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Abstract

We derive the effects of a non-zero cosmological constant Λ on gravitational wave
propagation in the linearized approximation of general relativity. In this approximation
we consider the situation where the metric can be written as gµν = ηµν + hΛ

µν + hW
µν ,

hΛ,W
µν << 1, where hΛ

µν is the background perturbation and hW
µν is a modification inter-

pretable as a gravitational wave. For Λ 6= 0 this linearization of Einstein equations is self-
consistent only in certain coordinate systems. The cosmological Friedmann-Robertson-
Walker coordinates do not belong to this class and the derived linearized solutions have
to be reinterpreted in a coordinate system that is homogeneous and isotropic to make
contact with observations. Plane waves in the linear theory acquire modifications of order√
Λ, both in the amplitude and the phase, when considered in FRW coordinates. In the

linearization process for hµν , we have also included terms of order O(Λhµν). For the
background perturbation hΛ

µν the difference is very small but when the term hW
µνΛ is re-

tained the equations of motion can be interpreted as describing massive spin-2 particles.
However, the extra degrees of freedom can be approximately gauged away, coupling to
matter sources with a strength proportional to the cosmological constant itself. Finally
we discuss the viability of detecting the modifications caused by the cosmological con-
stant on the amplitude and phase of gravitational waves. In some cases the distortion
with respect to gravitational waves propagating in Minkowski space-time is considerable.
The effect of Λ could have a detectable impact on pulsar timing arrays.
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1 Introduction

The smallness of the cosmological constant obtained from fits to the current ΛCDM cosmolog-
ical models[1] (Λ ≃ 10−52 m−2) may lead us to believe that it is totally unobservable except
at the largest distances. However, the issue of the relevance of the cosmological constant in
local measurements (meaning measurements that involve sub-cosmological scales, such as for
instance galaxy clusters) has received growing attention[2, 3]. One interesting possibility is
assessing the influence of Λ on the bending of light from distant objects. At present there are
rather diverging results on the subject giving rather different results concerning the relevance
of Λ ranging from zero[4] or very small[5] to appreciable ones[6]. The effect of Λ on the
photon propagation, including frequency shift, Shapiro time delay and deflection of light, is
currently under consideration[7].

The importance of these studies cannot be overemphasized. The presence of a non-
zero cosmological constant contributing around 70% to the energy and matter budget of
the universe, seemingly making the Universe globally a de Sitter space-time, is one of the
intriguing puzzles of Physics in our time. Observations capable of confirming or refuting the
relevance of Λ at redshift z < 1 are clearly of utmost importance.

The studies of what has been termed ‘local gravity with a cosmological constant’ rely on an
approximate solution, valid at first order in Λ, obtained after linearizing Einstein equations.
These solutions have recently been studied in detail by one of the authors[3] using different
gauge choices. It has been found that in the Lorenz gauge one can in addition require time
independence of the metric solutions. After an additional coordinate transformation these
solutions correspond to the linearized version of the Schwarzschild-de Sitter exact solution
of Einstein equations. The modification to the Newtonian limit in such coordinates was also
discussed in detail[3]. There are some subtleties related to the physical interpretation of the
different coordinate systems that we shall review below.

Here we propose to study a different problem. Namely, how Λ influences the properties of
gravitational waves (GW). As of today, gravitational waves are an unambiguous prediction of
General Relativity that has not been tested directly. They are ‘observed’ indirectly as they
are the missing ingredient needed to restore the energy balance of some astrophysical binary
systems[8]. There are three types of experiments potentially capable of yielding a non-zero
signal in the coming years. Let us summarize their physical and astrophysical reach here:

Ground based GW detectors such as LIGO [9] can reach sensitivities down to ∼ 10−23

with optimal sensitivity in the region between 10 Hz and 103 Hz. The space mission LISA[10]
will reach a similar sensitivity in the range 10−2 Hz to 10−3 Hz but will actually be able to set
relevant bounds on a more extended range of frequencies. Finally the International Pulsar
Timing Array project[11] or the Square Kilometer Array project[12] are sensitive to lower
frequencies ν < 10−4 Hz but reach only a sensitivity of ∼ 10−10 going up to ∼ 10−15 for
ν ∼ 10−10 Hz. These sensitivity ranges are targeted to specific astrophysical phenomena and
are expected to provide detectable signals and confirm the existence of GW in the coming
decades.

Given the present difficulties in asserting the very existence of GW it may seem academic
to try to find modifications due to the presence of a cosmological constant that is small.
However, it should be borne in mind that in the inflationary epoch the value of Λ was much
larger than at present so these effects might be of relevance for primordial GW. As we will
discuss in this work the effect of Λ could be of some relevance for GW travelling very long
distances and for pulsar timing array projects. On the other hand, some of the results
presented here we believe are of interest to understand the issue of the gauge choice in the
presence of Λ for the linear theory. Finally, it seems interesting in its own right to attempt to
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understand wave propagation in de Sitter space-time if Λ is indeed a fundamental parameter
of nature.

This paper is organized as follows. In section 2 we discuss the linearization of Einstein
equations, including a discussion on different gauges and how they affect the wave equation
for the gravitational field hµν . In section 3 we discuss different coordinate realizations of de
Sitter space-time and their relation. In section 4 we construct background solutions retaining
terms of order Λhµν . This discussion is extended in section 5 to include GW solutions that
‘feel’ the presence of Λ. In section 6 we analyze the detectability of the effects previously
calculated. In section 7 we summarize the conclusions of this study.

Some of the subjects discussed here appear to have received little attention in the past
although there is an extensive literature on gravitational waves [13]. The effect of Λ on GW
has been considered in [14, 15]. Physical consequences appear to have been extracted in
the context of primordial gravitational waves[16] and only indirectly in what concerns the
evolution of the modes and the power spectrum.

