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ABSTRACT

The loss of forests along with the various types of shrubs in the Mediterranean region is seen as an important driver of climate change and has
been repeatedly related with the observed land degradation and desertification in the region. Nevertheless, the extent of woody perennial veg-
etation cover (WPVC) and its density remain largely unclear. Here, we apply a series of algorithms and methods operationally used in Aus-
tralia for large-scale WPVC mapping and monitoring and demonstrate their applicability in the Mediterranean region using a Spanish area as
the trial site. Five Landsat TM and ETM+ images from various dates spanning 14 years are used to map changes in the extent of WPVC and
to identify areas with a declining, stabilising or recovering trend. Results show that the applied methodology, which incorporates (i) pre-
processing of the Landsat imagery, (ii) a canonical variate analysis to spectrally discriminate between woody and non-woody land cover
types, (iii) a conditional probability network and (iv) spectral indices for mapping woody cover and density trend, is highly successful
and well suited for use in Mediterranean environments. A rigorous accuracy assessment is undertaken producing overall accuracies above
97% for both woody and non-woody cover types and all dates. Results also show that in the area of study, the majority of WPVC distur-
bances were due to forest fires, which represent the region’s most frequent natural and anthropogenic disturbance. This raises significant con-
cerns about the future of the area’s WPVC. Regeneration compensated to some degree for the high disturbance rates. Copyright © 2015 John
Wiley & Sons, Ltd.
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INTRODUCTION

Vegetation acts as an important protective layer for the soil.
Its removal by fire, overgrazing or clearing for agriculture
is related to increased rates of surface runoff, soil erosion
and land degradation (Cerdà & Doerr, 2005; Barua &
Haque, 2013; Bravo-Espinosa et al., 2014; Quiñonero-
Rubio et al., 2015). Changes in woody perennial vegetation
cover (WPVC) are, therefore, important to monitor, as they
are also renowned to directly and indirectly affect biodiver-
sity, climate change and human living conditions (MA,
2005; Bonan, 2008; Kuemmerle et al., 2009; Hansen et al.,
2013; Lee et al., 2013; Griffiths et al., 2014). Over the last
decades, it has increasingly become of international concern
to map and monitor WPVC changes, especially with the rising
effect of human pressure on the planet (Hansen et al., 2008;
Liu et al., 2013).
Traditionally, forest cover inventories from national

institutions and agencies have been used to track the
evolution of forested areas (Hilker et al., 2008). Over the last
decades, in an attempt to curb the limitations of such
inventories (e.g. inconsistency of survey methods and lack
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of resources for quality assessment and updating), this is
all the more attempted by using Earth observation data,
because monitoring techniques based on multispectral
satellite-acquired data have demonstrated potential as a
means to detect, identify and map changes in forest cover
(Coppin & Bauer, 1994; Coppin & Bauer, 1996; Muñoz-
Villers & López-Blanco, 2008; Röder et al., 2008; Gill
et al., 2009; Nilsson et al., 2009). Nevertheless, major
challenges still remain. Per-pixel classification methods
have most commonly been applied with varying degrees of
success: hurdles are introduced by the very nature of the
specific cover type (e.g. phenological differences, shadows
produced from vegetation itself, substantial variability in
vegetation communities and complex terrain gradients),
resulting in intricate and intertwined thematic classes
(Muñoz-Villers & López-Blanco, 2008; Röder et al., 2008;
Gill et al., 2009; Kuemmerle et al., 2009; Nilsson et al.,
2009; Margono et al., 2012).
Comprehensive reviews of different change detection

