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ABSTRACT

We analyze the possibility of universality violation in diagonal leptonic decays of

the Z boson, in the context of interfamily ”see-saw” models. In a minimal extension of

the Standard Model with right-handed neutrino fields, we find that universality-breaking

effects increase quadratically with the heavy Majorana neutrino mass and may be observed

in the running LEP experiments.
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Heavy Majorana neutrinos with masses of few TeV have entered the domain of cos-

mology and astrophysics, as possible candidates to account for the net baryon number

of the universe through lepton (L)-number violating processes [1]. On the other hand,

if such heavy neutral leptons are realized in nature, their existence may be discovered

through their production and the L-violating decay at present or future collider ma-

chines [2]. Another place of looking for new physics originating from heavy neutrinos is

the rare leptonic decays of H0 [3] and Z particle [4]. Since such decays are forbidden

in the minimal Standard Model (SM), they constitute an interesting framework to con-

strain new physics beyond the SM . Such rare decays [3, 5] have recently been analyzed

in a ”see-saw”-type model [6] with intergenerational mixings [7]. An interesting aspect

of this minimal scenario is that the Appelquist-Carazzone theorem [8] is not operative

and vertex-correction diagrams with intermediate heavy Majorana neutrinos (Ni) show

a quadratic mass dependence, i.e. m2
Ni

/M2
W . This mass dependence is a common feature

for all theories based on the spontaneous-symmetry breaking mechanism. For example, in

the Feynman–’t Hooft gauge this mass dependence can be seen to arise from the coupling

of the would-be charged Goldstone bosons to heavy fermions. Similar non-decoupling ef-

fects in the quark sector have been extensively studied in the past for the flavor changing

decays Z → bs̄ [9] and the diagonal Z → bb̄ [10].

In this note we study universality-breaking effects induced by heavy Majorana neu-

trinos in leptonic Z decays. Actually, we will analytically calculate the following physical

observable:

Ubr =
Γ(Z → τ+τ−) − Γ(Z → l+l−, l = e or µ)

Γ(Z → τ+τ−) + Γ(Z → l+l−, l = e or µ)
. (1)

Ubr is a measure of universality violation in the leptonic sector provided lepton masses can

be neglected and is experimentally constrained to be [11] |Ubr| ≤ 1.5 10−2. The model we

are concerned with extends the SM by one right-handed neutrino field for each family.

The renormalizable form of all relevant interactions and details of the notation we will
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use here can be found in [7, 5].

In the SM the universality-violating parameter Ubr has a value different from zero

due to τ lepton mass effects. However, pure phase-space (PS) corrections turn out to

be rather small, i.e. |U
(PS)
br | ≃ 3 [1 + (1 − 4 sin2 θW )2]−1 m2

τ/M
2
Z ≃ 1.1 10−3. This

standard source for a non-zero value of Ubr is beyond the sensitivity of the present LEP

experiments. Since one can expect to analyze about 105 leptonic decays of the Z boson

at LEP per year, one may reach an accuracy for |Ubr| at the level of 3. 10−3. Since we are

interested in values of |Ubr| much larger than |U
(PS)
br |, we will neglect lepton-mass effects

in the calculation of quantum corrections.

Decomposing now the transition matrix element T (Z → ll̄) into two parts (with the

superscripts (0), (1) denoting the electroweak loop order), i.e. T (Z → ll̄) = T (0)(Z →

ll̄) + T (1)(Z → ll̄) , with

T (0)(Z → ll̄) =
igW

4 cos θW
εµ

Z ūlγµ(1 − 4 sin2 θW − γ5)vl̄ ,

and defining ∆T (1) = T (1)(Z → τ+τ−) − T (1)(Z → l+l−, l 6= τ) , we find that

∆T (1) =
igW αW

8π cos θW
εµ

Z ūlγµ(1 − γ5)vl̄ ∆BijFZ(λi, λj) . (2)

