M (Figures 43 

A and B). However, the potency of r-RTS-ocellatusin was significantly less when 

compared to that of the wild-type r-ocellatusin (IC50 of 3.9 ×10-8±0.5 M). Conversely, 

none of the r-RTS-ocellatusin isoforms, including G25 and/or D26 substitutions were 

able to inhibit collagen I-induced platelet aggregation (Figures 43 C and D).  

These results are consistent with the conserved nature of the aspartate (D26) 

residue among small disintegrins (Calvete et al. 2005), reviewed in Calvete 2013b. 

However, Glycine25 is not as conserved as the aspartate26 in XXD disintegrins motifs 

(MLD, MVD, KGD, RGD, WGD, VGD, MGD). Furthermore, G26 is not essential for 

integrin αIIbβ3 binding inhibition, given that disintegrins containing MVD motif 

(Shimokawa et al. 1998; Carey et al. 2012), RGD (Marcinkiewicz et al. 1997; Wierzbicka-

Patynowski et al. 1999), KGD (Scarborough et al. 1991) and WGD (Calvete et al. 2002) 

motifs, are able to block integrin αIIbβ3. In addition, the mutant r-A23R-R24T-G25S-

ocellatusin, which contains the loop [23RTSD26], failed to inhibit platelets aggregation, 

suggesting that the Gly25 substitution by a less hydrophobic residue, containing a bigger 

lateral chain (Serine) might interfere in the proper binding of the D26 to integrin αIIbβ3 

(Figure 42). In this mutant, D26 is not enough to confer RGD-ocellatusin functionality. 

Our results suggest that for sufficient binding to αIIbβ3, a ligand must have a small amino 

acid in the second position of the integrin-binding motif  (e.g. XGD, XVD).  
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Figure 43. Recombinant r-RTS-ocellatusin mutants lost of r-RGD-ocellatusin 
“natural”  functionality A. Concentration-dependent blocking of the collagen I-
induced platelet aggregation by r-RTS-ocellatusin mutants. r-A23T-R24S-G25S-
ocellatusin, r-G25R-D26T-N27S-ocellatuisn, r-D26R-N27T-M28S-ocellatusin and r-
jerdloop-ocellatusin mutants present similar aggregation curves to the r-G25T-D26-
ocellatusin and r-M22R-A23T-R24S-G25_D26del-ocellatusin. B. r-RTS-ocellatusin 
mutants alignment, in which the RTS and RGD motifs are underlined and colored in 
blue and red, respectively, according to the figure 30. Cysteine residues are in bold. 
Green and red asterisk (*) denote active and non-active r-disintegrin, respectively.  

In addition, we tested for the ability of C-terminal mutants, specifically, r-

E47_P50del-ocellatusin and r-M22R-A23T-R24S-E47_P50del-ocellatusin (Figure 37), to 

inhibit collagen-induced platelet aggregation (Figure 43). Both r-E47_P50del-

ocellatusin and r-M22R-A23T-R24S-E47_P50del-ocellatusin inhibited collagen I-

induced aggregation of human platelets in a dose dependent manner, with an IC50 of 

3.6±0.1×10-8M and IC50 of 2.97×10-6 M, respectively (Figure 44). Interestingly, the 

results of r-E47_P50del-ocellatusin IC50 were comparable to those of r-ocellatusin IC50 

(3.6±0.6×10-8M). Even the C-terminal region of ocellatusin might be important for its 

activity, as our results show that the C-terminal amino acids, E47, H48, D49, P50, are 

-1 1    5     10    15     20    25     30    35    40     45    50 
jerdostatin*      CTTGPCCRQCKLKPAGTTCWRTS--VSSHYCTGRSCECPSYPGNG! 43!
r-ocellatusin*  GDCESGPCCDNCKFLKEGTICKMARGDNMHDYCNGKTCDCPRNPYKGEHDP! 50!
r-M22R-A23T-R24S-ocellatusin*  GDCESGPCCDNCKFLKEGTICKRTSGDNMHDYCNGKTCDCPRNPYKGEHDP! 50!
r-M22R-A23T-R24S-G25D26del-oc*   GDCESGPCCDNCKFLKEGTICKRTS--NMHDYCNGKTCDCPRNPYKGEHDP! 48!
r-A23R-R24T-G25S-ocellatusin*  GDCESGPCCDNCKFLKEGTICKMRTSDNMHDYCNGKTCDCPRNPYKGEHDP! 50!
r-G25T-D26S-ocellatusin*  GDCESGPCCDNCKFLKEGTICKMARTSNMHDYCNGKTCDCPRNPYKGEHDP! 50!
r-G25R-D26T-N27S-ocellatusin *  GDCESGPCCDNCKFLKEGTICKMARRTSMHDYCNGKTCDCPRNPYKGEHDP! 50!
r-D26R-N27T-M28S-ocellatusin*  GDCESGPCCDNCKFLKEGTICKMARGRTSHDYCNGKTCDCPRNPYKGEHDP 50!
r-jerdloop-ocellatusin*  GDCESGPCCDNCKFLKEGTICWRTS--VSSHYCNGKTCDCPRNPYKGEHDP! 48!
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not crucial for αIIbβ3 integrin-binding potency. These results are supported by Chen et al. 

2012, with the r-E47_P50del-ocellatusin being comparable in length, as well as 

biological activity when compared to wild type echistatin (Chen et al. 2012).  

On the other hand, the IC50 of r-M22R-A23T-R24S-E47_P50del-ocellatusin is 

increased in respect to r-ocellatusin, decreasing its inhibitory potency, and showing 

activity similar to r-M22R-A23T-R24S-ocellatusin. Although a shortened C-terminal 

end does not affect to the activity of wild-type ocellatusin, the combination of the 

[20CKRTSGDNMHDYC32] loop and C-terminal deletion leads to an increased IC50 in r-

M22R-A23T-R24S-ocellatusin (Figure 44). These data suggest that the amino acids E47, 

H48, D49, P50 in C-terminal tail may contribute to the stability of the integrin-binding 

site. However, further analyses are necessary to confirm this hypothesis.  

 

Figure 44. IC5 0 values of ocellatusin and Frankenstein  r-RTS- and r-C-terminal- 
ocellatusin mutants, obtained from dose-dependent inhibition of collagen I-induced 
aggregation (MA) of human washed platelets.  

The functionality of r-ocellatusin and r-Frankenstein-ocellatusin mutants agrees 

with previously published reports on RGD-disintegrin structure-function studies 

(Marcinkiewicz et al. 1997; Wierzbicka-Patynowski et al. 1999; Smith et al. 2002; Chen 

et al. 2012; Yang et al. 2015), which indicates that the recombinant disintegrins used 

throughout these studies have been properly folded as a “natural” short disintegrin by 

the appropriate cysteine-pairing [(2-11)(7-32)(8-37)(20-39)](Carbajo et al. 2015).  
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6 Generation and functionality of SGD, GGD and TGD mutants  

Our results suggest that just mutants expressing the 25GD26 or 25VD26 (Carey et al. 

2012) sequence at the tip of the inhibitory loop are able to block αIIbβ3 integrin-binding 

to fibrinogen. Interestingly, these results provide evidence for a new active disintegrin 

integrin-recognition motif consisting of the residues SGD. However, mutants 

expressing the loop 20CKRTSGDNMHDYC32 are not as potent as wild-type r-ocellatusin. 

That might be because of the amino acids substitution in the N-terminal side of SGD 

motif (M22R and A23T), which may interfere with the potency of the integrin-binding 

loop. 

6.1 Design and generation of the mutants SGD, GGD and TGD 

Although SGD represents a novel tripeptide integrin-binding sequence, an 

endogenous disintegrin expressing this sequence has not yet been characterized. Juarez 

et al. (2008) suggested that only the most parsimonious nucleotide substitution events 

are required for the emergence of the different disintegrins´ integrin-recognition XXD 

motifs from the ancestral RGD sequence (Juárez et al. 2008) (Figure 14 p.26). We 

decided to explore the possible natural emergence of an SGD-disintegrin by a unique 

nucleotide substitution in the arginine codon, necessary to transform RGD to SGD 

(Figure 45).  

 

Figure 45. Most parsimonious nucleotide substitution events needed for the 
emergency of SGD and other integrin-recognition motifs from RGD ancestral 
tripeptide. Arrows indicate a single mutational transition at the underlined site. 

We observed that the SGD motif could emerge twice in evolution by a single 

nucleotide substitution in the arginine (R) codon. Taking this into account, in addition 

to the potential effect of two additional mutations in r-M22R-A23T-R24S-ocellatusin 

mutant, the SGD-ocellatusin mutant was generated (Figure 46).  
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Figure 46. Alignment of new generated r-XGD-ocellatusin mutants and r-RGD-
ocellatusin, containing disintegrin integrin-binding motifs.  Cysteine residues are in 
bold, and XGD motifs are underlined. Residue labeled -1 corresponds to the last 
residue of the TEV protease cleavage site, ENLYFQG, inserted between the His 6-trxA 
tag and the disintegrin sequence. The length, in amino acids, of each disintegrin is 
indicated next to their sequence. 

Additionally, we generated the following two ocellatusin mutants; r-R24T- and r-

R24G-ocellatusin, both of which equally consider a single nucleotide substitution in the 

R codon (AGG) (Figure 45). Result mutants express TGD and GGD integrin-binding 

motifs (Figure 46). Those mutants as well as r-R24S-ocellatusin were recombinantly 

expressed, purified and identified, following similar methods used for recombinant wild 

type ocellatusin (Figures 25 and 26, p.54 and 55) (Figures 32 and 33, p.70 and 71). 

Table  8. Experimental (ESI-MS) and calculated molecular masses of the recombinant r-XGD-
disintegrin mutants. Calculated masses correspond to fully oxidized (4 disulfide bonds) 
monoisotopic species. 

 

 

 

 

Mass spectrometry data indicated that the XGD mutants were fully oxidized; given 

that their ESI-MS values match with calculated monoisotopic mass with 4 disulfide 

bonds (Table 8). 

6.2 Functionality of r-SGD, r-TGD- and r-GGD-disintegrins 

Inhibition of collagen I-induced platelet aggregation by the r-SGD-, r-TGD, and r-

GGD-ocellatusin mutants was measured and compared with the r-M22R-A23T-R24S-

ocellatusin mutant. Wild-type r-ocellatusin and r-jerdostatin were used as the positive 

and negative control, respectively.  Although r-R24S-ocellatusin, r-R24T-ocellatusin and 

-1 1    5     10    15    20    25     30    35    40    45    50 
r-ocellatusin  GDCESGPCCDNCKFLKEGTICKMARGDNMHDYCNGKTCDCPRNPYKGEHDP 50!
r-R24S-ocellatusin  GDCESGPCCDNCKFLKEGTICKMASGDNMHDYCNGKTCDCPRNPYKGEHDP 50!
r-R24T-ocellatusin  GDCESGPCCDNCKFLKEGTICKMATGDNMHDYCNGKTCDCPRNPYKGEHDP 50!
r-R24G-ocellatusin  GDCESGPCCDNCKFLKEGTICKMAGGDNMHDYCNGKTCDCPRNPYKGEHDP 50!

Recombinant XGD 
disintegrin mutants 

ESI-MS (Da) 
Calculated monoisotopic 

mass (Da) with 4 S-S bonds 

r-R24S-ocellatusin 5582.7±1.3 5581.2  
r-R24T-ocellatusin 5596.5±0.3 5595.2 
r-R24G-ocellatusin 5552.8±1.5 5551.2 
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r-R24G-ocellatusin are capable of inhibiting collagen I-induced platelet aggregation in a 

dose dependent manner, with an IC50 of 1.8 ×10-6 M, 9.5×10-7 M and 4.3 ×10-6 M, 

respectively, these activities were not as potent as wild-type ocellatusin (IC50 of 3.9 × 10-8 

±0.5 M) (Figure 47). 

r-SGD-ocellatusin does block αIIbβ3 integrin-fibrinogen binding with similar 

potency as seen with the r-M22R-A23T-R24S-ocellatusin mutant (IC50 of 1.05×10-6 M). 

This result suggests that the M22R and A23T substitutions, do not considerably affect 

the integrin-binding activity. It appears that the amino acids in the N-terminal region of 

the SGD motif are not critical for the r-RGD-disintegrin activity, whereas amino acids 

located carboxyl to the RGD motif significantly contribute to disintegrin functionality 

(Yang et al. 2015). 

The TGD motif appears to have slightly higher affinity when compared SGD. 

However, the presence of a glycine in the first position of the r-GGD-ocellatusin 

tripeptide appears to decrease the disintegrin selectivity for the integrin-binding site 

(Figure 47).  

 

Figure 47. IC5 0 values of ocellatusin and XGD-ocellatusin mutants, obtained from 
dose-dependent inhibition of collagen-induced aggregation (MA) of human washed 
platelets. 

Our results suggest that disintegrins expressing SGD, TGD, GGD integrin-binding 

motifs may not have been selected for in nature due to their low potency at blocking 

integrin binding. This is supported by the fact that natural disintegrins (RGD, WGD, 
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KGD, MGD) are able to block αIIbβ3 integrin with IC50’s 100 times lower than observed 

by our r-(S/T/G)GD-ocellatusin mutants (Figure 47) (Scarborough et al. 1991; 

Marcinkiewicz et al. 1997; Shimokawa et al. 1998; Wierzbicka-Patynowski et al. 1999; 

Calvete et al. 2002; Carey et al. 2012; Angulo et al. 2014; Yang et al. 2015).  

7 Concluding remarks, reflexions and perspectives 

When analyzing the residues responsible for the functional activity of ocellatusin, 

only G25 and D26, in the RGD disintegrin motif, seem essential for the functional 

activity of ocellatusin, whereas, the R24 residue is important for ocellatusin potency. 

However, the amino acids M22 and A23, which are situated adjacent to RGD motif in 

N-terminal side, as well as the residues E47, H48, D49, P50, in C-terminal end, are not 

crutial for ocellatusin activity and potency.  

The lack of inhibitory activity of the different Frankenstein disintegrins, even when 

the whole RGD-loop and C-terminal end of ocellatusin were replaced by the RTS-loop 

and jerdostatin C-terminal tail, suggest that RTS/KTS short disintegrins could have 

been recruited independently of the canonical RGD disintegrins. This independent 

evolutionary origin is supported by structure-function data, which show significant 

differences in the RGD- and KTS/RTS-disintegrins integrin-binding scaffolds (Figure 17, 

p.29). Furthermore, this is supported by integrin evolution, since natural ligand binding 

to α1β1 is inhibited only by KTS/RTS-disintegrins, including integrins expressing the αI-

domain. Moreover, KTS/RTS-disintegrins are not able to inhibit (non-αI)-integrins-

ligand binding. Therefore, the emergence of αI-integrin and the structural change 

around the possible binding site supports the independent emergence of RTS/KTS-

disintegrins in Eurasian viper venoms.  

KTS-disintegrins appear to be uniquely translated in the venom proteomes of the 

relatively recent clade of Eurasian vipers, including Macrovipera and Daboia (Lenk 

2001) (Table 5). In addition, the RTS-disintegrin coding sequence has been identified in 

several viper venom glands (Table 5), however, to date, none of the studied vipers 

produce an RTS-disintegrin in their venoms. Therefore, other Eurasian viper venom 

proteome analyses are needed to confirm the expression of RTS-disintegrin(s) in venom. 



Results & Discussion   Chapter I 

    90 

However, the evolutionary pressure to express integrin α1β1–specific inhibitors in these 

taxa appears to be difficult to rationalize in the context of a predator-prey arms race. 

Hence, another functionality of KTS/RTS-disintegrins in regards to prey-predator 

evolution warrants further exploration. In addition, the hypothesis that the molecular 

machinery operating on the neofunctionalization of disintegrin scaffolds evolved only in 

Viperinae deserves future detailed investigations. Therefore, jerdostatin-coding gene 

analyses are needed to understand KTS/RTS-disintegrin evolution. Also, since not all 

KTS/RTS-disintegrin coding mRNAs are translated and released in viper venom glands 

(Macrovipera mauritanica, Echis ocellatus and Cerastes vipera) (Table 5), additional 

expression studies are required to elucidate KTS/RTS-disintegrin functionality. 
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Chapter II. RTS-disintegrin-coding gene (RPTLN) distribution across 

Reptilia taxa  

 

 Short RTS/KTS disintegrins selectively hit the collagen I and IV binding α1β1 

integrin (Calvete et al. 2007b; Brown et al. 2009; Walsh and Marcinkiewicz 2011), and 

form a distinct clade of recently emerged short disintegrins in viper venoms within 

genera Macrovipera (Marcinkiewicz et al. 2003), and Daboia  (Kisiel et al. 2004; Olfa et 

al. 2005). RTS/KTS-disintegrins are released in the snake venom by short-coding 

mRNAs synthesis in Viperinae venoms (Marcinkiewicz et al. 2003; Kisiel et al. 2004; 

Olfa et al. 2005; Bazaa et al. 2007). Strikingly, a non-protein-translated mRNA sequence 

encoding the full-length RTS-disintegrin jerdostatin was originally amplified from 

Protobothrops jerdonii venom gland cDNA library [AY262730] (Sanz et al. 2005) 

(Figure 52). Subsequently, identical mRNAs have been cloned from a number of 

Crotalinae and Viperinae venom gland cDNA libraries (Sanz et al. 2006; Bazaa et al. 

2007). Equal mRNA encoding jerdostatin was sequenced in the Daboia russelii venom 

gland cDNA library and it was reported in NCBI (National Center of Biotechnology 

Information) database and registered as FF277034.1 (Table 9).  

Table  9. Distribution of mRNA sequence encoding the full-length RTS-disintegrin 
jerdostatin across Viperidae venom gland.  

 

 

 

 

 

 

 

Submitted sequences by Sai-Ngam, A. from “Snake bite and venom research unit, Chula Medical 
Research Center Faculty of Medicine, Chulalongkorn University, Thailand” are unpublished.  

Species containing 
jerdostatin coding RNA 

GenBank 
accession code 

Bibliography 

Protobothrops jerdonii AY262730 (Sanz et al. 2005) 

Cerestes vipera AM114012.1 
(Monleón et al. 
2003; Sanz et al. 

2006) 
Macrovipera mauritanica AM261813.1 (Bazaa et al. 2007) 
Echis ocellatus AM286798.1 (Bazaa et al. 2007) 
Daboia russelii FF277034.1 by Sai-Ngam, A. 
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1 Russellistatin, RTS-disintegrin, is released exclusively in Daboia russelii 
venom 

Previous venomic studies did not identify any RTS-disintegrin in C. vipera, M. 

mauritanica, D. russelii or E. ocellatus venom proteome (Bazaa et al. 2005; Wagstaff et al. 

2009; Makran et al. 2012). Moreover, Daboia russelii venom proteome was analyzed by 

(Risch et al. 2009), though, only proteins above 10kDa were identified. Therefore, we 

could not discard that low molecular mass disintegrin are expressed in D. russelii venom 

proteome.  

To test the hypothesis that an RTS-disintegrin with 100% sequence identity to 

jerdostatin may be expressed in the venom proteome of D. russelii, low molecular mass 

proteins of its venom were analyzed. First, D. russelii venom proteins were separated by 

reverse-phase HPLC (Figure 48).  

 

 

Figure 48. Chromatogram of the  Daboia russelii  venom protein separation by 
reverse-phase HPLC. Russellistatin peak is pointed in the chromatogram. 
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Subsequently, possible disintegrin peaks were characterized by electrospray-

ionization mass spectrometry. One peak exhibits the expected isotope-averaged 

molecular mass for a short disintegrin, 4408.5 Da (Figure 49). 

 

 

Figure 49. Electrospray-ionization mass spectrometry, of reverse-phase HPLC-
isolated likely disintegrin peak, which exhibit the expected isotope-averaged 
molecular mass for a short disintegrin (4408.5 Da).  

To identify the possible RTS-disintegrin sequence, this protein peak (4408.5 Da) 

was in-gel digested by trypsin. The resulting tryptic fragments were sequenced by 

MS/MS (Figure 50). The amino acid sequence of this peptide, which we termed 

russellistatin, is identical to jerdostatin sequence (Sanz et al. 2005) (Figure 52).  

Noteworthy, Daboia russelii is the unique snake, which releases an RTS-disintegrin 

(russellistatin) in its venom, despite other snakes contain the mRNA coding jerdostatin 

in their venom glands (Sanz et al. 2006; Bazaa et al. 2007) (Table 9). However, RTS-

disintegrins seems to be only released in Viperinae venoms, similar to KTS-disintegrins 

(Table 9). Supporting the hypothesis that KTS/RTS-disintegrin expression is restricted 

to Eurasian vipers.  

 

Figure 50. Russellistatin sequence product determined by MS/MS spectrometry 
sequencing of the fragments generated by tryptic digestion of the likely disintegrin 
peak. 
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2 Mature jerdostatin genomic DNA in Reptilia 

In addition to the presence of jerdostatin-like sequence in different venom gland 

cDNAs (Table 9), previous analyses in our laboratory suggest that genomic DNA 

(gDNA) fragment encoding the mature jerdostatin-like domain, 132bp, have been PCR-

amplified from gDNA of a number of taxa across Serpentes, including Viperidae and 

Elapidae, and lizards (Lacertidae and Iguanidae) (Figure 51) (Sanz-Soler et al., 2012). 

However, mature jerdostatin-like sequences (Figure 52) were not amplified in Aves (G. 

gallus), Amphibia (B. orientalis), and Mammalia (M. musculus) (Figure 51), suggesting 

that this gene may exhibit a reptile-restricted distribution. Therefore, the term RPTLN 

(RePTiLiN) has been proposed in our laboratory to design the gene containing the 

sequence coding for the full-length jerdostatin (see in Figure 52). 

 

 

Figure 51. Mature jerdostatin-like DNA sequences across Reptilia.  PCR-
amplification of jerdostatin-like sequences from genomic DNA of Protobothrops 
jerdonii (Pj),  Crotalus viridis  (Cvi),  Sistrurus catenatus catenatus  (Scc), Macrovipera 
lebetina (Ml),  Echis ocellatus  (Eo), Daboia russelli  (Dr), Naja haje  (Nh), Lacerta 
hispanica  (Lh), and Iguana iguana (Ii).  Bo, Bombina orientalis ;  Ga, Gallus gallus . 
Adapted from Sanz-Soler 2012. 

 

Later in this chapter, we provide further evidence for the broad distribution of the 

RPTLN genes across Reptilia, and we report its uneven transcriptional profile in adult 

lizard and colubrid organs. Moreover, a role for RPTLN in the evolution of SVMPs is 

hypothesized.  
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3 Intronless RPTLN genes represent a broad and reptile-restricted 

multigene family 

In the same direction, full-length RPTLN gene was studied. It is notable the 

simplicity of the RPTLN genetic structure, far for being part of a PII-SVMP or a 

complex genetic structure, no introns were amplified in any of the analyzed species 

(Figures 52 and 53). 

 

Figure 52. Nucleotide sequence of the genomic DNA (RPTLN-1 gene, AY262730) 
encoding full-length jerdostatin. The limits of the signal peptide, propeptide, and 
disintegrin domain are indicated. The active RTS tripeptide sequence is highlighted in 
bold in a grey background. The sequences of the forward (SP_jerdostatin) and reverse 
(3'jerdostatin) primers used for PCR amplifications are in lower case, highlighted in 
boldface, and labeled. 

Genomic DNA encoding full-length jerdostatin (RPTLN-1) (Figure 52) and full-

length jerdostatin-like sequences (RPTLN-n) were amplified from a number of 

Anapsida (Testudines), Diapsida (Serpentes, Sauria), and Archosauria (Crocodylia) 

reptiles (Figure 53) (Tables 10 and 11), but attempts to amplify this gene in amphibians 

(Bombina orientalis), birds (Gallus gallus, Aletoris rufa, Anas platyrhynchos), and 

mammals (Mus musculus and Homo sapiens) were all unsuccessful. These striking 

results suggest that RPTLN genes exhibit a broad, reptile-specific distribution (Tables 10 

and 11) (Figure 53).  

 

atgatccaggttctcttggtaactatatgcttagcagttttcccatatcaagtcagctct    60 
 SP_jerdostatin 
 M  I  Q  V  L  L  V  T  I  C  L  A  V  F  P  Y  Q  V  S  S        20 
                            Signal peptide 
aaaaccctgaaatctgggagtgttaatgagtatgaagtagtaaatccaggaacagtcact  120 
 K  T  L  K  S  G  S  V  N  E  Y  E  V  V  N  P  G  T  V  T     40 
      Propeptide 
ggattgcccaaaggagcagttaagcagcctgagaaaaagcatgaacccatgaaagggaac  180 
 G  L  P  K  G  A  V  K  Q  P  E  K  K  H  E  P  M  K  G  N       60 
acattgcagaaacttcccctttgtacaactggaccatgttgtcgtcagtgcaaattgaag  240 
 T  L  Q  K  L  P  L  C  T  T  G  P  C  C  R  Q  C  K  L  K       80 
                    mature jerdostatin    
ccggcaggaacaacatgctggagaaccagtgtatcaagtcattactgcactggcagatct  300 
P  A  G  T  T  C  W  R  T  S  V  S  S  H  Y  C  T  G  R  S     100 

tgtgaatgtcccagttatcccgggaatggctaa       333 
  3´jerdostatin 
 C  E  C  P  S  Y  P  G  N  G  -              110  
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Figure 53. PCR-amplification of RPTLN  genes from gDNA of Echis ocellatus (Eo), 
Ophiophagus hannah (Oh), Boa constrictor (Bc), Lacerta hispanica (Lh), Timon lepidus 
(Tl),  Podarcis muralis (Pm), Heloderma horridum (Hh), Uroplatus ebenaui (Ue), 
Chamaeleo calyptratus (Cc), Alligator mississippiensis (A), Testudo graeca (Tg), 
Mauremys sinensis (Ms), Bothrops asper (Ba), Bothriechis lateralis  (Bl),  Atropoides 
picadoi (Ap), Naja naja haje (Nn), Rhinechis scalaris (Rs), Tarentola mauritanica (Tm), 
Testudo Hermanni (Th), Stigmochelys pardalis  (Sp), Mauremys annamensis (Ma), 
Mauremys leprosa (Ml), Chelonoidis chilensis (ChCh), Chelonoidis carbonaria (Chc), 
and Mus musculus (Mm).  (c-),  negative control.  

 

Interestingly, 21 different RPTLN-like gene copies were found in some of the 

studied reptile genomes (Tables 10 and 11). Moreover, in some species, more than two 

different RPTLN gene copies were sequenced, supporting the idea of RPTLN gene 

duplication and multigene family (Table 10). 
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Table  10. Distribution of RPTLN gen copies across reptiles. Full-length sequences are 
displayed in Figure 54. Nucleotide changes in RPTLN genes respect to RPTLN-1 [jerdostatin, 
AY262730] are listed in Table 11. See accession codes in Table 1S (p.171). 

 

 

 

  

Reptile class Family Species RPTLN gene copy 
Snake Crotalinae P. jerdonii RPTLN-1 

  
B. asper RPTLN-1, RPTLN-15, RPTLN-16 

  
B. lateralis RPTLN-1, RPTLN-7, RPTLN-17 

 
Viperinae E. ocellatus RPTLN-1, RPTLN-13 

  
A. picadoi RPTLN-1, RPTLN-10, RPTLN-15 

 
Elapidae O. hannah RPTLN-1, RPTLN-6, RPTLN-17 

  
N. haje haje RPTLN-1, RPTLN-5 

 
Colubridae R. scalaris RPTLN-1, RPTLN-5, RPTLN-18-21 

 
Boideae B. constrictor RPTLN-1, RPTLN-17 

Lizard Lacertidae L. hispanica RPTLN-1, RPTLN-9, RPTLN-17 

  
T. lepidus RPTLN-1 

  
P. muralis RPTLN-1, RPTLN-9, RPTLN-17-19 

  
P. hispanica 

RPTLN-1, RPTLN-8, RPTLN-11,  

  
RPTLN-13, RPTLN-16, RPTLN-21 

 
Helodermatidae H. horridum RPTLN-1 

 
Gekkonidae U. ebenaui RPTLN-1, RPTLN-9 

  
T. mauritanica RPTLN-1, RPTLN-11 

 
Chamaeleonidae C. calyptratus RPTLN-1, RPTLN-17 

Crocodrile Crocodylidae A. mississipiensis RPTLN-1, RPTLN-6, RPTLN-11, 
RPTLN-12, RPTLN-14 

Tortoise Testudinidae T. greca RPTLN-1, RPTLN-3 

  
T. hermanii RPTLN-1 

  S. pardalis RPTLN-1, RPTLN-16, RPTLN-18 

 
Geomydidae M. annamensis RPTLN-1, RPTLN-15 

  
M. sintesis 

RPTLN-1, RPTLN-4, RPTLN-7,  

  
RPTLN-18 

  
M. leprosa RPTLN-1, RPTLN-2, RPTLN-5 

  
C. carbonaria RPTLN-1, RPTLN-2 

  
C. chilensis RPTLN-1, RPTLN-16 
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Table  11. Nucleotide changes in RPTLN-n genes respect to RPTLN-1 [jerdostatin, AY262730] 

 

 

 

 

 

 

 

 

 

 

 

Also remarkable is the structural conservation of these genes (Figure 54) in taxa 

that had a common ancestor ≥ 250 million years ago (Hedges 1999; Hedges and Vidal 

2009; Pyron et al. 2013) (Table 10) (Figure  56). In particular, the nucleotide stretch 1-54 

shares >96% identity with nucleotide sequences encoding the signal peptide of snake 

venom metalloproteinase (SVMP) and short-coding RGD-disintegrin precursors from a 

large number of Viperinae and Crotalinae snake species; RPTLN nucleotides 55-201 

show 86-93% identity with pro-peptide-encoding nucleotide sequences for M. lebetina 

[AY835996, X97894] and D. russelii [GQ420354] PIII- and PII-SVMPs; and the 

nucleotide sequence 202-333 only matches homologous sequences from M. lebetina 

[AM114015, AM261813], C. vipera [AM114012], and P. jerdonii [AY262730] encoding 

RTS- and KTS-disintegrin domains, which exhibit a high degree of identity (94-100%) 

in any pairwise comparison.  