approaches using Earth observation data have been provided
in the literature (Coppin et al., 2004). Crude ‘from-to’
assessments have typically been employed, along with a
variety of methods that analyse bi-temporal change (Coppin
et al., 2004). The majority of algorithms apply a post-
classification comparison (Onur et al., 2009) or, less
frequently, contextual classifiers (Magnussen et al., 2004)
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or an image-to-image comparison between different dates
(Berberoglu & Akin, 2009). Although post-classification
comparison methods are successful in identifying the
location, extent and nature of changes (Foody, 2002), they
often lead to the identification of false change due to
single-date classification omission and commission errors
(Foody & Boyd, 1999). The image archives available
nowadays permit the shifting towards more sophisticated
multi-date change analysis techniques (Kennedy et al.,
2007; Huang et al., 2010). Unfortunately, the complexity
of such analyses increases exponentially with every added
image, and, as Kuemmerle et al. (2009) suggest, it is
probably best to accurately classify individual images first
and assess change a posteriori.
To improve the efficiency of a forest cover change

analysis, Kennedy et al. (2007) developed a trajectory-based
change detection algorithm using multi-temporal Landsat
data. They identified as primary source of error in their
analysis the mis-registration of images in a stack. Bodart
et al. (2011), under the auspices of the Joint Research Centre
of the European Commission TREES-3 project, developed a
pre-processing chain of multi-temporal Landsat data for
classifying tropical forests using an object-based supervised
classification approach. They argue, as do Hansen et al.
(2008), that misclassification of forest changes is greatly
restrained by reducing the effect of external factors, such
as differences in atmospheric conditions, temporal variations
in the illumination and viewing angles and sensor calibration
inconsistency. Huang et al. (2010) also suggest a methodology
for the production of forest disturbance maps based on dense
Landsat time-series stacks and the spectral–temporal properties
of closed or near-closed canopy forests. Their method first
creates imagery with minimum (cloud and shadow) contami-
nations and minimum instrument or processing-related errors
and then tracks forest disturbances using index values of bands
3, 5 and 7. Their automated approach identified most
disturbances but fell short of identifying some types of
clearing and labelled as disturbances some non-forest land
cover types.
In Australia, an operational methodology was devised by

the Commonwealth Scientific and Industrial Research
Organisation (CSIRO) for mapping and monitoring the
extent of WPVC for the entire Australian continent
(Caccetta et al., 2007; Lehmann et al., 2012). As in the case
of Hansen et al. (2008) and Bodart et al. (2011), the CSIRO
methodology places emphasis on the creation of consistent
time-series Landsat data, before it moves on to apply a
multi-temporal classification scheme (Furby, 2002; Caccetta
et al., 2003) with a view to minimise commission and
omission errors due to individual-year image classification
errors. The methodology also maps the increasing, decreas-
ing or stabilising trend in the density of WPVC, which is
appropriate for the identification of areas that warrant
attention and the adaptation of mitigation, reforestation or
other land management policies.
Here, our main aim is to use the CSIRO methodology in a

Spanish area as a trial of its applicability in a Mediterranean
Copyright © 2015 John Wiley & Sons, Ltd.
environment. The area has been subjected to major changes
in WPVC, mainly pine forests of the Pinus halepensisMiller
species and Mediterranean shrubs (matorral or maquis,
typically consisting of densely growing evergreen shrubs),
as a result of forest fires (Cerdà et al., 1995; Bodí et al.,
2011), the abandonment of agricultural and grazing land
(Bonet 2004; Chrenková et al., 2014), the transition to a
more industrial and tourism-oriented economy and the
intensification of agriculture, among others (Symeonakis
et al., 2007). Forest fires are particularly seen as one of the
most important drivers of the observed land degradation in
the region (González-Alonso et al., 2007), as thousands of
hectares of forest and scrubland are destroyed each year:
only in the first 7months of 2009, for example, fires burned
some 75,000 ha of WPVC (AFP, 2009). There is, therefore,
a need for accurate monitoring methods that would allow for
the identification of any decreasing forest cover trend and
the adaptation of measures for its reversal.
Within this main aim, our specific objectives are as

follows:

• to map WPVC, WPVC change and WPVC density
trends in the period between 1987 and 2001 in a Span-
ish area using Landsat imagery and the CSIRO method-
ology and

• to carry out a validation of the multi-temporal classifi-
cations using aerial photography in order to assess the
performance of the methodology in the study area.
MATERIALS AND METHODS