2 Linearization in the presence of Λ

Einstein equations, derived from the Einstein-Hilbert action, read

Rµν −
1

2
gµνR+ Λgµν = −κTµν (1)

whereRµν is the Ricci tensor for gµν , Λ > 0 is the cosmological constant and κTµν is the source
term. Tµν is the usual stress-energy tensor of matter in the gravitational field generated by
gµν and κ is the dimensionful constant coupling matter and gravity. However, throughout this
work we will consider Tµν = 0 unless otherwise specified. The inclusion of the cosmological
constant term leads to curvature even in the absence of any source

R = 4Λ. (2)

We consider the linearized theory where the metric is written as

gµν = ηµν + hµν , (3)

ηµν being the Minkowski metric and hµν << 1. The Ricci tensor to first order in the small
perturbation hµν reads

Rµν =
1

2

(

�hµν + h,µν − hλµ,νλ − hλν,µλ

)

, (4)

indices being lowered and raised with ηµν and h = ηµνhµν . The theory is invariant under
coordinate transformations xµ → xµ + ξµ(x). For infinitesimal transformations the pertur-
bation metric hµν transforms as hµν → h′µν = hµν + ∂µξν + ∂νξµ. A gauge choice is possible,
amounting to selecting a particular class of coordinates, and in fact such a choice is necessary
if the perturbation hµν is to be quantized. In order to discuss GW two different gauge choices
are particularly appropriate.

2.1 Lorenz gauge

In order to describe perturbations around flat space-time it is customary to employ the Lorenz
gauge.

∂µh
µ
ν =

1

2
∂νh, (5)
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or
∂µh̃

µ
ν = 0, (6)

where

h̃µν = hµν −
1

2
ηµνh (7)

is the trace reversed version of hµν .
In this gauge, expression (4) is simplified

Rµν =
1

2
�hµν , (8)

and we obtain the equation of motion

�

(

hµν −
1

2
ηµνh

)

+ 2Λhµν = −2Ληµν (9)

which has always to be considered together with the Lorenz gauge condition (5).
Whether the term of order O(hΛ) has to be considered or not depends on the relative

magnitude of h and Λ. There will be situations where the inclusion of this term is justified
and may lead to observable consequences. We shall postpone the rest of the discussion on this
issue to sections 4 and 5. Note, nonetheless, that if the Λhµν term on the l.h.s. is omitted
(and only in this case) there is a residual gauge freedom within the Lorenz gauge. If we
perform a linear coordinate transformation

xµ → x′µ = xµ + ξµ, (10)

equation (5) is fulfilled as long as ξµ is an harmonic function, i.e. �ξµ = 0. These residual
coordinate transformations are sometimes termed ‘coordinate waves’ for rather obvious rea-
sons. Note also that whether this is a symmetry of the equations of motion or not, depends
on the terms retained in the linearization; the term Λhµν breaks this residual coordinate
invariance.

2.2 Λ gauge

It will be useful to consider an alternative gauge choice[17], which we will term Λ-gauge. This
is given by the gauge condition

∂µh̃
µ
ν = −Ληνµx

µ. (11)

In this gauge the linearized equations of motion look slightly different

�

(

hµν −
1

2
ηµνh

)

− 2Λhµν = 0. (12)

In particular we note that the term independent of hµν on the r.h.s. of (9) is absent. There
is a set of coordinate transformations that can be performed without leaving the gauge orbit
(11); these are transformations x′µ = xµ + ξµ with

�ξµ = −Λξµ. (13)

However, in the Λ-gauge this residual coordinate transformations are not a symmetry of the
equations of motion regardless of the terms retained in the linearization and therefore cannot
be used to remove degrees of freedom. Generally speaking, linearization leaves global Lorentz
transformations as the only symmetry of the equations of motion. The Lorenz gauge is in a
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way special as some additional freedom to perform local coordinate transformations remains
if the term Λhµν is neglected. The situation in the Λ-gauge, where there is no residual
symmetry, is, on the contrary, the generic one.

The connection between the two gauge choices in the linear theory is easily made when
the terms Λhµν are omitted. It is implemented via the following change of coordinates

xµ → x′µ = xµ + ξµ =

(

1− Λ

12
x2
)

xµ. (14)

This change of coordinates transforms a solution of �h̃µν = 0 in the Λ-gauge (coordinates
x) to a solution of �h̃µν = −2Ληµν in Lorenz gauge (coordinates x′). Note the simplicity of
the equation for linear perturbations in the Λ-gauge if the term of order Λhµν is omitted. All
reference to the cosmological constant is eliminated.

The previous discussion in the Λ-gauge reminds us that in general, in the linearized
approximation, the perturbation metric hµν is expected to have up to six full degrees of
freedom. Only in certain cases a residual gauge freedom can be used to further reduce the
number of degrees of freedom.

Let us elaborate a bit more on this issue as it is conceptually important. In the Lorenz
gauge, with the term Λhµν omitted, the residual symmetry (10) allows us to move freely
between different coordinate systems, say x′ and y′, which are not trivially related by Lorentz
transformations and yet preserve the form of the equations of motion. On the contrary, if
we undo transformation (14) we get two coordinate systems x and y in which the Λ-gauge
condition is fulfilled but at best only one of these gauge transformed coordinate systems obeys
the linearized equations of motion in the Λ-gauge; the other one is off-shell. That is to say,
the number of independent degrees of freedom seems to be larger in the Λ-gauge. However,
since this is purely due to a gauge choice, the additional apparent degrees of freedom cannot
correspond to physical ones.

If the term of order Λhµν is retained, i.e. in the Lorenz gauge the term 2Λhµν on the
l.h.s. of (9) or the analogous −2Λhµν in the Λ-gauge are kept, there is no residual symmetry
whatsoever. Let us take for example (9) in the Lorenz gauge; as we will see in detail in section
5 this generates a genuine mass term and therefore more physical degrees of freedom appear
associated to hµν . This is not a gauge artifact.

