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Abstract
We consider a class of models predicting new heavy neutral fermionic states, whose

mixing with the light neutrinos can be naturally significant and produce observable effects
below the threshold for their production. We update the indirect limits on the flavour non-
diagonal mixing parameters that can be derived from unitarity, and show that significant
rates are in general expected for one-loop-induced rare processes due to the exchange of
virtual heavy neutrinos, involving the violation of the muon and electron lepton numbers.
In particular, the amplitudes for µ–e conversion in nuclei and for µ → ee+e− show a
non-decoupling quadratic dependence on the heavy neutrino mass M , while µ → eγ is
almost independent of the heavy scale above the electroweak scale. These three processes
are then used to set stringent constraints on the flavour-violating mixing angles. In all
the cases considered, we point out explicitly that the non-decoupling behaviour is strictly
related to the spontaneous breaking of the SU(2) symmetry.
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1 Introduction

New heavy neutral fermions could affect low-energy measurements, made well below their
production thresholds. In general, these new states mix with the three light neutrinos,
thus modifying their neutral current (NC) and charged current (CC) couplings. Such
effects depend on the light–heavy neutrino mixing angles, which can then be constrained
by the set of NC and CC precision data at “low” energy [1]–[3]. If the explanation
for the smallness of the known neutrino masses is given by the see-saw mechanism [4],
these mixing angles are proportional to the square roots of the ratios of the light and
the heavy mass eigenvalues, so that their effects on the light neutrino couplings to the
standard gauge bosons vanish when the heavy neutrino masses go to infinity. In this
limit, the heavy neutrinos completely decouple from the low-energy physics. In fact, not
only the tree-level light–heavy mixing effects, but also the loop diagrams involving the
heavy neutrinos, contributing to physical observables, turn out to be suppressed by inverse
powers of the heavy mass scale [5, 6].

However, the see-saw mechanism is not the only possible scenario to explain the light-
ness of the known neutrinos. In particular, a viable alternative involving heavy neutral
states has been considered [7]–[10], where vanishingly small masses for the known neu-
trinos are predicted by a symmetry argument, and at the same time large light–heavy
mixing angles are allowed. In this case, due to the mixing effects in the light neutrino
interactions, the new neutral fermions affect the low-energy physics even if their masses
are very large.

In the present paper, we discuss the conditions under which the mixing angles between
the standard and new neutral fermions heavier than MZ can be large, keeping at the same
time the masses of the known neutrinos below the laboratory limits. We will then study
the limits that can be set on the mixing parameters, concentrating on the ones which would
induce Lepton Flavour Violation (LFV). In particular, we will consider a class of models
that allow total lepton number conservation, and we will show that loop contributions
involving virtual heavy neutrinos to the decays µ → eγ, µ → ee+e−, and to the process
of µ–e conversion in nuclei, can be large and then provide significant constraints on the
mixing parameters. In particular for a heavy mass scale around the electroweak scale
the induced µ → ee+e− and µ–e conversion rates increase with the masses of the heavy
neutrinos, showing a non-decoupling behaviour, and the present limits on the processes
put significant constraints in the space of the light–heavy mixing parameters and new
neutrino masses. The planned experiments looking for muon–electron conversion are
specially suitable for finding signals arising from this kind of physics.

The paper is organized as follows. In section 2, we discuss the class of models for
neutrino mass that predict significant light-heavy mixing. In section 3, we review the
direct constraints on the flavour-diagonal, and up-date the resulting indirect limits on
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the flavour-changing, mixing parameters. In section 4, we compute the non-decoupling
contributions to the decays µ → eγ, µ → ee+e−, and to the process of µ–e conversion
in nuclei. We discuss their importance and their interplay in constraining the models,
and we show how the non-decoupling behaviour is strictly related to the breaking of the
electroweak symmetry. Finally, section 5 summarizes our conclusions.