Study Area

The trial site in Spain is composed by a system of valleys
(Cànyoles and Albaida valleys) and mountain ranges (Serra
d’ Enguera, Grossa and de la Solana) belonging to the Pre-
betic system (SW–NE direction). It covers an area of
approximately 550 km2 (Figure 1) and is characterised by a
complex topography, which ranges between 250 and 1,000
masl. The basins are Miocene marls, whereas the ranges
are mainly composed of Cretaceous limestones. The climate
is Mediterranean, with hot and very dry summers, and
higher precipitation amounts in the autumn. The Cànyoles
watershed exhibits a dry semiarid Mediterranean climate,
with dry and hot summers and warm winters. Temperatures
are highest in July and August with mean daily values of 25°
C; January is the coldest month (mean daily values of 10°C).
Mean annual rainfall ranges from 693mm per year at the
Xàtiva gauge station in the eastern part of the basin to
500mm per year at the Almansa gauge station in the western
part of the study area. Mean annual evapotranspiration
exceeds 1,000mm per year. . Natural vegetation is mainly
developed on the range systems and on limited soil depths.
It is composed of Pinus halepensis Miller and Mediterra-
nean sclerophic scrubs, such as Pistacia lentiscus L.,
Quercus coccifera L., Rosmarinus officinalis L. and Ulex
parviflorus Pourr., with different density and continuity in
the cover according to its degradation state (Cerdà & Doerr,
LAND DEGRADATION & DEVELOPMENT, (2015)



Figure 1. (a) Location of study area within Europe and Spain. (b) Study area, watershed boundaries (in light blue) and distribution of validation samples (yel-
low rectangles) for the 2001 image using a stratified random approach (non-woody polygons: 353; woody polygons: 169). This figure is available in colour

online at wileyonlinelibrary.com/journal/ldr.

MULTI-TEMPORAL FOREST COVER CHANGE AND FOREST DENSITY TREND DETECTION
2007). Nevertheless, the valleys are extensively cultivated
with unirrigated types such as olive trees and vineyards.
Residential and urban use in the area maintains a predomi-
nant concentrated model. Under such environmental condi-
tions and human pressure, forest fires are a frequent
phenomenon (Cerdà et al., 1995; Cerdà 1998; Cerdà &
Doerr, 2005).

Satellite and Ancillary Data

Five TM and ETM+ images (path: 199, row: 33) from the
National Aeronautics and Space Administration GeoCover
archive (Tucker et al., 2004) were used spanning 14 years
from 1987 to 2001 (Table I).
The time series Landsat data were registered to WGS84

(Universal Transverse Mercator projection; zone 30 North).
The Shuttle Radar Topography Mission digital elevation
model of the United States Geological Survey with a hori-
zontal resolution of 90m was used for the orthorectification
process, which plays a critical role in the whole change
Table I. Landsat imagery used (Tucker et al., 2004), classification accura
(NW) cover maps for each image and area covered by the validation po

Sensor and
aquisition date

Overall
accuracy

(%) Kappa

Correct
C

W NW W

1987 TM5, 13/08/1987 96·82 0·94 0·97 0·97 0·0
1992 TM5, 20/06/1992 97·62 0·95 0·99 0·96 0·0
1994 TM5, 29/06/1994 96·81 0·94 0·98 0·95 0·0
2000 ETM+, 08/08/2000 97·93 0·96 0·98 0·98 0·0
2001 ETM+, 08/06/2001 96·94 0·94 0·98 0·96 0·0