3 De Sitter space-time

De Sitter space-time can be described by many coordinate systems. A convenient choice of
coordinates is Schwarzschild-de Sitter (SdS). These provide a time-independent metric in a
gauge that is none of the two previously discussed

ds2 =

[

1− Λ

3
r̂2
]

dt̂2 −
[

1− Λ

3
r̂2
]−1

r̂2 + r̂2dΩ2. (15)

and clearly shows the presence of the de Sitter horizon. We note that this metric admits an
expansion in integer powers of Λ. Note also that in this metric the spatial part does not quite
correspond to spherical coordinates.

At the opposite extreme, one can select a metric that depends only on time and is position
independent. It is the Friedmann-Robertson-Walker (FRW) metric

ds2 = dT 2 − exp(2

√

Λ

3
T )d ~X2. (16)
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This metric incorporates the physical principles of cosmological homogeneity and isotropy
as it does not depend on the position. The coordinates Xi have a clear physical meaning,
they are comoving coordinates anchored in space that expand with the universe. These are
the natural coordinates where our world appears homogeneous and isotropic. It is easy to
see that the FRW metric does not fulfill any linearized Einstein equation, even for very early
times t << 1/

√
Λ when is very close to the Minkowski metric. In fact, no metric that depends

only on time can be a solution of the linearized Einstein equations; incompatibilities appear
immediately for any gauge choice.

One should therefore accept that the linearized Einstein equations in the presence of Λ
cannot be imposed in the physically relevant comoving coordinate system. This of course
has implications on GW as the very concept of ‘wave’ does require a wave equation, which is
just impossible in FRW coordinates. On the other hand, the wave equation �h̃µν = 0 found
in the Λ-gauge is expressed in a set of coordinates whose meaning is yet to be interpreted.
Therefore the simplicity of this equation is deceiving.

We will argue in the next section that the coordinates implied by the choice of the Λ-
gauge or of Lorenz gauge are closely related to SdS coordinates. Then the way to proceed
is to find a solution for GW in the Lorenz gauge, a coordinate system where linearization of
the Einstein equations is consistent, and then transform the solution to FRW coordinates in
order to extract observable consequences.

Both the SdS metric and the FRW metric are valid (but rather different) descriptions of
de Sitter geometry. One can work out the exact transformation between the two coordinate
systems

r̂ =eT
√

Λ/3R

t̂ =

√

3

Λ
log





√
3

√

3− Λe2T
√

Λ/3R2



+ T
(17)

where T and R are respectively the cosmological time and comoving coordinates whose phys-
ical realization is clear. This transformation is valid inside the cosmological horizon, i.e.
R < 1√

Λ
. Applying (17) to (15) we obtain

ds2 = dT 2 − exp(2

√

Λ

3
T )d ~X2. (18)

Now it is immediate to see that the FRW metric does not fulfill any linearized Einstein
equation, even if t << 1/

√
Λ as it is not expandable in integer powers of Λ. The same

transformations for the linearized version of the metrics gives

ds2 =

[

1− Λ

3
r̂2
]

dt̂2 −
[

1 +
Λ

3
r̂2
]

r̂2 + r̂2dΩ2.

↓

ds2 = dT 2 −
[

1 + 2

√

Λ

3
T + 2

Λ

3
T 2

]

(dR2 +R2dΩ2).

(19)

which will only reasonably approximate the expansion of FRW for values of R ∼ T << 1√
Λ
.

Note that, although the last metric in (19) is linearized, it does not fulfill any linearized
Einstein equations.

The previous transformation provides the relationship between a framework where the
Einstein equations can be consistently linearized and the actual coordinate system in which
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we observe. The solutions easily found in the linearized theory have to be transformed to
the physically meaningful coordinate system in order to make predictions. It is at this point
that non-trivial effects related to Λ will appear. They are discussed in section 5. Of course,
given the current value of Λ, these effects will be small. We believe nonetheless, that these
corrections are conceptually important. Note also that (17) involves

√
Λ and not Λ, yielding

corrections that are potentially much more relevant for observation than those of order O(Λ).
Equation (16) is just one of the many possible cosmological FRW metrics. Other possibil-

ities such as a power law cosmological scale factor do not correspond to a de Sitter space-time
and therefore there is no obvious change of coordinates that allows to reexpress a GW, i.e. a
solution to a wave equation, in that physically meaningful coordinate system.

4 Background solutions

We shall work consistently in the linearized approximation both for the background modifi-
cation hΛµν and for gravitational wave perturbations hWµν . Namely, the metric can be written

as gµν = ηµν + hΛµν + hWµν , where hΛ,Wµν ≪ 1. To keep the notation simple we shall only use

the superscript Λ when confusion with wave perturbations hWµν is possible. In this section we
will be concerned with background linearized solutions when the cosmological constant Λ is
present.

The value of the cosmological constant has presumably not been the same throughout the
history of the universe. In early epochs, perhaps following an inflationary period, its value is
believed to have been much larger[18]. This fact suggests that it may be necessary in some
circumstances to retain the term ΛhΛµν . Likewise it will be necessary for consistency to keep

terms of order ΛhWµν as the magnitudes of hWµν and Λ are unrelated.
In what follows we proceed without making any assumptions on the value of Λ; we will

just assume that the perturbation that induces on the background metric hµν is small enough
for the linearized approximation to be meaningful.

4.1 Lowest order solutions

First we turn to the lowest order solutions already discussed in [3], which correspond to
neglecting terms of O(Λhµν). In the Lorenz gauge this amounts to solving the following
equation

�h̃µν =− 2Ληµν

∂µh̃
µ
ν =0.

(20)

Linearization limits the validity of the solution to values of the coordinates such that x2 <<
1/Λ.

Before discussing the solutions to (20) we take a look at the equations in the Λ-gauge

�h̃µν =0

∂µh̃
µ
ν =− Ληνµx

µ.
(21)

Note once more that the linearized equations are not invariant under gauge transformations.
In the Lorenz gauge the cosmological constant is regarded as a gravitational source, it ap-
pears in the equations of motion, whereas in the Λ-gauge all dependency in the cosmological
constant at this order appears through the gauge condition only and in a way it can be in-

7



terpreted as a consequence of the coordinate choice1. The connection between the two gauge
choices in the linear theory has already been discussed.