RPTLN gene copy Nucleotide substitutions respect RPTLN-1 
RPTLN-2 41T>C  
RPTLN-3 50A>G 
RPTLN-4 50A>G;173A>G;179A>G 
RPTLN-5 del65C 
RPTLN-6 84T>C 
RPTLN-7 87T>C 
RPTLN-8 128C>T 
RPTLN-9 128C>T; 259T>A  
RPTLN-10 145C>T 
RPTLN-11 145C>T; 185T>C 
RPTLN-12 145C>T; 185T>C; 220T>C  
RPTLN-13 155A>G  
RPTLN-14 173A>G 
RPTLN-15 173A>G; 179A>G  
RPTLN-16 173A>G; 179A>G; 255A>G 
RPTLN-17 220T>C  
RPTLN-18 249A>G  
RPTLN-19 249A>G; 260G>A 
RPTLN-20 253A>G  
RPTLN-21 253A>G; 279T>C  
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Figure 54. Multiple sequence alignments RPTLN-1 and the twenty unique RPTLN  
genes amplified from gDNA or mRNA of the different reptile species listed in Table 10. 
For convenience, the alignment has been divided into three blocks of sequences, each 
of which codes for a domain of a hypothetical protein. Nucleotide changes between 
RPTLN  sequences are highlighted in boldface and in grey background. The 
distribution of these sequences across the phylogeny of reptiles is shown in Figure 56.

A 
                                 1   5    10   15   20   25   30   35   40   45   50 
RPTLN-1  ATGATCCAGGTTCTCTTGGTAACTATATGCTTAGCAGTTTTCCCATATCAAGTC  
          M  I  Q  V  L  L  V  T  I  C  L  A  V  F  P  Y  Q  V   
   Signal peptide  
RPTLN-2  ATGATCCAGGTTCTCTTGGTAACTATATGCTTAGCAGTTTCCCCATATCAAGT 

RPTLN-3  ATGATCCAGGTTCTCTTGGTAACTATATGCTTAGCAGTTTTCCCATATCGAGTC 

RPTLN-4  ATGATCCAGGTTCTCTTGGTAACTATATGCTTAGCAGTTTTCCCATATCGAGTC 

RPTLN-5  ATGATCCAGGTTCTCTTGGTAACTATATGCTTAGCAGTTTTCCCATATCAAGTC 

RPTLN-6  ATGATCCAGGTTCTCTTGGTAACTATATGCTTAGCAGTTTTCCCATATCAAGTC 

RPTLN-7  ATGATCCAGGTTCTCTTGGTAACTATATGCTTAGCAGTTTTCCCATATCAAGTC 

RPTLN-8  ATGATCCAGGTTCTCTTGGTAACTATATGCTTAGCAGTTTTCCCATATCAAGTC 

RPTLN-9  ATGATCCAGGTTCTCTTGGTAACTATATGCTTAGCAGTTTTCCCATATCAAGTC 

RPTLN-10 ATGATCCAGGTTCTCTTGGTAACTATATGCTTAGCAGTTTTCCCATATCAAGTC 

RPTLN-11 ATGATCCAGGTTCTCTTGGTAACTATATGCTTAGCAGTTTTCCCATATCAAGTC 

RPTLN-12 ATGATCCAGGTTCTCTTGGTAACTATATGCTTAGCAGTTTTCCCATATCAAGTC 

RPTLN-13 ATGATCCAGGTTCTCTTGGTAACTATATGCTTAGCAGTTTTCCCATATCAAGTC 

RPTLN-14 ATGATCCAGGTTCTCTTGGTAACTATATGCTTAGCAGTTTTCCCATATCAAGTC 

RPTLN-15 ATGATCCAGGTTCTCTTGGTAACTATATGCTTAGCAGTTTTCCCATATCAAGTC 

RPTLN-16 ATGATCCAGGTTCTCTTGGTAACTATATGCTTAGCAGTTTTCCCATATCAAGTC 

RPTLN-17 ATGATCCAGGTTCTCTTGGTAACTATATGCTTAGCAGTTTTCCCATATCAAGTC 

RPTLN-18 ATGATCCAGGTTCTCTTGGTAACTATATGCTTAGCAGTTTTCCCATATCAAGTC 

RPTLN-19 ATGATCCAGGTTCTCTTGGTAACTATATGCTTAGCAGTTTTCCCATATCAAGTC 

RPTLN-20 ATGATCCAGGTTCTCTTGGTAACTATATGCTTAGCAGTTTTCCCATATCAAGTC 

RPTLN-21 ATGATCCAGGTTCTCTTGGTAACTATATGCTTAGCAGTTTTCCCATATCAAGTC 



 

   



!
Chapter!II! ! ! ! ! ! ! ! ! ! ! ! !!!Results!&!discussion!
!

! 101!

!
!
! Results & Discussion  

B 

         55    60   65   70    75   80   85    90   95   100  105   110  115  120   125  130  135  140  145   150  155   160  165  170  175   180  185  190   195  200 

RPTLN-1  AGCTCTAAAACCCTGAAATCTGGGAGTGTTAATGAGTATGAAGTAGTAAATCCAGGAACAGTCACTGGATTGCCCAAAGGAGCAGTTAAGCAGCCTGAGAAAAAGCATGAACCCATGAAAGGGAACACATTGCAGAAACTTCCCCTT 

          S  S  K  T  L  K  S  G  S  V  N  E  Y  E  V  V  N  P  G  T  V  T  G  L  P  K  G  A  V  K  Q  P  E  K  K  H  E  P  M  K  G  N  T  L  Q  K  L  P  L   

                                                  propeptide  

RPTLN-2  AGCTCTAAAACCCTGAAATCTGGGAGTGTTAATGAGTATGAAGTAGTAAATCCAGGAACAGTCACTGGATTGCCCAAAGGAGCAGTTAAGCAGCCTGAGAAAAAGCATGAACCCATGAAAGGGAACACATTGCAGAAACTTCCCCTT 

RPTLN-3  AGCTCTAAAACCCTGAAATCTGGGAGTGTTAATGAGTATGAAGTAGTAAATCCAGGAACAGTCACTGGATTGCCCAAAGGAGCAGTTAAGCAGCCTGAGAAAAAGCATGAACCCATGAAAGGGAACACATTGCAGAAACTTCCCCTT 

RPTLN-4  AGCTCTAAAACCCTGAAATCTGGGAGTGTTAATGAGTATGAAGTAGTAAATCCAGGAACAGTCACTGGATTGCCCAAAGGAGCAGTTAAGCAGCCTGAGAAAAAGCATGAACCCATGAGAGGGAGCACATTGCAGAAACTTCCCCTT 

RPTLN-5  AGCTCTAAAA-CCTGAAATCTGGGAGTGTTAATGAGTATGAAGTAGTAAATCCAGGAACAGTCACTGGATTGCCCAAAGGAGCAGTTAAGCAGCCTGAGAAAAAGCATGAACCCATGAAAGGGAACACATTGCAGAAACTTCCCCTT 

RPTLN-6  AGCTCTAAAACCCTGAAATCTGGGAGTGTCAATGAGTATGAAGTAGTAAATCCAGGAACAGTCACTGGATTGCCCAAAGGAGCAGTTAAGCAGCCTGAGAAAAAGCATGAACCCATGAAAGGGAACACATTGCAGAAACTTCCCCTT 

RPTLN-7  AGCTCTAAAACCCTGAAATCTGGGAGTGTTAACGAGTATGAAGTAGTAAATCCAGGAACAGTCACTGGATTGCCCAAAGGAGCAGTTAAGCAGCCTGAGAAAAAGCATGAACCCATGAAAGGGAACACATTGCAGAAACTTCCCCTT 

RPTLN-8  AGCTCTAAAACCCTGAAATCTGGGAGTGTTAATGAGTATGAAGTAGTAAATCCAGGAACAGTCACTGGATTGCTCAAAGGAGCAGTTAAGCAGCCTGAGAAAAAGCATGAACCCATGAAAGGGAACACATTGCAGAAACTTCCCCTT 

RPTLN-9  AGCTCTAAAACCCTGAAATCTGGGAGTGTTAATGAGTATGAAGTAGTAAATCCAGGAACAGTCACTGGATTGCTCAAAGGAGCAGTTAAGCAGCCTGAGAAAAAGCATGAACCCATGAAAGGGAACACATTGCAGAAACTTCCCCTT 

RPTLN-10 AGCTCTAAAACCCTGAAATCTGGGAGTGTTAATGAGTATGAAGTAGTAAATCCAGGAACAGTCACTGGATTGCCCAAAGGAGCAGTTAAGTAGCCTGAGAAAAAGCATGAACCCATGAAAGGGAACACATTGCAGAAACTTCCCCTT 

RPTLN-11 AGCTCTAAAACCCTGAAATCTGGGAGTGTTAATGAGTATGAAGTAGTAAATCCAGGAACAGTCACTGGATTGCCCAAAGGAGCAGTTAAGTAGCCTGAGAAAAAGCATGAACCCATGAAAGGGAACACATCGCAGAAACTTCCCCTT 

RPTLN-12 AGCTCTAAAACCCTGAAATCTGGGAGTGTTAATGAGTATGAAGTAGTAAATCCAGGAACAGTCACTGGATTGCCCAAAGGAGCAGTTAAGTAGCCTGAGAAAAAGCATGAACCCATGAAAGGGAACACATCGCAGAAACTTCCCCTT 

RPTLN-13 AGCTCTAAAACCCTGAAATCTGGGAGTGTTAATGAGTATGAAGTAGTAAATCCAGGAACAGTCACTGGATTGCCCAAAGGAGCAGTTAAGCAGCCTGAGAGAAAGCATGAACCCATGAAAGGGAACACATTGCAGAAACTTCCCCTT 

RPTLN-14 AGCTCTAAAACCCTGAAATCTGGGAGTGTTAATGAGTATGAAGTAGTAAATCCAGGAACAGTCACTGGATTGCCCAAAGGAGCAGTTAAGCAGCCTGAGAAAAAGCATGAACCCATGAGAGGGAACACATTGCAGAAACTTCCCCTT 

RPTLN-15 AGCTCTAAAACCCTGAAATCTGGGAGTGTTAATGAGTATGAAGTAGTAAATCCAGGAACAGTCACTGGATTGCCCAAAGGAGCAGTTAAGCAGCCTGAGAAAAAGCATGAACCCATGAGAGGGAGCACATTGCAGAAACTTCCCCTT 

RPTLN-16 AGCTCTAAAACCCTGAAATCTGGGAGTGTTAATGAGTATGAAGTAGTAAATCCAGGAACAGTCACTGGATTGCCCAAAGGAGCAGTTAAGCAGCCTGAGAAAAAGCATGAACCCATGAGAGGGAGCACATTGCAGAAACTTCCCCTT 

RPTLN-17 AGCTCTAAAACCCTGAAATCTGGGAGTGTTAATGAGTATGAAGTAGTAAATCCAGGAACAGTCACTGGATTGCCCAAAGGAGCAGTTAAGCAGCCTGAGAAAAAGCATGAACCCATGAAAGGGAACACATTGCAGAAACTTCCCCTT 

RPTLN-18 AGCTCTAAAACCCTGAAATCTGGGAGTGTTAATGAGTATGAAGTAGTAAATCCAGGAACAGTCACTGGATTGCCCAAAGGAGCAGTTAAGCAGCCTGAGAAAAAGCATGAACCCATGAAAGGGAACACATTGCAGAAACTTCCCCTT 

RPTLN-19 AGCTCTAAAACCCTGAAATCTGGGAGTGTTAATGAGTATGAAGTAGTAAATCCAGGAACAGTCACTGGATTGCCCAAAGGAGCAGTTAAGCAGCCTGAGAAAAAGCATGAACCCATGAAAGGGAACACATTGCAGAAACTTCCCCTT 

RPTLN-20 AGCTCTAAAACCCTGAAATCTGGGAGTGTTAATGAGTATGAAGTAGTAAATCCAGGAACAGTCACTGGATTGCCCAAAGGAGCAGTTAAGCAGCCTGAGAAAAAGCATGAACCCATGAAAGGGAACACATTGCAGAAACTTCCCCTT 

RPTLN-21 AGCTCTAAAACCCTGAAATCTGGGAGTGTTAATGAGTATGAAGTAGTAAATCCAGGAACAGTCACTGGATTGCCCAAAGGAGCAGTTAAGCAGCCTGAGAAAAAGCATGAACCCATGAAAGGGAACACATTGCAGAAACTTCCCCTT  
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C 

             205  210   215   220  225   230   235   240  245   250   255  260   265   270   275   280  285   290  295   300   305   310  315   320   325  330  

RPTLN-1  TGTACAACTGGACCATGTTGTCGTCAGTGCAAATTGAAGCCGGCAGGAACAACATGCTGGAGAACCAGTGTATCAAGTCATTACTGCACTGGCAGATCTTGTGAATGTCCCAGTTATCCCGGGAATGGCTAA 

          C  T  T  G  P  C  C  R  Q  C  K  L  K    P  A  G  T  T  C  W  R  T  S  V  S  S  H  Y  C  T  G  R  S   C  E  C  P  S  Y  P  G  N  G  -     

                                          disintegrin domain  

RPTLN-2  TGTACAACTGGACCATGTTGTCGTCAGTGCAAATTGAAGCCGGCAGGAACAACATGCTGGAGAACCAGTGTATCAAGTCATTACTGCACTGGCAGATCTTGTGAATGTCCCAGTTATCCCGGGAATGGCTAA 

RPTLN-3  TGTACAACTGGACCATGTTGTCGTCAGTGCAAATTGAAGCCGGCAGGAACAACATGCTGGAGAACCAGTGTATCAAGTCATTACTGCACTGGCAGATCTTGTGAATGTCCCAGTTATCCCGGGAATGGCTAA 

RPTLN-4  TGTACAACTGGACCATGTTGTCGTCAGTGCAAATTGAAGCCGGCAGGAACAACATGCTGGAGAACCAGTGTATCAAGTCATTACTGCACTGGCAGATCTTGTGAATGTCCCAGTTATCCCGGGAATGGCTAA 

RPTLN-5  TGTACAACTGGACCATGTTGTCGTCAGTGCAAATTGAAGCCGGCAGGAACAACATGCTGGAGAACCAGTGTATCAAGTCATTACTGCACTGGCAGATCTTGTGAATGTCCCAGTTATCCCGGGAATGGCTAA 

RPTLN-6  TGTACAACTGGACCATGTTGTCGTCAGTGCAAATTGAAGCCGGCAGGAACAACATGCTGGAGAACCAGTGTATCAAGTCATTACTGCACTGGCAGATCTTGTGAATGTCCCAGTTATCCCGGGAATGGCTAA 

RPTLN-7  TGTACAACTGGACCATGTTGTCGTCAGTGCAAATTGAAGCCGGCAGGAACAACATGCTGGAGAACCAGTGTATCAAGTCATTACTGCACTGGCAGATCTTGTGAATGTCCCAGTTATCCCGGGAATGGCTAA 

RPTLN-8  TGTACAACTGGACCATGTTGTCGTCAGTGCAAATTGAAGCCGGCAGGAACAACATGCTGGAGAACCAGTGTATCAAGTCATTACTGCACTGGCAGATCTTGTGAATGTCCCAGTTATCCCGGGAATGGCTAA 

RPTLN-9  TGTACAACTGGACCATGTTGTCGTCAGTGCAAATTGAAGCCGGCAGGAACAACATGCAGGAGAACCAGTGTATCAAGTCATTACTGCACTGGCAGATCTTGTGAATGTCCCAGTTATCCCGGGAATGGCTAA 

RPTLN-10 TGTACAACTGGACCATGTTGTCGTCAGTGCAAATTGAAGCCGGCAGGAACAACATGCTGGAGAACCAGTGTATCAAGTCATTACTGCACTGGCAGATCTTGTGAATGTCCCAGTTATCCCGGGAATGGCTAA 

RPTLN-11 TGTACAACTGGACCATGTTGTCGTCAGTGCAAATTGAAGCCGGCAGGAACAACATGCTGGAGAACCAGTGTATCAAGTCATTACTGCACTGGCAGATCTTGTGAATGTCCCAGTTATCCCGGGAATGGCTAA 

RPTLN-12 TGTACAACTGGACCATGTCGTCGTCAGTGCAAATTGAAGCCGGCAGGAACAACATGCTGGAGAACCAGTGTATCAAGTCATTACTGCACTGGCAGATCTTGTGAATGTCCCAGTTATCCCGGGAATGGCTAA 

RPTLN-13 TGTACAACTGGACCATGTTGTCGTCAGTGCAAATTGAAGCCGGCAGGAACAACATGCTGGAGAACCAGTGTATCAAGTCATTACTGCACTGGCAGATCTTGTGAATGTCCCAGTTATCCCGGGAATGGCTAA 

RPTLN-14 TGTACAACTGGACCATGTTGTCGTCAGTGCAAATTGAAGCCGGCAGGAACAACATGCTGGAGAACCAGTGTATCAAGTCATTACTGCACTGGCAGATCTTGTGAATGTCCCAGTTATCCCGGGAATGGCTAA 

RPTLN-15 TGTACAACTGGACCATGTTGTCGTCAGTGCAAATTGAAGCCGGCAGGAACAACATGCTGGAGAACCAGTGTATCAAGTCATTACTGCACTGGCAGATCTTGTGAATGTCCCAGTTATCCCGGGAATGGCTAA 

RPTLN-16 TGTACAACTGGACCATGTTGTCGTCAGTGCAAATTGAAGCCGGCAGGAACAACGTGCTGGAGAACCAGTGTATCAAGTCATTACTGCACTGGCAGATCTTGTGAATGTCCCAGTTATCCCGGGAATGGCTAA 

RPTLN-17 TGTACAACTGGACCATGTCGTCGTCAGTGCAAATTGAAGCCGGCAGGAACAACATGCTGGAGAACCAGTGTATCAAGTCATTACTGCACTGGCAGATCTTGTGAATGTCCCAGTTATCCCGGGAATGGCTAA 

RPTLN-18 TGTACAACTGGACCATGTTGTCGTCAGTGCAAATTGAAGCCGGCAGGGACAACATGCTGGAGAACCAGTGTATCAAGTCATTACTGCACTGGCAGATCTTGTGAATGTCCCAGTTATCCCGGGAATGGCTAA 

RPTLN-19 TGTACAACTGGACCATGTTGTCGTCAGTGCAAATTGAAGCCGGCAGGGACAACATGCTAGAGAACCAGTGTATCAAGTCATTACTGCACTGGCAGATCTTGTGAATGTCCCAGTTATCCCGGGAATGGCTAA 

RPTLN-20 TGTACAACTGGACCATGTTGTCGTCAGTGCAAATTGAAGCCGGCAGGAACAGCATGCTGGAGAACCAGTGTATCAAGTCATTACTGCACTGGCAGATCTTGTGAATGTCCCAGTTATCCCGGGAATGGCTAA 

RPTLN-21 TGTACAACTGGACCATGTTGTCGTCAGTGCAAATTGAAGCCGGCAGGAACAGCATGCTGGAGAACCAGTGTATCAAGCCATTACTGCACTGGCAGATCTTGTGAATGTCCCAGTTATCCCGGGAATGGCTAA 
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The unusual high conservation of RPTLN genes across Reptilia suggests a relevant 

function in reptile biology for this ancient gene family. Whether RPTLN genes are i) 

translated into (body) protein(s), ii) acts as regulatory RNA molecules, or iii) serve other 

unknown function(s), remains elusive. Of relevance to this point, among the 31 

nucleotide changes identified in the 22 RPTLN genes listed in Table 11; 6 involve the 

third base of RPTLN codons, whereas 8 and 17 affect first and second codon positions, 

respectively (Figure 54). In protein-coding DNA sequences, the second-codon position 

is the most functionally constrained, whereas, due to the degenerate nature of the 

genetic code, the third-codon position is the least functionally constrained in terms of 

nucleotide changes (Bofkin and Goldman, 2007). It is thus tempting to hypothesize that 

the biological role of transcribed RPTLN RNA may be strongly dependent on their 

folded structure. Supporting this hypothesis, the RNAfold WebServer (Gruber et al., 

2008) predicted for the full-length RPTLN-transcribed 333 bp RNA a stable (-90.59 

kcal/mol minimum free energy) secondary structure ensemble (Figure 55).  

 

 

Figure 55. Scheme of the predicted secondary structure of RPTLN RNA .  Nucleotide 
positions mutated in any of the RPTLN-2-21 genes listed in Table 1 are indicated. 

 

RPTLN genes were found at nodes predating the separation of Toxicofera and 

Lacertidae (Figure 56), and thus before venom arose in squamate evolution, 

approximately 170 Mya during the Jurassic period (Fry et al. 2006; 2012). Despite their 
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broad distribution across the phylogeny of Reptilia (Figure 56), RPTLN genes have been 

found translated into KTS/RTS disintegrins only in the venoms of M. l. obtusa 

(obtustatin (KTS) [P83469; 1MPZ], (Marcinkiewicz et al. 2003; Moreno-Murciano et al. 

2003a; Sanz et al. 2008)), M. lebetina, M. mauritanica (lebestatin (KTS) [CAJ34939], 

(Olfa et al. 2005; Makran et al. 2012)), D. palestinae (viperistatin (KTS) [P0C6E2], 

(Kisiel et al. 2004)), and D. russelii (russellistatin (RTS), as we had shown previously). 

Evolutionary relationships reconstruction inferred from mitochondrial DNA sequences 

dated the emergence of Eurasian viper (genera Eristicophis, Pseudocerastes, Vipera, 

Macrovipera, and Daboia) in the early Miocene (23-16 million years ago, Mya) (Lenk 

2001), coinciding with the geographical separation of the landmasses Europe, Middle 

East, and North Africa by the Mediterranean and Parathethys seas (Rögl and Steininger 

1983). This evidence indicates that RPTLN genes comprise an ancient multigenic family, 

and that their restricted expression and neofunctionalization in the venom gland of 

Macrovipera and Daboia species represent recent events (Figure 56).  

A hallmark of the RPTLN genes transcribed into protein (KTS- and RTS-

disintegrin)-coding mRNAs with respect to those that are not translated is the 

accumulation of mutations in the C-terminal half of the disintegrin domain (Sanz-Soler 

et al. 2012) (Figure 38, p.78), which constitutes a conformational functional epitope 

encompassing the α1β1 integrin-inhibitory loop and the C-terminal tail of KTS/RTS 

disintegrins (Kisiel et al. 2004). However, the mechanism underlying this non-protein-

coding to protein-coding transition remains elusive. It is tempting to speculate that 

accumulation of nucleotide changes in certain RPTLN gene copies may have resulted in 

destabilization of the transcribed non-coding RNA (ncRNAs) into a translatable, or in 

the formation of pseudogenes. In this context, it is worth mentioning that ncRNAs 

transcribed from pseudogenes may play regulatory roles regulating the expression of 

their parental or non-parental genes (Mighell et al. 2000; Balakirev and Ayala 2003; 

Trinklein et al. 2007; Muro et al. 2011; Pink et al. 2011). 
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4 A hypothesized role for RPTLN in the evolution of SVMPs 

 The nucleotide sequence encoding the signal peptide (SP) of RPTLN genes is 

highly conserved in SVMP precursor genes of Viperinae, Crotalinae, Elapidae, and 

Colubridae snake species (Figure 57). On the contrary, this region is not conserved in 

ADAM (A Disintegrin And Metalloprotease) genes (Figure 57). The closest non-venom 

ancestor of SVMPs was likely an ADAM28 precursor gene (Casewell 2012) that was 

recruited into the snake venom gland proteome (Moura-da-Silva et al. 1996) after the 

divergence of squamate reptiles, lizards and snakes (Fry et al. 2006; 2012) in the Jurassic, 

~170-150 million years before present (MYBP) (Hedges and Vidal 2009). The high 

conservation in extant SVMPs of the SP sequence coded for by RPTLN genes strongly 

suggests that this region may have played a key role in the recruitment and restricted 

expression of SVMP genes in the venom gland of Caenophidian snakes. In this respect, 

the exon-intron organization of pre-pro E. ocellatus EOC00089-like PIII-SVMP and A. 

carolinensis ADAM28 genes is conserved, and their 17-residue signal peptides are 

entirely coded for by exon 1 (Sanz et al., 2012). Most introns of A. carolinensis ADAM 

28 contain inserted retroelements capable of invading new genomic sites (Alföldi et al. 

2011), particularly short interspersed retrotransposable elements (Sauria SINE) in 

introns 1, 3-8, 10, 13, 14 and 16, and LINEs (long interspersed elements) in introns 1 

and 10. The family of Sauria SINEs are widely distributed among genomes of lizards, 

snakes, and tuataras (Piskurek et al. 2006; 2009). Sauria SINEs arose more than 200 

million years ago, and the members of this family comprise a 5' tRNA-related region, a 

tRNA-unrelated region, and a 3' tail region identical with Bov-B LINEs (Piskurek et al. 

2006). Their retrotransposition depends on reverse transcriptase and endonuclease 

activities encoded by partner LINEs, and it has been proposed (Piskurek et al. 2006) that 

Sauria SINEs utilize the enzymatic machinery of Bov-B LINEs for their 

retrotransposition.  
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5 Transcription and translation of RPTLN genes in P. muralis, P. 
hispanica (Lacertidae), and R. scalaris (Colubridae) organs  

Full-length RPTLN transcripts were amplified by PCR in different organs and 

tissues of P. muralis, P. hispanica, and R. scalaris (Table 12).  

 

Table  12. RPTLN gene copies in organs of Colubridae and Lacertidae taxa. Full-length 
sequences are displayed in Figure 54. Nucleotide changes in RPTLN genes respect to RPTLN-1 
[jerdostatin, AY262730] are listed in Table 11.  See accession codes in Table 2S (p.172). 

 

 

 

 

 

 

 

 

 

 

 

These results provide the view of a ubiquous distribution of the RPTLN-like RNA 

in several tissues of the Colubridae and Lacertidae (Table 12). Then, RPTLN-like RNA 

levels were compared in different Podarcis muralis tissues. Semiquantitative PCR 

amplification suggested differential transcription levels at different organs of P. muralis 

(Figure 58).  

Species Organ RPTLN gene copy 
R. scalaris Lung RPTLN-1 

 Heart 273A>T (RPTLN-22) 

 Muscle RPTLN-21 

 Skin RPTLN-5 
P. muralis Bladder RPTLN-1, RPTLN-18 

 Liver RPTLN-1 

 Lung RPTLN-1, RPTLN-17 

 Kidney RPTLN-1, RPTLN-18 

 Muscle RPTLN-1 

 Skin RPTLN-18, RPTLN-19 

 Stomach RPTLN-18 

 Heart RPTLN-9, RPTLN-18 
P. hispanica Liver RPTLN-1 

 Lung RPTLN-11 

 Skin RPTLN-1, RPTLN-15 

 Stomach RPTLN-8, RPTLN-13 

 Heart RPTLN-1 

 Brain RPTLN-21 
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Figure 58. RPTLN-like  RNA expression in Podarcis muralis .  (A) Semiquantitative 
PCR-amplification of  RPTLN-like from coding DNA (cDNA) of several organ of 
Podarcis muralis  (lung, heart, skin, bladder and kidney), Mus musculus (Mm) and 
negative control without DNA (-) PCR-amplification program with (1) 25 reaction 
cycles, (2) 30 reaction cycles and (3) 35 reaction cycles (B) Semiquantitative PCR- 
amplification of a housekeeping gene, 28S ribosomal RNA fragment, using as a 
template cDNA of the different Podarcis muralis  organs. 

However, attempts to quantify the levels of RPTLN RNA by quantitative PCR 

amplification failed due to the low amount of transcripts. Low expression levels may 

arise from alternative promoter usage of ncRNAs compared to protein-coding RNAs 

(The Fantom Consortium et al., 2005). 

On the other hand, we did not find evidence for RPTLN translation in any organ 

investigated by Western blot analysis of 40-60 µg of total proteins extracted from 200 µg 

organ homogenates and size-fractionated by ultrafiltration (≥ 10 kDa, 10-3 kDa, and ≤ 3 

kDa fractions) (Figure 59). Recombinant r-jerdostatin was used to estimate the 

immunodetection limit, which was 50 ng (Figure 59, lines J). For comparison, the short 

KTS-disintegrin obtustatin [P83469] (Sanz et al. 2008), and its homologs, the RTS-

disintegrin russellistatin (Figure 48, p.92) (Sanz-Soler et al. 2012) and the KTS-

disintegrin lebestatin [Q3BK14] (Makran et al. 2012), comprise 2.8%, 2%, and 7.8% of 

the total venom proteins of Macrovipera lebetina obtusa, Daboia russelii, and 
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Macrovipera (Daboia) mauritanica, respectively. Furthermore, expression yields for 

functionally active recombinant jerdostatin (wild-type and mutants) in E. coli were 

about 0.5-2 mg/L of cell culture (Sanz et al. 2005; Sanz-Soler et al. 2012). These data 

clearly show that RPTLN and RPTLN-like DNA sequences can be transcribed and 

translated into functional proteins in different cellular environments.  

 

Figure 59. Coomassie blue-stained SDS-PAGE (upper panels) and Western blot 
analyses (lower panels) probed with anti-jerdostatin PEP160 polyclonal antibodies of 
40-60 µg of total proteins extracted from different organs of R. scalaris  (A), P. muralis  
(B), and P. hispanica  (C). Positive control,  lane Jer, ~50 ng of purified recombinant 
jerdostatin; Immunoreactivity is only observed against the positive control.  Std, 
molecular mass standard Mark12T M (Invitrogen); Li,  liver; M, skeletal muscle; K, 
kidney; H, heart;  Lu, lung; Sk, skin; St,  stomach; Br, brain. 

Although the possibility that RPTLN genes are translated into very low protein 

concentration can not be ruled out, all available data support the view that RPTLN gene 

copies encode a long (>200 nt) ncRNAs (lncRNAs). Eukaryote genomes include tens of 

thousands of long noncoding RNAs with little or no protein-coding capacity (Wilusz et 

al. 2009; Wilusz 2015). Only a limited number of lncRNAs have been functionally 

characterized. However, paradigms for how lncRNAs exert regulatory functions are 

beginning to emerge (reviewed by Wilusz et al. 2009; Wilusz 2015). In particular, 
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lncRNAs are both regulated by unique post-transcriptional control mechanisms, and 

control various aspects of post-transcriptional processing of mRNAs. These functions 

often involve the formation of ribonucleoprotein, RNA-RNA, and DNA-RNA 

complexes. These features of lncRNAs provide a meaning to the conservation of the 

third-base of RPTLN codons, and support our view of the possible biological function of 

this reptile-specific gene.  