Copyright © 2015 John Wiley & Sons, Ltd.
mapping process. If time-series images are not co-registered
accurately, the same pixel on different images will be shifted
causing serious problems for tracking land cover change
through time. The 2001 image was chosen as the reference
for the co-registration, and roughly 100 points were used.
Although the overall size of the mean errors (root-mean-
square deviation) was around 10m in both directions for
all images, which is less than one pixel, it is the absolute
pixel errors of more than one pixel, which are a cause of
concern in multi-temporal studies. According to an image-
matching programme used, two concentrations of relatively
low values were detected on the x-direction, indicative of
the care required for using such data for multi-temporal
mapping of land use/cover changes.
Ideally, local knowledge, ground data and high-resolution

aerial/satellite images are used to identify sites of desired
land cover types in the study area and their change through
time. However, it is often the case that training and
validation data exist only for a limited number of dates. In
cies (%) of the woody (W) and the non-woody perennial vegetation
lygons for each type and epoch

ommission
errors

Omission
errors

Area of reference polygons
(pixels)

NW W NW W NW Total

3 0·03 0·03 0·03 4,064 7,920 11,984
4 0·01 0·01 0·04 3,872 8,144 12,000
5 0·02 0·02 0·05 3,872 8,144 12,000
2 0·02 0·02 0·02 3,920 7,840 11,760
4 0·02 0·02 0·04 3,184 8,016 11,200
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this study, training and validation data came from the
sources shown in Table II. The validation area was reduced
to 90% of the original study area because of issues related
with the availability of ground reference data for the entire
period of study.
Validation of the WPVC maps, which included forest and

open shrub land, was performed by photo interpretation
using homogeneous polygons as sampling units in a
stratified random sampling frame across the woody and
non-woody areas. First, we created around 500 polygons
across the study area. The number of polygons per cover
type (woody and non-woody) was proportional to the area
covered by each type in each year. The polygon positions
were randomly defined as points with a minimum distance
of 200m between them. The random points were converted
to square polygons of 5 × 5 Landsat pixels. The sampling
polygons were then reduced to homogeneous land-cover
classes according to the reference aerial photos. In some
cases, the shape and size of the polygons were altered to
follow the ground cover morphology, making sure that they
always measured the equivalent of at least four Landsat
pixels. When a sample polygon was smaller, a new one
was added to compensate. The area covered by the reference
polygons for both (woody and non-woody) cover types is
shown in Table I.

Woody Perennial Vegetation Cover Mapping

The orthorectified images were calibrated by converting
their raw digital counts to be consistent with the reference
image of 2001. Three calibration steps were applied, namely
top-of-atmosphere reflectance calibration (Vermote et al.,
1994), bi-directional reflectance distribution function
calibration (Wu et al., 2001) and terrain illumination
correction based on the C-correction (Teillet et al., 1982)
and incorporating a ray-tracing algorithm for identifying
true shadow (Wu et al., 2004).
Table II. Training and validation data (all URLs: accessed 25 Feb-
ruary 2015)

Year Type Scale Source

1977 Aerial
photos

1:18,000 Inter-ministerial or IRYDA
flight (Instituto Geográfico
Nacional-Centro Nacional de
Información Geográfica (IGN-
CNIG); WMS URL: http://
fototeca.cnig.es)

1991 Aerial
photos

1:25,000 Cartographic Institute of
Valencia (ICV; http://www.
icv.gva.es/)

1998 Orthophotos 1:25,000 Spanish national olive grove
registry (SIG-oleícola; http://
www.oleohispana.com/sigo.
htm)

2002 Colour
orthophotos

1:25,000 Spanish national agricultural
land registry (SIGPAC; http://
wms.magrama.es/wms/wms.
aspx)

Copyright © 2015 John Wiley & Sons, Ltd.
A large set of training samples was used to optimise the
representation of environmental heterogeneity. A canonical
variate analysis (CVA; Richards, 2013) was undertaken to
investigate the spectral separability of the woody and non-
woody vegetation training samples. CVA is widely used to
analyse group structures in multivariate data and as a means
of separating a group of samples from different populations.
In brief, CVA finds linear combinations of the original
variables (Landsat bands, in this case) that maximise the
separation between the different groups while minimising
the within-group variance. Well-separated land cover types
can be reliably mapped. The ordination plots from the
CVA also provide the basis for grouping the training sites
into spectrally consistent ‘information classes’ into which
the image data can be classified. Moreover, the canonical
vectors give the directions of maximum site separability,
and the canonical roots give a measure of the amount of site
separation in these directions.
Linear combinations of image bands, that is, indices, were