We can easily solve equations (21) to find the traceless solution

h̃µν = − Λ

18

(

4xµxν − ηµνx
2
)

. (22)

If we require that the solution is proportional to Λ and involves only the coordinates xµ this
is the unique solution. In addition, (22) is the only one that is Lorentz-covariant (note that
ηµν is the underlying metric and there is no other four-vector at our disposal).

It is worth noticing that since there is no residual freedom in this gauge, no transformation
can turn this solution into a static metric: The Λ-gauge is explicitly incompatible with the

solutions being static.
We now transform the solution back to the Lorenz gauge using (14). We find

hµν =
Λ

9

(

xµxν + 2ηµνx
2
)

. (23)

Without the Λhµν term the equation of motion is actually invariant under residual trans-
formations. The number of physical degrees of freedom therefore is reduced to two. This is
the only covariant-looking solution in the Lorenz gauge but only one of the infinite number
of solutions reachable by non-covariant residual transformations. The most general form of
such transformations is

ξ′µ =









A(t2 + r2)t
(

B1t
2 +B2x

2 +B3(y
2 + z2)

)

x
(

B1t
2 +B2y

2 +B3(x
2 + z2)

)

y
(

B1t
2 +B2z

2 +B3(x
2 + y2)

)

z









, (24)

where 2B1 − 6B2 − 4B3 = 0. In particular we find the values of these constants that allow us
to reproduce the static solution of [3].

A = − Λ

18
, B1 = −Λ

9
, B2 = − Λ

18
, B3 =

Λ

36
; (25)

One should ask at this point what are these coordinates. We already know that they cannot
correspond to cosmological coordinates. In fact the resulting metric is neither homogeneous
nor isotropic although it preserves the symmetry among the three axes. The answer becomes
obvious once one discovers that one of the possible residual gauge transformations eliminates
the time dependence of the metric. A generalization of Birkhoff’s theorem [19] states that
there is a unique static solution with spherical symmetry which is the Schwarzschild-de Sit-
ter metric previously discussed, or more precisely the first order of it in the Λ expansion.
Since Schwarzschild-de Sitter does not fulfill the Lorenz gauge condition, a time-independent
coordinate transformation must also be involved. Let us explicitly show this point using a
succession of coordinate transformations linear in Λ.

The first step is to transform (23) to a static solution. We start from

ds2 =

[

1 +
Λ

9
(3t2 − 2r2)

]

dt2 −
[

1− Λ

9
(−2t2 + 2r2 + xi

2
)

]

dxi
2

− 2Λ

9
t xi dt dxi +

2Λ

9
xi xj dxi dxj

(26)

1 This of course does not mean that the consequences of Λ can be removed by a wise coordinate transfor-

mation but it does mean that it disappears from the equations of motion themselves.
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where i = 1, 2, 3 and i 6= j. After the following change of coordinates

x =x′ +
Λ

9

(

−t′2 − x′2

2
+

(y′2 + z′2)

4

)

x′

y =y′ +
Λ

9

(

−t′2 − y′2

2
+

(x′2 + z′2)

4

)

y′

z =z′ +
Λ

9

(

−t′2 − z′2

2
+

(x′2 + y′2)

4

)

z′

t =t′ − Λ

18
(t′2 + r′2)t′

(27)

the metric transforms into the static solution to order Λ found in [3],

ds2 =

[

1− Λ

3
r′2
]

dt′2 −
[

1− Λ

6
(r′2 + 3x′2i )

]

dx′2i . (28)

Note that this solution is still in the Lorenz gauge; we only performed a residual gauge
transformation that is allowed in this gauge. Since our starting solution is only valid to order
Λ, in any change of coordinates, either exact or linear, we only keep terms linear in the
cosmological constant. We can further transform (28) to obtain a fully spherically symmetric
solution. Under the following change

x′ =x′′ +
Λ

12
x′′3

y′ =y′′ +
Λ

12
y′′3

z′ =z′′ +
Λ

12
z′′3

t′ =t′′,

(29)

we obtain

ds2 =

[

1− Λ

3
r′′2
]

dt′′2 −
[

1− Λ

6
r′′2
]

(dr′′2 + r′′2dΩ2), (30)

which does not obey (20) anymore. We can now perform another coordinate transformation
to obtain the SdS metric to order Λ

r′′ =r̂ +
Λ

12
r̂3

t′′ =t̂
(31)

ds2 =

[

1− Λ

3
r̂2
]

dt̂2 −
[

1 +
Λ

3
r̂2
]

dr̂2 + r̂2dΩ2. (32)

This is the linearized Schwarzschild-deSitter metric. Essentially the background solution (23)
is the SdS metric in a set of coordinates related to SdS by time independent transformations.

4.2 Next-order solutions

Let us now relax the approximation of the previous section and retain terms proportional to
Λhµν . In particular we will be interested later in terms of order ΛhWµν that will influence the
propagation of gravitational waves.

In the Lorenz gauge this requires the simultaneous fulfillment of the two sets of equations
(5) and (9). We note that because of the dimensionality of Λ any solution of the previous
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equations containing Λ and constructed with the only available (Lorentz-)covariant vector xµ

must necessarily be even under a change of sign of all coordinates xµ → −xµ. Solutions odd
in xµ exist but they require the involvement of parameters other than the coordinates and Λ
(a wave vector, for instance, see section 4).

The most general solution of this equation can be written as a superposition of both
complex and real exponentials

hµν =

∫

d4k

(2π)4
δ(k2 − 2Λ)

(

Eµν cos kx+Dµν sin kx+
ηµν
4

(A cosh kx+B sinh kx)
)

− ηµν ,

(33)
with Eµν and Dµν traceless, i.e. Eµ

µ = Dµ
µ = 0. In the previous expression Eµν , Dµν , A

and B are in principle all independent functions of k provided that the two following gauge
conditions are met

∫

d4k

(2π)4
δ(k2 − 2Λ)

(

kµE
µ
ν sin kx+

kν
4
A sinh kx

)

= 0 (34)

∫

d4k

(2π)4
δ(k2 − 2Λ)

(

kµD
µ
ν cos kx− kν

4
B cosh kx

)

= 0. (35)

Clearly the integrands involved have to fall off sufficiently fast for large values of k for the
integrals to exist.