 

6 Concluding remarks, reflexions and perspectives 

This work elaborates upon a previous work in chapter I and (Sanz-Soler et al., 

2012) in which we show results providing strong support for an independent 

evolutionary history of the RTS/KTS and the RGD clades of short disintegrins. This 

assumption is also supported by our findings described in this chapter, in which we 

report full-length RPTLN gene sequences amplified from species at nodes predating the 

separation of Toxicofera and Lacertidae, and thus preceding the emergence of venom in 

the evolution of squamate reptiles, ~170 Mya during the Jurassic period (Okuda et al. 

2002; Fry 2005; Hedges and Vidal 2009; Reeder et al. 2015) (Figure 60).  

 

The remarkable structural conservation of RPTLN genes across Reptilia, their low 

transcriptional level, and the lack of evidence for RPTLN translation in any reptile organ 

investigated (Figure 60), suggest a yet elusive role for transcribed RPTLN RNA as a long 

non-protein-coding RNA (Figure 61).  
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Figure 60. Reptile cladogenesis,  including RPLTN  gene detection (RPTLN  gene 
cartoon, signal peptide (coral),  propeptide (light green), disintegrin domain (yellow)) 
and non-detection (ND) in different amniotes species. Non-analyzed families,  in 
RPTLN  gene studio, are designed by a question mark. RNA cartoons are displayed next 
to the families,  in which RPTLN RNA sequences have been detected. Protein 
expression (in venom gland of Eurasian vipers) is displayed by the jerdostatin 
structure (Shimokawa et al.  1998; Sanz et al.  2006; Calvete et al.  2009b; Calvete 2010; 
Carey et al.  2012) and non-detected protein expression by ND. The rest of families 
were not analyzed, neither RNA transcription nor protein expression. Mammalia 
represents the out-group. Mya, Millions years ago.  
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We hypothesize that the high conservation of the SP sequence of RPTLN and 

extant SVMP genes may suggest a functional role for this region in the ancestral 

recruitment of SVMP gene expression in the venom gland of Caenophidian snakes 

(Figure 61). The origin of SVMPs has been inferred to have occurred after the split of 

the Pareatidae from the remaining Caenophidians, ~50-60 Mya, during the Paleogene 

period of the Cenozoic Era (Calvete et al. 2009b; Calvete 2010; Casewell et al. 2012; 

Gauthier et al. 2012; Carbajo et al. 2015). The evolutionary path that led to the family of 

the RGD/XXD-disintegrins from PII-SVMPs has been dissected in some detail at the 

molecular and structural levels (Nei and Rooney 2005; Juárez et al. 2008; Townsend et al. 

2011; Pyron et al. 2013). Neofunctionalization of the RPTLN gene to express RTS/KTS 

disintegrins (Figure 61) represents an independent alternative route from the evolution 

of PII-SVMP-derived disintegrins, which occurred more recently in venoms of Eurasian 

vipers within genera Macrovipera and Daboia (Table 9), in the early Miocene (~23-16 

million years ago, Mya) (Juárez et al. 2008; Jones et al. 2013). The finding of an RTS-

disintegrin (hitherto termed russellistatin) in the venom of D. russelii (Figure 48, 49 and 

50, p.92 and 93) also supports this hypothesis.  

Figure 61 outlines a cartoon of processes in which we hypothesize that RPTLN 

may have been involved. Understanding the physiological function and evolutionary 

history of this enigmatic highly conserved (and thus presumably relevant) gene across 

the phylogeny of reptiles clearly requires further detailed molecular studies. In 

particular, comparative analysis of the upstream regions of non-protein coding and 

protein coding RPTLN genes may identify nucleotide motifs that contribute to regulate 

their distinct molecular fates. On the other hand, the hypothesis that RPTLN may have 

played a key role in the recruitment and restricted expression of SVMP genes in the 

venom gland of Caenophidian snakes predicts that venom gland RPTLN and SVMP 

genes may share tissue-specific regulatory elements. Future genomic studies should 

support or refuted our hypothesis. 
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Figure 61. Cartoon of processes in which the RPTLN  gene is hypothesized to have 
been involved during its long evolutionary history. A, A Disintegrin And 
Metalloproteinase (ADAM) different structural domains are displayed in the cartoon. 
B, Fusion of the ADAM28 extracellular domains-coding gene region ΔE G F / T M / C y t o  

ADAM28 and an RPTLN  gene under a venom gland-specific promoter (VGP) generated 
a SVMP gene bearing the RPTLN  signal peptide (SP) sequence and exhibiting venom 
gland restricted translation (C). C, Timing of the functional processes in which 
RPTLN  is  hypothesized to have been involved, i.e.  a yet elusive role for transcribed 
RPTLN  as a long non-protein-coding RNA since ≥  170 Mya; the recruitment and 
venom gland-restricted expression of PIII-SVMPs, 50-60 Mya; and more recently (23-
16 Mya), its own neofunctionalization into α1β1-inhibitory short RTS/KTS 
disintegrins in venoms of certain Eurasian viper species within genera Macrovipera  
and Daboia  (Figure 56). Dis, disintegrin-like domain; Cys, cysteine-rich domain; EGF, 
epithelial growth factor-like domain; TM, transmembrane domain; cyto, cytoplasmic 
domain.  
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Chapter III Supporting the idea of a new venom specific function for 

disintegrins in viperid snakes envenomation   

 

Snakes use an array of predatory strategies and behaviors for overcoming 

potentially dangerous prey. Non-venomous snakes utilize constriction and/or jaw 

holding to subdue prey, whereas venomous snakes immobilize and kill prey through the 

use of venom. Although venomous snakes utilize the same chemical means (venom) for 

dispatching prey, the mode of venom delivery (prey envenomation) significantly differs 

between families of venomous snake. For example, elapid snakes (cobras and coral 

snakes) commonly strike-and-hold prey, whereas a strike-and-release envenomation is 

observed in viperid (vipers and pit vipers) snakes. For vipers, the strategy of releasing 

prey allows the snake to avoid any injury that may arise due to retaliation from a 

potentially dangerous prey item. However, it adds an extra task of relocating the 

envenomated prey that has wandered from the attack location. This undertaking can be 

challenging due to confounding chemical cues of both non-envenomated conspecific 

and heterospecific prey sources. By using rapid tongue flicking (strike-induced 

chemosensory searching) to detect, and the vomeronasal organ to analyze volatile and 

non-volatile chemical cues (Schwenk 1995) (Figure 4, p.11), several snake behavioral 

studies have addressed how vipers relocate envenomated prey, indicating that these 

snakes use vomeronasal chemoreception to discriminate between the chemical cues of 

envenomated and non-envenomated prey sources (Chiszar et al. 1999; Greenbaum et al. 

2003; Greenbaum 2004; Chiszar et al. 2008; Saviola et al. 2010). Recent studies in the 

laboratory of Dr. Stephen Mackessy (University of Northern Colorado), (Saviola et al. 

2013), suggest that the venom component responsible for successful recovery of 

envenomated prey is contained in a specific fraction of proteins in the Crotalus atrox 

venom, in which the medium size disintegrins, crotatroxin-1 and 2, are included.  
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These results suggested that disintegrins in the venom of C. atrox could act as the 

relocator element during predatory episodes. However, it may be possible that some 

additional molecules might be contained in this defined venom fraction that were not 

detected by mass spectrometry. Therefore, to further assess that the disintegrins in C. 

atrox venom are the relocator compound, and to rule out the possibility of other 

molecules from C. atrox venom contributing to prey relocation, we generated and 

behaviorally tested a recombinant form of crotatroxin. This allowed us to avoid the 

presence of other elements from Crotalus atrox venom.  

1 Crotatroxin nucleotide sequence determination.  

The stability of mRNA in the snake venom is biologically fascinating (Currier et al. 

2012). Therefore, the laboratory of Dr. Mackessy have been developed a new 

methodology to isolate total RNA from fresh snake venom (Modahl et al., in press) 

(Saviola et al. 2015). To confirm a new function for disintegrins in Viperidae venoms, 

crotatroxin-coding DNA was determined following Modahl et al., (in press) protocol. 

RNA was extracted from fresh Crotalus atrox venom and subsequently complementary 

DNA (cDNA) was synthesized and used as a template for the PCR amplification of the 

crotatroxin coding DNA fragment, using a forward degenerated disintegrin 

oligonucleotide. The DNA insert was further cloned and sequenced, resulting in the 

sequence presented in Figure 62.  

 

Figure 62. Isolated crotatroxin nucleotide sequence and the translated amino acid 
sequence.  RGD motif is labeled in red and highlighted, Cysteine residues are in bold.  

 

 

ggagaagaatgtgactgtggctctcctgcaaatccgtgctgcgatgctgcaacc  54!
 G  E  E  C  D  C  G  S  P  A  N  P  C  C  D  A  A  T!  18!
tgtaaactgagaccaggggcacagtgtgcagatggactatgttgtgaccagtgc 108!
 C  K  L  R  P  G  A  Q  C  A  D  G  L  C  C  D  Q  C   36!
agatttattaaaaaaggaacagtatgccggccagcaaggggtgattggaatgac 162!
 R  F  I  K  K  G  T  V  C  R  P  A  R  G  D  W  N  D   54!
gatacctgcactggccaatctgctgactgtcccagaaatggcctctatggctaa 216!
 D  T  C  T  G  Q  S  A  D  C  P  R  N  G  L  Y  G  -   71!
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2 Recombinant crotatroxin: cloning, expression, purification and mass 

spectrometry identification 

According to the crotatroxin DNA sequences, appropriate specific primers were 

designed to generate the crotatroxin expression vector, including the cleavage site for 

the tobacco etch virus (TEV) protease in the N-terminus. Similar to the recombinant 

ocellatusin construction, the amplified DNA insert was cloned in the expression vector 

pET32a(+) (Novagen, Madison, WI). pET32a(+)/TEV-crotatroxin positive clones were 

selected and sequenced to determine that the crotatroxin nucleotide sequence was 

inserted in the correct reading frame.  

 

Figure 63. Crotatroxin 1 and 2, released in the venom of C. atrox,  and 
recombinant crotatroxin sequences alignment. RGD motif is labeled in red and 
underlined, Cysteine are in bold. 

 

E. coli BL21 bacteria transformed with pET32a(+)/TEV-crotatroxin plasmid 

overexpressed soluble crotatroxin-thioredoxin-His6 fusion protein by addition of a final 

concentration of 1mM IPTG (Figure  25, p.54). r-crotatroxin (Figure 63) was purified 

from the cell lysate following several purification steps as previously described for the 

recombinant ocellatusin disintegrins (Figure 64 A, B and C) (Figure 26, p.55). 

Purification yield of r-crotatroxin was approximately 1mg/L cell culture.  

 

 

 

 

1         10           20           30           40           50           60           70      

r-crotatroxin GGEECDCGSPANPCCDAATCKLRPGAQCADGLCCDQCRFIKKGTVCRPARGDWNDDTCTGQSADCPRNGLYG ! 72!
crotatroxin1 AGEECDCGSPANPCCDAATCKLRPGAQCADGLCCDQCRFIKKGTVCRPARGDWNDDTCTGQSADCPRNGLYG ! 72!
crotatroxin2  GEECDCGSPANPCCDAATCKLRPGAQCADGLCCDQCRFIKKGTVCRPARGDWNDDTCTGQSADCPRNGLYG ! 71!
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Figure 64. Purification steps of recombinant crotatroxin. A. Soluble fraction of 
lysated E.coli  BL21 cells expressing the His6-thioredoxin-TEV-crotatroxin fusion 
protein was loaded in the first step of His-Trap affinity chromatography. To identify 
the fraction containing our construct, eluted fractions were loaded in 12% SDS-PAGE. 
The arrow points to the fusion protein fraction. B. Second step of His-Trap affinity 
chromatography after the digestion of the construct (eluted 2-5) by r-TEV-protease. 
The retained and non-retained protein identities are specified. The flow through 
fraction, containing the r-crotatroxin was concentrated.  C. The concentrate fraction 
was purified by high performance reverse-phase high performance liquid 
chromatography (RP-HPLC). The purified r-crotatroxin peak is denoted and analyzed 
by Tris–Tricine–(10%)SDS-PAGE. Lane 1, r-crotatroxin purified by RP-HPLC from 
the flow-through of the HisTrap affinity column. Lanes S, molecular weight markers 
(Mark12T M, Invitrogen), whose apparent molecular mass is indicated at the left side of 
the gels.  D. Electrospray-ionization mass spectrometry of RP-HPLC-purified r-
crotatroxin. ESI-MS is the experimental mass (7495.9±0.3 Da) and calculated 
molecular mass (7495.29 Da) corresponds to fully oxidized (4 disulfide bonds) 
monoisotopic species.  

 

The purity of the isolated r-crotatroxin was assed by 10% Tris-tricine-SDS-PAGE 

and electrospray-ionization mass spectrometry (Figures 64 C and D). In addition, 

electrospray-ionization mass spectrometry proved that the experimental molecular mass 
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(7495.9±0.3 Da) (Figures 64 D) accurately matching the calculated (7495.3 Da) mass for 

the recombinant crotatroxin with fully oxidized cysteine residues confirming the correct 

primary sequence and the cysteine pairing.  

3 Recombinant crotatroxin as Crotalus atrox prey relocator molecule  

A suitable bioassay of vomeronasal chemoreception was previously developed for 

evaluating preference towards envenomated (E) vs. non-envenomated (NE) mice 

carcasses, with snakes showing high rates of tongue flicking directed toward E carcasses, 

a behavior known as strike-induced chemosensory searching (SICS) (Chiszar et al. 1992; 

1999; Greenbaum et al. 2003; Chiszar et al. 2008; Saviola et al. 2013).  

To determine that only crotatroxin disintegrins are the molecules, which allow 

Western diamondback rattlesnakes (C. atrox) to discriminate among envenomated (E) 

and non-envenomated (NE) prey, we offered E and NE mouse carcasses injected with 

either r-crotatroxin or a saline control, respectively (Figure 29, p.63). When the 

carcasses were artificially “envenomated” with r-crotatroxin, the mean number of 

tongue flicks was significantly greater for the E mouse. Total number of tongue flicks 

was converted to percentage of tongue flicks, to account for natural variation (reflected 

by s.e.m values) in absolute tongue flicks rate between individual snakes (Table 13). The 

mean percentage of the tongue flicks toward the envenomated carcass (70%) was 

significantly higher for the E mouse (t=3.36, df=11, P-value=0.003). These results agree 

with the previous study performed using the fraction III, containing crotatroxin-1 and 

crotatroxin-2 disintegrins (Saviola et al. 2013) (Table 13), confirming our hypothesis. C. 

atrox discriminates among envenomated (with r-crotatroxin) and non-envenomated 

mice, having preference for the mouse injected with r-crotatroxin. These results suggest 

that the crotatroxin disintegrins are the relocator elements in the venom of Crotalus 

atrox rattlesnakes. 
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Table  13. Rattlesnakes discriminate between non-envenomated and envenomated (with r-
crotatroxin) mice 

Mean percent (%) tongue flicks directed at envenomated (E) and non-envenomated (NE) mice, 
when envenomated mice were injected with r-crotatroxin. Standard Error of the Mean (s.e.m) is 
indicated in brackets. Single-sample t-test was conducted on mean percentages where the mean 
percent of tongue flicks directed towards E mice were compared to 50%, the value expected under 
the null hypothesis; df =n (trials)-1. Because the two means are not independent, the same t value 
but with the opposite sign would be obtained for each mean. * The same data from the peak III from 
C. atrox venom Saviola at al. (2013) are indicated. For r-crotatroxin raw data, see Table 3S (p.172). 
** P < 0.01.  

4 Crotalus atrox specific discrimination for a prey relocator molecule 

Considering these results, we decided to examine if C. atrox could recognize prey 

injected with a disintegrin that is not naturally found in the venom of this species. The 

venom of C. atrox contains only medium-sized monomeric disintegrins (Calvete et al. 

2009a), such as the crotatroxins. Nonetheless, besides medium-sized disintegrins, 

several vipers contain dimeric as well as long and/or short monomeric disintegrins 

(Juárez et al. 2008). Disintegrins are classified based on their length, number of disulfide 

bonds and according to their integrin-binding motif. Depending on the amino acids 

present in the binding-motif, disintegrins are able to block different integrin receptors 

(Calvete 2010). At present, it is unknown how the crotatroxins create an olfactory “mark” 

that snakes are able to recognize, however, Saviola et al. (2013) hypothesized an 

integrin-mediated release of chemical cues from prey stimulate the vomeronasal system 

of snakes. Bearing in mind this hypothesis, and considering that crotatroxin includes an 

RGD integrin-binding motif in the apex of an 11 amino acid loop, identical to the short 

disintegrin ocellatusin, as well as both disintegrins inhibiting ADP-induced platelet 

aggregation with similar potency (an IC50 of; 17.5 ×10-8M and 16.8 ×10-8 ±0.2 M, 

respectively (Smith et al. 2002; Galán et al. 2008); we decided to test C. atrox response 

towards recombinant ocellatusin (see chapter I). Envenomated mice were injected with 

Sample 
Tongue flicks mean 

t P-value df 
Values NE mouse E mouse 

r-crotatroxin 
nº 38.4 (9.8) 117.7 (27.4)    
% 30.0 70.0  (6) 3.36** 0.003 11 

Peak III* 
C-atrox venom 

nº 25.3 (5.1) 53.6 (7.7)    
% 32 68 (3.2) 5.78** <0.01 10 
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ocellatusin, and NE with saline solution as previously stated, and both were offered to 

the Crotalus atrox to determine if snakes can differentiate between ocellatusin-E and NE 

mice. Similar to the previous study with r-crotatroxin, total number of tongue flicks 

were converted to percentages to control natural variation in absolute tongue flicks rate 

between snakes. The mean percentage of tongue flicks towards E (35.8%) and NE 

(64.2%) mice suggest that C. atrox do not show preference for E mice injected with 

ocellatusin. Likewise, there was not significant difference between the percentages of 

tongue flicks directed towards the E and NE carcasses (P-value  > 0.025) (Table 14).   

Table  14. Rattlesnakes discriminate between non-envenomated and envenomated (injected 
with r-disintegrin) mice 

Mean percent (%) tongue flicks directed at envenomated (E) and non-envenomated (NE) mice, when 
envenomated mice were injected with r-crotatroxin and r-ocellatusin. Standard Error of the Mean 
(s.e.m) is indicated in brackets. Single-sample t-test was conducted on mean percentages where mean 
percent to E mice were compared with 50%, the value expected under the null hypothesis; df =n 
(trials)-1. Because the two means are not independent, the same t value but with the opposite sign 
would be obtained for each mean. For r-ocellatusin raw data, see Table 3S (p.172) and 4S (p.173). ** P 
< 0.025.  

These results indicate that C. atrox does not recognize mice injected with the short 

RGD disintegrin, ocellatusin. Its activity does not appear to be enough to release volatile 

cues in the prey, which C. atrox could recognize to discriminate between the E and NE 

prey items. 

Nevertheless, our recombinant crotatroxin behavior analyses validate Saviola et al. 

(2013) suggestions. The medium-sized crotatroxin disintegrins allow C. atrox to 

distinguish between envenomated and non-envenomated prey sources, presumably by 

varying the chemical odor of prey integument.  Furthermore, our results hint that the 

differences in N-terminal of r-crotatroxin, crotatroxin-1 and 2 (Figure 63) do not affect 

for the C. atrox recognition. 

Sample 
Tongue flicks mean 

t P-value df 
Values NE mouse E mouse 

r-crotatroxin 
nº 38.4 (9.8) 117.7 (27.4)    
% 30.0  70.0  (6) 3.355** 0.003 11 

r-ocellatusin 
nº 78 (12.1) 47 (15.9)    
% 64.2 35.8 (5.5) -2.11 0.036 7 
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Ocellatusin exhibits similar platelet aggregation activity when compared to 

crotatroxin by selectively binding αIIbβ3 integrin, which is expressed on platelet surfaces 

(Calvete et al. 1994). However, disintegrins expressing the RGD motif blocks several 

integrin receptors beyond αIIbβ3  (Figure 12, p24). The short disintegrin ocellatusin has 

also high specificity for α5β1 integrin (Smith et al. 2002). However, the medium-sized 

crotatroxins show higher affinity for integrin αVβ1 than for integrins α5β1 and αVβ3, 

contrary to other Crotalus medium-sized RGDW-disintegrins, which preferentially 

block integrins α5β1 and αVβ3 (Galán et al. 2008).  

The fact that C. atrox did not recognize volatile cues released from E mice injected 

with ocellatusin, might be due to: i) RGD-disintegrins exhibiting specific binding and 

affinities to integrin receptors, which may not be recognized by short disintegrins, ii) a 

necessary integration of the different crotatroxin integrin-binding, which might trigger 

the release of volatile molecules from the prey, making possible the relocation of the 

prey, iii) Short disintegrins are not present in Crotalinae venom, as they appear to have 

emerged in Viperinae after the split of Crotalinae taxa (Juárez et al. 2008). Therefore, 

snakes belonging to the genus Crotalus may not recognize the chemical cues (if any) 

released by the specific binding of short disintegrins, or iv) contrary to the previous 

assumption, crotatroxin might create an olfactory “mark” independent of an integrin-

mediated function.  

Darwin (Darwin 1859) suggested that predator diversification may be largely 

based on selection and that dangerous prey items are a major forcing acting on 

predatory behaviors. Natural selection has influenced snakes to respond to stimuli that 

are most likely to lead to successful relocation of envenomated prey (Kardong et al. 

1997; Benard 2004; Chiszar et al. 2008; Cooper 2008; Juárez et al. 2008; Mackessy 2008; 

Fox and Serrano 2008b). This evolutionary pressure might contribute to the high level 

of variation and rapid evolution of disintegrins (Juárez et al. 2008), being part of a 

predator-prey a arms race that allows the predator to adapt to the variety of different 

prey items. Nonetheless, additional Viperidae behavioral studies should be conducted to 

further confirm this presumption.  
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5 Concluding remarks, reflexions and perspectives 

Our results agree with those previously reported by Saviola et al. (2013); 

suggesting that Crotalus atrox disintegrins have evolved into multifunctional proteins, 

which evoke vomeronasally-salient cues, enabling the snake to relocate envenomated 

prey after the strike. In addition, prey recognition for C. atrox appears to be dependent 

on the disintegrin injected to the E mice, suggesting a major selective advantage for the 

evolution of free disintegrins among viperid venoms (apparently exclusively), which 

would be provided by their role in prey relocation. Therefore, in addition to 

immobilizing, killing and predigesting prey, a “new” biological role of viper venoms 

appears to be prey relocation, as this behavior is observed by many rattlesnake species 

(Chiszar et al. 1999; Greenbaum et al. 2003; Greenbaum 2004; Chiszar et al. 2008; 

Saviola et al. 2010; 2013).   

Additionally, Greenbaum et al. (2003) suggested that chemoreception is sensitive 

to subtle differences in venom biochemistry and may reflect adaptation to improve 

efficiency of finding envenomated prey (Greenbaum et al. 2003). This is supported by 

our negative response of C. atrox to volatile cues in E mice injected with r-ocellatusin, 

since Echis ocellatus, which express ocellatusin in its venom, and C. atrox shared a 

common ancestor approximately 22-35 millions of years ago (Lenk 2001). Moreover, 

some Echis species exhibit a sit-and-wait foraging strategy (Tsairi and Bouskila 2004) 

and strike-and-release their prey (Cundall 2009) similar to Crotalus genus (Lavin-

Murcio et al. 1993; Cooper 1994; Clark 2006; Saviola et al. 2010).  

Hence, future behavioral studies of vipers (other pitvipers, Echis sp., etc) that 

express disintegrins in their venoms, and exhibit a strike-and-release foraging strategy, 

should be done to address if other disintegrins are able to act as “relocator molecule”. 

Moreover, new studies will help elucidate the molecular mechanism(s) by which 

disintegrins interact with prey tissues and facilitate the relocation of envenomated prey 

by these vipers. 
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Conclusions 

 

1. The conservation of the RPTLN gene across reptiles, coupled with the structure-
function studies of the Frankenstein mutants, provides evidence that the 
ancestral gene that codes for RTS/KTS short disintegrins was recruited in 
Viperidae venom gland, independently of the canonical short RGD-disintegrin 
evolutionary pathway.  

2. We postulate that RPTLN genes comprise an ancient multigene family, and that 
their restricted expression and neofunctionalization in the venom gland of 
Macrovipera and Daboia species represent recent evolutionary events. 

3. The detection of RPTLN transcripts in different organs of Podarcis sp. and 
Rhinechis scalaris, in absence (or low levels) of RTS-disintegrins, combined with 
the conservation of the RPTLN gene in reptiles, suggest a possible function of the 
RPTLN gene as non-coding RNA in reptilian body organs (non-venom gland 
tissues). 

4. The high conservation of the Signal Peptide sequence coded for by RPTLN genes 
in extant SVMPs strongly suggests that this region may have played a key role in 
the recruitment and restricted expression of SVMP genes in the venom gland of 
Caenophidian snakes. 

5. The functionality of the disintegrin ocellatusin depends on the amino acids G25 
and D26 in the RGD active motif, and its inhibitory potency depends on the R24 
residue. However, the amino acids in the N-terminal side of the RGD motif, as 
well as the E47-P50 residues in the carboxyl terminal tail, are not essential per se 
for ocellatusin functionality.  

6. Our studies have shed light on the possible function of Viperidae disintegrins, as 
chemotactic element, to relocate the prey. 

7. The “new” role of disintegrins as a relocator element of prey following strike-
and-release appears to be species-specific, indicating that this particular 
disintegrin functionality might also contribute to the disintegrin evolution.  
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1 Introducción 

El grupo Reptilia, consta de aves y reptiles no aviares. Los reptiles son uno de los 

grupos de organismos vivos más notables, desde el punto de vista ecológico y evolutivo, 

que han colonizado la mayor parte del planeta. La mayor diversidad de los reptiles no 

aviares (96,4%) se concentra en Squamata (lagartos y serpientes). Por otra parte, 

tortugas y cocodrilos representan el 3,4% y el 0,2%, respectivamente (reptile-

database.org) (Uetz and Hošek 2015). En la figura 1 (p.7) se muestra una cladogénesis 

generada a partir de datos mostrados en (Hedges and Vidal 2009; Pereiraa and Bakera 

2009; Shaffer 2009; Shedlock and Edwards 2009; Vidal and Hedges 2009; Vidal et al. 

2009), sin embargo, todavía existe controversia en cuanto a cómo y cuando aparecieron 

algunos taxones. 

Las serpientes pertenecen al suborden Serpentes, que representan 3567 especies 

distribuidas en todos los continentes excepto la Antartida (Uetz and Hošek 2015). 

Recientemente se han generado filogenias de serpientes, a partir de la integración de 

datos morfológicos y moleculares (Vidal et al. 2007; Castoe et al. 2009; Pyron et al. 2011; 

2013; Reeder et al. 2015). A pesar de estos estudios, la posición relativa de algunas 

serpientes aún es objeto de debate. No obstante, Viperidae, Elapidae y Colubridae están 

contenidas en la superfamilia Colubroidea, que incluye a todas las serpientes venenosas 

conocidas, y a la mayoría de serpientes actuales (>2/3 sp.) (Vidal et al. 2009; Pyron et al. 

2011; Pyron and Burbrink 2012) (Figura 4, p. 13).   

 

La gran diversidad de serpientes, junto con su plasticidad genética y fenotípica, 

convierte a las serpientes y sus venenos en objeto de estudio en muchas disciplinas, 

desde evolución, ecología y comportamiento, a medicina. Concretamente el estudio de 

los venenos de serpientes es de gran interés en varios aspectos. El conocimiento 

generado a partir del estudio del veneno, o de alguna de sus proteínas, podría aportar la 

base para el desarrollo de un nuevo medicamento, o ayudar a la generación de mejores 

antivenenos. Además, tales estudios podrían revelar nuevos mecanismos moleculares en 

mamíferos, mediante el uso de toxinas en estudios de receptores celulares como por 

ejemplo las integrinas. 
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 Los venenos de serpientes contienen una compleja variedad de componentes 

farmacológicamente activos, con y sin actividad enzimática. De todos ellos, en este 

trabajo nos hemos centrado en el estudio de una familia de proteínas que no poseen 

actividad enzimática, las disintegrinas. Esta familia ha servido como modelo para 

generar varios fármacos que están en el mercado para tratar el síndrome coronario 

agudo, mediante la inhibición de agregación plaquetaria (por ejemplo, Aggrastat® 

(Tirofiban) e Integrilin® (Eptifibatidae)) (Granada and Kleiman 2004).  

Únicamente los venenos de Viperinae y Crotalinae contienen disintegrinas, una 

familia de proteínas (41-100 aminoácidos) sintetizadas a partir de RNAs mensajeros 

cortos (Okuda et al. 2002) o liberadas en el veneno por procesamiento proteolítico de 

metalloproteasas de tipo PII (PII-SVMP) (Kini and Evans 1992; Fox and Serrano 2005). 

La familia de las disintegrinas incluye antagonistas potentes y específicos de los 

receptores de integrina β1 y β3, que han evolucionado en la parte apical de un lazo móvil 

de 11 residuos. La mayoría de las disintegrinas de cadena simple (largas, medias y 

cortas) expresan la secuencia RGD que representa el motivo de inhibición básico de la 

unión de las integrinas a sus ligandos y bloquea su función adhesiva.  

La evolución de las disintegrinas RGD, desde las disintegrinas largas, a las más 

recientes en la evolución, las disintegrinas cortas, implica una reducción de tamaño 

debida a la pérdida de cisteínas y procesamiento del extremo N-terminal. En todas ellas 

su actividad inhibidora depende de la apropiada formación de puentes disulfuro entre 

sus cisteínas, que determina la conformación del lazo móvil que alberga el motivo activo. 