then used to discriminate between the two classes. Figure 2a
is an example canonical variate means plot for the training
sites using the 2001 image data. It shows that woody and
non-woody training sites are separable, although there are
some non-woody sites that are spectrally similar to the
woody training sites. This is an indication that the classes
can be separated using two indices. In Figure 2a, they are
separated by the first two canonical vectors; however,
simpler indices were sought that are more robust through
time. A contrast-directed CVA (Campbell & Furby, 1994)
was performed on the 2001 image to derive the following
indices:

Index1 ¼ band3þ band5; and (1)

Index2 ¼ band4þ band2 (2)

Thresholds that define the boundary between the certain
woody vegetation spectral region and the uncertain spectral
region were set so that no commission errors were made.
Furthermore, additional thresholds were identified that
distinguish between the uncertain areas and the certain
non-woody vegetation spectral regions so that no omission
errors were made. At first, these thresholds were identified
from the training data. They were then refined by consider-
ing the entire image area. The previously applied calibration
meant that the thresholds derived for the 2001 image could
be applied to the rest of the images. The indices and thresh-
olds were used to calculate a probability of woody cover
image for each time frame in the following manner:

• Pr(woody) = 1, for pixels with index values in the
‘certain woody vegetation’ spectral region;

• Pr(woody) = 0, for pixels with index values in the
‘certain non-woody vegetation’ region; and

• 0<Pr(woody)< 1, for pixels with index values in the
uncertain spectral region (based on the closeness to
the ‘certain woody vegetation’ thresholds).
LAND DEGRADATION & DEVELOPMENT, (2015)

http://wms.magrama.es/wms/wms.aspx
http://wms.magrama.es/wms/wms.aspx
http://wms.magrama.es/wms/wms.aspx


Figure 2. (a) Example of a canonical variate means plot for training sites
from the 2001 data. The groupings of sites, or contrasts, used to derive
the indices are depicted with the green and pink ellipses. (b) Index 2 versus
index 1 plot for the same training sites from the 2001 image. ‘Certain
WPVC’ sites are within the limits of the black box. ‘Certain non-WPVC’
sites are outside the limits of the green box. The ‘uncertain’ sites lie between
the two boxes. WPVC, woody perennial vegetation cover. This figure is

available in colour online at wileyonlinelibrary.com/journal/ldr.
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Within the uncertain spectral region, additional information
was used to label a pixel as ‘woody’ or ‘non-woody’. This
was derived from the pattern of index values through time.
A joint model for multi-temporal classification using

conditional probability networks (CPNs; Kiiveri & Caccetta,
1998; Kiiveri et al., 2001) was then specified. The CPNs
provide a probabilistic framework for combining data,
typically with the view to classifying the data. In our case,
the input to the CPN were the five woody cover probability
images calculated from the indices and the thresholds and a
series of files that describe the relationships, or rules, between
the CPN variables, that is, the true and the estimated woody
cover maps. This approach exploits the observation that many
Copyright © 2015 John Wiley & Sons, Ltd.
commission errors due to land management practices vary
more rapidly compared with woody vegetation processes
and therefore the temporal rules are used to minimise the
probability that such areas are labelled ‘woody vegetation’
in any year. The output of the CPN was a new probability
image for each epoch. These were the modified probabilities
that were altered by the aforementioned rules providing more
consistent woody cover estimates through the years.