This solution has ten degrees of freedom to start with. Nine come from Eµν and Dµν after
removal of the the trace. Another one comes from the coefficients A,B. Note that both A
and B are needed to provide a full degree of freedom and likewise for Eµν and Dµν . Using the
gauge condition we can eliminate four of them, leaving six independent degrees of freedom.
Unlike (23), the above solution does not admit any residual gauge transformation to further
eliminate degrees of freedom. Any attempt to perform a residual gauge transformation would
take the solution ‘off-shell’, i.e. the equations of motion would not be obeyed.

On the other hand we have to ensure that hµν << 1; However, in general this does
not eliminate any degree of freedom, it is just a requirement of the linearized theory. This
translates in requiring the first term in the expansion of the hyperbolic cosine to cancel the
−ηµν piece in (33), or in other words

∫

d4k

(2π)4
δ(k2 − 2Λ)A(k) = 4. (36)

Since (33) is the most general solution to the equations we must be able to recover the
solutions in the previous section by performing an expansion in Λ. To do so we only have
to choose the right form for Eµν(k), Dµν(k), A(k) and B(k). As mentioned previously, to
reach a Lorentz-covariant formulation such as (23) in the Lorenz gauge we can safely assume
that Dµν and B are zero as the resulting metric must satisfy hµν(x) = hµν(−x), as discussed.
In addition A(k) can only be a constant on Lorentz covariance grounds. We will take it to
be A(k) ≡ A′

k2 = A′

2Λ . Also Eµν needs to be a (traceless) Lorentz-covariant tensor, namely

Eµν(k) ≡ E
2Λ

(

kµkν − ηµν
2 Λ

)

. The proportionality coefficient between E and A′ comes from
the gauge condition (34). Finally, as also indicated previously, the integrals require a finite
support to be well defined and this should be implemented in a Lorentz-invariant way too; a
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sharp cut-off will be used below, although this is not crucial at all. Expanding (33),

hµν =

∫

d4k

(2π)4
δ(k2 − 2Λ)

(

Eµν(k) cos kx+
ηµν
4

A(k) cosh kx
)

− ηµν

=

∫

d4k

(2π)4
δ(k2 − 2Λ)

(

Eµν(k)

(

1− (k · x)2
2

+ . . .

)

+
ηµν
4

A(k)

(

1 +
(k · x)2

2
+ . . .

))

− ηµν ,

(37)

and using the definitions given above,

hµν ≃
∫

d3~k

(2π)3
1

2
√

2Λ + ~k2

(

E

2Λ

(

kµkν −
ηµν
2

Λ
)

(

1− (k · x)2
2

)

+
ηµν
4

A′

2Λ

(

1 +
(k · x)2

2

))

− ηµν .

(38)

Now we introduce the cut-off,
√
2Λ. Already condition (36) dictates the value for A′ = 32π2

C ,

where C = 1
Λ

∫

√
2Λ

0 d|~k| ~k2√
2Λ+~k2

. Then the solution reads

hµν ≃
∫

√
2Λ

0

d|~k|
2π2

~k2

2
√

2Λ + ~k2

(

− E

2Λ

(

kµkν −
ηµν
2

Λ
) (k · x)2

2
+

ηµν
4

16π2

ΛC

(k · x)2
2

)

=

∫

√
2Λ

0

d|~k|
2π2

~k2

2
√

2Λ + ~k2

(

−E

(

Λ

24

(

ηµνx
2 + 2xµxν

)

− Λ

16
ηµνx

2

)

+ ηµνx
2π

2

C

)

=
ΛC

4π2

(

−E

(

Λ

24

(

ηµνx
2 + 2xµxν

)

− Λ

16
ηµνx

2

)

+ ηµνx
2π

2

C

)

.

(39)

The value of E is fixed via the gauge condition (34) to E = −16π2

3CΛ , leaving the perturbation
in the form

hµν ≃ Λ

9

(

xµxν + 2ηµνx
2
)

, (40)

which is precisely (23).

5 Wave-like solutions

In this section we will finally investigate the effects of the cosmological constant in the prop-
agation of GW in the appropriate coordinate system.

5.1 Lowest order solutions

We write hµν = hΛµν + hWµν . The term hΛµν is the solution we just found, hWµν will be a
perturbation on the metric induced by some source of GW. The same decomposition holds
for the trace reversed metric h̃µν . Waves are usually considered in the transverse traceless
gauge[20]

h̃Wµ
µ = hWµ

µ = 0, ∂µh
Wµ
ν = ∂µh̃

Wµ
ν = 0. (41)

This is compatible with the Λ-gauge condition as the r.h.s. of (11) is unchanged when
considering h̃Λµν + h̃Wµν provided that (11) is fulfilled by hΛµν . This also makes clear that, at
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this order, the gauge condition involves the perturbation associated to the background and
not the metric perturbation associated to a gravitational wave.

Since the proper equations of motion in the Lorenz gauge at this order, neglecting
O(Λhµν), are just �hµν = �hΛµν + �hWµν = 0, being the latter an independent perturba-
tion, it is obvious that

�hWµν = 0, (42)

and the gravitational wave solutions are in these coordinate systems functionally identical to
those existing in flat space.

Note that because the ΛhΛµν has been neglected, the remaining residual gauge invariance

allows for a removal of four of the six degrees of freedom in hWµν and the analogy with wave
propagation in Minkowski space is complete.