Then, the universality-breaking parameter Ubr takes the simple form

Ubr =
Re(T (0)∆T (1))

|T (0)|2
=

αW

π

1 − 2 sin2 θW

1 + (1 − 4 sin2 θW )2
∆BijFZ(λi, λj) , (3)

where

λi =
m2

ni

M2
W

, ∆Bij = BτiB
∗
τj − BliB

∗
lj , l 6= τ . (4)

In Eq. (4), Bli is a Cabbibo-Kobayashi-Maskawa-type nG × 2nG matrix appearing in the

leptonic charged-current interaction, and mni
indicates the masses of all neutral leptons ni

in our minimal scenario (i.e. i = 1, 2, . . . , 2nG, with nG denoting the number of families).

The function FZ(λi, λj) originates from the one-loop graphs depicted in Fig. 1 and contains
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all the non-decoupling physics mediated by heavy Majorana neutrinos. Its explicit form

will be discussed below.

Before proceeding to give the analytical form of FZ , we remark that the universality-

violating parameter Ubr does not involve any infra-red (IR) singularities, as they do not

depend on neutrino masses. Therefore, soft-photon emmision graphs need not to be

considered here. Also, the Z − l − l vertex should be renormalized at the one loop level.

In fact, a large number of renormalization constants should not appear in the universality-

breaking parameter Ubr. If we adopt the on-shell renormalization scheme [12, 13], where

the input renormalization parameters are the electric charge e, MW , MZ , the Higgs mass

MH and all fermion masses contained in the model, the counterterm Lagrangian LC
int

relevant for the renormalization of the Z − l − l̄ vertex is then given by [14]

LC
int = ie Z

1/2
AZ l̄γµl Zµ +

ie

4sW cW

[

1 +
δe

e
+

1 − 2c2
W

2s2
W

δρ + δZ
1/2
ZZ

+ δZ l
L

]

l̄γµ(1 − γ5)l Zµ −
ie sW

cW
l̄γµ

[

1 +
δe

e
+

1

2s2
W

δρ + δZ
1/2
ZZ

+ δZ l
L

1 − γ5

2
+ δZ l

R

1 + γ5

2

]

l Zµ, (5)

where δρ = δM2
Z/M2

Z − δM2
W /M2

W , cW = cos θW = MW /MZ and sW = sin θW . Due to

GIM-type cancellation [15] the only non-vanishing contribution to the function FZ comes

from the wave-function renormalization constants of the left- and right-handed leptons,

i.e. δZ l
L and δZ l

R. In fact, one has to calculate the difference of the self-energy derivatives

given by ∆Z l
L = δZτ

L − δZ l 6=τ
L = ∆ ∂Σ(p/)/∂p/|

p/=ml ,mτ→0
. The corresponding constant for

the right-handed leptons ∆Z l
R vanishes in the limit ml, mτ → 0. It is easy to see that only

the neutrino-mass dependent self-energy graphs mediated by W± and χ± are of interest

here. The individual contributions to FZ(λi, λj) arising from the diagrams 1(a)–1(f) and

those from the wave-function renormalization constant ∆Z l
L are given by

F
(a)
Z =

1

2

[

Cij

(

L2(λi, λj) − λZ

[

K1(λi, λj) − K2(λi, λj) + K̃(λi, λj)
] )
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+ C∗
ij

√

λiλjK1(λi, λj)
]

, (6)

F
(b)
Z = −

1

4

[

CijλiλjK1(λi, λj) + C∗
ij

√

λiλj

(

1

2
CUV −

1

2
+ λZK̃(λi, λj)

− L2(λi, λj)
)]

, (7)

F
(c)
Z = − δij

[

λZ Ĩ(λi) + 3c2
WL1(λi)

]

, (8)

F
(d)
Z =

1

8
δij(1 − 2s2

W )λi ( CUV − 2L1(λi) ) , (9)

F
(e)
Z + F

(f)
Z = − δij

s2
W

cW

λiI(λi) , (10)

F
(∆Zl

L
)

Z = −
1

8
δij(1 − 2s2

W )λi

(

CUV +
3

2
−

3

1 − λi
−

(λi + 2)λi ln λi

(1 − λi)2

)