Analysis of Woody Perennial Vegetation Cover Change and
Woody Perennial Vegetation Cover Density Trends

WPVC masks for each date were formed from the modified
probability maps produced by the CPN. These WPVC masks
were then compared to provide an estimate of WPVC change
through time. The output of the CPN, a continuous field valued
between 0 and 1, is the probability of a location being WPVC.
To avoid bias, we converted the CPN outputs to woody/non-
woody (binary) maps using the 0·5 threshold. We summarise
the overall accuracy, per cent correct, commission and omis-
sion errors and kappa statistic values in Table I.
The woody cover results for the five epochs may be

summarised in a number of ways. To simplify the
discussions here, we derived a simplified WPVC change
map, as previously suggested by Kuemmerle et al. (2009),
by grouping the four periods (i.e. 1987–1992, 1992–1994,
1994–2000 and 2000–2001) into two 7-year equal-interval
slots: 1987–1994 and 1994–2001, roughly equal to the
regeneration period of woody vegetation in the specific Med-
iterranean environment. We defined the following classes,
which can also be seen in Figure 3a:

• two disturbance classes depending on the time of distur-
bance (i.e. the complete or near-complete removal of
WPVC by natural human-driven processes, e.g. fires
and clearing);

• two reforestation classes;
• two mixed (i.e. recovery and disturbance) classes; and
• the two permanent WPVC and non-WPVC classes.

The methodology also provides another monitoring tool,
the WPVC density trends, that allows for an insight to the
dynamic processes that ensue at the vegetative cover. It
provides a tool for identifying not only the presence or
absence of WPVC but also its density, whether that is
decreasing (e.g. through fire) or increasing (e.g. reforesta-
tion) or going through more subtle changes brought about
by natural processes, such as recovery, stabilisation or
regression (Wallace et al., 2006; Lehmann et al., 2012).
The methodology exploits changes in the value of the first
index (Equation 1) through time being related to albedo as
a surrogate for (the inverse of) WPVC density. Figure 4b
shows plots of the first index values (Equation 1) through
time for six sites with different WPVC densities. Lower
values of the index correspond to denser WPVC and higher
values to less dense. Areas of increasing WPVC appear to
have lower index values in the later years than in the earlier
ones. Conversely, areas with decreasing WPVC show higher
index values in the later years than in the earlier ones. Areas
LAND DEGRADATION & DEVELOPMENT, (2015)



Figure 3. Spatial distribution of woody perennial vegetation cover changes and percentage of total area covered by the different change (disturbance and re-
covery) and stable (permanent woody and non-woody) classes for the periods 1987–1994 and 1994–2001. This figure is available in colour online at

wileyonlinelibrary.com/journal/ldr.
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that have been through some sort of disturbance (e.g. fire
and grazing) but then recover have index values that are
low in the early years, higher in the middle and then tend
to return towards the lower values. These trends are
summarised by fitting the linear and quadratic components
(i.e. the slope and curvature) of the response of the first
index through time. In order to obtain independent estimates
of the two parameters, orthogonal polynomials are used for
the fitting process (Draper & Smith, 1981; Wallace et al.,
2006). The summaries of change that are produced for each
pixel are recorded as six bands, scaled to fit the 1-byte range
(0–255; Table III).
RESULTS AND DISCUSSION

Woody Perennial Vegetation Cover and Woody Perennial
Vegetation Cover Change

The classification as ‘woody perennial vegetation’ relies on
the spectral contrasts of cover types resulting from physical
differences on the ground and effectively requires a certain
density of vegetation (Camacho-De Coca et al., 2004).
Hence, thin, scattered vegetation with a high proportion of
soil background may be omitted (Cohen et al., 2003).
Certain dense but highly reflective vegetation types may also
be omitted (Wu et al., 2005); however, no such cases were
identified in this study, and our contextual classification
approach resulted in highly reliable WPVC maps for all time
periods. Table I shows the accuracy figures for the different
dates for woody and non-woody cover types. Overall
accuracies are between 96·81% and 97·93% and kappa
values between 0·94 and 0·96. Overall accuracy of our
change map, estimated as the product of the individual
map accuracies of Table I (Coppin et al., 2004), was 87%
for the entire period (1987–2001), 92% for the first half
(1987–1994) and 92% for the second half (1994–2001). In
the 14-year period from 1987 to 2001, WPVC decreased
Copyright © 2015 John Wiley & Sons, Ltd.
from around 219 to 213 km2, and, consequently, non-woody
areas increased by 6 km2, from 330 to 336 km2 (Table IV).
Disturbances were the main reason for these changes:

those that occurred during the first period (1987–1994;
classes 211 and 212 in Figure 3a) and those of the second
period (1994–2001; classes 121 and 221 in Figure 3a). The
total area covered by these disturbances together is about
66 km2, which represent 8% of the study area or 20% of
the area that was WPVC in 1987. They appear clustered in
the northwest, east and southeast where two major fire
events took place in 1997 and 2001 (Figure 3b). Annual
disturbance rates across the study area doubled in the second
period: from 1·25% between 1987 and 1994 to 2·53% in
1994–2001.
During the 14-year period of study, regeneration occurred

in 11% of all non-WPVC in 1987 (classes 112 and 122 in
Figure 3a) or in 5% of the total study area. The latter
percentage is calculated by also including the areas that were
covered by WPVC in the beginning of the period of study (i.
e. 1987), suffered some disturbance between 1987 and 1994
but recovered in the second period (class 212 in Figure 3a).
Recovery mainly occurred in three areas: one in the northeast,
one in the centre and one in the southeast (Figure 3b).
Regeneration annual rates are also on the increase, because
they appear to be higher in the second period (1·06%) than
in the first (0.81%).
Figure 5 presents four examples of disturbance and

regeneration as captured by the (validation) aerial photogra-
phy and mapped by our methodology: (i) area A, a case of
agricultural expansion in a forested area, taking place in
the first part of the study period (change code 211); (ii) area
B, a case of a fire breaker, which was picked up by our
methodology only when it became wide enough in the
second part of the period of study, that is, wider than a
Landsat pixel (code 221); (iii) area C, an area in the
northwest representing a disturbance occurring in the second
half through an extensive forest fire (code 221); and (iv) area
LAND DEGRADATION & DEVELOPMENT, (2015)



Figure 4. Temporal density trends for sample pixels showing areas of stable, improving and declining woody perennial vegetation cover as well as areas that
have been disturbed and are recovering. This figure is available in colour online at wileyonlinelibrary.com/journal/ldr.

MULTI-TEMPORAL FOREST COVER CHANGE AND FOREST DENSITY TREND DETECTION
D, on the eastern limits of the area of study, which includes a
part that has recovered in the first half and is disturbed in the
second (code 121), a part that is reforested in the first half
Table III. The six bands of the density trends file

Band Description

1 Mean index brightness over all dates
2 Linear trend (slope) in brightness over time (scaled)
3 Quadratic trend (scaled)
4 SD about mean (scaled)
5 Residual SD after fitting linear trend (scaled)
6 Residual SD after fitting linear and quadratic trend (scaled)

SD, standard deviation.

Copyright © 2015 John Wiley & Sons, Ltd.
(code 122) and a part that is disturbed in the second half
(code 221).
It is worth noting here that there is a time lag in the detec-

tion of revegetated areas, which varies with region and
vegetation type. Hence, revegetated areas cannot be mapped
able IV. Area (km2) covered by the woody [woody perennial
egetation cover (WPVC)] and the non-woody (NW) perennial
egetation cover types in the five epochs

1987 1992 1994 2000 2001

W 330·30 318·51 327·16 326·70 336·37
PVC 219·23 231·01 222·37 222·82 213·15
T
v
v

N
W
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Figure 5. Examples of disturbance and regeneration/reforestation as seen in the validation aerial photography and as mapped by the presented methodology
employing a conditional probability network (CPN). This figure is available in colour online at wileyonlinelibrary.com/journal/ldr.
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until the vegetation achieves a sufficient density, and,
therefore, some recent, slow-growing or sparse revegetated
areas cannot be detected. Also, errors of commission may
occur when other land cover types give a similar spectral
response to perennial vegetation. The temporal smoothing
of the CPN removes most of the transient cultivation effects
that might cause these errors. However, there are cases
where some errors of commission remain. Examples include
cleared areas with persistent dark soil.