Además de las disintegrinas canónicas (RGD/XXD), existen otro tipo de disintegrinas, 

que contienen los motivos KTS/RTS y se encuentran en venenos de víboras 

Euroasiáticas. Estas disintegrinas bloquean selectivamente la unión de la integrina α1β1 a 

su ligando (colágeno I y IV) in vitro y bloquean la angiogénesis in vivo (Marcinkiewicz 

et al. 2003; Olfa et al. 2005; Brown et al. 2008).  

Estudios estructurales mediante RMN de las disintegrinas (K/R)TS (obtustatina y 

jerdostatina) han revelado que el bucle de unión a la integrina y el extremo C-terminal 

forman un epítopo funcional que muestra movimientos concertados (Moreno-

Murciano et al. 2003b; Carbajo et al. 2011). La base estructural de la selectividad y 
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especificidad de disintegrinas (K/R)TS por la integrina α1β1, subyace en la forma y 

tamaño del lazo de unión a integrina de 9 residuos, junto con su composición, 

flexibilidad y orientación lateral del tripéptido (K/R)TS (Monleón et al. 2003; Calvete et 

al. 2005; Sanz et al. 2005; Calvete et al. 2007b; Carbajo et al. 2011).  

Las disintegrinas (K/R)TS son sintetizadas a partir de ARNs mensajeros cortos que 

codifican para un péptido señal, propeptido corto y el dominio disintegrina. La 

disintegrina RTS jerdostatina codificada por el gen RPTLN conserva esta estructura 

génica. Aunque la secuencia nucleotídica que codifica la disintegrina jerdostatina se 

conserva con identidad del 100% en la glándula del veneno de varias víboras 

euroasiáticas, Prothoboptrops jerdonii, Cerastes vipera y Echis ocellatus (Sanz et al. 2005; 

2006; Bazaa et al. 2007), esta disintegrina RTS no se había encontrado en ningún veneno 

estudiado hasta la fecha. Varios estudios han discutido la difícil cuestión de explicar cuál 

podría ser el papel de las disintegrinas RTS con actividad antiangiogénica en el contexto 

predador-presa (revisado por Walsh and Marcinkiewicz 2011; Calvete 2013b). 

Recientemente, en el trabajo de Saviola et al. 2013, se sugirió una nueva función para las 

disintegrinas en el veneno. Puesto que la fracción del veneno que incluye las 

disintegrinas parece contener el elemento quimiotáctico que utiliza Crotalus atrox, para 

la relocalización de su presa envenenada y liberada de sus fauces. 
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2 Objetivos  

En esta tesis hemos explorado la relación evolutiva de dos clases de disintegrinas 

cortas, RGD y RTS/KTS, además de estudiar la distribución del gen RPTLN y su posible 

función en reptiles. Para ello se abordaron los siguientes objetivos parciales: 

1. Establecer la historia natural de la familia RTS/KTS-disintegrinas, analizando la 

relación estructura-función de las disintegrinas RGD y RTS/KTS mediante la 

generación de mutantes quimera. 

 

2. Definir los amino ácidos del lazo activo claves para la función de la disintegrina 

corta RGD ocellatusina. 

 

3. Caracterizar el gen RPTLN completo, que codifica para una disintegrina RTS. Y 

explorar su distribución en reptiles.  

 

4. Determinar la presencia o ausencia de transcritos del gen RPTLN y la posible 

traducción del dominio disintegrina en otros órganos distintos de la glándula del 

veneno.  

 

5. Explorar la posible función de las disintegrina crotatroxina, del veneno de Crotalus 

atrox, como elemento relocalizador de la presa, así como la posibilidad de que la 

disintegrina ocellatusina tenga una función similar. 
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3 Metodología  

Amplificación del gen RPTLN mediante reacción en cadena de la polimerasa (PCR)  

La reacción en cadena de la polimerasa, conocida como PCR (polymerase chain 

reaction), es una técnica desarrollada en 1983 por Kary Mullis (Bartlett and Stirling 

2003) que revolucionó los estudios de biología molecular. Para la identificación del gen 

RPTLN en distintos genomas se llevó a cabo la extracción de ADN genómico a partir de 

las muestras de sangre y tejido disponibles (Tabla 1, p.41) (Longmire et al. 1997). 

Posteriormente, se amplificó por PCR el fragmento completo del gen RPTLN a partir 

del ADN genómico de diversos reptiles. Los fragmentos de ADN candidatos se cortaron 

del gel de agarosa y se purificaron, con el fin de clonarlos y secuenciarlos. De este modo 

se identificaron los genes RPTLN-like contenidos en genomas de una amplia variedad 

de reptiles.   

Identificación de transcritos del gen RPTLN 

La identificación de transcritos en determinados órganos de culebra (Rhinechis 

scalaris) y lagarto (Podarcis muralis y P. hispanicus) se llevó a cabo del mismo modo que 

la determinación del gen RPTLN en el ADN genómico de distintos reptiles. Sin embargo, 

en este caso se usó el ADN complementario (cDNA) como molde en la amplificación 

por PCR. Para la síntesis de cDNA se llevó a cabo la extracción de ARN de los órganos y 

a continuación se realizó retrotranscripción del ARN a ADN complementario (cDNA). 

Además, para poder observar diferencias de expresión de gen RPTLN entre los 

distintos órganos, se realizó la amplificación por PCR semicuantitativa y PCR 

cuantitativa. 

Análisis de secuencias y deposito en la base de datos NCBI 

Las secuencias RPTLN-like obtenidas se identificaron utilizando BLASTn, y se 

depositaron en la base de datos NCBI (Centro Nacional de Información Biotecnológica). 

Su alineamiento múltiple se realizó utilizando el programa MEGA (Molecular 

Evolutionary Genetic analysis) (Kumar et al. 2001); y para la predicción de estructura 



Resumen   Metodología 

    138 

secundaria de RNA se uso RNAfold WebServer (Mathews et al. 2004; Gruber et al. 2008; 

Lorenz et al. 2011).  

Extracción de proteína y detección de jerdostatin mediante Western Blot 

El Western Blot es una técnica analítica ampliamente extendida que se usa para la 

detección de proteínas específicas en una muestra determinada. Concretamente en  este 

trabajo se pretendía determinar la traducción de los transcritos del gen RPTLN 

detectados en órganos de Podarcis sp. y Rhinechis scalaris. Para ello se extrajo proteína 

total de los órganos mediante la homogenización de cada tejido en un tampón de lisis, 

incluyendo los inhibidores de proteasas necesarios. La detección de jerdostatina en 

nuestras muestras se realizó mediante Western Blot utilizando el anticuerpo primario 

anti-PEP160 que reconoce el péptido [CKPSYPGNG] en el extremo C-terminal de la 

jerdostatina. 

Expresión y purificación de disintegrinas recombinantes 

Existe una amplia variedad de métodos de generación, expresión y purificación de 

proteínas. En nuestro caso, diseñamos y generamos plásmidos de expresión en bacterias, 

para la posterior expresión y purificación de disintegrinas recombinantes de forma 

soluble y activa.  

En el caso de crotatroxin, se determinó la secuencia nucleotídica de novo. Una vez 

conocida la secuencia de nuestras disintegrinas silvestres, se clonaron en un plásmido de 

expresión específico de bacterias (pET32a(+)), incluyendo la secuencia de 

reconocimiento de la proteasa TEV con el fin de poder cortar posteriormente la etiqueta 

de las disintegrinas recombinantes (Figura 23, p.50). 

La obtención de los plásmidos de expresión de las disintegrinas mutantes, que 

incluyen cambios puntuales en su secuencia de ADN, se realizó mediante mutagénesis 

dirigida. 

Los plásmidos de expresión generados se transformaron en la cepa de expresión 

BL21 de Escherichia coli, para la sobreexpresión de cada una de las disintegrinas 

recombinantes (Figura 25, p.54). Posteriormente, las disintegrinas recombinantes se 
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purificaron a partir de la fracción soluble del lisado celular mediante varios pasos de 

purificación por afinidad, digestión por la proteasa TEV, y un último paso de 

purificación por cromatografía de fase reversa. La pureza de la muestra se testó 

mediante electroforesis en gel, 10%Tris-tricine SDS-PAGE, y espectrometría de masas 

(ESI-MS) (Figura 26, p.55). 

Purificación de disintegrinas a partir del veneno 

Para aislar disintegrinas a partir del veneno, las proteínas solubles del veneno se 

separaron mediante cromatografía de fase reversa. 

Pureza e identificación de las disintegrinas mediante espectrometría de masas 

Con el fin de identificar las disintegrinas purificadas a partir de material 

recombinante o del veneno se midieron las masas de las disintegrinas por 

espectrometría de masas mediante una fuente de ionización por 

nanoelectronebulización (Figura 27, p.57). Esto nos permitió confirmar la identidad de 

todas las disintegrinas, pureza y su correcta purificación. En cada caso, la masa 

monoisotópica teórica, se comparó con la masa calculada, considerando condiciones 

nativas, con la formación de 4 puentes disulfuro en el caso de las disintegrinas cortas y 6 

en las de tamaño medio.  

Purificación de la integrina α1β1 humana e inhibición de la unión de la 
integrina α1β1 al fragmento CB3 del colágeno IV mediada por las disintegrinas 

Las disintegrinas KTS/RTS inhiben la unión de la integrina α1β1 a su ligando 

natural, colágeno IV/I. Por lo que para testar la capacidad de inhibición de unión de la 

integrina α1β1 de nuestros mutantes quimera (RTS-ocellatusin) denominados 

Frankenstein, se purificó la integrina α1β1 y se midió la inhibición de unión a su ligando 

mediante un ensayo ELISA.  

El ectodominio de la integrina α1β1 humana se expresó en células Schneider de 

Drosophila sp., y se purificó siguiendo el protocolo descrito previamente por (Eble et al. 

2006), posteriormente se testó su funcionalidad mediante una curva de titulación.  
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La capacidad de inhibición de las disintegrinas se midió mediante un ensayo 

ELISA en el que el fragmento CB3 del colágeno IV fue inmovilizado en una placa de 96 

pocillos y se incubó con una mezcla de la integrina α1β1 a concentración fija y 

concentraciones crecientes de la disintegrina objeto de estudio. Posteriormente, se 

cuantificó la unión de la integrina α1β1 por colorimetría y se transformó en porcentaje 

de no-inhibición. Las disintegrinas lebestatina y ocellatusina se usaron como control 

positivo y negativo de inhibición de unión de la integrina α1β1, respectivamente. 

Preparación de las plaquetas en suspensión y estudio de la inhibición de la 
agregación plaquetaria (inducida por colágeno I), mediada por disintegrinas  

Las disintegrinas que contienen el motivo de unión RGD (Arg-Gly-ASp) son 

capaces de inhibir la agregación plaquetaria mediante la unión a la integrina αIIbβ3 y con 

ello bloquean la unión del fibrinógeno a dicha integrina (Calvete et al. 1994). Este 

método se ha utilizado históricamente para la testar la capacidad de inhibición 

plaquetaria de diferentes péptidos.  

Para ello se aislaron las plaquetas humanas a partir de muestras de sangre fresca de 

voluntarios sanos, que no hubieran recibido ningún tratamiento médico que pudiese 

afectar a la respuesta de las plaquetas. Para la preparación de plaquetas lavadas en 

suspensión se siguió el protocolo previamente descrito en (Antunes et al. 2010).  
Para monitorizar la inhibición de la agregación plaquetaria  por las disintegrinas, 

se midió la transmisión de luz y se transformó en porcentaje de agregación plaquetaria 

(Figura 28, p.60). El valor de agregación máxima (MA) se utilizó para comparar 

diferentes potencias inhibidoras. A partir de este valor, se calculó la concentración 

necesaria para reducir al 50% de la agregación plaquetaria inducida por Col I, con 

respecto al control (valor IC50). 

Experimentos de comportamiento de la serpiente de cascabel, Crotalus atrox, 
frente a las disintegrinas recombinantes crotatroxina y ocellatusina  

Con el fin de determinar si la disintegrina crotatroxina es el elemento relocalizador 

de la presa y si ocellatusina pudiera tener la misma función,  se realizaron análisis de 

comportamiento de las serpientes de cascabel, Crotalus atrox, permitiendo que 
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inyectaran su veneno a un ratón sacrificado previamente. De este modo, se indujo la  

búsqueda quimiosensora de la presa (Chiszar et al 1992) y se retiró el ratón de la caja 

donde posteriormente se realizó el ensayo. Se metió en la caja un útil (Figura 29, p.62), 

que consistía en una base en la que se situaron dos bolsas (de rejilla), separadas entre 

ellas 4 cm; en una se introdujo un ratón inyectado con la disintegrina recombinante 

(ratón “envenenado”, E); en otra, el  ratón control (ratón “no envenenado”, NE) (Figura 

29, p.62). Se grabaron los ensayos y los videos fueron analizados por un observador que 

desconocía las condiciones del ensayo. En cada uno de los videos, se contaron el número 

de “flicks” (proyección/retracción) de la lengua de la serpiente, dirigidos a menos de 

1cm del ratón E o NE. 

Por último, se llevó a cabo el análisis estadístico del número de 

“proyección/retracción” de la lengua de Crotalus atrox dirigidos hacia el ratón E o NE. 

Este número se convirtió en porcentaje con el fin de evitar la variabilidad natural de este 

dato. Estos datos fueron analizados empleando test t de Student para muestras 

emparejadas. 
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4 Resultados y discusión:  

Capitulo I. 

1. Ni la inserción del motivo RTS en diferentes posiciones del lazo funcional de 
ocellatusina, ni la sustitución del lazo RGD de ocellatusina completo 
[20CKMARGDNMHDYC32] por el lazo de la disintegrina RTS-jerdostatina [20CWRTS--
VSSHYC32], son suficientes para conferir la funcionalidad de una disintegrina (R/K)TS, 
bloqueando la unión de la integrina  α1β1 al fragmento  CB3 del colágeno IV. 
 

2. El acortamiento del extremo carboxilo terminal, o la sustitución de la región C-
terminal de ocellatusina [39CPRNPYKG46] por la de jerdostatina [39CPSYPGNG46], en 
mutantes que contienen el lazo funcional de jerdostatina [20CWRTS--VSSHYC32], no 
fueron suficiente para generar un sitio de inhibición de la unión de integrina α1β1 a 
CB3 (Colágeno IV). Tampoco lo fueron los mismos mutantes en los que se incluyeron 
cambios en la región alrededor del lazo funcional [19ICWRTSVSSHYCT33] y 
[19TCWRTSVSSHYCN33]. 
 

3. Al igual que en otras disintegrinas cortas RGD estudiadas previamente, los 
aminoácidos G25 y D26 del tripéptido activo RGD de ocellatusina, son clave para su 
actividad bloqueante de la unión de la integrina αIIbβ3 a fibrinógeno. 
 

4. La sustitución de aminoácidos en el lado N-terminal del lazo activo de ocellatusina, 
concretamente, M22R y A23T, no son críticos per se para el mantenimiento de la 
función inhibidora de esta disintegrina.  
 

5. La supresión de los aminoácidos E47-P50 de ocellatusina, no afectan a su función y  
potencia de inhibición de la agregación plaquetaria inducida por colágeno I. 
 

6. A pesar de representar motivos funcionales y que podrían haber surgido 
evolutivamente con el cambio de un sólo nucleótido en el codón de la arginina (R), los 
tripéptidos SGD, TGD y GGD no se han encontrado en disintegrinas naturales Ello 
puede ser debido a que su potencia inhibidora es de dos ordenes de magnitud menor 
que la de las disintegrinas naturales (RGD, WGD, KGD, MVD). Estos resultados 
apoyarían la selección natural de las disintegrinas guiada por evolución positiva. 
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Capitulo II. 

1. Russellistatina es la única disintegrina RTS detectada hasta la fecha en un veneno de 

serpiente.  

2. La secuencia completa del gen RPLTN está conservada en reptiles no aviares, con alto 

grado de identidad. Esta conservación en un taxón cuyo ancestro común existió hace 

mas de 250 millones de años parece indicar que el producto de este gen debe de estar 

realizando una función básica y específica de reptiles. Bien i) transcribiéndose a 

proteína, ii) actuando como ARN regulatorio o iii) cumpliendo otra función todavía 

desconocida.   

3. El número de copias génicas diferentes del gen RPTLN encontradas en reptiles, y la 

presencia de varias de ellas en una sola especie, apoyan la idea de duplicación génica 

en el gen RPTLN.  

4. El gen RPTLN se transcribe en distintos órganos de especies de las familias Lacertidae 

y Colubridae, pero no se ha detectado su traducción en los mismos, lo cual señala 

hacía una función como ARN no codificante. 

5. Cuando se comparan los péptidos señal de SVMPs con los de las proteínas ADAM y 

disintegrinas RTS, se observa una conservación clara del péptido señal de las SVMP 

existentes, y del codificado por el gen RPTLN en las disintegrinas RTS. Por el 

contrario, las proteínas ADAM contienen péptidos señales distintos.  

 

Capitulo III. 

1. Crotalus atrox reconoce significativamente el ratón inyectado con la disintegrina 

recombinante crotatroxina con respecto al ratón control.  

2. Crotalus atrox no es capaz de diferenciar entre el ratón inyectado con la disintegrina 

recombinante ocellatusina y el ratón control. 
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5 Conclusiones:  

1. La conservación del gen RPTLN en reptiles, junto con los estudios estructura-
función de los mutantes Frankenstein, aportan evidencias de que el gen ancestral 
de las disintegrinas cortas RTS/KTS fue reclutado potencialmente en las 
glándulas del veneno de la familia Viperidae, independientemente de la vía 
clásica de neofuncionalización de las disintegrinas que contienen el dominio 
RGD. 
 

2. Postulamos que el gen RPTLN constituye una familia multigénica y su expresión 
y neofuncionalización está restringida a la glándula del veneno de las especies 
Macrovipera y Daboia, lo cual representa un evento reciente en la evolución.  
 

3. La presencia de mARN del gen RPTLN en diferentes órganos de Podarcis sp. y 
Rhinechis scalaris, y la ausencia (o baja expresión) de distintegrina RTS en los 
mismos órganos, además de la conservación del gen RPTLN, sugiere una posible 
función del gen  RPTLN como ARN no codificante (ncARN) en órganos de 
reptiles (no en tejidos de producción de veneno). 
 

4. La conservación de la secuencia del péptido señal en las SVMPs existentes, 
también conservado el gen RPTLN, sugiere que esta región pudo haber jugado 
un papel en el reclutamiento de las SVMP y en su expresión restringida en la 
glándula del veneno de serpientes Caenophidian. 
 

5. La funcionalidad de ocellatusina depende de los aminoácidos G25 y D26, y su 
potencia inhibidora del residuo R24. Ni los aminoácidos situados en el lado N-
terminal del motivo RGD, en el lazo activo, ni los residuos E47-P50, en la cola C-
terminal, son críticos per se para la funcionalidad de ocellatusina.  
 

6. Nuestro datos han arrojado luz en cuanto a una nueva posible función de las 
disintegrinas, en Viperidae, como elemento quimiotáctico para relocalizar la 
presa. 
 

7. El papel de las disintegrinas como elemento relocalizador de la presa parece ser 
específico de especie, indicando que esta función también podría contribuir a la 
evolución de las disintegrinas. 
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Chapter 18
Brief History and Molecular Determinants

of Snake Venom Disintegrin Evolution

Juan J. Calvete

Abstract Disintegrins represent a family of polypeptides released in the venoms

of Viperidae and Crotalidae snakes (vipers and rattlesnakes) by the proteolytic pro-

cessing of PII Zn2+-metalloproteinases or synthesized from short-coding mRNAs.

Disintegrins selectively block the function of β1 and β3 integrin receptors. This

review summarizes our current view and hypotheses on the emergence and on the

structural and functional diversification of disintegrins.

Divergence of Snake Venom Zn2+-Metalloproteinases

in Viperidae Led to the Emergence of Disintegrins

Crotalid and viperid venoms contain a number of hemorrhagic proteins.

Hemorrhage is primarily the result of the synergistic action of Zn2+-dependent met-

alloproteinases which degrade the extracellular matrix surrounding blood vessels,

and proteins that interfere with hemostasis (reviewed in De Lima et al., 2009; Fox

and Serrano, 2005; Mackessy, 2009). Snake venom hemorrhagic metalloproteinases

(SVMP) cluster with mammalian matrix-degrading metalloproteinases and proteins

of the ADAM (A Disintegrin And Metalloproteinase) or reprolysin subfamily of

Zn2+-metalloproteinases (PFAM family PF01421; http://pfam.sanger.ac.uk/family)

in a monophyletic evolutionary tree (Moura da Silva et al., 1996) (Fig. 18.1a). The

monophyletic distribution of mammalian and snake venom proteins indicate that

SVMPs have evolved relatively late from a common ancestor gene both by speci-

ation (after mammals and reptiles diverged) and by gene duplication, followed by

divergence of the copies through positive Darwinian selection (Glassey and Civetta,
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cell
and

cell-
extra

cellu
lar m

atrix
inter

actio
ns.

Con
clus

ions
: The

se findi
ngs

reve
al th

e evol
utio

nary
sign

ifica
nce

of fr
ee disin

tegr
ins i

n veno
ms as

the
molec

ular

mecha
nism

in vipe
rs al

lowi
ng for e

ffect
ive reloc

ation
of e

nven
omated

prey
. The

pres
ence

of fr
ee disin

tegr
ins i

n

turn
has

led
to evol

utio
n of a

major
beha

viora
l ada

ptat
ion

(strik
e-an

d-re
lease

), ch
arac

teris
tic o

f on
ly ra

ttles
nake

s

and
othe

r vip
ers,

whic
h expl

oits
and

refin
es th

e effic
ienc

y of
a pr

e-ex
istin

g chem
ical

means
of p

reda
tion

and
a

high
ly se

nsiti
ve olfac

tion
syste

m. Thi
s sys

tem
of a

pred
ator

chem
ically

tagg
ing

prey
repr

esen
ts a

nove
l tre

nd in the

coev
olut

ion
of p

reda
tor-p

rey r
elati

onsh
ips.

Key
wor

ds: C
rota

lus, d
isint

egrin
, evo

lutio
n, p

heno
type

, mass s
pect

rom
etry,

pred
ation

, pro
tein

sequ
ence

, tox
in,

veno
m

Back
grou

nd

Coe
volu

tion
with

in pred
ator

-pre
y in

tera
ctio

ns h
as le

d to

adap
tatio

ns t
hat

are
adva

ntag
eou

s fo
r eit

her
prey

cap-

ture
or p

reda
tion

avoi
dan

ce.
In pred

ator
s, th

ese
trait

s

may b
e un

der
stro

ng selec
tion

lead
ing

to succ
essfu

l cap
-

ture
of p

rey
[1,2

], bu
t th

ey are
rela

tivel
y und

er-s
tudi

ed

com
pare

d to the
mecha

nism
s in

volv
ed in anti

-pre
dato

r

adap
tatio

ns [
3]. D

arwi
n [4] s

ugge
sted

that
dive

rsifi
catio

n

of p
reda

tors
may b

e lar
gely

base
d on selec

tion
on pred

a-

tory
beha

vior
s, an

d adap
tatio

ns t
o obse

rvab
le p

heno
typi

c

char
acte

risti
cs th

at a
re a

dvan
tage

ous
to prey

capt
ure

are

com
monly

exam
ined

. Fo
r ex

ample,
evol

utio
n of c

rani
o-

facia
l asy

mmetrie
s ha

s sh
own

to incr
ease

pred
atio

n suc-

cess
in scal

e-ea
ting

cich
lids

[5] a
s we

ll as
in snai

l-eat
ing

snak
es [6

]. Ph
enot

ypic
plas

ticit
y un

dou
bted

ly p
lays

a cr
i-

tical
role

in dive
rsifi

catio
n of p

reda
tors

and
prey

, oft
en

* Co
rresp

ond
ence

: Ste
phen

.Mac
kess

y@u
nco.

edu

1 Scho
ol o

f Bio
logic

al Sc
ienc

es, U
nive

rsity
of N

orth
ern

Colo
rado

, 501
20
th St.,

CB 92, G
reele

y, CO
8063

9-00
17 USA

Full
list o

f au
thor

infor
mation

is av
ailab

le at th
e end

of th
e artic

le

Savi
ola

et a
l. BM

C Biolo
gy 2

013,
11:2

0

http
://w

ww.
biom

edce
ntra

l.com
/174

1-70
07/1

1/20

© 2013
Savio

la et
al; lic

ense
e Bio

Med
Cent

ral L
td. T

his is
an Ope

n Ac
cess

artic
le di

strib
uted

unde
r the

term
s of

the C
reati

ve C
ommons

Attri
butio

n Licen
se (http

://cre
ative

com
mons.o

rg/li
cens

es/b
y/2.0

), wh
ich perm

its u
nres

tricte
d use,

distr
ibuti

on, a
nd repro

duct
ion in

any
mediu

m, pro
vide

d the
origi

nal w
ork i

s pro
perly

cited
.

cDNA Cloning and Functional Expression of Jerdostatin, a
Novel RTS-disintegrin from Trimeresurus jerdonii and a
Specific Antagonist of the !1"1 Integrin*
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Daniel Monleón!, Bernardo Celda!, Yu-Liang Xiong§, Enrique Pérez-Payá**, and Juan J. Calvete‡2
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Jerdostatin represents a novel RTS-containing short disintegrin
cloned by reverse transcriptase-PCR from the venom gland mRNA
of the Chinese Jerdons pit viper Trimeresurus jerdonii. The jerdo-
statins precursor cDNA contained a 333-bp open reading frame
encoding a signal peptide, a pre-peptide, and a 43-amino acid dis-
integrin domain, whose amino acid sequence displayed 80% iden-
tity with that of the KTS-disintegrins obtustatin and viperistatin.
The jerdostatin cDNA structure represents the first complete open
reading frame of a short disintegrin and points to the emergence of
jerdostatin from a short-coding gene. The different residues
between jerdostatin and obtustatin/viperistatin are segregated
within the integrin-recognition loop and the C-terminal tail. Native
jerdostatin (r-jerdostatin-R21) and a R21K mutant (r-jerdostatin-
K21) were produced in Escherichia coli. In each case, two conform-
ers were isolated. One-dimensional 1HNMR showed that conform-
ers 1 and 2 of r-jerdostatin-R21 represent, respectively, well folded
andunfolded proteins. The two conformers of thewild-type and the
R21Kmutant inhibited the adhesion of!1-K562 cells to collagen IV
with IC50 values of 180 and 703 nM, respectively. The IC50 values of
conformers 2 of r-jerdostatin-R21 and r-jerdostatin-K21 were,
respectively, 5.95 and 12.5 #M. Neither r-jerdostatin-R21 nor r-jer-
dostatin-K21 showed inhibitory activity toward other integrins,
including !IIb"3, !v"3, !2"1, !5"1, !4"1, !6"1, and !9"1 up to a
concentration of 24#M.Although theRTSmotif appears to bemore
potent than KTS inhibiting the !1"1 integrin, r-jerdostatin-R21 is
less active than the KTS-disintegrins, strongly suggesting that sub-
stitutions outside the integrin-binding motif and/or C-terminal
proteolytic processing are responsible for the decreased inhibitory
activity.

The integrin family of cell adhesion proteins promotes the attach-
ment and migration of cells on the surrounding extracellular matrix (1,
2). Through signals transduced upon integrin ligation by extracellular
matrix proteins, several integrins play key roles in promoting angiogen-

esis and tumor metastasis (3). However, although antagonists of several
integrins (e.g.!5"1,!v"3, and!v"5, the primary targets of endostatin, an
endogenous negative regulator of angiogenesis (4)) are now under eval-
uation in clinical trials to determine their potential as therapeutics for
cancer and other diseases (5, 6), the precise regulation and exact action
of integrins is still unclear (7, 8). Thus, the integrins !1"1 and !2"1 are
highly up-regulated by vascular endothelial growth factor in cultured
endothelial cells, resulting in an enhanced !1"1- and !2"1-dependent
cell spreading on collagen and it has been reported that these integrins
provide critical support for vascular endothelial growth factor signaling,
endothelial cell migration, and tumor angiogenesis (9). The !1"1 and
!2"1 integrins are highly expressed on the microvascular endothelial
cells, and blocking of their adhesive properties by monoclonal antibod-
ies (9, 10) or by the snake venomdisintegrin obtustatin (11) significantly
reduced the vascular endothelial growth factor-driven neovasculariza-
tion ratio and tumor growth in animal models. Moreover, null-mice
lacking integrin !1"1 develop normally, but exhibit reduced vascularity
of the skin (9) and have reduced number and size of intratumoral cap-
illaries (12). Ongoing studies with !2 knock-out mice also suggest a
critical role in angiogenesis for the !2"1 integrins (13, 14). Thus, inhib-
itors of the !1"1 and !2"1 integrins alone or in combination with antag-
onists of other integrins involved in angiogenesis may prove beneficial
in the control of tumor neovascularization.