In the case of the lowest order equations the full solution of (20) is

hµν = hΛµν + hWµν =
Λ

9

(

xµxν + 2ηµνx
2
)

+EW
µν cos kx+DW

µν sin kx (43)

where EW = DW = 0, kµE
µW
ν = kµD

µW
ν = 0 and k2 = 0.

We want to see now how plane waves such as the ones in (43) look like in the new
coordinate system. Transformation (17) acts both on the polarization tensors and on the
arguments of the sine and cosine. For the polarization tensors we can always cut the expansion
in Λ and keep terms only up to a certain order. However, the transformation on the arguments
yields terms of the type Z3wΛ which in general can be relevant. The sine and cosine can not
be expanded, we have to transform the argument exactly; we shall later evaluate the error
caused by retaining only the lowest order terms in the arguments.

For the polarization tensors, since we transform them independently of the arguments,
it is easy to see qualitatively what the corrections to the polarization tensors will be. On
dimensional grounds alone, all corrections will be of order O(

√
ΛZ) or at most O(ΛZ2), being

these quantities in the region of validity of the approximation very small.
Nonetheless, the transformed wave-like solution to order

√
Λ is

hWFRW
µν =

















0 0 0 0

0 E11

(

1 + 2
√

Λ
3 T

)

E12

(

1 + 2
√

Λ
3T

)

0

0 E12

(

1 + 2
√

Λ
3 T

)

−E11

(

1 + 2
√

Λ
3 T

)

0

0 0 0 0

















×

cos

(

w(T − Z) + w

√

Λ

3

(

Z2

2
− TZ

)

+O(Λ)

)

+O(Λ)

+

















0 0 0 0

0 D11

(

1 +
√

Λ
3T

)

D12

(

1 +
√

Λ
3 T

)

0

0 D12

(

1 +
√

Λ
3T

)

−D11

(

1 +
√

Λ
3 T

)

0

0 0 0 0

















×

sin

(

w(T − Z) + w

√

Λ

3

(

Z2

2
− TZ

)

+O(Λ)

)

+O(Λ)

(44)

The term w(T − Z) dominates the argument of the trigonometric functions and it can be
checked numerically that the error made by omitting terms of order Λ or higher is 6 10−3

for the purposes of next section.
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5.2 Next-order solutions

As we have argued before, it is not justified to neglect the term of order ΛhWµν in this case, as
unlike for the case of the background, the magnitude of the two quantities is unrelated. We
can add a wave-like piece to the solution (33)

hµν =hΛµν + hWµν

=

∫

d4k

(2π)4
δ(k2 − 2Λ)

(

Eµν cos kx+Dµν sin kx+
ηµν
4

(A cosh kx+B sinh kx)
)

− ηµν

+ EW
µν cos kx+DW

µν sin kx.
(45)

This will always be a solution of (5) and (9) as long as EW = DW = 0, kµE
Wµ
ν = kµD

Wµ
ν = 0

and k2 = 2Λ. However, now we are not allowed to perform any gauge transformation, at
least at the next-order level. We can still use the gauge condition and the traceless condition
to eliminate five degrees of freedom from the wave. We are left with a massive wave with
five degrees of freedom. The polarization vectors of which, for a wave propagating in the z
direction (k1 = k2 = 0), can be written as

EW
µν =













E00

√
w2−2Λ
w E13

√
w2−2Λ
w E23

w√
w2−2Λ

E00
√
w2−2Λ
w E13 E11 E12 E13√

w2−2Λ
w E23 E12 −E11 − E00

2Λ
w2−2Λ E23

w√
w2−2Λ

E00 E13 E23
w2

w2−2ΛE00













. (46)

And a similar expression for DW
µν . At the exact level this is as far as one can go but in order

to understand the meaning of these massive waves we turn again to an expansion in powers
of Λ. We will proceed in two steps. First we expand the solution in powers of Λ and collect
terms order by order. Then, using the same reasoning in the equations of motion, we can
use an approximate residual invariance to rewrite the polarization tensors as the usual GW
in Minkowski space-time plus an order Λ contribution with the extra degrees of freedom.

The polarization vectors (46) can then be written as

EW
µν =









E00 E13 E23 E00

E13 E11 E12 E13

E23 E12 −E11 E23

E00 E13 E23 E00









+









0 − Λ
w2E13 − Λ

w2E23
Λ
w2E00

− Λ
w2E13 0 0 0

− Λ
w2E23 0 −E00

2Λ
w2 0

Λ
w2E00 0 0 2Λ

w2E00









+O(Λ2)

≡ E(0)
µν + E(1)

µν +O(Λ2).
(47)

The same decomposition applies to DW
µν . This expansion makes explicit the contributions of

Λ at a given order. We want to expand

hWµν = h(0)µν + h(1)µν +O(Λ2), (48)

where the superscript refers to the order in Λ. The functions sine and cosine can also be
expanded around a massless wave with coordinate-dependent amplitudes[15]

hWµν = EW
µν cos kx+DW

µν sin kx

≃
[(

EW
µν −

Λz

w
DW

µν

)

cosw(t− z) +

(

DW
µν +

Λz

w
EW

µν

)

sinw(t− z)

]

(49)
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or what is tantamount

hWµν =

[(

E(0)
µν + E(1)

µν − Λz

w
D(0)

µν

)

cosw(t− z)

+

(

D(0)
µν +D(1)

µν +
Λz

w
E(0)

µν

)

sinw(t− z)

]

+O(Λ2)

(50)

We see that the massive wave we started with can be written at linear order in the cosmological
constant in terms of a massless wave where all dependency in Λ appears only through the
polarization tensors

hWµν = EW
µν cosw(t− z) +DW

µν sinw(t− z) +O(Λ2), (51)

where EW
µν and DW

µν can be read from (50). The above is a valid solution of �hWµν+2ΛhWµν = 0
only to order Λ (included), which means we can expand the equations of motion to the same
order without loss of validity

�h(0)µν +�h(1)µν + 2Λh(0)µν +O(Λ2) = 0 (52)

Now we can split the problem and solve order by order

�h(0)µν = 0

�h(1)µν + 2Λh(0)µν = 0
(53)

Due to the fact that (52) is not exact, the solution to it can admit a residual gauge transfor-
mation that will take the solution ‘off-shell’ some order beyond the order we consider. For
the transformed solution

�h′(0)µν = 0

�h′(1)µν + 2Λh′(0)µν = 0.
(54)

The first equation in (54) is analogous to (42), i.e. residual transformations on h
(0)
µν are not

restricted. To order zero we obtain GW analogous to the ones in flat space (in the present
set of coordinates, that is). But in this case the transformation propagates to the following

order through the second equation in (54) making necessary to find the transformed h
′(1)
µν .