, (11)

where

Cij =
nG
∑

k=1

B∗
lkiBlkj , λZ =

M2
Z

M2
W

,

CUV =
1

ε
− γE + ln 4π − ln

M2
W

µ2
. (12)

The functions I, Ĩ, L1, K1, K2, K̃ and L2 involved in Eqs. (6)-(11) are given in Ap-

pendix A. It is straightforward to see that the ultraviolet (UV ) divergences (i.e. CUV )

cancel in the summation of all FZ terms. To be precise, the UV pole in F
(d)
Z cancels

against the UV one of the wave-function renormalization F
(∆Zl

L
)

Z and the UV constant in

Eq. (7) vanishes due to the identity [3]:
2nG
∑

i=1
mni

BliC
∗
ij = 0 .

For definiteness, we will consider a interfamily-mixing model with two families

only. Employing relations between the mixing matrix Bli and heavy Majorana neutrino

masses [5] together with Eqs. (3) and (6)–(11), we arrive at the simple result

|Ubr| ≃
αW

8π

(sντ

L )4 − (sνl

L )4

(1 + x−1/2)2
λN1

[

1 +
1

2
ln x −

ln x

1 − x
(1 + 2x1/2)

]

, (13)

where x = m2
N2

/m2
N1

. We also assume N2 to be heavier than N1, i.e. x ≥ 1. In Eq. (13)

sνl

L is the usual neutrino-mixing angle between heavy Majorana neutrinos and the charged
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lepton l and is generally defined as [16] (sνl

L )2 =
∑

Ni

|BlNi
|2 . The neutrino-mixing angle

(sντ

L )2 turns out to be severely constrained by the recent LEP data on τ decays. In

fact, a global analysis allowing mixing of exotic particles gives an upper bound of about

7. 10−2 [17]. The e- and µ-family is much more constrained, i.e. (s
νe(µ)
L )2 < 0.01. Due

to this fact we have to deal with universality-breaking effects in the heaviest lepton fam-

ily only. It is important to notice that the non-decoupling terms (i.e. proportional to

m2
N/M2

W ) come from the ”seemingly” suppressed (sντ

L )4 terms. Table 1 shows the dra-

matic non-decoupling behaviour of the loop function FZ . For comparison, we also show

the corresponding values for a calculation where terms proportional to (sντ

L )4 have been

neglected. In our numerical estimates we have assumed that there is no large mass dif-

ference between the two heavy Majorana neutrinos, i.e. x ≃ 1. We have varied the heavy

neutrino mass mN (∼ mN1
∼ mN2

) up to its perturbative unitarity bound. Such an upper

bound may be imposed by requiring that the total width of N1 and N2, denoted by ΓNi
,

satisfies the condition ΓNi
/mNi

≤ 1/2 [5]. This leads to the constraint on the mass of the

lightest heavy Majorana neutrino N1

m2
N1

≤
2M2

W

αW (sντ

L )2

1 + x−1/2

x1/2
. (14)

Taking the above upper bound into account, we find that the universality-violating pa-

rameter |Ubr| can be up to 10 times larger than the naive value obtained by considering

only terms proportional to the mixing (sντ

L )2. This enhancement factor (i.e. the crucial

m2
N/M2

W dependence) results from the coupling of the would-be charged Goldstone boson

χ+ to the heavy Majorana neutrinos in the diagram 1(b). If we assume very large mass

differences between the heavy neutrinos, |Ubr| smoothly decreases to negligibly small val-

ues. The reason is that one effectively recovers the one generation ”see-saw” model in

such a case, i.e. mN1
→ 0 as x → ∞ in Eq. (14). In Fig. (2) we present exclusion plots

for LEP experiments. We see, for example, that possible universality-breaking effects of

the order of 10−2 can easily be understood within our minimal model.
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Non-SM contributions, due to heavy neutrinos, could also be observed by compar-

ing the prediction of the SM for the leptonic rates Γ(Z → l+l−) with those epxected when

one includes heavy neutral lepton effects. Besides the universality-violating phenomena

discussed in this paper, one could have non-decoupling physics introduced by these heavy

neutral leptons which can be constrained by analyzing the oblique electroweak parameters