!1"1 and !2"1 belong to the I-domain bearing subfamily of integrins,
and specifically interact with collagen (15). However, despite sharing
large structural homology, these two integrins have distinct collagen
binding preferences: !1"1 integrin is a very selective receptor of base-
ment membrane type IV collagen, whereas !2"1 is highly specific for
fibrillar collagen types I-III (16, 17). Substitution of the cytoplasmic
domains of the !1 and !2 subunits in transfected human mammary
epithelial cells revealed that the two integrins participate in different
signal transduction pathways (18). Noteworthy, the !1"1 and !2"1 inte-
grins are the targets of snake venom toxins belonging to different pro-
tein families. C-type lectin-like proteins include selective and potent (i.e.
EMS16 from Echismultisquamatus; IC50 ! 6 nM) inhibitors of!2"1 (19,
20), whereas the only to date known snake venom proteins that specif-
ically antagonize the function of the !1"1 integrin are the disintegrins
obtustatin (IC50 ! 2 nM) from the venom of Vipera lebetina obtusa
(11, 21), viperistatin (IC50 ! 0.08 nM) from Vipera palestinae (22) and
lebestatin (IC50 ! 0.4 nM) fromMacrovipera lebetina.3

The crystal structure of EMS16 in complex with the integrin !2 I-do-
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U.S.C. Section 1734 solely to indicate this fact.
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pain

PII-dis
integri

ns, cys
teine-r

ich polype
ptides

broadl
y distri

buted in the ven
oms of ge

ograph
ically diverse

species
of vipe

rs

and rat
tlesnak

es, ant
agoniz

e the a
dhesiv

e funct
ions of

b1 and
b3 inte

grin recepto
rs. PII-

disinte
grins e

volved
in Viperid

ae

by neofun
ctional

ization
of disinte

grin-lik
e domains of duplica

ted PIII-sn
ake venom

hemorrhag
ic metallop

roteina
se

(SVMP) gen
es recr

uited into the ven
om proteo

me befor
e the ra

diation
of the

advanc
ed snakes

. Minimization
of the

gene

(loss of introns
and coding

region
s) and the protein

structu
res (succes

sive loss of disulfid
e bonds)

underp
ins the

postdu
plicatio

n diverg
ence o

f disin
tegrins

. Howe
ver, lit

tle is k
nown about t

he und
erlying

genetic
mechani

sms that h
ave

genera
ted the structu

ral and
functio

nal div
ersity among disinte

grins.
Phylog

enetic
inferen

ce and maximum likeliho
od–

based
codon

substit
ution approa

ches w
ere used to analyz

e the evoluti
on of the

disinte
grin family. Th

e topo
logy of the

phylog
enetic

tree does not pa
rallel t

hat of
the species

tree. T
his incong

ruence
is consist

ent wi
th that ex

pected
for

a multigen
e family underg

oing a birth-a
nd-dea

th proces
s in which

the appear
ance and disapp

earanc
e of loci

are being

driven
by selectio

n. Cys
teine and buried

residue
s appear

to be under
strong

purifyi
ng selectio

n due to their r
ole in

maintain
ing the active

confor
mation of disinte

grins.
Diverg

ence of disinte
grins is strongl

y influen
ced by positiv

e

Darwin
ian selectio

n causin
g acceler

ated rate of sub
stitutio

n in a substan
tial pro

portion
of surf

ace-ex
posed

disinte
grin

residue
s. Glob

al and
lineage

-specifi
c sites

evolvin
g under d

iversify
ing selectio

n were id
entified

. Sever
al sites

are loc
ated

within
the integri

n-bind
ing loop and the C-term

inal ta
il, two

region
s that fo

rm a confor
mational

functio
nal ep

itope.

Argini
ne-gly

cine-as
partic

acid (RGD)
was in

ferred
to represe

nt the
ancestr

al integ
rin-rec

ognitio
n motif, w

hich emerged

from the sub
group

of PIII
-SVMPs bea

ring the RD
ECD sequen

ce. The
most par

simonious
nucleo

tide su
bstituti

on model

require
d for the emergenc

e of all kno
wn disinte

grin’s
integri

n inhibit
ory motifs from an ancestr

al RG
D sequen

ce

involv
es a minimum of thre

e mutation
s. The

adaptiv
e adva

ntage o
f the em

ergenc
e of motifs ta

rgeting
b1 integ

rins an
d the

role of
positiv

ely sel
ected s

ites loc
ated w

ithin n
onfunc

tional d
isinteg

rin reg
ions ap

pear to
be diffi

cult to
rationa

lize in
the

contex
t of a p

redator
–prey

arms race.
Perhap

s, this
represe

nts a c
onsequ

ence o
f the n

eofunc
tionaliz

ation potenti
al of th

e

disinte
grin domain, a

feature
that m

ay underl
ie its recruit

ment int
o the venom

proteo
me follow

ed by its succes
sful

transfo
rmation into a toxin.

Introd
uction

Venom
, produ

ced by
a pair o

f speci
alized

glands
in the

upper j
aw (Kochv

a 1987
; Jacks

on 200
7), rep

resente
d a key

innova
tion in ophidi

an evoluti
on that al

lowed
advanc

ed

snakes
to transiti

on from a mechani
cal (co

nstricti
on) to

a chem
ical (ve

nom) means o
f subdu

ing and digesti
ng prey

larger
than themselves.

Venom
toxins

likely
evolve

d from

endoge
nous p

roteins
with normal phy

siologi
cal fun

ctions

that w
ere recruit

ed into the venom
proteo

me before
the

radiatio
n of the

advanc
ed snakes

(Fry and Wüster 2
004;

Fry 2005;
Fry et al.

2006).
Toxic

venom
protein

s play

a num
ber of

roles, s
uch as immobilizi

ng, par
alyzing

, kill-

ing, liq
uefyin

g prey, a
nd deterri

ng competitor
s. Ven

oms

from Viperi
nae (vi

pers) a
nd Cro

talinae
(pitvip

ers) su
bfami-

lies of
Viperi

dae sna
kes con

tain pr
oteins

that int
erfere

with

the coa
gulatio

n casca
de, the

normal hem
ostatic

system
and

tissue
repair,

and human enveno
mations

are often charac
-

terized
by clot

ting dis
orders,

hypofi
brinog

enemia, and
local

tissue
necros

is (Markland
1998;

Fox and Serran
o 2005a)

.

Despit
e being

complex mixtures
, viper

id venom
protein

s

belong
to only a few major pr

otein families, in
cluding

en-

zymes (ser
ine pro

teinase
s, Zn

2þ-metallop
rotease

s, L-am
ino

acid oxidas
e, grou

p II PLA2) an
d protein

s withou
t enzy

-

matic ac
tivity (disint

egrins,
C-type

lectins
, natriu

retic p
ep-

tides, o
hanin,

myotoxi
ns, CR

ISP toxins,
nerve a

nd vas
cular

endoth
elium

growth
factors

, cysta
tin and Kunitz

-type p
ro-

tease inhibit
ors) (r

eviewe
d by Calvet

e, Juár
ez, and

Sanz

2007).
Notabl

y, most ven
om toxins

are extensi
vely cross-

linked
by disu

lfide bo
nds an

d have
flourish

ed into
functio

n-

ally diverse
, toxin

multigen
e families th

at exhi
bit inte

rfam-

ily, inte
rgenus

, inters
pecies,

and int
raspeci

fic vari
ability.

The

occurre
nce in

the sam
e veno

m of a di
versity

of isof
orms of

protein
s belong

ing to the same family but dif
fering

from

each ot
her in t

heir ph
armacolog

ical eff
ects lik

ely resu
lts from

gene d
uplicat

ion follow
ed by acceler

ated evoluti
on by pos-

itive selectio
n and neofun

ctional
ization

of dup
licated

gene

copies
and sug

gests a
n impo

rtant ro
le for b

alancin
g selec

tion

in maintain
ing high levels

of func
tional v

ariation
in venom

protein
s withi

n popula
tions (

review
ed by Richm

an 2000).

In line
with stu

dies on
a number of a

nimal t
oxins (

Kordis

et al. 2
002), s

nake v
enom toxin g

ene fam
ilies, su

ch as P
LA2s

(Lynch
2007 a

nd refe
rences

cited; G
ibbs an

d Ross
iter 200

8),

C-type
lectin-l

ikepro
teins (O

gawae
tal. 200

5), and
serinep

ro-

teinase
inhibito

rs (Zup
inski e

t al. 20
03), are

reporte
d to ha

ve

evolve
d new functio

ns by th
e proce

ss of ne
ofuncti

onaliza
tion

follow
ing gen

e dupli
cation

and ev
olution

under s
trong p

osi-

tive ad
aptive

selectio
n (Ohn

o 1970
). The

evoluti
onary p

res-

sure acting
to promo

te high levels
of vari

ation in venom

protein
s may be p

art of a
predato

r–prey
arms race t

hat allo
ws

a sit-an
d-wait

predato
r, such

as a sna
ke, to a

dapt to
a variet

y of

differe
nt prey

, each m
ost effi

ciently
subdue

d with
a differ

ent

venom
formul

ation (G
reene 1

983; D
altry et

al. 199
6; Ménez

2002).
Snake

venom
hemorrhag

ic metallop
roteina

ses

(SVMPs) are
evoluti

onarily
close to mammalian matrix-

degrad
ing metallop

roteina
ses and protein

s of the
ADAM

(a disin
tegrin

and metallop
roteina

se) rep
rolysin

subfam
ily

1 These
author

s contr
ibuted

equally
to this wo

rk and may both be

consid
ered first au

thors.
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Recombinant R
TS disintegr

in

Jerdostat
in

a1b1 integrin
inhibitor

Cell adhe
sion

Angiogen
esis

a b s t r a c t

Jerdostat
in, a short RT

S-disinte
grin cloned from venom gland mRNA of Protob

othrops j
er-

donii, sel
ectively blocks th

e adhesio
n of a1b1 integrin

to collagen
IV. Integr

in a1b1 is highly

expresse
d in smooth muscle cells (SMC) surround

ing small blood
vessels and vascular

endothel
ial cells.

Vascular
SMC adhesion

, migration
and prolifera

tion are important p
ro-

cesses during normal vascular
developm

ent. Using recombinant jerdostat
in we have

investiga
ted the role of the a1b1 integrin

on the adhesion
of vascul

ar SMC to collagen
IV,

and the potential
relevanc

e of blocki
ng this crucial c

omponent o
f focal ad

hesions
as an

anti-ang
iogenic s

trategy. O
ur result

s show that jerd
ostatin does not

interact w
ith canonica

l

collagen-
binding

site on the isolated
A-domain of the a1 integrin

subunit.
r-Jerdost

atin

inhibited
the adhesion

of RASMCs to immobilized
CB3 fragment in a dose-dep

endent

manner, tr
iggering

to round-up
, retracti

on, and
finally detachm

ent of th
e cells. r-Je

rdos-

tatin did not affect the adhesion
of human SMCs to CB3, pre

sumably because
the high

expressio
n of a2b1 integrin

compensated
for a1b1 integrin

blockage
by jerdostat

in. r-

Jerdostat
in dose-dep

endently
inhibited

a1b1 integrin-
depende

nt HUVE
C tube formation.

However, VEG
F-driven

tube formation in the matrigel as
say was only completely abolished

when binding
of integrin

a2b1 to collagen
was also inhibited

by the C-type lectin-lik
e

rhodocet
in. As a whole, our

work emphasizes
the relevanc

e of using
specific

inhibitor
s

for disse
cting the role of a1b1

integrin
in physiolo

gical and
patholog

ical cond
itions.

! 2013 Elsevier
Ltd. All r

ights reserved
.

1. Introduc
tion

Venoms of Vipe
ridae snakes c

ontain b1 and b3 integrin

antagoni
sts, thed

isintegrin
s, that rep

resent a f
amilyof small

(40–84 amino acids), cy
steine-ri

ch polypept
ides (Calvete,

2010, 20
13). The

proper pairing of cysteines
determines

the confo
rmation of amobile loo

p,which protrude
s 14–17Å

from the globular
protein

core and which harbors
an

integrin-
recogniti

on tripeptid
e motif at its

apex. The
active

loop and the C-terminal tail e
xhibit co

ncerted motions an
d

form a conform
ational e

pitope involved
in extensive

in-

teraction
s with both subunits

of integr
in receptor

s that ac-

count for the specificit
y and selectivit

y of disintegr
ins

towards b1 and b3 integrin
receptor

s (Monleon et al., 200
3;

Calvete,
2010; Carbajo

et al., 2011). Short (R/K)TS-
dis-

integrins
that sele

ctively target th
e a1b1 integrin

(Calvete

et al., 2007), such as obtustati
n (Marcinkiew

icz et al.,

2003; Br
own et al., 20

08), vipe
ristatin (Stanisze

wska et al.,

2009; M
omic et al., 2

011), leb
estatin (Olfa et al., 20

05) and

jerdostat
in (Sanz et al., 20

05), clus
ter into a distinct c

lade

within the disintegr
in family (Sanz-So

ler et al., 2012).
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a b s t r a c tTracing the evolutionary history of proteins can reveal insights into gene alterations

responsible for changes in structure and function. Here, the origin of snake venom met-

alloproteinases was rigorously reassessed using phylogenetics and the reconstruction of

ancestral sequences. Basal SVMPs are most closely related to ADAM 7, 28 and decysin-1

proteins. Reconstructing the evolutionary history of these proteins and their hypothet-

ical ancestors reveals progressive alterations in the amino acid composition and structural

characteristics of ADAMs/SVMPs through evolutionary time.! 2012 Elsevier Ltd. All rights reserved.

Snake venom metalloproteinases (SVMPs) are large

multi-domain proteins that are classified (P-I, P-II and P-III)

based on the presence or absence of additional non-

proteinase domains that extend the metalloproteinase

domain (Fox and Serrano, 2005, 2008). A number of SVMPs

exhibit evidence of post-translational modifications, such

as the processing of domains and/or the formation of

multimeric structures (Fox and Serrano, 2005, 2008). The

generation of this large multi-locus gene family that

encodes distinct SVMP scaffolds is likely the result of

frequent gene duplication followed by adaptive evolution

(Juárez et al., 2008; Casewell et al., 2011a). Notably, SVMPs

can be major toxin components of snake venoms (partic-

ularly those of viperid snakes), with representation of

functionally distinct isoforms from multiple sub-classes

frequently observed (Junqueira-de-Azevedo and Ho,

2002; Gutiérrez et al., 2008; Casewell et al., 2009;

Wagstaff et al., 2009). The diverse functions of these

proteins (reviewed in Fox and Serrano, 2005) can cause

a spectrum of severe local and cardiovascular pathologies

that often manifest in victims of viper envenoming.

The SVMPs are classified as adamalysins, which, along-

side the matrixins, astacins and serralysins, make up the

large metizincin gene super-family (Bode et al., 1993;

Huxley-Jones et al., 2007). Within the adamalysins, the

SVMPs are grouped with ADAM (a disintegrin and a met-

alloproteinase) and ADAMTS (ADAMwith thrombospondin

motifs) proteins because of their sequence homology,

particularly in the region of the metalloproteinase domain

(Fox and Serrano, 2005; Huxley-Jones et al., 2007). ADAMs

contain additional domains absent in SVMPs and are

widely recognised as highly diverse proteins, with func-

tional roles including the shedding of membrane-bound

protein domains and acting as molecular switches that

activate other proteins by proteolysis (Black et al., 1997;

Srour et al., 2003; White, 2003; Blobel, 2005). In contrast,

the ADAMTSs, which contain additional thrombospondin

motifs and lack a disintegrin-like domain, can be broadly

defined as substrate-specific secreted proteases (Apte,
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Table 1S .       Accession numbers of RPTLN gene copies across reptiles. Full-length sequences are 

displayed in Figure 54. Nucleotide changes in RPTLN genes respect to RPTLN-1 [jerdostatin, 
AY262730] are listed in Table 11. 

  

Species RPTLN gene copy 
P. jerdonii RPTLN-1 
B. asper RPTLN-1 (KU563546), RPTLN-15 (KU563589), RPTLN-16 (KU563592) 
B. lateralis RPTLN-1 (KU563547), RPTLN-7 (KU563579), RPTLN-17 (KU563595) 
E.ocellatus RPTLN-1 (KU563548), RPTLN-13 (KU563587) 
A. picadoi RPTLN-1 (KU563549), RPTLN-10 (KU563583), RPTLN-15 (KU563590) 
O. hannah RPTLN-1 (KU563550), RPTLN-6 (KU563577), RPTLN-17 (KU563596) 
N. haje haje RPTLN-1 (KU563551), RPTLN-5 (KU563575) 
R. scalaris RPTLN-1 (KU563552), RPTLN-5 (KU563608), RPTLN-18 (KU563600), 

RPTLN-19 (KU563603), RPTLN-20 (KU563604), RPTLN-21 (KU563617) 
B. constrictor RPTLN-1 (KU563553), RPTLN-17 (KU563597) 
L. hispanica RPTLN-1 (KU563554), RPTLN-9 (KU563581), RPTLN-17 (KU563598) 
T. lepidus RPTLN-1 (KU563555) 
P. muralis RPTLN-1 (KU563556), RPTLN-9 (KU563610), RPTLN-17 (KU563614), 

RPTLN-18 (KU563615),RPTLN-19 (KU563616) 
P. hispanica RPTLN-1 (KU563557), RPTLN-8 (KU563609), RPTLN-11(KU563611), 

RPTLN-13 (KU563612), RPTLN-16 (KU563613), RPTLN-21 (KU563618) 
H. horridum RPTLN-1 (KU563558) 
U. ebenaui RPTLN-1 (KU563559), RPTLN-9 (KU563582) 
T. mauritanica RPTLN-1 (KU563560), RPTLN-11 (KU563584) 
C. calypratus RPTLN-1 (KU563561), RPTLN-17 (KU563599) 
A. mississipiensis RPTLN-1 (KU563562), RPTLN-6 (KU563578), RPTLN-11 (KU563585), 

RPTLN-12 (KU563586), RPTLN-14 (KU563588) 
T. greca RPTLN-1 (KU563563), RPTLN-3 (KU563573) 
T. hermanni RPTLN-1 (KU563564) 
S. pardalis RPTLN-1 (KU563565), RPTLN-16 (KU563593), RPTLN-18 (KU563601) 
M. annamensis RPTLN-1 (KU563566), RPTLN-15 (KU563591) 
M. sintesis RPTLN-1 (KU563567), RPTLN-4 (KU563574), RPTLN-7 (KU563580), 

RPTLN-18 (KU563602)  
M. leprosa RPTLN-1 (KU563568), RPTLN-2 (KU563571), RPTLN-5 (KU563576) 
C. carbonaria RPTLN-1 (KU563569), RPTLN-2 (KU563572) 
C. chilensis RPTLN-1 (KU563570), RPTLN-16 (KU563594) 
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Table 2S.    Accession numbers of RPTLN gene copies amplified from mRNAs. Full-length sequences 

are displayed in Figure 54. Nucleotide changes in RPTLN genes respect to RPTLN-1 [jerdostatin, 
AY262730] are listed in Table 11. 

 

 

Table 3S. Raw data collected and raw data percent, for behavioral experiments consisted of paired 

trials using non-envenomated vs envenomated (r-crotatroxin) mouse. Trials were of 10 minutes 

duration, and the number of tongue flicks directed toward one or the other mouse was recorded and 

analyzed by an observer blind to the condition. Standard Error of the Mean (s.e.m) is indicated next 
to the mean 

 

 

 

Species RPTLN gene copy 
R. scalaris RPTLN-1 (KU563605), RPTLN-22 (273A>T) (KU563619), RPTLN-21 

(KU563617), RPTLN-5 (KU563608) 
P. muralis RPTLN-1 (KU563606), RPTLN-9 (KU563610), RPTLN-17 (KU563614), 

RPTLN-18 (KU563615), RPTLN-19 (KU563616) 
P. hispanica RPTLN-1 (KU563607), RPTLN-8 (KU563609), RPTLN-11 (KU563611), 

RPTLN-13 (KU563612), RPTLN-16 (KU563613), RPTLN-21 (KU563618) 

Trial number 
Snake tongue flicks directed to Snake tongue flicks (%)directed to 

NE mouse (PBS) E mouse 
(r-crotatroxin) NE mouse (PBS) E mouse 

(r-crotatroxin) 
1 21 58 26.6 73.4 
2 36 148 19.6 80.4 
3 34 48 41.5 58.5 
4 102 222 31.5 68.5 
5 70 221 24.1 75.9 
6 30 68 30.6 69.4 
7 20 23 46.5 53.5 
8 79,3 25 79.3 20.7 
9 0 207 0 100.0 

10 38 76 33.3 66.7 
11 8 25 24.2 75.8 
12 6 291 2,0 98.0 

Mean 38.4 (9.8) 117.7 (27.8) 30.0 70.0 (6) 
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Table 4S. Raw data collected and raw data percent, for behavioral experiments consisted of paired 

trials using non-envenomated vs envenomated (r-ocellatusin) mouse. Trials were of 10 minutes 

duration, and the number of tongue flicks directed toward one or the other mouse was recorded and 

analyzed by an observer blind to the condition. Standard Error of the Mean (s.e.m) is indicated next 
to the mean 

 

 

 

 

Trial number 
Snake flicks directed to Snake flicks (%) directed to 

NE mouse 
(PBS) 

E mouse 
(r-ocellatusin) 

NE mouse 
(PBS) 

E mouse 
(r-ocellatusin) 

1 134 6 95.7 4.3 
2 131 31 80.9 19.1 
3 129 125 50.8 49.2 
4 44 32 57.9 42.1 
5 63 111 36.2 63.8 
6 41 13 75.9 24.1 
7 35 31 53.0 47.0 
8 47 27 63.5 36.5 

Average (%) 78 (12.1) 47 (15.9) 64.2 35.8 (5.5) 
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a b s t r a c t

The requirements to transform a short disintegrin of the RGD clade into an RTS disintegrin,
were investigated through the generation of recombinant mutants of ocellatusin in which
the RGD tripeptide was substituted for RTS in different positions along the integrin-
specificity loop. Any attempt to create an active integrin a1b1 inhibitory motif within the
specificity loop of ocellatusin was unsuccessful. Replacing the whole RGD-loop of ocella-
tusin by the RTS-loop of jerdostatin was neither sufficient for confering a1b1 binding
specificity to this ocellatusin-RTS Frankenstein2 mutant. Factors other than the integrin-
binding loop sequence per se are thus required to transform a disintegrin scaffold from
the RGD clade into another scaffold from the RTS/KTS clade. Moreover, our results provide
evidences, that the RTS/KTS short disintegrins have potentially been recruited into the
venom gland of Eurasian vipers independently from the canonical neofunctionalization
pathway of the RGD disintegrins. PCR-amplifications of jerdostatin-like sequences from
a number of taxa across reptiles, including snakes (Crotalinae, Viperinae, and Elapidae
taxa) and lizards (Lacertidae and Iguanidae) clearly showed that genes coding for RTS/KTS
disintegrins existed long before the split of Lacertidae and Iguania, thus predating the
recruitment of the SVMP precursors of disintegrins, providing strong support for the view
of an independent evolutionary history of the RTS/KTS and the RGD clades of short
disintegrins.

! 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Snakes of the subfamilies Viperinae (vipers) and Crota-
linae (pitvipers and rattlesnakes) of Viperidae have devel-
oped in their venoms a broad spectrum of integrin receptor
antagonists; with the exception of the a2b1 integrin, which
is targeted by a number of C-type lectin-like proteins
(Ogawa et al., 2005), inhibitory motifs towards b1 and b3
integrins have evolved in different members of the

* Corresponding authors. Tel.: þ34 96 339 1778; fax: þ34 96 369 0800.
E-mail addresses: jcalvete@ibv.csic.es (J.J. Calvete), gbolas@ibv.csic.es
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2 The term Frankenstein used here as a synonym for “a chimeric protein

made with pieces from different molecules”, is a tribute to Mary W.
Shelley’s “Frankenstein; or, the Modern Prometheus”, Lackington,
Hughes, Harding, Mavor & Jones, Gradifco, Switzerland, 1818.
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disintegrin family (Calvete et al., 2009; Calvete, 2010).
Disintegrins, a family of small (40–100 amino acids),
cysteine-rich polypeptides broadly distributed in the
venoms of vipers and rattlesnakes (reviewed by Calvete
et al., 2009; Calvete, 2010), are released into viper
venoms by the proteolytic processing of PII snake venom
metalloprotease (SVMP) precursors (Kini and Evans, 1992),
or synthesized from short-coding mRNAs (Okuda et al.,
2002). Disintegrins have been structurally classified
according to their length and number of disulfide bonds
into long, medium-sized, dimeric and short subfamilies.
The evolutionary pathway(s) of disintegrins involved
minimization of both the genomic and protein structures,
including, respectively, the stepwise loss of introns and
pairs of cysteine linkages from long precursors to the most
recent short disintegrin scaffold (Calvete et al., 2009;
Calvete, 2010). Functionally, disintegrins have evolved by
positive Darwinian evolution guided by the adaptation of
a conformational epitope (the integrin recognition loop
and the C-terminal tail) to the active site of the targeted
integrin receptors (Juárez et al., 2008). The RGD tripeptide
has been inferred to represent the ancestral integrin
recognition motif, which emerged during the Paleogene
period of the Cenozoic Era (approximately 54–64 Mya)
from a subgroup of PIII-SVMP bearing the RDECD sequence
(Juárez et al., 2008) which originated by recruitment,
duplication, and neofunctionalization of a cellular ADAM-7
or 28 ancestor gene (Moura-Da-Silva et al., 1996; Fry, 2005;
Fry et al., 2006, 2008; Vidal et al., 2009; Casewell, 2012).

Following the deletion of the (underlined) PIII-lineage-
specific Cys residue, conversion of RDE into RGD can be
accomplished with a minimum of two mutations (Calvete
et al., 2009; Calvete, 2010). Structural studies of a number
of short (1RO3) and medium-sized (kistrin, 1N4Y; flavor-
idin, 1FVL; albolabrin (Smith et al., 1996); salmosin, 1IQ2,
1L3X; rhodostomin, 1Q7J, 1Q7I, 2PJI, 2PJF, 1JYP; trimestatin,
1J2L) and dimeric disintegrins (1Z1X, 1RMR, 1TEJ, 3CO5)
have revealed that their RGD/KGD integrin inhibitory tri-
peptides have evolved at the apex of a mobile loop
protruding 14–17 z from the disintegrin protein scaffold
and maintained in the active conformation by the appro-
priate pairing of cysteine residues. Currently known
integrin-blocking motifs include RGD, which blocks integ-
rins a8b1, a5b1, avb1, avb3, and aIIbb3; MLD targets the a4b1,
a4b7, a3b1, a6b1, a7b1 and a9b1 integrins; VGD and MGD
impair the function of the a5b1 integrin; KGD inhibits the
aIIbb3 integrin with a high degree of selectivity; WGD has
been reported to be a potent inhibitor of the RGD-
dependent integrins a5b1, avb3, and aIIbb3; the adhesive
function of the latter integrin is also blocked by MVD (Sanz
et al., 2006; Calvete et al., 2009; Calvete, 2010).

The crystal structure of the extracellular segment of
integrin avb3 in complex with an RGD ligand (Xiong et al.,
2002) revealed that the peptide fits into a crevice between
the aV propeller and the b3 A-domain. The Arg side-chain
is held in place by interactions with aV carboxylates, the
Gly residue makes several hydrophobic interactions with
aV, and the Asp ligand interacts primarily with bA residues.
Thus, the conserved aspartate residue might be responsible
for the binding of disintegrins to integrin receptors which
share a b subunit, while the two other residues of the

integrin-binding motif (RG, KG, MG, WG, ML, MV, VG) may
dictate the primary integrin-recognition specificity, with
residues flanking the active tripeptide finely tuning the
potency and integrin receptor selectivity of disintegrins
(McLane et al., 1996; Wierzbicka-Patynowski et al., 1999;
reviewed by Calvete, 2005; Calvete et al., 2005). High-
resolution NMR studies (Monleón et al., 2005) provided
a structural ground for the biochemically defined func-
tional synergy between the RGD loop and the C-terminal
region of echistatin (Marcinkiewicz et al., 1997).

Short RTS/KTS disintegrins, which selectively target the
integrin a1b1 (Calvete et al., 2007), form a distinct clade
within the short disintegrin subfamily (Fig. 1). Compared to
all known disintegrin structures, in which the RGD motif is
located at the apex of an eleven residue hairpin loop, the
active RTS/KTS tripeptide is oriented towards a side of
a nine residue integrin-binding loop (Moreno-Murciano
et al., 2003). Structure-function correlation studies have
shown that the selectivity of KTS-disintegrins for the a1b1
integrin resides within a conformational epitope encom-
passing the integrin-binding loop and the C-terminal tail
(Moreno-Murciano et al., 2003; Monleón et al., 2003; Kisiel
et al., 2004). The potency of recombinant KTS-disintegrin
obtustatin also depended on the residue C-terminally
adjacent to the active motif (Brown et al., 2009).

The striking similar functional requirements and struc-
tural differences between RGD and RTS/KTS short dis-
integrins prompted us to investigate a possible
transformation route of RGD-ocellatusin into RTS-
jerdostatin. The lack of inhibitory activity of the different
constructions, even when the whole RGD-loop of ocella-
tusin was replaced by the RTS-loop of jerdostatin, sug-
gested that RTS/KTS short disintegrins could have been
recruited independently of the canonical RGD disintegrins.
PCR-amplifications of jerdostatin-like sequences from
a number of taxa across reptiles support this hypothesis.

2. Materials and methods

2.1. Materials

Recombinant soluble human integrin a1b1 was produce
in transfected Drosophila Schneider cells and isolated as
previously described (Eble et al., 2006). The Collagen IV
fragment CB3 was generated as described (Kern et al.,
1993). Antiserum PEP160 against the C-terminal tail of
jerdostatin was produced in rabbit by Abintek Biopharma
S.L. (Parque Tecnológico de Bizkaia, Derio, Bizkaia, Spain)
using a standard immunization protocol and the synthetic
peptide CKPSYPGNG conjugated to keyhole limpet hemo-
cyanin (KLH) as immunogen. Anti-CKPSYPGNG antibodies
were affinity-purified on a peptide-Sepharose column.
Anti-human integrin b1 subunit antibody was raised in
rabbit (Eble et al., 1993). KTS-disintegrin lebestatin
[Q3BK14] was isolated from the venom of Macrovipera
lebetina as described (Bazaa et al., 2005).

Blood sample from Iguana iguana was kindly provided
by Dr. Vet. Med. David García, Hospital Veterinario, Bur-
jassot (Valencia, Spain). Tissues from Lacerta hispanicawere
obtained from specimens caught in Valencia. Tissues from
Naja haje haje and Daboia russelli were kindly provided by
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the private zoological collection owner, César Olmos
(Cullera, Valencia). Genomic DNA from Sistrurus catenatus
catenatus and Crotalus viridis were kindly provided by Prof.
H.L. Gibbs (Department of Evolution, Ecology and Organ-
ismal Biology, Ohio State University, USA). Genomic DNA
from Echis ocellatus was kindly provided by Dr. Robert A.
Harrison (Alistair Reid Venom Research Unit, Liverpool
School of Tropical Medicine, UK). Bungarus multicinctuswas
collected in South China and genomic DNA samples were
isolated from the liver with a genomic DNA isolation kit
(TaKaRa, Dalian) according to the manufacture’s protocol.
Gallus gallus (domestic chicken) and Bombina orientalis
(Fire-bellied toad) were purchased at local animal dealers.