It is not difficult to see that the following polarization tensor fulfills the necessary require-
ments of tracelessness as well as the gauge condition (kµE

Wµ
ν = kµD

Wµ
ν = 0)

EW
µν =









Λ
w2E00 − Λ

w2E13 − Λ
w2E23

Λ
w2E00

− Λ
w2E13 E11 − Λz

w D11 E12 − Λz
w D12 − Λ

w2E13

− Λ
w2E23 E12 − Λz

w D12 −E11 +
Λz
w D11 − Λ

w2E23
Λ
w2E00 − Λ

w2E13 − Λ
w2E23

Λ
w2E00









. (55)

Dµν is similarly obtained from (50). Notice the presence of the usual components (of O(1))
in the polarization tensor in the x, y entries of the metric.

To this order in Λ we obtain massless waves with coordinate-dependent modified ampli-
tudes which depend on Λ. We can see that the extra degrees of freedom due to the form of the
linearized equations of motion for non-zero Λ will only couple to matter fields proportionally
to Λ thanks to the coupling hWµνT

µν and thus will be irrelevant in practice.
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5.3 Transformed next-order solutions

Now we are ready to apply the series of coordinate transformations (27, 29, 31, 17) to the
wave-like solution (51) that we found in the previous subsection in order to obtain a physical
expression in FRW coordinates. Recall the waves in the general Lorenz gauge read

hWµν = EW
µν(Λ, z) cosw(t− z) +DW

µν(Λ, z) sinw(t− z), (56)

where EW
µν can be read off from (55). From (56) it is clear the only modification with respect

to the plane waves of the lower order is in the polarization tensors, being already of order Λ.
This suggests that all the new modifications to order Λ of the next-order waves are due to
the change of coordinates. Explicitly the transformed waves to order Λ read

hWFRW
µν =

















Λ
w2E00 − Λ

w2E13 − Λ
w2E23

Λ
w2E00

− Λ
w2E13 E11 − ΛZ

w D11 E12 − ΛZ
w D12 − Λ

w2E13

− Λ
w2E23 E12 − ΛZ

w D12 −E11 +
ΛZ
w D11 − Λ

w2E23
Λ
w2E00 − Λ

w2E13 − Λ
w2E23

Λ
w2E00









+

















0 0 0 0

0 E11

(

2
√

Λ
3 T + 2Λ

9 T 2 + 5Λ
18Z

2

)

E12

(

2
√

Λ
3 T + 2Λ

9 T 2 + 5Λ
18Z

2

)

0

0 E12

(

2
√

Λ
3 T + 2Λ

9 T 2 + 5Λ
18Z

2

)

−E11

(

2
√

Λ
3 T + 2Λ

9 T 2 + 5Λ
18Z

2

)

0

0 0 0 0

















+O(Λ3/2)

















×

cos

(

w(T − Z) + w

√

Λ

3

(

Z2

2
− TZ

)

− 1

18
wΛ

(

T 3 + T 2Z − 5TZ2 + 2Z3
)

+O(Λ3/2)

)

+

















Λ
w2D00 − Λ

w2D13 − Λ
w2D23

Λ
w2D00

− Λ
w2D13 D11 +

ΛZ
w E11 D12 +

ΛZ
w E12 − Λ

w2D13

− Λ
w2D23 D12 +

ΛZ
w E12 −D11 − ΛZ

w E11 − Λ
w2D23

Λ
w2D00 − Λ

w2D13 − Λ
w2D23

Λ
w2D00









+

















0 0 0 0

0 D11

(

2
√

Λ
3 T + 2Λ

9 T 2 + 5Λ
18Z

2

)

D12

(

2
√

Λ
3 T + 2Λ

9 T 2 + 5Λ
18Z

2

)

0

0 D12

(

2
√

Λ
3 T + 2Λ

9 T 2 + 5Λ
18Z

2

)

−D11

(

2
√

Λ
3T + 2Λ

9 T 2 + 5Λ
18Z

2

)

0

0 0 0 0

















+O(Λ3/2)

















×

sin

(

w(T − Z) + w

√

Λ

3

(

Z2

2
− TZ

)

− 1

18
wΛ

(

T 3 + T 2Z − 5TZ2 + 2Z3
)

+O(Λ3/2)

)

.

(57)

6 Detectability

Let us now do some order-of magnitude estimates to evaluate the effect of the corrections
induced by Λ 6= 0 on the propagation of gravitational waves.

For the polarization tensors we have not attempted to derive the Λ-order corrections in full

detail, although this is possible, because already the most relevant correction, i.e.
√
ΛZE

(0)
µν ,

has to be some orders of magnitude smaller than E
(0)
µν for the approximation to be valid. For

example for a coordinate value of the order of a typical distance to a supernova, 1023 m, the
quantity

√
ΛZ ∼ 10−3 (Λ ∼ 10−52 m−2 ∼ 10−35 s−2). This already means a small correction
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to an amplitude that has so far escaped detection and which presumably will not be measured
with sufficient precision to discern the effect of the Λ-order effects in the foreseable future.
However, conceptually it is an interesting result.