2 Models for light–heavy neutrino mixing

Let us first consider a generic extension of the Standard Model (SM), including right-
handed neutrinos (singlets under the SM group) as the only new neutral fermions. We
can arrange all the independent neutrino degrees of freedom in two vectors of left-handed

fields, ν and N ≡ Cν̄T
R , where C is the charge-conjugation matrix and a family index is

understood. In the basis (ν, N) the mass matrix can be written in a block form as

M =
(

mνν mνN

mT
νN MNN

)

. (1)

The entry mνν can be due to a possible lepton-number-violating vacuum expectation
value (VEV) of a triplet Higgs field, as in left–right models. Although in principle the
singlet neutrinos can be light, we are interested in the case when all the new (i.e. non-SM)
states are heavier than ∼ MZ . This is also the theoretical expectation in most models,
which generally predict large masses for the heavy states. In the one family case, as far as
the entry mνν can be neglected, we have the usual see-saw mechanism [4] for the generation
of a small neutrino mass. In this case, the light–heavy mixing angle θ depends on the
ratio of the light and heavy mass scales, as sin2 θ ∼ m/M (m ∼ m2

νN/MNN , M ∼ MNN).
For M >∼ MZ , taking the laboratory limits on the νe, νµ and ντ masses [11], we get the
bounds sin2 θνe

<∼ 10−10, sin2 θνµ
<∼ 10−6, sin2 θντ

<∼ 10−3, which are too small to have
any phenomenological interest. To have significant light–heavy mixing in the one family
case, we are left with only one solution, requiring that the entry mνν be non vanishing,
and satisfying the relation mνν = m2

νN/MNN . This would ensure that the mass matrix
of Eq. (1) be singular, so that the mixing angle sin θ ∼ mνN/MNN would no longer be
related to the ratio of the light to the heavy eigenvalues, and would be allowed to be as
large as O(1). However, it seems hard to find a reasonable motivation for the underlying
fine tuning of the parameters in the mass matrix. The model with three families of left-
and right- handed neutrinos (ν ≡ (νe, νµ, ντ ), N ≡ (Ne, Nµ, Nτ )) allows a solution even
in the case mνν = 0 [12]. In this case, the fine-tuning conditions, which allow for finite
light–heavy mixing and vanishing mass of the known neutrinos, are the following: 1) the
Dirac mass matrix mνN is of rank 1, that is all the three lines (rows) are proportional; 2)
the trace Tr(mT

νNM−1
NNmνN) = 0 (assuming that MNN is not singular).

These considerations can be generalized. The neutrino mass matrix should be singular
with a three times degenerate zero eigenvalue, in the limit in which the masses of the three
known neutrinos are neglected. In the see-saw mechanism, this is ensured by letting the
heavy scale go to infinity, which implies that the light–heavy mixing angles go to zero.
However, if for some reason the mass matrix is (three times) singular even for finite values
of the heavy scale, the light–heavy mixing angle can be substantial. Any model realizing

2



this idea in a natural way, e.g. due to a symmetry argument, is a viable alternative to
the see-saw mechanism to explain the lightness of the known neutrinos.

For instance, let us assume that pairs N , N ′ of (left-handed) new neutrinos exist, with
the lepton-number assignments L(N) = −L(N ′) = L(ν) = 1, and that L is conserved. We
understand a family index, i.e. ν ≡ (νe, νµ, ντ ), N ≡ (N1, ..., Nn−3), N ′ ≡ (N ′

1, ..., N
′
n−3),

where n− 3 is the number of new pairs of neutral fermions. Then, in the basis (ν, N, N ′),
the mass matrix is

M =







0 0 MνN ′

0 0 MNN ′

MT
νN ′ MT

NN ′ 0





 , (2)

which is singular and ensures that three eigenstates form massless Weyl neutrinos. In
fact, as in the SM, the light states remain with no chirality partners and hence massless.1

On the contrary, the heavy states form Dirac neutrinos, whose left-handed components
are mainly the N and whose right-handed parts are given by C (̄N ′)T . Mass matrices of
the form (2) have been considered in Ref. [7]. They can arise in generalized E6 models
[8]–[10], as well as in models predicting other kinds of vector multiplets (singlets, triplets,
. . . ) or new mirror multiplets of leptons [13] with neutral components N , N ′.