2.2. Design and cloning of r-jerdostatin and r-ocellatusin

The full length cDNA jerdostatin sequence was PCR-
amplified using pRc_CMV/FlagJerdostatin vector (Juárez
et al., 2010) as template. The forward primer, 50-ATGG-
TACCGAGAATCTTTACTTCCAAGGAGCCCCACTAGCCGAC-30,
contained a KpnI restriction site (underlined) and the
cleavage site for the tobacco etch virus (TEV) protease (in
bold). The reverse primer, 50-GCCTCGAGTATTAGC-
CATTCCCGGGATAAC-30, included a restriction site for XhoI

(underlined), the last six C-terminal residues of jerdostatin
and a stop codon (in bold).

Wild-type ocellatusin was PCR-amplified from an E. ocel-
latusvenomglandcDNA(Juárezet al., 2006)using the forward
primer 50-GGAGATCTCGAGAATCTTTACTTCCAAGGAGACTGT
GAATCTGGACC-30 and the reverse primer 50-GTAAGCTTC-
TACGGATCATGTTCGCCTTTG-30. The primers included,
respectively, BglII and HindIII restriction sites (underlined),
the TEV cleavage site (forward primer, in bold) and a stop
codon (reverse primer, in bold). The PCR-amplification
protocol included initial denaturation at 94 !C for 2 min, fol-
lowed by 35 cycles of denaturation (94 !C for 30 s), annealing
(60 !C for 30 s), extension (72 !C for 30 s) and afinal extension
step for 7 min at 72 !C. The PCR products were purified using
the Illustra GFX Gel Band Purification Kit (GE Healthcare,
Buckinghamshire, UK), cloned in a pGEM-T vector (Promega,
Madison,WI, USA), and thenused to transform Escherichia coli
DH5a strain cells (Novagen, Madison, WI) by electroporation
using an Eppendorf 2510 electroporator. Positive clones were
selected by growing the transformed cells in Luria-Broth (LB)
mediumcontaining100mg/mlampicillin. Positive cloneswere
confirmed by PCR and sequenced on an Applied Biosystems
model 377 DNA sequencer.

To construct an expression vector of disintegrin-thio-
redoxin-His6 fusion protein the pGEM-T/disintegrin

Fig. 1. Inferred phylogeny within the short disintegrin subfamily. Panel A, cladistic relationships between the RGD and the KTS/RTS short disintegrins were
inferred through Neighbor-Joining using maximum-likelihood distances using the PHYML program (Guindon and Gascuel, 2003), with the disintegrin-like
domain of human ADAM-7 serving as outgroup. This distribution parallels the phylogenetic tree of the species in whose venoms short disintegrins have been
characterized. Expression of RGD-disintegrins appear to be restricted to Echis taxa, whereas RTS/KTS-disintegrins have been only reported in venoms from
Eurasian vipers, genera Vipera, Macrovipera, and Daboia. Molecular models correspond to the NMR solution structures of the RGD-disintegrin echistatin (1RO3,
Monleón et al., 2005) and the RTS-disintegrin jerdostatin (2W9O, Carbajo et al., 2011). Panel B, superposition of the integrin-binding loops of echistatin (red) and
obtustatin (blue), highlighting their different size and the different topology of their active motifs, RGD and KTS (Moreno-Murciano et al., 2003). (For inter-
pretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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plasmids and the pET32a vector (Novagen, Madison, WI)
were respectively digested with KpnI/XhoI and BglII/Hin-
dIII restriction enzimes for 24 h at 37 !C. The disintegrin
fragments and the linear pET32a vector were purified by
agarose gel electrophoresis using the Illustra GFX Gel Band
Purification kit (GE Healthcare), and ligated with T4 DNA
ligase (Invitrogen) overnight at 4 !C. E. coli DH5a strain cells
were transfected with this construct, and positive clones
were checked by PCR and DNA sequencing.

2.3. Generation of r-RTS-ocellatusin mutants

Hybrid (“Frankenstein”) ocellatusin–jerdostatin
constructions (Fig. 2) were generated by site-directed
mutagenesis using recombinant ocellatusin as template
(Sanz et al., 2005) and the iProof!High FidelityMasterMix
kit. To this end, the plasmid pET32a/ocellatusinwas used as
template for PCR amplification (denaturation at 94 !C for
2 min, followed by 12 cycles of denaturation for 30 s at
94 !C, annealing for 60 s at 55 !C, extension for 12 min at
68 !C, and a final extension for 10 min at 68 !C), using
different complementary primers for each mutant. Addi-
tionally, to obtain the jerdloop-ocellatusin mutant we
generated the intermediate construction pET32/K21W-
M22R-A23T-R24S DG25D26-ocellatusin that served as
template for the final PCR mutagenesis. The forward
primers used are listed in Table 1. The PCR products were
digested with DpnI and used to transform electro-
competents E. coli DH5a cells. Plasmids were isolated with
DNA Purification System Withard" Plus SV Minipreps
(Promega) and sequenced.

2.4. Recombinant expression and purification of r-jerdostatin,
r-ocellatusin and the Frankenstein ocellatusin mutants

E. coli BL21 strain cells (Novagen, Madison, WI) were
transfected with the pET32a/disintegrin constructs. The
presence of the disintegrin–thioredoxin fusion constructs
in positive clones was checked by PCR. Positive E. coli BL21
clones were grown overnight at 37 !C in LB medium con-
taining 100 mg/ml ampicillin, followed by a 1:50 (v/v)
dilution in the same medium until an OD600 of around
0.8–1 was reached. Expression of the recombinant fusion
proteins was then induced by addition of isopropyl-D-thi-
ogalactosidase (IPTG) to a final concentration of 1 mM, and
incubation of the cell suspensions for 4 h at 37 !C. Cells
were pelleted by centrifugation (4000g for 30 min),
resuspended in the same volume of 20 mM sodium phos-
phate, 150 mM NaCl, pH 7.4, washed three times with this
buffer, and resuspended in 50 mL of 20 mM sodium
phosphate, 250 mM NaCl, pH 7.4. Cells were lyzed by
sonication (15 cycles of 15 s sonication/1 min resting) in an
ice bath. The lysates were centrifuged at 10,000 g for
30 min at 4 !C, and the soluble and the insoluble fractions
were analyzed by SDS-PAGE using 12% polyacrylamide gels
under reducing conditions. Disintegrin-thioredoxin-His6
fusion proteins were purified from the soluble fraction of
the lysate by affinity chromatography using an ÄKTA Basic
chromatograph equipped with a 5 ml HisTrap HP column
(Amersham Biosciences) equilibrated in 20 mM sodium
phosphate, 250 mMNaCl, pH 7.4. Bound proteinwas eluted
with a linear gradient of 50–500 mM imidazole. Eluted
fractions were checked by SDS-PAGE and those containing

Fig. 2. Amino acid sequences and nomenclature of wild-type jerdostatin, wild-type ocellatusin and the Frankenstein RTS-ocellatusin mutants. Cysteine residues
are in bold, and the (R/K)TS and RGD motifs are underlined. Residue labeled "1 corresponds to the last residue of the TEV protease cleavage site, ENLYFQG,
inserted between the His6 tag and the disintegrin sequence.

Table 1
List of forward primer sequences (50–30) used to PCR-amplify the Frankenstein ocellatusin constructions displayed in Fig. 2. Nucleotides coding for themutated
residues are in boldface.

M22R-A23T-R24S-ocellatusin AGGAACAATATGCAAGAGGACAAGCGGTGATAACATGC
M22R-A23T-R24S DG25D26-ocellatusin CAATATGCAAGAGGACAAGCAACATGCATGATTACTGC
A23R-R24T-G25S-ocellatusin GGAACAATATGCAAGATGAGAACGAGTGATAACATGCATG
R24-G25T-D26S-ocellatusin ATGCAAGATGGCAAGGACTAGTAACATGCATGATTACTGC
G25R-D26T-N27S-ocellatusin TGCAAGATGGCAAGGCGTACTAGCATGCATGATTACTG
D26R-N27T-M28S-ocellatusin ATGGCAAGGGGTCGTACCAGCCATGATTACTG
K21W-M22R-A23T-R24S DG25D26-ocellatusin TGAAGGAAGGAACAATATGCTGGAGGACAAGCAACATGCATG
Jerdloop-ocellatusin TGCTGGAGGACAAGCGTCAGCAGTCATTACTGCAATGG
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the fusion protein were pooled, dialyzed against 20 mM
sodium phosphate, 250 mM NaCl, pH 7.4, and digested
overnight at 4 !C with TEV-His6 protease (1:20, w/w). The
recombinant disintegrins were separated from thio-
redoxin-His6 and TEV-His6 by chromatography on
a HisTrap column (as above), the flow-through fractions
were concentrated using Amicon filtration membranes
with a pore size of 3000 Da (Millipore, MA, USA), and the
proteins purified by reverse-phase HPLC on a C18 column
(250 " 4.6 mm, 5 mm, Waters, MA, USA) equilibrated with
0.05% TFA in water (solution A) and eluted with a 45 min
linear gradient of 5–70% acetonitrile in 0.05% TFA. The
purity of the isolated protein was assessed by SDS-PAGE
and electrospray-ionization mass spectrometry using
a QTrap 2000 instrument (Applied Biosystems) equipped
with a nanoelectrospray source (Proxeon, Denmark).
Protein concentration was determined using the bicincho-
ninic acid protein method (BCA! Protein Assay, Pierce).

2.5. Western blot analysis

Reverse-phase purified jerdostatin was analyzed by
Tris–Tricine–SDS-(10%)PAGE under reducing conditions
and immobilized onto PVDF membrane (Hybond-P, GE
Healthcare) using a semi-dry electrotranfer device. The
membranes, blocked with 5% (w/v) non-fat dried milk in
PBS (20 mMNa2HPO4 pH 7,5, 150 mMNaCl) for 1 h at 25 !C,
were incubated with a 1:500 (v/v) dilution of anti-PEP160
polyclonal antibodies in 5% non-fat dried milk/PBS-T
(20 mM Na2HPO4 pH 7,5, 150 mM NaCl, 0.1% (v/v) Tween-
20) for 1 h at 25 !C. The membranes were then washed
three times with PBS-T followed by incubation with
a 1:10,000 (v/v) dilution of peroxidase-conjugated anti-
rabbit IgG (Sigma) in 5% non-fat dried milk in PBS-T. After
3" washing with PBS-T, the membranes were developed
using the chemiluminescence ECL Plus kit (GE Healthcare).

2.6. Platelet aggregation assay

Human platelets were isolated from fresh blood from
healthy volunteers as described (Navdaev et al., 2011).
Platelet aggregation was monitored in a CHRONO-LOG
aggregometer with continuous stirring at 37 !C. The reac-
tion mixture contained 400 ml of freshly prepared washed
human platelets (cell count adjusted to w5"108 per ml),
1 ml CaCl2 (1M), MgCl2 (1M), 1 ml of PGE1 20 mM, and 1 ml of
either PBS or recombinant ocellatusin serial dilutions from
2.1 mg/l to 2.1 mg/ml (0.37 mM–0.37 nM). The aggregation
was initiated by adding 2 mL of 1 mg/mL collagen I 1min
after the other components had been mixed at 37 !C. The
reaction was allowed to proceed for at least 3 min. The
extent of inhibition of aggregation was expressed as the
percentage of the rate of aggregation observed in the
absence of inhibitor.

2.7. Inhibition of soluble a1b1 integrin binding to CB3 by
wild-type and Frankenstein disintegrins

The inhibitory activity of the purified recombinant dis-
integrins was carried out following the protocol described
by Juárez et al. (2010). Briefly, the collagen type IV fragment

CB3was immobilized on a 96-well plate overnight at 4 !C in
TBS/Mg2þ (20 mM Tris, 150 mM NaCl, pH 7.5 containing
2 mM MgCl2) at a concentration of 5 mg/ml. The plate was
washed three times with TBS/Mg2þ and non-specific
binding sites blocked with 1%(v/v) BSA in TBS/Mg2þ at
room temperature for 1 h. 3.5 mg/ml of soluble a1b1
integrin, dissolved in TBS/Mg2þ were mixed with different
concentrations of recombinant disintegrins. The mixtures
were added to the plate and incubated for 2 h at room
temperature. The platewas thenwashed twicewith 50mM
Hepes (pH 7.5) containing 150 mM NaCl, 2 mM MgCl2 and
1 mM MnCl2, and the bound integrin was fixed with 2.5%
(v/v) glutaraldehyde in the same buffer for 10 min at room
temperature. For a1b1 integrin detection a primary rabbit
anti-b1 antiserum (1:2000) was employed. After 3m
washing with PBS, goat anti-rabbit IgG conjugated with
alkaline phosphatase (AP, 1:2000) was added. 4-
nitrophenyl phosphate disodium salt hexahydrate (Sigma)
was used as AP substrate, colour was developed at room
temperature and quantified in an ELISA plate reader at
405 nm.

2.8. PCR-amplification of jerdostatin-like DNA sequences

Genomic DNAwas extracted from fresh tissues or blood
samples essentially as described (Bazaa et al., 2005). PCR-
amplification of jerdostatin-like sequences was done in
a final volume of 25 ml containing 50 ng of genomic DNA,
0.5 units of each DNA and Pfu polymerases (Biotools), and
1 ml (0.4 mM final concentration) of forward primer 50-TGT
ACA ACT GGACCATGT TGT C (CTTGPCC) and reverse primer
30-TAG CCA TTC CCG GGA TAA CTG (SYPGNG*). The PCR
protocol included denaturation at 94 !C for 10 min, fol-
lowed by 35 cycles of denaturation for 45 s at 94 !C,
annealing for 45 s at 50 !C, extension for 1 min at 72 !C, and
a final extension for 10 min at 72 !C. Amplification of jer-
dostatin from Prothrobothrops jerdonii and jerdostatin-like
DNA sequence from B. multicinctus venom gland cDNA
libraries was carried out at Kumming Institute of Zoology.
The PCR protocol was carried out in a final volume of 50 ml
containing 200 pmol of each primer (forward: 50-
CCAAATCCAG(C/T)CTCCAAAATG-30; reverse: 50-TTCCAG/
TCTCCATTGTTG(G/T)TTA-30), using 0.5 ml RT reaction
mixture as DNA template. After denaturation at 94 !C for
5 min, rTaq polymerase (TaKaRa Biotech., Dalian) was
added, followed by 33 cycles (94 !C for 30 s, 50 !C 30 s,
72 !C 2min), and endedwith 72 !C for 10min. After agarose
gel electrophoresis analysis, the DNA fragment about 300
bp was extracted and inserted into pGEM-T vector for
sequencing.

3. Results and discussion

3.1. Design rationale

Short RGD-disintegrins appear to be restricted to
African and Asian Echis and Eristicophis species, and
represent the most recent members of the disintegrin
family (Juárez et al., 2008; Calvete, 2010), which may have
evolved after the radiation of Viperinae during the late
Oligocene or the early Miocene, between 22 and 24 Mya
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Fig. 3. Expression and purification of recombinant disintegrins. Panel A, analysis by Tris–Tricine–SDS-(10%) PAGE of the overexpression and purification steps of
r-M22R-A23T-R24S-ocellatusin. Lanes a and b, insoluble and soluble fractions, respectively, of lysates of E. coli BL21 cells expressing the disintegrin-TEV-thio-
redoxin-His6 fusion protein. Lane c, HisTrap affinity-purified disintegrin-thioredoxin-His6 (24 kDa). Lane d, digestion products of r-M22R-A23T-R24S-ocellatusin-
TEV-thioredoxin-His6 fusion protein after incubation with TEV protease. Lane e, r-M22R-A23T-R24S-ocellatusin purified by reverse-phase HPLC from the flow-
through of the HisTrap affinity column of the protein mixture shown in lane d. Panel B, Coomassie blue-stained SDS-PAGE (lane 1), and Western blot analysis
using anti-PEP160 antibodies (lane 2) of reverse-phase HPLC-purified jerdostatin. Lanes S, molecular weight markers (Mark12!, Invitrogen), whose apparent
molecular mass is indicated at the left side of the gels. Panel C, electrospray-ionization mass spectrometry of reverse-phase HPLC-purified wild-type recombinant
jerdostatin and ocellatusin, and the Frankenstein disintegrins listed in Fig. 2.
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(Castoe et al., 2009), at a time when eastern North America
and Eurasia were widely separated across the Atlantic,
whereas northeastern Asia and Alaska remained connected
via the Bering land bridge. The proposed mechanism for
the emergence of the short RGD-disintegrin ocellatusin
from a short-coding dimeric disintegrin precursor involves
just two nucleotide mutations (Juárez et al., 2006).
Furthermore, the most parsimonious nucleotide substitu-
tion model required for the emergence of all known XXD
disintegrin’s integrin inhibitory sequences from an ances-
tral RGD motif (Juárez et al., 2008) involves a minimum of
three mutations (Calvete, 2010). However, circumstantial
evidence suggest that KTS/RTS disintegrins may not follow
this canonical evolutionary scenario. Hence, i) no putative
dimeric disintegrin precursor has been found in the few
species from which KTS/RTS-disintegrins have been iso-
lated or cloned, i.e. in M. lebetina (lebestatin, Bazaa et al.,
2005), Vipera palestinae (viperistatin, Kisiel et al., 2004),
M. lebetina obtusa (obtustatin, Marcinkiewicz et al., 2003;
Sanz et al., 2008), Prothrobothops jerdonii (jerdostatin,
unpublished observations), D. russelli (russellistatin,
unpublished observations); ii) whereas the integrin-
inhibitory loops of XXD disintegrins are absolutely

conserved in residue length (11 amino acids) and harbor
the active tripeptide at the tip, the active tripeptides of
jerdostatin (RTS, Carbajo et al., 2011) and obtustatin (KTS,
Moreno-Murciano et al., 2003; Monleón et al., 2003) are
oriented towards the side of nine-residue integrin-binding
loops.

To investigate the minimal requirements to transform
the RGD-disintegrin ocellatusin into the a1b1-blocking RTS-
disintegrin jerdostatin, Frankenstein disintegrins were
designed in which the RGD tripeptide was substituted for
RTS (R24-G25T-D26S-ocellatusin). In addition, mutants
A23R-R24T-G25S-ocellatusin, G25R-D26T-N27S-ocellatu-
sin, D26R-N27T-M28S-ocellatusin, and M22R-A23T-R24S-
ocellatusin were designed to vary the topology of the
engineered RTS motif from the tip of the loop (as in ocel-
latusin) towards a lateral position (as in jerdostatin). The
length of the integrin-binding loop of ocellatusin was
preserved in these four Frankenstein mutants. Another
mutant, M22R-A23T-R24S-DG25D26-ocellatusin, was
designed to shorten the length of the integrin-binding loop
from 11 to 9 residues (as in jerdostatin) while maintaining
the lateral topology of the RTS motif. Finally, the full
sequence of the inhibitory loop of ocellatusin was replaced
by the complete amino acid sequence of jerdostatin’s
integrin-binding loop in the jerdloop-ocellatusin mutant
(Table 1).

3.2. Recombinant expression and activity of the Frankenstein
mutants

E. coli BL21 cells transformed with pET32a/TEVDisinte-
grin plasmids overexpressed soluble thioredoxin-His6
fusion proteins (Fig. 3A and B). Purification yields of r-jer-
dostatin, r-ocellatusin (wild-type and mutants) were about
0.5–1 mg/L of cell culture. Electrospray-ionization mass
spectrometry (Fig. 3C), proved that the experimental
molecular masses accurately matched the calculated
masses for the recombinant disintegrins with fully oxidized
cysteine residues (Table 2). This confirmed the correct
primary sequence.

Table 2
Experimental (ESI-MS) and calculated molecular masses of the recombi-
nant disintegrins. Calculated masses correspond to fully oxidized
(4 disulfide bonds) monoisotopic species.

Recombinant protein ESI-MS (Da) Calculated
monoisotopic mass
(Da) (4SS bonds)

Jerdostatin 4764.7 ! 0.5 4765.4
Ocellatustin 5650.8 ! 0.5 5650.3
M22R-A23T-R24S-ocellatusin 5636.7 ! 1.5 5636.2
M22R-A23T-R24S

DG25D26-ocellatusin
5465.0 ! 0.7 5464.1

A23R-R24T-G25S-ocellatustin 5710.9 ! 0.7 5710.3
R24-G25T-D26S-ocellatustin 5666.7 ! 1.3 5666.3
G25R-D26T-N27S-ocellatustin 5708.6 ! 0.2 5708.4
D26R-N27T-M28S-ocellatustin 5634.9 ! 0.3 5634.3
Jerdloop-ocellatusin 5435.1 ! 1.0 5435.0

Fig. 4. Inhibitory activity of recombinant disintegrins. Panel A, Concentration-dependent blocking of collagen-induced platelet aggregation by recombinant
ocellatusin. Panel B, Inhibition of the binding of integrin a1b1 to CB3 fragment of collagen IV was assessed by incubating soluble integrin a1b1 (3.5 mg/mL) with
increasing concentrations of r-jerdostatin, lebestatin, r-ocellatusin and r-RTS-ocellatusin mutants in 96-wells plates coated with 5 mg/mL of CB3. Bound integrin
was detected by ELISA. Lebestatin and wild-type r-ocellatusin were used as positive and negative inhibition controls, respectively.
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3.3. Inhibition of collagen-induced platelet aggregation by
recombinant ocellatusin

Recombinant ocellatusin inhibited the collagen-induced
aggregation of human washed platelets in a dose-
dependent manner with an IC50 of 3.5!10"9 M (Fig. 4A).
This result, confirming that r-ocellatusin inhibited platelet
aggregation with a potency similar to that reported for the
natural short RGD-disintegrin echistatin (IC50 of
3!10"8 M) (Gan et al., 1988), strongly suggests that the
recombinant disintegrin may have folded into the same
biologically-active conformation than its venom-isolated
homologue (1RO3, Monleón et al., 2005).

3.4. Recombinant Frankenstein disintegrins do not exhibit
a1b1 integrin inhibitory activity

In agreement with previous studies (Juárez et al., 2010),
both recombinant jerdostatin and lebestatin (positive
controls, Olfa et al., 2005) blocked in a concentration-
dependent and divalent ion-independent manner the
high-affinity interaction between the soluble hetero-
dimeric ectodomain of a1b1 and the CB3 fragment of
collagen IV (Fig. 4B). In contrast, wild-type r-ocellatusin
(negative control) did not show any inhibitory activity.
Similarly, none of the Frankenstein RTS-disintegrins
blocked the binding of a1b1 to the CB3 collagen fragment.

Fig. 5. Jerdostatin-like DNA sequences across Reptilia. Panel A, PCR-amplification of jerdostatin-like sequences from genomic DNA of Protobothrops jerdonii (Pj) (1),
Crotalus viridis (Cvi) (2), Sistrurus catenatus catenatus (Scc) (3), Echis ocellatus (Eo) (4), Daboia russelli (Dr) (6), Naja haje haje (Nhh) (5), Lacerta hispanica (Lh) (7), and
Iguana iguana (Ii) (8). Panel B, jerdostatin-like DNA sequences from the DNA amplified in A. Sequences fromMacrovipera lebetina (Ml) and Cerastes vipera (Cv) are
from Bazaa et al. (2007) and Sanz et al. (2006). Nucleotides differing from the P. jerdonii sequence (jerdostatin) are highlighted in red and boldface. Bo, Bombina
orientalis; Ga, Gallus gallus. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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The lack of inhibitory activity strongly suggests that
neither the insertion of the RTS motif in different positions
of the integrin-binding loop of an XXD short-disintegrin
scaffold, nor the replacement of the whole RGD-loop of
ocellatusin (KMARGDNMHDY) by the RTS-loop of jerdos-
tatin (WRTSVSSHY) are sufficient for confering a1b1
binding specificity. Clearly, factors other than the integrin-
binding loop sequence may modulate its active conforma-
tion and/or provide additional elements involved in
determining the disintegrin’ selectivity and specificity for
integrin a1b1. In this respect, it is worth to mention that the
integrin-binding loop and the C-terminal tail of both
obtustatin (Monleón et al., 2003) and echistatin (Monleón
et al., 2005) display concerted motions. Replacement of
echistatin’s C-terminal sequence 44HKGPAT49 with that of
another RGD-disintegrin, eristostatin (WNG) decreased but
did not abolished the inhibitory potential of the mutated
echistatin on ADP-induced platelet aggregation
(Wierzbicka-Patynowski et al., 1999). As a whole, these
data indicate that the C-terminal tail may act in synergy
with the integrin-binding loop to modulate the high
affinity and selectiveness of disintegrins for their target
integrin receptors. Further mutants are underway in our
laboratory to address the contribution of the C-terminal
region for transforming a disintegrin scaffold from the RGD
clade into another from the RTS/KTS clade (Fig. 1). On the
other hand, another reading of our results indicates that the
(K/R)TS-disintegrins must have diverged from a common
precursor to the RGD-disintegrins in an unusually acceler-
ated pace, or that they have been recruited independently
of the canonical XXD disintegrins.

3.5. Evidence for a non-canonical evolution of RTS/KTS
disintegrins

The origin of SVMPs has been inferred to have occurred
after the split of the Pareatidae from the remaining Cae-
nophidians, approximately 54–64 Mya during the Paleo-
gene period of the Cenozoic Era (Fry et al., 2006, 2008;
Vidal et al., 2009; Pyron and Burnbrink, 2012; Casewell,
2012). The presence of PIII-SVMPs in the venoms of
Viperidae, Elapidae, Colubridae and Atractaspididae
supports the view that an early recruitment event of an
ancestral ADAM gene predated the radiation of the
advanced snakes (Fry et al., 2009). On the other hand,
metalloproteinases of class PII (which contain a disintegrin
domain at the carboxyl terminus of the catalytic domain)
occur only in viperids and may thus represent a derivation
from ancestral PIII-SVMP genes subsequently to the split of
Viperidae, an event which has been dated around the
Cretaceous-Tertiary boundary, approximately 60 Mya
(Wüster et al., 2008). The emergence and diversification of
the disintegrin family should be limited to this time frame
and PII-SVMP-derived disintegrins may be regarded as
Viperidae-specific toxins.

Using jerdostatin-specific primers, highly conserved
jerdostatin-like DNA sequences were amplified from both
snakes, Crotalinae, Viperinae, and Elapidae taxa, and
lizards, Lacertidae and Iguanidae (Fig. 5). These results,
clearly showing that intronless genes coding for RTS/KTS
disintegrins existed long before the split of Lacertidae and
Iguania, thus predating the recruitment of the SVMP
precursors of disintegrins (Fry et al., 2006), strongly

Fig. 6. Proteomic characterization of the RTS-disintegrin russellistatin. Panel A, Phylogram of the true vipers constructed using a maximum-likelihood approach
with Causus serving as outgroup (Lenk et al., 2001; Pyron et al., 2011). Clades expressing RGD and RTS/KTS short disintegrins are indicated. To test the hypothesis
that RTS/KTS disintegrins evolved in the clade of Eurasian vipers, the venom proteins of D. russelli were separated by reverse-phase HPLC (B) and the isolated
proteins were characterized by electrospray-ionization mass spectrometry (insert). A peak exhibiting the expected isotope-averaged molecular mass for a short
disintegrin (4408.5 Da) was reduced, carbamidomethylated, digested with trypsin, and the resulting tryptic fragments sequenced by MS/MS (C). The amino acid
sequence of this protein, termed russellistatin, is identical to that of jerdostatin from P. jerdonii (Sanz et al., 2005).
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support the view of an independent evolutionary history of
the RTS/KTS and the RGD clades of short disintegrins
(Fig. 1).

4. Reflexions and perspectives

Ongoing results from our laboratories indicate that
jerdostatin-like genes are widely distributed across the
orders Crocodilia, Testudines (turtles), and Squamata
(lizards and snakes) of Reptilia. However, the jerdostatin-
like sequence was not amplified in G. gallus (Aves) and B.
orientalis (Amphibia) (Fig. 5A), suggesting that this gene,
which we propose to term RPTLN, may exhibit a reptile-
specific distribution. The strong conservation of RPTLN
across reptiles (Fig. 5B) points to a relevant function in
reptilian biology. However, besides for the few viperid
species which express RTS/KTS disintegrins into their
venoms, the question of whether the RPTLN gene is trans-
lated into (a body) protein (or acts as regulatory? RNA)
remains unexplored. Another intriguing reflexion pertains
the current evidence that, in spite of the expanded exis-
tence of the RPTLN gene, RTS/KTS disintegrins appear to be
uniquely translated into the venom proteomes of the
relatively recent clade of Eurasian vipers, including the
genera Vipera, Macrovipera, and Daboia (Lenk et al., 2001)
(Fig. 6A). KTS-disintegrins have been reported in V. pales-
tinae (Kisiel et al., 2004), M. lebetina transmediterranea
(Bazaa et al., 2005; Olfa et al., 2005), M.l. obtusa
(Marcinkiewicz et al., 2003), and Macrovipera mauritanica
(Makran et al., 2012). The finding of an RTS-disintegrin
(hitherto termed russellistatin) in the venom of D. russelli
(Fig. 6B and C) supports this hypothesis. However, the
evolutionary pressure to express integrin a1b1-specific
inhibitors in these taxa appears to be difficult to rationalize
in the context of a predator-prey arms race. The hypothesis
that the molecular machinery operating on the neo-
functionalization of disintegrin scaffolds evolved only in
Viperinae deserves future detailed investigations.

Acknowledgements

This work has been financed by grants BFU2010-17373
(from the Ministerio de Economía y Competitividad,
Madrid, Spain), PROMETEO/2010/005 (from the Generalitat
Valenciana, Valencia, Spain), and grant SFB815 project A6
from Deutsche Forschungsgemeinschaft (to J.A.E.). This
work is part of the PhD theses of GB (recipient of a JAE-
Predoctoral fellowship) and RS-S (FPI predoctoral fellows).

Conflict of interest statement

The authors declare that there are no conflicts of
interest regarding the preparation of this manuscript.

References

Bazaa, A., Marrakchi, N., El Ayeb, M., Sanz, L., Calvete, J.J., 2005. Snake
venomics: comparative analysis of the venom proteomes of the
Tunisian snakes Cerastes cerastes, Cerastes vipera and Macrovipera
lebetina. Proteomics 5, 4223–4235.