It is more interesting to work out the corrections to the dispersion relation for (44). As
previously, let us consider waves that propagate in the Z direction and are monochromatic.
The maxima of the wave will be reached when

w(T − Z) + w

√

Λ

3

(

Z2

2
− TZ

)

= nπ, (58)

or

Zmax(n, T ) = T − nπ

w
− T 2

2

√

Λ

3
+

n2π2

2w2

√

Λ

3
. (59)

From (59) we can also calculate the phase velocity of the wave which is defined as

vp(T ) ≡
dZmax

dT
= 1− T

√

Λ

3
+O(Λ). (60)

We see that in comoving coordinates the phase velocity is smaller than 1. This does not mean
that the waves slow down. We can calculate the velocity in ‘ruler’ distance. For a fixed time
we have

−dl2 =−
(

1 + T

√

Λ

3

)

dZ2

dl

dT
=

d

dT

[(

1 + T

√

Λ

3

)

dZmax

]

= 1.

(61)

It is also interesting to rewrite the trigonometric functions of the wave defining weff(Z) ≡
w

(

1− Z
√

Λ
3

)

cos

[

Tw

(

1− Z

√

Λ

3

)

− Zw

(

1− Z

√

Λ

3

)]

= cosweff(T − Z). (62)

Note that the transformed wave corresponds to a usual wave with an effective frequency
dependent on the coordinate Z. The wave becomes red-shifted as it propagates away from
the source.

To see explicitly the effect of Λ in the propagation of a wave described in comoving
coordinates we plot (Figure 1) one of the h++ components of the wave for a given instant
(T = 0 for simplicity). A wave with a physical frequency ranging 103Hz < w < 10−10Hz
cannot be practically plotted in the relevant Z-range. To see the effect in a few cycles we
take w = 4 · 10−16Hz, which does not affect the overall magnitude of the correction. We plot
the wave for Λ = 10−52m−2 and for Λ = 10−51m−2 to assess the influence of Λ on the wave

propagation. Then we plot h++ ∼
(

1 + 5
9ΛZ

2
)

cos

[

−Zw

(

1− Z
√

Λ
3

)]

.

From these results we can already draw some conclusions. The genuine corrections due to
the mass-like term in (9) remain unchanged in the transformed waves if we cut the expansion
to order O(Λ). Moreover they are of order ΛZ

w , which is in practice irrelevant unless the
value of Λ is much greater than the current value. However, transformation (17) induces
modifications to the wave, both in the amplitude and the phase, of order

√
Λ and Λ. This

modifications result in a simulatneous increase of the wave-length and of the amplitude with
the coordinate Z. As shown in Figure 1, the most interesting region for detection would be
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Figure 1: Dependency of the amplitude and wave-length on the coordinate distance Z (ex-
pressed in meters) for a constant value of T and for different values of Λ: The dashed line
corresponds to Λ = 0, the dotted line to Λ = 10−52m−2 and the solid line to Λ = 10−51m−2.

that of events (supernovae and pulsars for example) happening at a distance Z ∼ 1023−1025m

away, for which the correction
√

Λ
3Z ∼ 10−1 − 10−3 is not negligible and is well within the

validity range of the approximation. In fact to have this type of correction into account seems
probably essential to properly account for the measurements of this type of phenomena in
pulsar arrays.

7 Summary

The purpose of this work was to investigate the effect of the cosmological constant in the
propagation of gravitational waves in a linearized theory of Gravity. The presence of Λ leads
unavoidably to the curvature of the background space-time in which the waves propagate.
Within the linearized approximation (which is the only framework where one can properly
speak of ‘waves’) this leads to a decomposition gµν ≃ ηµν+hΛµν+hWµν , including a modification
of the background (corresponding to the curvature) and a wave-like perturbation.

To see the way the propagation of the waves is affected, one has first to understand the
implications that the different coordinate choices (gauge choices) have in the resolution of the
equations of motion as well as the importance of the terms of different order retained in the
linearization. One is free to choose any particular gauge to solve the equations, however since
the linearized Einstein equations are not invariant under general coordinate transformations
their form will depend on the gauge choice. We argue that the above procedure of linearization
is consistent in some coordinate systems but not in others. In particular, it is inconsistent to
linearize the equations in the familiar Friedmann-Robertson-Walker cosmological coordinates
(the metric only depends on time).

Einstein equations can however be consistently linearized in Schwarzschild-de Sitter co-
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ordinates; then hΛµν corresponds to a linearized version of the SdS metric, expanded to first
order in Λ. This metric can be easily modified to fulfill the Lorenz gauge condition. In this
particular gauge, i.e. in this particular choice of coordinates, the analysis of gravitational
waves follows a pattern very similar to the one in Minkowski space-time. In the case where the
Λhµν term is dropped the residual gauge freedom of the Lorenz gauge allows for the removal
of four additional degrees of freedom in the general solution, leaving the wave-like component
with the usual two physical degrees of freedom of waves propagating in flat space-time.

On the contrary, if the term Λhµν is retained in the equations of motion the situation
changes. Even in the Lorenz gauge the invariance under residual gauge transformations
is lost. Again it is not hard to find the most general solution to the linearized equations
composed of a background and a wave-like components. We prove the background solution
to be consistent with the result previously found if Λ is small. Since there is no residual
invariance, the wave-like solution has to be interpreted as a massive wave with five degrees of
freedom (the gauge condition and the trace condition amount to five constraints). However,
we can make use of the approximate residual invariance at the leading order in Λ to rewrite
the solution as massless gravitational waves with position-dependent modified amplitudes
that change very slowly given the current values of Λ. There are only two O(1) polarizations;
the remaining degrees of freedom (up to the five independent ones required for a massive spin
two wave) are of O(Λ) and couple extremely weakly to matter sources.

Finally, one has to transform these solutions to the physically significant FRW coordinates
in order to extract observable consequences. At this point modifications of O(

√
Λ) appear.

Numerically these can be quite relevant for certain gravitational waves travelling from far
away sources and the effect of Λ can absolutely have a detectable impact on pulsar timing
arrays. Waves are modified both in the phase and the amplitude; in cosmological coordinates

they are red-shifted in a prescribed way and the amplitude of plane waves grows as they move

away from the source.
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