The mass matrix (2) can be put in a “Dirac diagonal” form by an “orthogonal”
transformation,

UTMU =







0 0 0
0 0 M
0 M 0





 , (3)

where the block M is diagonal. The unitary matrix U in Eq. (3) can be chosen in the
form

U =







A G 0
F H 0
0 0 K





 . (4)

Several relations amongst the blocks in (4) can also be deduced from the unitarity con-
dition U†U = UU† = 1. Equation (4) describes the mixing between the ν and N states,
the mixing parameters being the elements of the matrix

GH−1 = −(FA−1)† = [MνN ′M−1
N ′N ′]∗. (5)

Clearly, if for the relevant matrix elements MνN ′ ∼ MNN ′ , the mixings between ν and N
can be arbitrarily large. We will consider in the following two particular cases:

i) The new neutrinos N are ordinary, i.e. they belong to a weak (left-handed) doublet.
Then MνN ′ and MNN ′ could be generated by vacuum expectation values of Higgs fields
transforming in the same way under SU(2) so that the ν–N mixing could be naturally
close to maximal. In particular, we can consider the SM with n > 3 families, and with n−3
right-handed neutrinos. Then N would describe the neutrinos of the new n − 3 families,
appearing with right-handed partners N ′. In this picture, the three known neutrinos
remain strictly massless since they have no right-handed component. The same scenario
arises in some lepton-number-conserving E6 models [10], predicting three new ordinary N

1Small L-violating Majorana mass terms for the states ν and N could also be allowed [9], and could
be relevant for explaining the solar neutrino deficit via neutrino oscillations.
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states (one per standard family) and six isosinglets, three of which can play the role of
our N ′ in such a way that the relevant part of the mass matrix assumes the form of Eq.
(2).

ii) Another case that has been considered in the literature [8] corresponds to both N
and N ′ singlets. In this case, a significant light–heavy mixing can be expected only if the
SU(2)-invariant mass term MNN ′ is generated not far from the electroweak scale.

In both the above cases, the N ′ states are assumed to be isosinglets. This implies that
the block MνN ′ violates SU(2), and can be generated by the VEV of a doublet Higgs field
at the electroweak scale.

3 Constraints from flavour-diagonal processes

The mixing with heavy states would affect the observables at energies below the threshold
for their production. Following e.g. Ref. [2], we introduce a vector N to describe all
the new independent neutral fermionic degrees of freedom which mix with the three
known left-handed neutrinos ν ≡ (νe, νµ, ντ ). We will use only left-handed fields, without
distinguishing between neutrinos and antineutrinos. Then the light n and heavy N mass
eigenstates can be obtained by a unitary transformation

(

ν
N

)

=
(

A G
F H

)(

n
N
)

. (6)

This general formalism covers in particular the cases discussed in the previous section. In
the case of Eqs. (2)–(4), this means that we are now focusing on the submatrix involving
the light–heavy mixing, given by Eq. (6), which is unitary. The light–heavy mixing
is described by the matrix G, and is reflected also in the non-unitarity of the block A
(AA†+GG† = 1). Notice that A also describes the leptonic Cabibbo–Kobayashi–Maskawa
mixing, in the basis where the mass matrix for the (light) charged leptons is diagonal.

In processes occurring at energies below the threshold for the production of the heavy
states, the standard gauge eigenstate νa (a = e, µ, τ) is effectively replaced by its (nor-
malized) projection |νlight

a 〉 onto the subspace of the light neutrinos |ni〉 (i = 1, 2, 3),

|νlight
a 〉 ≡ 1

cνa

3
∑

i=1

A†
ia|ni〉, (7)

where c2
νa

≡ cos2 θνa
≡ (AA†)aa. The state |νlight

a 〉 has non-trivial projections on the
subspace of the standard neutrinos |νb〉 as well as on the subspaces of the new neutrinos
|NB〉. In fact we have

∑

b

|〈νb|νlight
a 〉|2 = (AA†)2aa

c2νa

= c2
νa

,

∑

B

|〈NB|νlight
a 〉|2 = (AF †FA†)aa

c2νa

= s2
νa

,
(8)

with s2
νa

≡ 1 − c2
νa

= sin2 θνa
. The parameter θνa

measures the total amount of mixing of
the known state of flavour a = e, µ, τ with the new states. These three mixing angles are
sufficient to describe the tree-level effects of the light–heavy mixing in the CC and NC
processes at energies below the threshold for the production of the heavy states [2].
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The entries of the matrix GG†, describing the mixing with the new neutrinos, are
limited by the constraints on CC universality and, if the heavy states do not belong to
SU(2) doublets, by the measurement of the Z boson invisible width at LEP [1]–[3]. For
the diagonal elements (GG†)aa ≡ s2