Bazaa, A., Juárez, P., Marrakchi, N., Bel Lasfer, Z., El Ayeb, M., Harrison, R.A.,
Calvete, J.J., Sanz, L., 2007. Loss of introns along the evolutionary

diversification pathway of snake venom disintegrins evidenced by
sequence analysis of genomic DNA from Macrovipera lebetina trans-
mediterranea and Echis ocellatus. J. Mol. Evol. 64, 261–271.

Brown, M.C., Eble, J.A., Calvete, J.J., Marcinkiewicz, C., 2009. Structural
requirements of KTS-disintegrins for inhibition of a1b1 integrin. Bio-
chem. J. 417, 95–101.

Calvete, J.J., 2005. Structure-function correlations of snake venom dis-
integrins. Curr. Pharm. Des 11, 829–835.

Calvete, J.J., Marcinkiewicz, C., Monleón, D., Esteve, V., Celda, B., Juárez, P.,
Sanz, L., 2005. Snake venom disintegrins: evolution of structure and
function. Toxicon 45, 1063–1074.

Calvete, J.J., Marcinkiewicz, C., Sanz, L., 2007. KTS and RTS-disintegrins:
anti-angiogenic viper venom peptides specifically targeting the a1b1
integrin. Curr. Pharm. Des. 13, 2853–2859.

Calvete, J.J., Juárez, P., Sanz, L., 2009. Snake venomics and disintegrins.
Portrait and evolution of a family of snake venom integrin antagonists.
In: Mackessy, S.P. (Ed.), Handbook of Venoms and Toxins of Reptiles.
CRC Press, Taylor & Francis, Boca Ratón, pp. 337–357 (Chapter 17).

Calvete, J.J., 2010. Brief history and molecular determinants of snake
venom disintegrin evolution. In: Kini, R.M., Markland, F., McLane, M.
A., Morita, T. (Eds.), Toxins and Hemostasis: From Bench to Bedside.
Springer, Amsterdam, pp. 285–300 (Chapter 18).

Carbajo, R.J., Sanz, L., Mosulén, S., Pérez, A., Marcinkiewicz, C., Pineda-
Lucena, A., Calvete, J.J., 2011. NMR structure and dynamics of
recombinant wild type and mutated jerdostatin, a selective inhibitor
of integrin a1b1. Proteins Struct. Funct. Genet. 79, 2530–2542.

Casewell, N.R. , 2012. On the ancestral recruitment of metalloproteinases
into the venom of snakes. Toxicon 60, 449–454.

Castoe, T.A., Daza, J.M., Smith, E.N., Sasa, M., Kuch, U., Campbell, J.A.,
Chippindale, P.T., Parkinson, C.L., 2009. Comparative phylogeography
of pitvipers suggests a consensus of ancient Middle American high-
land biogeography. J. Biogeogr. 36, 88–103.

Eble, J.A., Golbik, R., Mann, K., Kühn, K., 1993. The a1b1 integrin recogni-
tion site of the basement membrane collagen molecule [a1(IV)]2
a2(IV). EMBO J. 12, 4795–4802.

Eble, J.A., Kassner, A., Niland, S., Mörgelin, M., Grifka, J., Grässel, S., 2006.
Collagen XVI harbors an integrin a1b1 recognition site in its C-
terminal domains. J. Biol. Chem. 281, 25745–25756.

Fry, B.G., 2005. From genome to “venome”: molecular origin and evolution
of the snake venom proteome inferred from phylogenetic analysis of
toxin sequences and related body proteins. Genome Res. 15, 403–420.

Fry, B.G., Vidal, N., Norman, J.A., Vonk, F.J., Scheib, H., Ramjan, S.F.,
Kuruppu, S., Fung, K., Hedges, S.B., Richardson, M.K., Hodgson, W.C.,
Ignjatovic, V., Summerhayes, R., Kochva, E., 2006. Early evolution of
the venom system in lizards and snakes. Nature 439, 584–588.

Fry, B.G., Scheib, H., van der Weerd, L., Young, B., McNaughtan, J.,
Ramjan, S.F., Vidal, N., Poelmann, R.E., Norman, J.A., 2008. Evolution of
an arsenal: structural and functional diversification of the venom
system in the advanced snakes (Caenophidia). Mol. Cell. Proteomics 7,
215–246.

Fry, B.G., Vidal, N., van derWeerd, L., Kochva, E., Renjifo, C., 2009. Evolu-
tion and diversification of the Toxicofera reptile venom system. J.
Proteomics 72, 127–136.

Gan, Z.-R., Gould, R.J., Jacobs, J.W., Friedman, P.A., Polokoff, M.A., 1988.
Echistatin. A potent platelet aggregation inhibitor from the venom of
the viper, Echis carinatus. J. Biol. Chem. 263, 19827–19832.

Guindon, S., Gascuel, O., 2003. A simple, fast, and accurate algorithm to
estimate large phylogenies by maximum likelihood. Syst. Biol. 52,
696–704.

Juárez, P., Wagstaff, S.C., Sanz, L., Harrison, R.A., Calvete, J.J., 2006.
Molecular cloning of Echis ocellatus disintegrins reveals non-venom-
secreted proteins and a pathway for the evolution of ocellatusin. J.
Mol. Evol. 63, 183–193.

Juárez, P., Comas, I., González-Candelas, F., Calvete, J.J., 2008. Evolution of
snake venom disintegrins by positive Darwinian selection. Mol. Biol.
Evol. 25, 2391–2407.

Juárez, P., Bolás, G., de Rezende, F.F., Calvete, J.J., Eble, J.A., 2010.
Recombinant expression in human cells of active integrin a1b1-
blocking RTS-disintegrin jerdostatin. Toxicon 56, 1052–1058.

Kern, A., Eble, J.A., Golbik, R., Kühn, K., 1993. Interaction of type IV
collagen with the isolated integrins a1b1 and a2b1. Eur. J. Biochem.
215, 151–159.

Kini, R., Evans, H.J., 1992. Structural domains in venom proteins: evidence
that metalloproteinases and nonenzymatic platelet aggregation
inhibitors (disintegrins) from snake venoms are derived by proteol-
ysis from a common precursor. Toxicon 30, 265–293.

Kisiel, D.G., Calvete, J.J., Katzhendler, J., Fertala, A., Lazarovici, P.,
Marcinkiewicz, C., 2004. Structural determinants of the selectivity of
KTS-disintegrins for the a1b1 integrin. FEBS Lett. 577, 478–482.

R. Sanz-Soler et al. / Toxicon 60 (2012) 665–675674



Publication I   Annex 

    187 

Lenk, P., Kalyabina, S., Wink, M., Joger, U., 2001. Evolutionary relationships
among the true vipers (Reptilia: Viperidae) inferred from mitochon-
drial DNA sequences. Mol. Phylogenet. Evol. 19, 94–104.

Makran, B., Fahmi, L., Pla, D., Sanz, L., Oukkache, N., Lkhider, M., Ghalim, N.,
Calvete, J.J., 2012. Snake venomics of Macrovipera mauritanica from
Morocco, and assessment of the para-specific immunoreactivity of an
experimentalmonospecific and a commercial antivenoms. J. Proteomics.

Marcinkiewicz, C., Vijay-Kumar, S., McLane, M.A., Niewiarowski, S., 1997.
Significance of RGD loop and C-terminal domain of echistatin for
recognition of aIIbb3 and avb3 integrins and expression of ligand-
induced binding site. Blood 90, 1565–1575.

Marcinkiewicz, C., Weinreb, P.H., Calvete, J.J., Kisiel, D.G., Mousa, S.A.,
Tuszynski, G.P., Lobb, R.R., 2003. Obtustatin: a potent selective
inhibitor of a1b1 integrin in vitro and angiogenesis in vivo. Cancer Res.
63, 2020–2023.

McLane, M.A., Vijay-Kumar, S., Marcinkiewicz, C., Calvete, J.J.,
Niewiarowski, S., 1996. Importance of the structure of the RGD-
containing loop in the disintegrins echistatin and eristostatin for
recognition of aIIbb3 and avb3 integrins. FEBS Lett. 391, 139–143.

Monleón, D., Moreno-Murciano, M.P., Kovacs, H., Marcinkiewicz, C.,
Calvete, J.J., Celda, B., 2003. Concerted motions of the integrin-binding
loop and the C-terminal tail of the non-RGD disintegrin obtustatin. J.
Biol. Chem. 278, 45570–45576.

Monleón, D., Esteve, V., Kovacs, H., Calvete, J.J., Celda, B., 2005. Confor-
mation and concerted dynamics of the integrin-binding site and the
C-terminal region of echistatin revealed by homonuclear NMR. Bio-
chem. J. 387, 57–66.

Moreno-Murciano, M.P., Monleón, D., Marcinkiewicz, C., Calvete, J.J.,
Celda, B., 2003. NMR solution structure of the non-RGD disintegrin
obtustatin. J. Mol. Biol. 329, 135–145.

Moura-Da-Silva, A.M., Theakston, R.D.G., Crampton, J.M., 1996. Evolution
of disintegrin cysteine-rich and mammalian matrix-degrading met-
alloproteinases: gene duplication and divergence of a common
ancestor rather than convergent evolution. J. Mol. Evol. 43, 263–269.

Navdaev, A., Lochnit, G., Eble, J.A., 2011. The rhodocetin ab subunit targets
GPIb and inhibits von Willebrand factor induced platelet activation.
Toxicon 57, 1041–1048.

Ogawa, T., Chijiwa, T., Oda-Ueda, N., Ohno, M., 2005. Molecular diversity
and accelerated evolution of C-type lectin-like proteins from snake
venom. Toxicon 45, 1–14.

Okuda, D., Koike, H., Morita, T., 2002. A new gene structure of the dis-
integrin family: a subunit of dimeric disintegrin has a short coding
region. Biochemistry 41, 14248–14254.

Olfa, K.-Z., José, L., Salma, D., Amine, B., Najet, S.A., Nicolas, A., Maxime, L.,
Raoudha, Z., Kamel, M., Jacques, M., Jean-Marc, S., Mohamed, E.A.,
Naziha, M., 2005. Lebestatin, a disintegrin from Macrovipera venom,
inhibits integrin-mediated cell adhesion, migration and angiogenesis.
Lab. Invest. 85, 1507–1516.

Pyron, R.A., Burbrink, F.T., Colli, G.R., Montes de Oca, A.N., Vitt, L.J.,
Kuczynski, C.A., Wiens, J.J., 2011. The phylogeny of advanced snakes
(Colubroidea), with discovery of a new subfamily and comparison of
support methods for likelihood trees. Mol. Phylogenet. Evol. 58, 329–
342.

Pyron, R.A., Burnbrink, F.T., 2012. Extinction, ecological opportunity, and
the origins of global snake diversity. Evolution 66, 163–178.

Sanz, L., Chen, R.-Q., Pérez, A., Hilario, R., Juárez, P., Marcinkiewicz, C.,
Monleón, D., Celda, B., Xiong, Y.-L., Pérez-Payá, E., Calvete, J.J., 2005.
cDNA cloning and functional expression of jerdostatin, a novel RTS-
disintegrin from Trimeresurus jerdonii and a specific antagonist of
the a1b1 integrin. J. Biol. Chem. 280, 40714–40722.

Sanz, L., Bazaa, A., Marrakchi, N., Pérez, A., Chenik, M., Bel Lasfer, Z., El
Ayeb, M., Calvete, J.J., 2006. Molecular cloning of disintegrins from
Cerastes vipera and Macrovipera lebetina transmediterranea venom
gland cDNA libraries. Insight into the evolution of the snake venom’s
integrin inhibition system. Biochem. J. 395, 385–392.

Sanz, L., Ayvazyan, N., Calvete, J.J., 2008. Snake venomics of the Armenian
mountain vipers Macrovipera lebetina obtusa and Vipera raddei. J.
Proteomics 71, 198–209.

Smith, K.J., Jaseja, M., Lu, X., Williams, J.A., Hyde, E.I., Trayer, I.P., 1996.
Three-dimensional structure of the RGD-containing snake toxin
albolabrin in solution, based on 1H NMR spectroscopy and simulated
annealing calculations. Int. J. Pept. Protein Res. 48, 220–228.

Vidal, N., Rage, J.-C., Couloux, A., Hedges, S.B., 2009. Snakes (Serpentes).
In: Hedges, S.B., Kumar, S. (Eds.), The Timetree of Life. Oxford Univ.
Press, pp. 390–397.

Wierzbicka-Patynowski, I., Niewiarowski, S., Marcinkiewicz, C., Calvete, J.
J., Marcinkiewicz, M.M., McLane, M.A., 1999. Structural requirements
of echistatin for the recognition of avb3 and a5b1 integrins. J. Biol.
Chem. 274, 37809–37814.

Wüster, W., Peppin, L., Pook, C.E., Walker, D.E., 2008. A nesting of vipers:
phylogeny and historical biogeography of the Viperidae (Squamata:
Serpentes). Mol. Phylogenet. Evol. 49, 445–459.

Xiong, J.P., Stehle, T., Zhang, R., Joachimiak, A., Frech, M., Goodman, S.L.,
Arnaout, M.A., 2002. Crystal structure of the extracellular segment of
integrin alphaVbeta3 in complex with an Arg–Gly–Asp ligand.
Science 296, 151–155.

R. Sanz-Soler et al. / Toxicon 60 (2012) 665–675 675



 

   



 

   

  

  

  

  

Publication II 
 

 

Accepted 13th April 2016  (in press)  

in Integrative and Comparative Biology 

(OXFORD University press)



 

   

 

 

 

 

 



Publication II  Annex 
 

   191 

DISTRIBUTION OF RPTLN GENES ACROSS REPTILIA.  HYPOTHESIZED ROLE 
FOR RPTLN IN THE EVOLUTION OF SVMPs 

 

Raquel SANZ-SOLER, Libia SANZ, Juan J. CALVETE* 

Laboratorio de Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, CSIC, 
Jaime Roig 11, 46010 Valencia (Spain) 

 

Running title: Distribution of RPTLN genes across reptiles 

Keywords: RTS-disintegrin; jerdostatin; reptile-specific gene; RPTLN gene.   

 

* Author to whom correspondence should be addressed: Juan J. Calvete, Laboratorio de 
Venómica Estructural y Funcional, Instituto de Biomedicina de Valencia, CSIC, Jaime Roig 11, 46010 
Valencia (Spain). E-mail: jcalvete@ibv.csic.es;  Tel.: +34 96 339 1778; Fax: +34 96 369 0800. 

 

 

 

SYNOPSIS 

We report the cloning, full-length sequencing, and broad distribution of reptile-specific RPTLN 
genes across a number of Anapsida (Testudines), Diapsida (Serpentes, Sauria), and Archosauria 
(Crocodylia) taxa. The remarkable structural conservation of RPTLN genes in species that had a 
common ancestor more than 250 million years ago, their low transcriptional level, and the lack of 
evidence for RPTLN translation in any reptile organ investigated, suggest for this ancient gene family a 
yet elusive function as long non-coding RNAs. The high conservation in extant snake venom 
metalloproteinases (SVMPs) of the signal peptide sequence coded for by RPTLN genes strongly 
suggests that this region may have played a key role in the recruitment and restricted expression of 
SVMP genes in the venom gland of Caenophidian snakes, some 60-50 Mya. More recently, 23-16 Mya, 
the neofunctionalization of an RPTLN copy in the venom gland of snakes of the genera Macrovipera 
and Daboia marked the beginning of the evolutionary history of a new family of disintegrins, the 
RTS/KTS short-disintegrins., inhibitors of α1β1 integrin collagen-binding. This evolutionary scenario 
predicts that venom gland RPTLN and SVMP genes may share tissue-specific regulatory elements. 
Future genomic studies should support or refuted this hypothesis.  
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INTRODUCTION 

A broad spectrum of β1 and β3 integrin receptor antagonists has evolved in venoms of Viperidae 
and Elapidae snake species. These include proteins of different scaffolds and receptor selectivity: C-
type lectin-like molecules, such as EMS16 (Marcinkiewicz et al. 2000), rhodocetin (Eble and Tuckwell 
2003), and VP12 (Staniszewska et al. 2009; Momic et al. 2011), selectively inhibit the adhesive 
functions of the collagen-binding α2β1 integrin (Arlinghaus and Eble 2012); mambin (McDowell et al. 
1992; Sutcliffe et al. 1994), dendroaspin (Williams et al. 1993), angustatin and H-toxin TA2 (Oyama and 
Takahashi 2015), are short-chain three-finger toxin (3FTx) homologues isolated from venoms of 
Dendroaspis species that potently and specifically target the αIIbβ3 integrin and inhibit platelet 
aggregation; and disintegrins (Gould et al. 1990).  

 Disintegrins are a broad group of small, cysteine-rich polypeptides (Calvete et al. 2009; 
Calvete 2013) synthesized from short-coding mRNAs (Okuda et al. 2002) or released into the venom of 
Viperinae (vipers) and Crotalinae (pitvipers) snakes by the proteolytic processing of PII-SVMP 
precursors (Kini and Evans 1992). According to their polypeptide length and number and pattern of 
disulfide bonds, the disintegrin family comprise four subfamilies, long-chain (~84-residue cross-linked 
by 7 intramolecular disulfide linkages), medium-sized (~70 amino acids and 6 intramolecular cystine 
bonds), homo- and heterodimers of subunits of about 67 residues with 10 cysteines involved in the 
formation of 4 intra-chain disulfides and 2 inter-chain cystine linkages, and short disintegrins composed 
of 41-51 residues crosslinked by 4 disulfide bonds (Juárez et al. 2008). This structural diversification, 
from the ancestral long disintegrins to the more recently evolved short disintegrins, evolved 
subsequently to the emergence of Viperidae as a distinct taxonomical group of advanced snakes ~37 
million years ago, in the Eocene epoch of the Cenozoic era, and involved reduction of the size of the 
disintegrin fold, including the stepwise loss of pairs of cysteine linkages and processing of the N-
terminal region (Carbajo et al. 2015). Concomitant to the structural divergence of the disintegrin 
scaffold, a restricted panel of β1 and β3 integrin inhibitory motifs has emerged via positive Darwinian 
evolution (Calvete 2010; Carbajo et al. 2015). Most single-chain disintegrins express, at the apex of a 
mobile 11-residue loop protruding 14-17 Å from the protein core, the basal RGD sequence, which 
represents the motif that blocks the adhesive function of integrins α8β1, α5β1, αvβ1, αvβ3, and αIIbβ3. A 
few medium-sized disintegrins bear a KGD sequence that inhibits the αIIbβ3 integrin with a high degree 
of selectivity. Dimeric disintegrins exhibit the largest variability in their integrin recognition motifs, 
including, in addition to RGD and KGD, MLD, which targets the α4β1, α4β7, α3β1, α6β1, α7β1 and α9β1 
integrins; VGD and MGD, which impair the function of the α5β1 integrin; and WGD, a potent inhibitor 
of the RGD-dependent integrins α5β1, αvβ3, and αIIbβ3 (Calvete 2009; 2010). 

 Short RTS/KTS disintegrins selectively hit the collagen I and IV binding α1β1 integrin (Calvete 
et al. 2007; Brown et al. 2009; Walsh and Marcinkiewicz 2011), and form a distinct clade of recently 
emerged short disintegrins in viper venoms within genera Macrovipera (Marcinkiewicz et al. 2003), and 
Daboia (Kisiel et al. 2004; Olfa et al. 2005; Sanz-Soler et al. 2012). Strikingly, a non-protein-translated 
mRNA sequence encoding the full-length RTS-disintegrin jerdostatin was originally amplified from a 
Protobothrops jerdonii venom gland cDNA library [AY262730] (Sanz et al. 2005). Subsequently, 
identical messages have been cloned from a number of taxa across Serpentes, including Crotalinae, 
Viperinae, and Elapidae (Sanz et al. 2006; Bazaa et al. 2007). Genomic DNA fragment encoding 
jerdostatin-like sequences have been amplified in lizards (Lacertidae and Iguanidae) (Sanz-Soler et al. 
2012). However, jerdostatin-like sequences could not be amplified in Aves (G. gallus), Amphibia (B. 
orientalis), and Mammalia (M. musculus, H. sapiens) suggesting that this intronless gene, for which the 
term RPTLN (RePTiLiN) has been proposed (Sanz-Soler et al. 2012), may exhibit a reptile-restricted 
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distribution. Here, we provide further evidence for the broad distribution of the RPTLN genes across 
Reptilia, and report its uneven transcriptional profile in adult lizard and colubrid organs. A role for 
RPTLN in the evolution of SVMPs is hypothesized.  

 

MATERIALS AND METHODS 

Scheme 1 summarizes and introduces the various methodological approaches (described in detail 
below) employed in this study to address specific questions about the evolution and possible function(s) 
of the RPTLN genes. 

Materials 

Blood samples from king cobra (Ophiophagus hannah), boa constrictor (Boa constrictor), 
ocellated lizard (Timon lepidus lepidus), beaded lizard (Heloderma horridum exasperatum), spearpoint 
leaf-tail gecko (Uroplatus ebenaui), veiled chameleon (Chamaeleo calypratus), Greek tortoise (Testudo 
graeca graeca), Hermann's tortoise (Testudo hermanni), leopard tortoise (Stigmochelys pardalis), 
Annam leaf turtle (Mauremis annamensis), Chinese stripe-necked turtle (Mauremis sintesis), red-footed 
tortoise (Chelonoidis carbonaria), Chaco tortoise (Chelonoidis chilensis), and liver tissue from 
American alligator (Alligator missisipiensis), were kindly provided by José María López (Sociedad 
Herpetológica Valenciana). Tail tissue and/or organs were sampled from Spanish lizard (Lacerta 
hispanica), Iberian wall lizard (Podarcis hispanica), ladder snake (Rhinechis scalaris), and Moorish 
gecko (Tarentola mauritanica), which were collected in the metropolitan area of Valencia. Tissues from 
Egyptian cobra (Naja haje haje) were kindly donated by César Olmos (Entomozoo Cullera, Valencia). 
Genomic DNA from ocellated carpet viper (Echis ocellatus) was kindly provided by Dr. Robert A. 
Harrison (Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, UK). Genomic 
DNA from the terciopelo pitviper (Bothrops asper), side-striped palm-pitviper (Bothriechis lateralis), 
and Picado's jumping pitviper (Atropoides picadoi) were generous donated by Dr. Mahmood Sasa 
(Instituto Clodomiro Picado, University of Costa Rica). Prof. Enrique Font (Laboratorio de Etología, 
Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universidad de Valencia) provided common 
wall lizard (Podarcis muralis) individuals. Genomic DNA from domestic mouse (Mus musculus) was 
obtained from laboratory animals. Anonymous laboratories provided mouse-ear cress (Arabidopsis 
thaliana) and human (Homo sapiens sapiens) genomic DNA samples. DNA from Bombina orientalis 
was obtained from a specimen purchased in a local pet store. Blood samples from chicken (Gallus 
gallus), red-legged partridge (Aletoris rufa), and domestic duck (Anas platyrhynchos) were kindly 
provided by local veterinarian Dr. Carlos Nuñez (Valencia). 

Recombinant jerdostatin and anti-rjerdostatin antibodies 

Recombinant jerdostatin (r-jerdostatin) was produced in E. coli BL21 strain cells (Novagen, 
Madison, WI) as previously described in detail (Sanz-Soler et al. 2012). Antiserum PEP160 against the 
C-terminal tail of jerdostatin (35CKPSYPGNG43) was generated in rabbit by Abintek Biopharma, S.L. 
(Parque Tecnológico de Bizkaia, Derio, Bizkaia, Spain) using a standard immunization protocol and the 
synthetic peptide CKPSYPGNG conjugated to keyhole limpet hemocyanin (KLH) as immunogen. Anti-
CKPSYPGNG antibodies were affinity-purified on a peptide-Sepharose column. 
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Isolation of genomic DNA  

Blood cells and tissues were incubated overnight at 55˚C in lysis buffer (100 mM Tris, 25 mM 
EDTA, 100 mM NaCl, 0.5% SDS) and 0.2 μg/μL proteinase K (Sigma-Aldrich®). Genomic DNA 
(gDNA) was isolated using phenol:chloroform:isoamyl alcohol (25:24:1, v/v/v) extraction and 
precipitated by adding 1/10 vol of 3M sodium acetate (pH 5.2) and 2 vol of 100% ethanol. gDNA was 
resuspended in TE buffer (10 mM Tris, pH 8, 1 mM EDTA) (modified from Longmire et al. 1997). 

Tissue preparation, RNA isolation, and reverse transcription  

Organs from Rhinechis scalaris (lung, heart, skeletal muscle, skin), Podarcis muralis (bladder, 
liver, lung, kidney, skeletal muscle, skin, stomach, heart), and Podarcis hispanica (liver, lung, skin, 
stomach, heart, brain) were dissected, minced manually, and stored in RNAlater® (Sigma-Aldrich). 
Total RNA extraction was performed using the TRIzol method following the manufacturer's (Life 
Technologies, NY, USA) recommended protocol. Total RNA was treated with RNAase-free DNAaseI 
following the manufacturer's (Thermo Scientific) protocol. DNAseI-treated total RNA integrity was 
assessed by electrophoresis in a 2% agarose gel. One μg of the RNA was reverse-transcribed to first 
strand cDNA, using oltigo(dT)18 and the RevertAid H Minus First Strand coding DNA (cDNA) 
Synthesis Kit (Thermo Scientific). The cDNA was stored at -80˚ C until used. Reverse transcriptase 
minus (RT-) negative control was performed to verify the absence of gDNA in the RNA sample. The 
RT- control contained the same reaction mixture used for reverse transcription except for the RevertAid 
reverse transcriptase, which was substituted for 1 μl of RNAse-free water. Non-template control (NTC) 
was also included to discard reagent contaminations. The NTC reaction contained the same reagent than 
the reverse transcription reaction, excepting the RNA template.  

PCR-amplification of DNA and RNA sequences 

RPTLN sequences were PCR-amplified in a final volume of 25 μL containing 0.02 units of 
iProof™ High-Fidelity DNA Polymerase (Bio-Rad), 1.5 mM MgCl2, 0.2 μM of each forward 
(SP_jerdostatin) 5´-ATGATCCAGGTTCTCTTGGTAACTATATG-3´ [MIQVLLVTI] and reverse 
(3´jerdostatin) 5´-TAGCCATTCCCGGGATAACTGG-3´ [PSYPGNG] primers (Fig. 1), and 100 ng of 
gDNA, or 1 μL of cDNA, RT- or NTC, as template. PCR protocol included denaturation at 98˚C for 2 
min, followed by 35 cycles of denaturation (10 s at 98˚C), annealing (20 s at 58˚C), extension (40 s at 
72˚C), and a final extension step for 5 min at 72˚C. One μL of Mili-Q® water, without template, was 
used as negative control in every PCR-amplification. The PCR reaction mixture was run in 1% agarose 
gel, and the candidate 333 bp DNA band was excised, purified using the GeneClean®Turbo Kit (MP 
BioMedicals, LLC) or Illustra GFX Gel Band Purification Kit (GE Healthcare, Buckinghamshire, UK), 
and cloned into a pGEM-T (Promega, Madison, WI, USA), or a pJET1.2/blunt vector (Thermo 
Scientific). E. coli DH5α cells (Novagen, Madison, WI, USA) were transformed by electroporation 
using an Eppendorf 2510 electroporator following the manufacturer´s instructions. Positive clones, 
selected by growing the transformed cells in Luria-Broth (LB) medium containing 100 µg/ml ampicillin, 
were confirmed by PCR amplification using the vector-specific primers, and the PCR-amplified positive 
clones were sequenced (using an Applied Biosystems model 377 DNA sequencer).  

PCR-amplification of the housekeeping gene 28S ribosomal RNA (rRNA) 

Amplification of a partial sequence of the 28S rRNA gene was used as an internal control in 
every RPTLN gene expression study. The forward (5´-GTAACGCAGGTGTCCTAAGG-3´) and 
reverse (5´- CGCTTGGTGAATTCTGCTTC-3´) rRNA28S primers were designed based on the partial 
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sequence of Anolis carolinensis 28S ribosomal RNA gene [AY859623]. The homologous 275 bp 
sequences of Podarcis muralis [KU556683], Podarcis hispanica and Rhinechis scalaris were amplified 
using the FirePol® DNA Polymerase (Solis BioDyne) protocol. PCR-amplification was performed 
using an initial denaturation step at 94˚C for 5 min, followed by 35 cycles of denaturation (20 s at 94˚C), 
annealing (20 s at 58˚C), extension (30s at 72˚C), and a final extension step for 5 min at 72˚C. 

PCR-amplification of intron 7 of fibrinogen β-chain  

PCR-amplification of a 296 bp fragment of intron 7 of fibrinogen β-chain was performed as a 
double check to confirm the absence of amplicons arising from contaminating gDNA. Podarcis muralis 
and Podarcis hispanicus cDNA were used as templates in the FirePol® (Solis BioDyne) DNA 
Polymerase protocol, with Intron7 FGB_Podarcis 5´-GGATCATGCTGTCAGGCTGG-3´ and Intron7 
FGB_Podarcis 5´-CAGTGGTACCTTGGGTTAAGAAC-3´ as forward and reverse primers, 
respectively. These primers were designed from the sequence of intron 7 of the Podarcis muralis 
haplotype B80 β-fibrinogen (FGB) gene [EU269550]. PCR-amplification was performed using an 
initial denaturation step (94˚C for 5 min), followed by 35 cycles of denaturation (20 s at 94˚C), 
annealing (20 s at 60˚C), extension (30 s at 72˚C), and a final extension step for 5 min at 72˚C.  
Rhinechis scalaris cDNA was also subject to PCR-amplification of a 1519 bp sequence of intron 7 of 
fibrinogen β-chain [KU556682], using forward (7IFGB 5´-AGAGACAATGATGGATGGTAAG-3´) 
and reverse (7IFGB 5´-CCTTTTGGGATCTGGGTGTA-3´) primers, designed based on the β-
fibrinogen intron 7 sequence of Trimeresurus sp. species [AF517209]. FirePol® DNA Polymerase (Solis 
BioDyne) protocol consisted of an initial denaturation cycle at 94˚C for 5 min, followed by 35 cycles of 
denaturation (20 s at 94˚C), annealing (20 s at 56˚C), extension (90 s at 72˚C), and a final extension step 
for 5 min at 72˚C.  