Woody Perennial Vegetation Cover Density Trends

Examples of temporal densities for sample pixels
representing areas of stable, improving or declining WPVC
Figure 6. Linear and quadratic woody perennial vegetation cover (WPVC) tempor
red a declining trend. Green areas are those that have been disturbed but are recove
only partially recovered. Stable WPVC areas, in black; stable non-WPVC areas,

journal/l

Copyright © 2015 John Wiley & Sons, Ltd.
trends, as well as areas that have been disturbed and are
recovering, are shown in Figure 4. Figure 6 is a sample
woody density trend map between 1987 and 2001 where
quadratic and linear trends are displayed simultaneously.
An overall improvement in the density of woody cover
was found in most woody areas that were not disturbed by
fire (shades of blue in Figure 6). A large number of woody
areas in 1987 were found to be declining in terms of their
density in WPVC mainly due to the two main fire events
in the northwest and the east (in shades of red in Figure 6).
The visualisation of the density trends six-band output file
also revealed areas in the north of the study area that faced
some disturbance but appear to be recovering back to 1987
al density trends. Shades of blue represent an increasing trend and shades of
ring; mixed colours (yellow and cyan) are areas that have been disturbed and
in grey. This figure is available in colour online at wileyonlinelibrary.com/
dr.
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woody cover density levels (shades of green in Figure 6) as
well as areas that were disturbed but only partially recovered
(yellow and cyan pixels in Figure 6).
The mapping of WPVC density trends allows for the

distinction between various types of disturbance or
recovery looking at index values and therefore facilitates
the visual analysis of vegetation condition without the need
to incorporate several ‘from-to’ GIS analyses. In this case
study, for example, with five dates and two land cover
types (woody and non-woody), the presence/absence
change mapping entails the calculation of 25 = 32 possible
from-to cover changes. Increasing the time series to include
more dates, for the more accurate delineation of WPVC,
would complicate such an analysis exponentially (26 = 64,
27 = 128 and 29 = 256 ‘from-to’ land cover change
combinations!).
CONCLUSIONS

Mapping of vegetation cover typically provides a static
description of the resource. Vegetation is, nonetheless,
dynamic, and its change over time is perhaps the most
significant information for management. In the Mediterra-
nean region, there is a pressing need for accurate WPVC
mapping methods that would allow for the identification of
any decreasing trends in woody cover and density and the
adaptation of measures for its reversal. The freely available
Landsat archive can provide suitable spatial, spectral and
temporal resolutions and the means to move from bi-
temporal to mapping trajectories of change, provided that
accurate individual-year classifications can be achieved.
The methodology presented here, devised by the CSIRO
and based on multiple-year processing of Landsat data,
proved to be a powerful monitoring tool of Mediterranean
WPVC producing highly accurate WPVC maps. According
to these maps, 20% of the area that was WPVC in 1987
experienced some disturbance by the end of the study
period. Disturbance rates also doubled in the second half
of the 14-year period.
Forested surfaces in the area are mainly composed of

discontinuous pine trees mixed with Mediterranean woody
shrubland species (i.e. Mediterranean maquis). The
classification methodology allowed for a good detection of
natural continuous vegetated areas with these characteristics
as it was capable of discriminating from non-forested areas
(such as olive or almond groves) or highly dispersed natural
vegetation without enough continuity to be considered as
forested areas. The spatiotemporal approach to classification
had the effect of smoothing out single-date classification
errors and removing some of the remaining terrain-induced
error artefacts from the single-date prior probability maps.
The methodology also provided an insight in the trend of

the density of woody vegetation cover allowing for an
appraisal of any disturbance, with or without recuperation.
Two major fire events, which are prevalent in the
Mediterranean region in the very hot and dry summer
months, were identified as the main drivers of the decline
Copyright © 2015 John Wiley & Sons, Ltd.
in the extent and density of WPVC in the area. It is
suggested that a balance should be sought between the use
of sufficient data for the study of a particular aspect of
WPVC in Mediterranean environments and the complexity
of the respective calculations.
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