νa
, the 90% C.L. bounds are [2, 3]

s2
νe

< 0.007(0.005), s2
νµ

< 0.002, s2
ντ

< 0.03(0.01), (9)

where the more conservative limits are due to the CC constraints and apply to any kind
of heavy neutrinos, while the limits in parentheses correspond to the mixing with SU(2)
singlets and take into account also the LEP [14] and SLC [15] data. For a complete
discussion, we refer to [2, 3]. These limits can be somewhat relaxed if the cancellations
with the effects due to different fermion-mixing parameters which might be present in
some extended models are taken into account [1]–[3]. Nevertheless, we will not try to
allow for the corresponding fine-tunings and we will consider the stringent bounds of Eq.
(9) to be reliable. For the off-diagonal elements of the matrix GG†, indirect limits can be
obtained from Eq. (9) and the relation [9]

|(GG†)ab| < |sνa
sνb

|, (10)

which can be deduced from the unitarity of the full mixing matrix by applying the
Schwartz inequality. Using the bounds of Eq. (9), we find that all the elements of
the matrix GG† can be constrained as in Table 1.

Loop diagrams involving virtual heavy neutrinos can contribute to flavour-diagonal
observables [5, 16], such as the leptonic widths Z → ll̄ or the polarization asymmetries
measured at the Z peak [14, 15]. However, taking into account the updated limits of Table
1, the predictions for these observables turn out to be below the attainable experimental
limits.

Heavy neutrinos in general also affect the electroweak radiative corrections which are
tested e.g. in the LEP experiments. For instance, if the new neutral states N belong to

SU(2) doublets
(

N
E

)

, they will then contribute to the ρ parameter [17, 18] through loop

diagrams, resulting in a (top-like) non-decoupling dependence,

δρ ≃
∑ GF

8
√

2π2
∆M2, (11)

where ∆M2 ≡ M2
E + M2

N − 4M2

E
M2

N

M2

E
−M2

N

ln ME

MN
≥ (MN − ME)2; the sum runs over all the new

doublets and we have neglected the effects of the light–heavy neutrino mixing. The value
of the ρ parameter is constrained by the electroweak data. For mt = 174 ± 16 GeV, as
suggested by the CDF measurement [19], the result is δρ = 0.0004 ± 0.0022 ± 0.002 [18]
(the second error is from the uncertainty in the Higgs mass mH) for the (mt-independent)
corrections due to possible new physics. From Eq. (11) and for mH < 1 TeV, we then find
that any new lepton doublet should be degenerate within |MN −ME| <∼ 220 GeV at 90%
C.L.. This constraint is significant if the new neutrinos are close to the perturbative limit
MN <∼ 1 TeV, that holds for N belonging to an SU(2) doublet, but in any case within
this region it does not require an important fine-tuning.

A second phenomenological constraint on heavy ordinary neutrinos, belonging to weak
doublets, comes from the limit on the S Peskin–Takeuchi [21] parameter. The contribution
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from a multiplet of heavy degenerate fermions is ∆S = C
∑

f(t3L(f)− t3R(f))2/3π, where
t3L,R(f) is the weak isospin of the left- (right-) handed component of fermion f , and C
is the number of colours [20]. Then the contribution from the set of all the particles in
each new ordinary family of heavy fermions is ∆S ≃ 2/3π > 0. From the analysis of the
electroweak data, one gets the 95% C.L. bound S < 0.2, which can be relaxed to S < 0.4
if only positive contributions to S [20] are allowed. As a consequence, only a single, or
very marginally two, new families are allowed to exist by the present data. This is the
maximum number of pairs N , N ′, for N belonging to a new family and N ′ isosinglet, and
in this case MνN ′ and MNN ′ can be 3 × 1 (much less likely 3 × 2) matrices. However,
in the following we will retain the general notation, allowing for an arbitrary number
of N , N ′ pairs. In fact, this number is not important for our discussion (provided it is
non-zero), and in addition one can also consider new pairs N , N ′ from (respectively) an
isodoublet and an isosinglet which do not belong to new ordinary families. An example
of the latter situation is given by E6 models themselves [10] that contain new leptonic
doublets and isosinglets in the 27 representation, so that in the three-family models there
are also three such pairs. In this case, the contribution to the S parameter is zero, since
the non-isosinglet new states appear in vector doublets (t3L(f) = t3R(f)).