S, T , U or ε1, ε2, ε3 as defined in [18]. These contributions occur both through vacuum

polarization terms and in vertex corrections universal for all charged lepton flavors. How-

ever, a first estimate for the δρ parameter [19] (i.e. δρ = αemT ) provides a weaker bound

than that obtained by Eq. (14). In particular, the dominant non-SM contribution (de-

noted below as δρ∗) to δρ, apart from heavy-top and Higgs-particle effects, comes from

the νiNj , NiNj intermediate states of the Z self-energy graph. In this way, one gets

δρ∗|q2=0 ≃
αW

16π
(sντ

L )4 m2
N

M2
W

, for x = 1 . (15)

We can readily compare Eq. (15) with constraints on the masses of the heavy neutrinos

that are derived on the basis of perturbative unitarity. For example, if (sντ

L )2 = 0.1, the

maximal value that δρ∗ can take is 0.8 10−2, which is still in accordance with phenomeno-

logical contraints of a possible mass shift of the W boson [20]. However, to complete the

analysis a global consideration of all electroweak oblique corrections is required.

In conclusion, we have explicitly shown that heavy neutral leptons introduce a

quadratic mass dependence (i.e. αW m2
N/M2

W ) in the leptonic vertex function Z − l − l̄.

This situation is not peculiar for the minimal model considered in this work, but a gen-

eral feature for all theories based on the spontaneous symmetry-breaking mechanism, e.g.

similar effects will be present in the model described in [4]. In general, we have found that

the mass of possible non-decoupling neutral particles can be constrained by the already

existing or future LEP data, as a function of their mixing to the ordinary charged leptons.

AP wishes to thank University of València for the kind hospitality. Helpful dis-
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A The one-loop integrals

It is useful first to define the functions B1(λi) and B2(λi, λj) which are given by the

following expressions:

B1(λi) = (1 − y)λi + y[1 − λZ yx(1 − x)] , (A1)

B2(λi, λj) = 1 − y + y[xλi + (1 − x)λj − λZ yx(1 − x)] , (A2)

where x and y are Feynman parameters. The loop functions I, Ĩ, L1, K1, K2, K̃ and L2

can then be written in terms of the following integrals:

I(λi) =
∫ dxdy y

B1(λi)
, (A3)

Ĩ(λi) =
∫

dxdy y2

B1(λi)
[1 − yx(1 − x)] , (A4)

L1(λi) =
∫

dxdy y ln B1(λi) , (A5)

K1(λi, λj) =
∫ dxdy y

B2(λi, λj)
, (A6)

K2(λi, λj) =
∫

dxdy y2

B2(λi, λj)
, (A7)

K̃(λi, λj) , =
∫

dxdy y3x(1 − x)

B2(λi, λj)
, (A8)

L2(λi, λj) =
∫

dxdy y ln B2(λi, λj) , (A9)

where the integration variables x and y are constrained to the interval [0, 1]. The above

integrals can be best performed numerically.
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[4] J. Bernabéu etal., Phys. Lett. B187 (1987) 303; N. Rius, J.W.F. Valle,

Phys. Lett. B246 (1990) 249.

[5] J.G. Körner, A. Pilaftsis, K. Schilcher, Phys. Lett. B300 (1993) 381.

[6] T. Yanagida, Proc. of Workshop on Unified Theory and Baryon Number of the Uni-

verse, eds O. Swada and A. Sugamoto, (KEK, 1979) p. 95; M. Gell-Mann, P. Ramond

and R. Slansky, Supergravity, eds P. van Nieuwenhuizen and D. Friedman (North-

Holland, Amsterdam, 1979) p. 315.

[7] A. Pilaftsis, Z. Phys. C55 (1992) 275.