Semiquantitative PCR and Real-time Quantitative RT-PCR 

Semiquantitative PCR was performed by electrophoresis in 1% agarose gel following the 
conventional PCR-amplifications of the RPTLN gene and the 28S rRNA fragment for 25, 30, and 35 
cycles. Real-time quantitative RT-PCR was performed in duplicate using Light Cycler FastStart DNA 
Master SYBR green I (Roche) in a Light Cycler 480 (Roche), following the manufacture’s protocol 
using SP_jerdostatin and 3´jerdostatin primers for RPTLN-like amplification and forward and reverse 
rRNA28S primers for the housekeeping fragment. 1 µg of total RNA from Podarcis muralis heart (in a 
final volume of 20 µl) was transcribed into cDNA, and 3µL (0.15 µg of RNA) of the reaction mixture 
were used as template. pMD18-T/RPTLN and pJET1.2/28SrRNA plasmids were used as positive 
controls and internal standard, respectively.  

Sequence analysis 

Sequence similarity searches were done using BLASTn (http://blast.ncbi.nlm.nih.gov/Blast.cgi). 
Multiple sequence alignment was performed using MEGA (Molecular Evolutionary Genetic Analysis; 
http://www.megasoftware.net). 

Prediction of RNA secondary structure was performed using the RNAfold WebServer 
(http://rna.tbi.univie.ac.at) at the Institute for Theoretical Chemistry, University of Vienna (Mathews et 
al. 2004; Gruber et al. 2008; Lorenz et al. 2011). 
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Protein extraction and Western blotting 

For protein extraction, 5 mm-thick portions of minced tissues or organs where homogenized in 
lysis buffer (10 mM Tris, pH 7.5, 1 mM EDTA, 1 mM MgCl2, 10% glicerol, 5 mM β-mercaptoetanol, 
containing a tablet of EDTA-free protease inhibitor (Roche) per 50mL of lysis buffer and 0.4 mM 
Pefabloc SC (AEBSF) (Roche)), using an Ultra-Turrax® (Ika® Werke) homogenizator. SDS was added 
to a final concentration of 2% (w/v), the samples were vortexed for ~15 seconds, incubated for 10 min 
on ice. This process was repeated twice, the samples were centrifuged at 14,000xg for 20 min at 4˚C, 
and the supernatants were transferred to clean tubes. Aliquots of 40-60 µg of total proteins extracted 
from 200 µg of organ/tissue homogenates of R. scalaris (liver, skeletal muscle, kidney, heart, lung, 
skin), P. muralis (bladder, liver, skeletal muscle, stomach, skeletal muscle, kidney, lung, heart), and P. 
hispanicus (skin, stomach, skeletal muscle, brain, lung, heart) and 50 ng of r-jerdostatin were analyzed 
in a 10% Tris-tricine SDS-PAGE gel under reducing conditions. Replicate gels were i) stained with 
Coomasiee Blue R250 and ii) electrotrasferred to PVDF membrane (Hybond-P, GE Healthcare) using a 
semi-dry electrotransfer device. PVDF membranes were blocked in 5% (w/v) non-fat dried milk in PBS 
(20 mM Na2HPO4, 150 mM NaCl, pH 7.5) overnight at 4˚C, and incubated for 1 h at 25˚C with a 1:500 
(v/v) dilution of anti-PEP160 polyclonal antibodies in 5% non-fat dried milk/PBS-Tween (20 mM 
Na2HPO4 pH 7.5, 150 mM NaCl, 0.1% (v/v) Tween-20). The membranes were then washed three times 
with PBS-Tween followed by incubation (1 h at 25˚C) with a 1:5000 (v/v) dilution of peroxidase-
conjugated anti-rabbit IgG (Sigma) in PBS/5% non-fat dried milk. After 3 times washing with PBS-
Tween, the membranes were developed using the chemiluminescence ECL Prime kit (GE Healthcare).  

 Another set of total protein extracts were fractionated into ≥ 10 kDa, 10-3 kDa, and ≤ 3 kDa 
fractions using Microcon® YM-10K (Amicon Bioseparations, Millipore) and Amicon Ultracel®-3K 
(Merck Millipore Ltd.) centrifugal filters. These fractions were run in a 10%Tris-tricine–SDS-PAGE 
gel, electroblotted onto PVDF membrane, and the blots developed as described above.  

Accession codes 

All nucleotide sequences gathered in this work have been deposited with the NCBI database 
under accession codes KU556682 (partial 1519 bp sequence of intron 7 of fibrinogen β-chain of P. 
scalaris), KU556683 (partial 275 bp sequence of 28S ribosomal RNA from Podarcis muralis) and 
KU563546-KU563619 (RPTLN 2-21 sequences from different organisms listed in Table 1 and 3.  

 

RESULTS AND DISCUSSION 

Intronless RPTLN genes represent a broad and reptile-restricted multigene family  

Genomic DNA encoding full-length jerdostatin (RPTLN-1) (Fig.1) and full-length jerdostatin-
like sequences (RPTLN-n) were amplified from a number of Anapsida (Testudines), Diapsida 
(Serpentes, Sauria), and Archosauria (Crocodylia) reptiles (Fig. 2), but attempts to amplify this gene in 
amphibians (Bombina orientalis), aves (Gallus gallus), and mammals (Mus musculus and Homo 
sapiens) were all unsuccessful. These striking results suggest that RPTLN genes exhibit a broad, reptile-
specific distribution. Also remarkable is the structural conservation of these genes (Fig. 3) in taxa that 
had a common ancestor ≥ 250 million years ago (Hedges and Poling 1999; Vidal and Hedges 1999; 
Pyron et al. 2013) (Fig. 4, Table 1). In particular, the nucleotide stretch 1-54 shares >96% identity with 
nucleotide sequences encoding the signal peptide of snake venom metalloproteinase (SVMP) and short-



Publication II  Annex 
 

   197 

coding RGD-disintegrin precursors from a large number of Viperinae and Crotalinae snake species; 
RPTLN nucleotides 55-201 show 86-93% identity with pro-peptide-encoding nucleotide sequences for 
Macrovipera lebetina [AY835996, X97894] and Daboia r. russellii [GQ420354] PIII- and PII-SVMPs; 
and the nucleotide sequence 202-333 only matches homologous sequences from M. lebetina 
[AM114015, AM261813], C. vipera [AM114012], and P. jerdonii [AY262730] encoding RTS- and 
KTS-disintegrin domains, which exhibit a high degree of identity (94-100%) in any pairwise 
comparison. The unusual high conservation of RPTLN genes across Reptilia suggests a relevant 
function in reptile biology for this ancient gene family. Whether RPTLN genes are i) translated into 
(body) protein(s), ii) acts as regulatory RNA molecules, or iii) serve other unknown function(s), remains 
elusive. Of relevance to this point, among the 31 nucleotide changes identified in the 22 RPTLN genes 
listed in Table 2, 6 involve the third base of RPTLN codons, whereas 8 and 17 affect first and second 
codon positions, respectively (Fig.3). In protein-coding DNA sequences, the second-codon position is 
the most functionally constrained, whereas, due to the degenerate nature of the genetic code, the third-
codon position is the least functionally constrained in terms of nucleotide changes (Bofkin and 
Goldman 2007). It is thus tempting to hypothesize that the biological role of transcribed RPTLN RNA 
may be strongly dependent on their folded structure. Supporting this hypothesis, the RNAfold 
WebServer (Gruber et al. 2008) predicted for the full-length RPTLN-transcribed 333 bp RNA a stable (-
90.59 kcal/mol minimum free energy) secondary structure ensemble (Fig. 5).  

 RPTLN genes were found at nodes predating the separation of Toxicofera and Lacertidae (Fig. 
4). Toxicofera, from the Greek "those who bear toxins", is a clade of scaled reptiles that includes the 
snakes, Anguimorpha (monitor lizards, gila monster, and alligator lizards) and Iguania (iguanas, agamas, 
and chameleons), and thus RPTLN gene(s) existed long before venom arose in squamate evolution, 
approximately 170 Mya during the Jurassic period (Fry et al. 2006; 2012). Despite their broad 
distribution across the phylogeny of Reptilia (Fig. 4), RPTLN genes have been found translated into 
KTS/RTS disintegrins only in the venoms of M. l. obtusa (obtustatin (KTS) [P83469; 1MPZ], 
Marcinkiewicz et al. 2003; Moreno-Murciano et al. 2003; Monleón et al. 2003; Sanz et al. 2008), M. 
mauritanica (lebestatin (KTS) [CAJ34939], Olfa et al. 2005; Sanz et al. 2006; Makran et al. 2012), D. 
palestinae (viperistatin (KTS) [P0C6E2], Kisiel et al. 2004), and D. russellii (russellistatin (RTS), Sanz-
Soler et al. 2012). Evolutionary relationships reconstruction inferred from mitochondrial DNA 
sequences dated the emergence of Eurasian viper (genera Eristicophis, Pseudocerastes, Vipera, 
Macrovipera, and Daboia) in the early Miocene (23-16 million years ago, Mya) (Lenk et al. 2001), 
coinciding with the geographical separation of the landmasses Europe, Middle East, and North Africa 
by the Mediterranean and Parathethys seas (Rögl and Steininger 1983). This evidence indicates that 
RPTLN genes comprise an ancient multigenic family, and that their restricted expression and 
neofunctionalization in the venom gland of Macrovipera and Daboia species represent recent events 
(Fig. 4).  

 A hallmark of the RPTLN genes transcribed into protein (KTS- and RTS-disintegrin)-coding 
mRNAs with respect to those that are not translated is the accumulation of mutations in the C-terminal 
half of the disintegrin domain (Sanz-Soler et al. 2012), which constitutes a conformational functional 
epitope encompassing the α1β1 integrin-inhibitory loop and the C-terminal tail of KTS/RTS disintegrins 
(Kisiel et al. 2004). However, the mechanism underlying this non-protein-coding to protein-coding 
transition remains elusive. It is tempting to speculate that accumulation of nucleotide changes in certain 
RPTLN gene copies may have resulted in destabilization of the transcribed non-coding RNA (ncRNAs) 
into a translatable, or in the formation of pseudogenes. In this context, it is worth mentioning that 
ncRNAs transcribed from pseudogenes may play regulatory roles regulating the expression of their 
parental or non-parental genes  
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A hypothesized role for RPTLN in the evolution of SVMPs 

 The nucleotide sequence encoding the signal peptide (SP) of RPTLN genes is highly conserved 
in SVMP precursor genes of Viperinae, Crotalinae, Elapidae, and Colubridae snake species (Fig. 6). On 
the contrary, this region is not conserved in ADAM (A Disintegrin And Metalloprotease) genes (Fig. 6). 
The closest non-venom ancestor of SVMPs was likely an ADAM28 precursor gene (Casewell 2012) 
that was recruited into the snake venom gland proteome (Moura da Silva et al. 1996) after the 
divergence of squamate reptiles, lizards and snakes (Fry et al. 2006; 2012) in the Jurassic, ~170-150 
million years before present (MYBP) (Hedges and Vidal 2009). The high conservation in extant SVMPs 
of the SP sequence coded for by RPTLN genes strongly suggests that this region may have played a key 
role in the recruitment and restricted expression of SVMP genes in the venom gland of Caenophidian 
snakes. In this respect, the exon-intron organization of pre-pro E. ocellatus EOC00089-like PIII-SVMP 
and A. carolinensis ADAM28 genes is conserved, and their 17-residue signal peptides are entirely 
coded for by exon 1 (Sanz et al. 2012). Most introns of A. carolinensis ADAM 28 contain inserted 
retroelements capable of invading new genomic sites (Alföldi et al. 2011), particularly short 
interspersed retrotransposable elements (Sauria SINE) in introns 1, 3-8, 10, 13, 14 and 16, and LINEs 
(long interspersed elements) in introns 1 and 10. The family of Sauria SINEs are widely distributed 
among genomes of lizards, snakes, and tuataras (Piskurek et al. 2006; 2009). Sauria SINEs arose more 
than 200 million years ago, and the members of this family comprise a 5' tRNA-related region, a tRNA-
unrelated region, and a 3' tail region identical with Bov-B LINEs (Piskurek et al. 2006). Their 
retrotransposition depends on reverse transcriptase and endonuclease activities encoded by partner 
LINEs, and it has been proposed (Piskurek et al. 2006) that Sauria SINEs utilize the enzymatic 
machinery of Bov-B LINEs for their retrotransposition.  

Transcription and translation of RPTLN genes in P. muralis, P. hispanica (Lacertidae), and R. 
scalaris (Colubridae) organs 

Full-length RPTLN transcripts were amplified by PCR in different organs and tissues of P. 
muralis, P. hispanica, and R. scalaris (Table 3). Semiquantitative PCR amplification suggested 
differential transcription levels at different organs of P. muralis. However, attempts to quantify the 
levels of RPTLN RNA by quantitative PCR amplification failed due to the low amount of transcripts. 
Low expression levels may arise from alternative promoter usage of ncRNAs compared to protein-
coding RNAs (The Fantom Consortium et al. 2005). On the other hand, we did not find evidence for 
RPTLN translation in any organ investigated by Western blot analysis of 40-60 µg of total proteins 
extracted from 200 µg organ homogenates (Fig. 7) or size-fractionated by ultrafiltration (≥ 10 kDa, 10-3 
kDa, and ≤ 3 kDa fractions). Recombinant jerdostatin (Sanz et al. 2005) was used to estimate the 
immunodetection limit, which was ≤ 50 ng (Fig. 7, lanes Jer). For comparison, the short KTS-
disintegrin obtustatin [P83469] (Sanz et al. 2008), and its homologs, the RTS-disintegrin russellistatin 
(Sanz-Soler et al. 2012) and the KTS-disintegrin lebestatin [Q3BK14] (Makran et al. 2012), comprise 
2.8%, 2%, and 7.8% of the total venom proteins of Macrovipera lebetina obtusa, Daboia russelii, and 
Macrovipera (Daboia) mauritanica, respectively. Furthermore, expression yields for functionally active 
recombinant jerdostatin (wild-type and mutants) in E. coli were about 0.5-2 mg/L of cell culture (Sanz 
et al. 2005; Sanz-Soler et al. 2012). These data clearly show that RPTLN and RPTLN-like DNA 
sequences can be transcribed and translated into functional proteins in different cellular environments. 
Although the possibility that RPTLN genes are translated into very low protein concentration can not be 
ruled out, all available data support the view that RPTLN gene copies encode a long (>200 nt) ncRNAs 
(lncRNAs). Eukaryote genomes include tens of thousands of long noncoding RNAs with little or no 
protein-coding capacity (Wilusz et al. 2009; Wilusz 2015). Only a limited number of lncRNAs have 
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been functionally characterized. However, paradigms for how lncRNAs exert regulatory functions are 
beginning to emerge (reviewed by Wilusz et al. 2009; Wilusz 2015). In particular, lncRNAs are both 
regulated by unique post-transcriptional control mechanisms, and control various aspects of post-
transcriptional processing of mRNAs. These functions often involve the formation of ribonucleoprotein, 
RNA-RNA, and DNA-RNA complexes. These features of lncRNAs provide a meaning to the 
conservation of the third-base of RPTLN codons, and support our view of the possible biological 
function of this reptile-specific gene.  

 

CONCLUDING REMARKS AND PERSPECTIVES 

This work elaborates upon a previous work (Sanz-Soler et al. 2012) in which we showed that 
RPTLN genes coding for RTS/KTS disintegrins existed long before the split of Lacertidae and Iguania, 
thus predating the recruitment of the SVMP precursors of disintegrins, and providing strong support for 
an independent evolutionary history of the RTS/KTS and the RGD clades of short disintegrins. Now, 
we report full-length RPTLN gene sequences amplified from species at nodes predating the separation 
of Toxicofera and Lacertidae, and thus preceding the emergence of venom in the evolution of squamate 
reptiles, ~170 Mya during the Jurassic period (Fry et al. 2006; 2012). The remarkable structural 
conservation of RPTLN genes across Reptilia, their low transcriptional level, and the lack of evidence 
for RPTLN translation in any reptile organ investigated, suggest a yet elusive role for transcribed 
RPTLN RNA as a long non-protein-coding RNA (Fig. 5). We hypothesize that the high conservation of 
the SP sequence of RPTLN and extant SVMP genes may suggest a functional role for this region in the 
ancestral recruitment of SVMP gene expression in the venom gland of Caenophidian snakes (Fig. 8). 
The origin of SVMPs has been inferred to have occurred after the split of the Pareatidae from the 
remaining Caenophidians, ~50-60 Mya, during the Paleogene period of the Cenozoic Era (Fry et al. 
2006; 2008; 2009; Vidal et al. 2009; Pyron and Burnbrink 2012; Casewell 2012). The evolutionary path 
that led to the family of the RGD/XXD-disintegrins from PII-SVMPs has been dissected in some detail 
at the molecular and structural levels (Juárez et al. 2008; Calvete 2010; Carbajo et al. 2015). 
Neofunctionalization of the RPTLN gene to express RTS/KTS disintegrins (Fig.6) represents an 
independent alternative route from the evolution of PII-SVMP-derived disintegrins, which occurred 
more recently in venoms of Eurasian vipers within genera Macrovipera and Daboia (Sanz-Soler et al. 
2012), in the early Miocene (~23-16 million years ago, Mya) (Lenk et al. 2001). Figure 8 outlines a 
cartoon of processes in which we hypothesize that RPTLN may have been involved. Understanding the 
physiological function and evolutionary history of this enigmatic highly conserved (and thus 
presumably relevant) gene across the phylogeny of reptiles clearly requires further detailed molecular 
studies. In particular, comparative analysis of the upstream regions of non-protein coding and protein 
coding RPTLN genes may identify nucleotide motifs that contribute to regulate their distinct molecular 
fates. On the other hand, the hypothesis that RPTLN may have played a key role in the recruitment and 
restricted expression of SVMP genes in the venom gland of Caenophidian snakes predicts that venom 
gland RPTLN and SVMP genes may share tissue-specific regulatory elements. Future genomic studies 
should support or refuted our hypothesis.  
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LEGENDS TO FIGURES 

 

Scheme 1. Summary of the various methodological approaches (described in detail in the 
Materials and Methods section) employed in this study to address specific questions about the evolution 
and possible structure-function correlations of the reptile-specific RPTLN genes. 

 

Figure 1. Nucleotide sequence of the genomic DNA (RPTLN-1 gene, AY262730) encoding full-
length jerdostatin. The limits of the signal peptide, prodomain, and disintegrin domain  are indicated. 
The active RTS tripeptide sequence is highlighted in bold in a grey background. The sequences of the 
forward (SP_jerdostatin) and reverse (3'jerdostatin) primers used for PCR amplifications are in lower 
case, highlighted in boldface, and labeled. 

 

Figure 2. PCR-amplification of RPTLN genes from gDNA of Echis ocellatus (Eo), Ophiophagus 
hannah (Oh), Boa constrictor (Bc), Lacerta hispanica (Lh), Timon lepidus (Tl), Podarcis muralis (Pm), 
Heloderma horridum exasperatum (Hh), Uroplatus ebenaui (Ue), Chamaeleo calyptratus (Cc), 
Alligator missisipiensis (A), Testudo graeca (Tg), Mauremys sinensis (Ms), Bothrops asper (Ba), 
Bothriechis lateralis  (Bl), Atropoides picadoi (Ap), Naja naja haje (Nn), Rhinechis scalaris (Rs), 
Tarentola mauritanica (Tm), Testudo Hermanni (Th), Stigmochelys pardalis  (Sp), Mauremys 
annamensis (Ma), Mauremys leprosa (Ml), Chelonoidis chilensis (ChCh), Chelonoidis carbonaria 
(Chc), and Mus musculus (Mm). (-), negative control. 

 

Figure 3. Multiple sequence alignments of RPTLN-1 and the twenty unique RPTLN genes 
amplified from gDNA or mRNA of the different reptile species listed in Table 1. For convenience, the 
alignment has been divided into three blocks of sequences, each of which codes for a domain of a 
hypothetical protein. Nucleotide changes between RPTLN sequences are highlighted in boldface and in 
grey background. The distribution of these sequences across the phylogeny of reptiles is shown in 
Figure 4. 
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Figure 4. Distribution of the RPTLN genes listed in Table 1 in the (simplified) phylogeny of 
reptiles. Tree positions where mutations associated with the 20 different RPTLN genes arose are 
indicated. The identity of the particular RPTLN-n (n = 2-21) isogenes containing the mutation(s) are 
specified in parentheses. Viperinae branch is expanded, and those species from which venom RTS/KTS 
disintegrins have been isolated, are highlighted in bold. 

 

Figure 5. Scheme of the predicted secondary structure of full-length RPTLN RNA molecule. 
Nucleotide positions mutated in any of the RPTLN-2-21 genes listed in Table 2 are indicated.   

 

Figure 6. Comparison of the nucleotide and encoded signal peptide sequences of RPTLN-1, 
SVMPs, and ADAM molecules. SVMP and ADAM residues differing from the nucleotide or translated 
amino acid sequence of RPTLN-1 are highlighted in bold and in gray background.   

 

Figure 7. Coomassie blue-stained SDS-PAGE (upper panels) and Western blot analysis (lower 
panels) probed with anti-jerdostatin PEP160 polyclonal antibodies of 40-60 µg of total proteins 
extracted from different organs of R. scalaris (A), P. muralis (B), and  P. hispanica (C). Positive 
control, lane Jer, ~50 ng of purified recombinant jerdostatin; Immunoreactivity is only observed against 
the positive control. Std, molecular mass standard Mark12TM (Invitrogen); Li, liver; M, skeletal muscle; 
K, kidney; H, heart; Lu, lung; Sk, skin; St, stomach; Br, brain. 

 

Figure 8. Cartoon of processes in which the RPTLN gene is hypothesized to have been involved 
during its long evolutionary history. A, Fusion of the ADAM28 extracellular domains-coding gene 
region Δ

EGF/TM/CytoADAM28 and an RPTLN gene under a venom gland-specific promoter (VGP) 
generated a SVMP gene bearing the RPTLN signal sequence and exhibiting venom gland restricted 
translation (B). The timing of the functional processes in which RPTLN is hypothesized to have been 
involved is indicated in million years ago (Mya), i.e. a yet elusive role for transcribed RPTLN as a long 
non-protein-coding RNA since ≥ 170 Mya; the recruitment and venom gland-restricted expression of 
PIII-SVMPs, 50-60 Mya; and more recently (23-16 Mya), its own neofunctionalization into α1β1-
inhibitory short RTS/KTS disintegrins in venoms of certain Eurasian viper species within genera 
Macrovipera and Daboia (Fig. 4). Disi, disintegrin-like domain; Cys, cysteine-rich domain; EGF, 
epithelial growth factor-like domain; TM, transmembrane domain; cyto, cytoplasmic domain; SP, signal 
peptide. The structural model of PIII-SVMP has been adapted from the crystallographic structure of 
bothropasin (Muniz et al. 2008). 
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Table&1&
Distribution*of*RPTLN*gene*copies*across*reptiles.*Full4length*sequences*are*displayed*in*Fig.3.*
Nucleotide*changes*in*RPTLN&genes*respect*to&RPTLN41*[jerdostatin,*AY262730]*are*listed*in*Table*2.*
* * * *
Reptile&
class&

Family& Species& RPTLN&gene&copy&

Snake* Crotalinae* P.&jerdonii& RPTLN/1&
* * B.&asper& RPTLN41&(KU563546),&RPTLN415*(KU563589),&

RPTLN416*(KU563592)&
* * B.&lateralis& RPTLN41*(KU563547),&RPTLN47*(KU563579),&

RPTLN417*(KU563595)&
* Viperinae* E.&ocellatus& RPTLN41*(KU563548),&RPTLN413*(KU563587)&
* * A.&picadoi& RPTLN41*(KU563549),&RPTLN410*(KU563583),&

RPTLN415*(KU563590)&
* Elapidae* O.&hannah& RPTLN41*(KU563550),&RPTLN46*(KU563577),&

RPTLN417*(KU563596)&
* * N.&haje&haje& RPTLN41*(KU563551),&RPTLN45*(KU563575)&
* Colubridae* R.&scalaris& RPTLN41*(KU563552),&RPTLN45*(KU563608),&

RPTLN418*(KU563600),*RPTLN419*
(KU563603),*RPTLN420*(KU563604),*RPTLN4
21*(KU563617)&

* Boideae* B.&constrictor& RPTLN41*(KU563553),&RPTLN417*(KU563597)&
Lizard* Lacertidae* L.&hispanica& RPTLN41*(KU563554),&RPTLN49*(KU563581),&

RPTLN417*(KU563598)&
* * T.&lepidus& RPTLN41*(KU563555)&
* * P.&muralis& RPTLN41*(KU563556),&RPTLN49*(KU563610),&

RPTLN417*(KU563614),*RPTLN418*
(KU563615),RPTLN419*(KU563616)&

* * P.&hispanica& RPTLN41*(KU563557),&RPTLN48*(KU563609),&
RPTLN/11(KU563611),&RPTLN/13*(KU563612),&
RPTLN/16*(KU563613),&RPTLN/21*(KU563618)&

* Holodermatidae* H.&horridum& RPTLN41*(KU563558)&
* Gekkonidae* U.&ebenaui& RPTLN/1*(KU563559),*RPTLN/9*(KU563582)&
* * T.&mauritanica& RPTLN41*(KU563560),&RPTLN411*(KU563584)&
* Chamaeleonidae* C.&calypratus& RPTLN41*(KU563561),&RPTLN/17*(KU563599)&
Crocodrile* Crocodylidae* A.&mississipiensis& RPTLN41*(KU563562),&RPTLN/6*(KU563578),&

RPTLN/11*(KU563585),*RPTLN/12*
(KU563586),&RPTLN/14*(KU563588)&

Tortoise* Testudinidae* T.&greca& RPTLN41*(KU563563),&RPTLN/3*(KU563573)&
* * T.&hermanni& RPTLN41*(KU563564)&
* * S.&pardalis& RPTLN41*(KU563565),&RPTLN416*(KU563593),&

RPTLN418*(KU563601)&
* Geomydidae* M.&annamensis& RPTLN41*(KU563566),&RPTLN415*(KU563591)&
* * M.&sintesis& RPTLN41*(KU563567),&RPTLN44*(KU563574),&

RPTLN47*(KU563580),*RPTLN/18*(KU563602)*&
* * M.&leprosa& RPTLN41*(KU563568),&RPTLN42*(KU563571),&

RPTLN45*(KU563576)&
* * C.&carbonaria& RPTLN41*(KU563569),&RPTLN42*(KU563572)&
* * C.&chilensis& RPTLN41*(KU563570),&RPTLN416*(KU563594)&
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&
&
&

Table&2&
Nucleotide*changes*in*RPTLN/n*genes*respect*to*RPTLN41*[encoding*jerdostatin,*

AY262730]&

& *RPTLN42& 41T>C**
RPTLN43& 50A>G*
RPTLN44& 50A>G;173A>G;179A>G*
RPTLN45& D65C*
RPTLN46& 84T>C*
RPTLN47& 87T>C*
RPTLN48& 128C>T*
RPTLN49& 128C>T;*259T>A**
RPTLN410& 145C>T*
RPTLN411& 145C>T;*185T>C*
RPTLN412& 145C>T;*185T>C;*220T>C**
RPTLN413& 155A>G**
RPTLN414& 173A>G*
RPTLN415& 173A>G;*179A>G**
RPTLN416& 173A>G;*179A>G;*255A>G*
RPTLN417& 220T>C**
RPTLN418& 249A>G**
RPTLN419& 249A>G;*260G>A*
RPTLN420& 253A>G**
RPTLN421& 253A>G;*279T>C**
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*
Table&3&

*RPTLN&gene*copies*in*organs*of*Colubridae*and*Lacertidae*taxa*

* * *Species& Organ& RPTLN&gene&copy&

* * *R.&scalaris& Lung* RPTLN/1*(KU563605)&
* Heart* 273A>T&(RPTLN/22)&(KU563619)*

* Muscle* RPTLN/21*(KU563617)&
* Skin* RPTLN/5*(KU563608)&
P.&muralis& Bladder* RPTLN/1* (KU563606),* RPTLN/18*

(KU563615)&
* Liver* RPTLN/1*(KU563606)&
* Lung* RPTLN/1* (KU563606),& RPTLN/17*

(KU563614)*
* Kidney* RPTLN/1* (KU563606),& RPTLN/18*

(KU563615)&
* Muscle* RPTLN/1*(KU563606)&
* Skin* RPTLN/18* (KU563615),& RPTLN/19*

(KU563616)&
* Stomach* RPTLN/18*(KU563615)&
* Heart* RPTLN/9* (KU563610),& RPTLN/18*

(KU563615)&
P.&hispanica& Liver* RPTLN/1*(KU563607)&
* Lung* RPTLN/11*(KU563611)&
* Skin* RPTLN/1* (KU563607),& RPTLN/16*

(KU563613)&
* Stomach* RPTLN/8* (KU563609),& RPTLN/13*

(KU563612)&
* Heart* RPTLN/1*(KU563607)&
* Brain* RPTLN/21*(KU563618)&

  

 

  



Annex   Publication II   

    208 

Scheme 1  

 

 

Figure 1  

 

 

 

Figure 2  

 

Figure 3  

atgatccaggttctcttggtaactatatgcttagcagttttcccatatcaagtcagctct  !!60!
! SP_jerdostatin 
 M  I  Q  V  L  L  V  T  I  C  L  A  V  F  P  Y  Q  V  S  S  !!!!!!!!!20#
# ######## ###################Signal peptide 
aaaaccctgaaatctgggagtgttaatgagtatgaagtagtaaatccaggaacagtcact  120 
 K  T  L  K  S  G  S  V  N  E  Y  E  V  V  N  P  G  T  V  T   ##40#
      Propeptide 
ggattgcccaaaggagcagttaagcagcctgagaaaaagcatgaacccatgaaagggaac  180 
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Figure 4  
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Figure 6  

 

Figure 7  

 

Figure 8  

 