In the case when both N and N ′ are isosinglets, as in the model [8], the S parameter is
not affected, while the contribution to δρ is suppressed by the fourth power in the mixing
angles and is negligible [6, 16].

4 Constraints from Flavour-Changing (FC) processes

The indirect limits presented in Table 1 are more stringent than any direct bound on
the tree-level effects of the off-diagonal mixings, such as the constraints from the search
for neutrino oscillations [9]. However, loop diagrams involving heavy neutrinos give rise
to unobserved rare processes such as µ → eγ, µ → ee+e−, τ → lal

+
b l−c (a, b, c = e, µ),

Z → l−a l+b (a, b = e, µ, τ), etc. [5, 22]. Taking into account the stringent constraints in
Table 1, the rates for all the processes involving the violation of the τ lepton number turn
out to be below the experimental sensitivity even for extreme values of the heavy neutrino
masses [22]. In other words, it is not possible to improve the limits in Table 1 on the
parameters (GG†)aτ (a = e, µ). However the extraordinary sensitivity of the experiments
looking for FC processes involving the first two families implies that the constraints from
µ → eγ, from µ → ee+e−, or from µ–e conversion in nuclei, are significant and turn out
to be stronger than those from Table 1. The diagrams contributing to these processes are
proportional to factors involving the light–heavy mixing angles, and in the cases of the
processes µ → ee+e− and µ–e conversion in nuclei, they depend up to quadratically in the
heavy neutrino mass scale M . In see-saw models, where the mixing angles are suppressed
by inverse powers of the heavy masses, the resulting dependence is ∼ M−2 [5, 6], in
agreement with the decoupling theorem [24]. However, the models discussed in section 2
predict a finite light–heavy mixing independent of the light-to-heavy mass ratio, so that,
assuming that the N ′ states are isosinglets, a genuine ∼ M2 dependence is obtained. This
non-decoupling behaviour is comparable to the top mass dependence of the ρ parameter
[17] and of the Z → bb̄ vertex [25]. Since the effects of any SU(2)-invariant mass term
should decouple when the mass term goes to infinity [24], in all these cases the relevant
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combinations of the mass and mixing parameters entering the graphs are connected to the
electroweak breaking scale and cannot exceed ∼ 1 TeV. This consideration is obvious for
the top-dependent non-decoupling effects, and will be explicitly verified in the following
in the case of the heavy-neutrino contributions.

4.1 µ → eγ
Let us first consider the decay µ → eγ, induced by one-loop graphs involving virtual

heavy neutrinos [26, 9]. The corresponding branching ratio is given by

B(µ → eγ) =
3α

8π

∣

∣

∣

∣

∣

∑

i

GeiG
†
iµφ

(

M2
i

M2
W

)∣

∣

∣

∣

∣

2

, (12)

where Mi is the mass of the heavy eigenstate Ni, and the function

φ(x) =
x(1 − 6x + 3x2 + 2x3 − 6x2 ln x)

2(1 − x)4
(13)

varies slowly from 0 to 1 as x ranges from 0 to ∞. Taking into account the 90% C.L.
limit B(µ → eγ) < 4.9 × 10−11 [27], and assuming Mi >∼ MW , one gets the estimate
|(GG†)eµ| <∼ 0.95 × 10−3 [9]. This bound holds under the assumption that no important

fine-tuning works in the sum
∑

i GeiG
†
iµφ

(

M2

i

M2

W

)

, and is independent of the weak isospin

of the new states. We will be interested in the case of very heavy neutrinos, Mi ≫ MW .
In this case φ ≃ 1 and we get the stringent bound

|(GG†)eµ| <∼ 0.24 × 10−3. (14)

In the models discussed in Section 2, allowing for large light–heavy mixings not suppressed
by see-saw relations, the loop contribution of Eq. (12) does not vanish for large heavy-
neutrino masses; however, it does not have a hard non-decoupling dependence on the
heavy mass scale, as the Zeµ vertex and the box diagrams that we will discuss in the
next paragraphs.