[8] T. Appelquist, J. Carazzone, Phys. Rev. D11 (1975) 2856.

[9] A. Axelrod, Nucl. Phys. B209 (1982) 349; M. Clements etal., Phys. Rev. D27 (1983)

570; V. Ganapathi etal., Phys. Rev. D27 (1983) 579; W.S. Hou, N. Deshpande,

G. Eilam, A. Soni, Phys. Rev. Lett. 57 (1986) 1406; J. Bernabéu, A. Santamaria,
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Figure and Table Captions

Fig. 1: One-loop irreducible vertex graphs contributing to the non-universality pa-

rameter Ubr in the Feynman–’t Hooft gauge.

Fig. 2: Exclusion plots for LEP experiments. The areas lying to the right of the

curves are excluded due to the following conditions: (i) The validity of

perturbative unitarity (solid line) – see also text, (ii) |Ubr| ≤ 1. 10−2 (dashed

line), (iii) |Ubr| ≤ 7. 10−3 (dash-dotted line), (iv) |Ubr| ≤ 3. 10−3 (dotted

line).

Tab. 1: Numerical estimates for the universality-violating quantity |Ubr| within the

perturbatively allowed parameter space. The values in parentheses are

obtained by neglecting the ”seemingly” suppressed terms proportional to

(sντ

L )4.
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Table 1

(sντ

L )2

mN 0.06 0.05 0.04 0.03 0.02 0.01 0.005

[TeV]

0.3 1.7 10−4 1.3 10−4 9.8 10−5 6.7 10−5 4.0 10−5 1.8 10−5 8.4 10−6

(9.4 10−5) (7.8 10−5) (6.3 10−5) (4.7 10−5) (3.1 10−5) (1.6 10−5) (7.8 10−6)

0.5 4.9 10−4 3.8 10−4 2.8 10−4 1.9 10−4 1.2 10−4 5.2 10−5 2.5 10−5

(2.8 10−4) (2.3 10−4) (1.8 10−4) (1.4 10−4) (9.2 10−5) (4.6 10−5) (2.3 10−5)

0.7 8.4 10−4 6.4 10−4 4.7 10−4 3.2 10−4 1.9 10−4 8.2 10−5 3.8 10−5

(4.2 10−4) (3.5 10−4) (2.8 10−4) (2.1 10−4) (1.4 10−4) (7.0 10−5) (3.5 10−5)

1.0 1.4 10−3 1.1 10−3 7.7 10−4 5.1 10−4 2.9 10−4 1.2 10−4 5.5 10−5

(5.9 10−4) (4.9 10−4) (3.9 10−4) (2.9 10−4) (1.9 10−4) (9.8 10−5) (4.9 10−5)

2.0 4.3 10−3 3.1 10−3 2.1 10−3 1.3 10−3 6.9 10−4 2.5 10−4 1.0 10−4

(9.4 10−4) (7.8 10−4) (6.3 10−4) (4.7 10−4) (3.1 10−4) (1.5 10−4) (7.8 10−5)

3.0 8.7 10−3 6.2 10−3 4.1 10−3 2.5 10−3 1.2 10−3 4.0 10−4 1.5 10−4

(1.1 10−3) (9.6 10−4) (7.7 10−4) (5.7 10−4) (3.8 10−4) (1.9 10−4) (9.6 10−5)

4.0 1.5 10−2 1.0 10−2 6.8 10−3 4.0 10−3 1.9 10−3 5.9 10−4 2.0 10−4

(1.3 10−3) (1.1 10−3) (8.7 10−4) (6.5 10−4) (4.3 10−4) (2.2 10−4) (1.1 10−4)

6.0 − − − 8.3 10−3 3.9 10−3 1.1 10−3 3.3 10−4

(7.5 10−4) (5.0 10−4) (2.5 10−4) (1.2 10−4)

8.0 − − − − − 1.8 10−3 5.1 10−4

(2.7 10−4) (1.4 10−4)

10.0 − − − − − − 7.3 10−4

(1.4 10−4)
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