4.2 Zeµ vertex

Let us consider now the FC Zēµ current, parameterized in the form

Jµ
Zēµ = gēγµ(kLPL + kRPR)µ =

g

2
ēγµ(kV − kAγ5)µ, (15)

where g = (4
√

2GF M2
Z)1/2 is the weak coupling constant to the Z boson, and PR,L =

(1 ± γ5)/2. The leading contribution from heavy neutrinos Ni of mass Mi ≫ MW arises
from the (convergent) loop diagram in Fig. 1 involving the exchange of longitudinal W
bosons (more precisely of the would-be Goldstone bosons in the Feynman gauge). Notice
that, as far as we are interested only on the quadratic term in the mass of the heavy states,
it is consistent to ignore all the other loop contributions to the vertex, since their leading
quadratic terms sum to zero when Mi ≫ MW . We also remark that the corrections to our
approximation, which would become the main contribution for Mi <∼ 100 GeV, would give
a phenomenologically small result due to the constraint coming from µ → eγ, Eq. (12),
which would be dominant for such relatively light new states. A more formal justification
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for considering only the graphs in Fig. 1 can be given in the effective lagrangian approach
[28].

Neglecting the external momenta, and for Mi ≫ MW , the contribution in Fig. 1 reads

kL = kV = kA = − g2

128π2M2
Z

Feµ, (16)

where the dependence from the new physics parameters is given by the factor

Feµ ≡
∑

i,j=heavy

SijMiMjf(Mi, Mj), f(Mi, Mj) =
MiMj ln(M2

i /M2
j )

M2
i − M2

j

. (17)

The dependence on the light–heavy mixing angles is contained in the term

Sij ≡ G∗
µiGej [(G

†G)ji + 2tN3 (H†H)ji] = G∗
µiGej[(G

†G)ji(1 − 2tN3 ) + 2tN3 δji], (18)

where tN3 is the weak isospin of the (left-handed) N field. The dependence is quadratic
in the light–heavy mixing matrix G, unless the new neutrinos N are weak isosinglets, in
which case it is quartic.

The best limit on the FC current Jµ
Zēµ arises from the search for µ–e conversion in

nuclei [29, 30]. For general FC couplings kV and kA and for nuclei with atomic number
A <∼ 100, the induced branching ratio with the total nuclear muon capture rate is [31]

R ≃ G2
F α3

π2
m3

µpeEe

Z4
eff

Z
|F (q)|2 1

Γcapture
(k2

V + k2
A)Q2

W , (19)

where pe (Ee) is the electron momentum (energy), Ee ≃ pe ≃ mµ for this process, and
F (q) is the nuclear form factor, as measured for example from electron scattering [32].
Here QW = (2Z + N)vu + (Z + 2N)vd is the coherent nuclear charge associated with the
vector current of the nucleon, as a function of the quark couplings to the Z boson and
of the nucleon charge and atomic (A = Z + N) numbers, and Zeff has been determined
in the literature [33]. For Γcapture in 48

22Ti we will use the experimental determinations
Γcapture ≃ (2.590 ± 0.012) × 106s−1 [29], F (q2 ≃ −m2

µ) ≃ 0.54 and Zeff ≃ 17.6. The
resulting limit for the FC couplings is then [31]

(k2
V + k2

A) < 5.2 × 10−13
(

B

4 × 10−12

)

, (20)

where B is the value of the experimental bound to R, B = 4 × 10−12 at present [29].
Comparing with the prediction of our model, Eqs. (16)–(18), we find that the non

observation of the process of µ–e conversion in nuclei results in the bound

|Feµ|
(100GeV)2

<∼ 0.97 × 10−3
(

B

4 × 10−12

)1/2

. (21)

In order to find out the impact of this constraint, we have to specify the value of the
weak isospin of the new states involved in the mixing.

Let us consider first the case i) of Section 2, when the new states N are ordinary,
that is tN3 = 1/2. In this case, a substantial light–heavy mixing can be expected, since
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MνN ′ and MNN ′ can be generated both by the VEVs of SU(2)-doublet Higgs fields (we
are assuming that N ′ are singlets). Then Sij = G∗

µiGeiδij , and only the diagonal terms
contribute in Eq. (18). It is easy to show that f(M, M) = 1, then Eq. (17) simplifies to

Feµ = (GM2G†)eµ = (MνN ′M †
νN ′)eµ, (22)

where M is the diagonal Dirac mass matrix for the heavy states appearing in Eq. (3),
and we have used Eqs. (2)–(4). Since MνN ′ and MNN ′ arise from the breaking of the
SU(2) symmetry, their entries are expected to be generated at the electroweak scale.
In particular, the heavy masses should be Mi <∼ 1 TeV, assuming perturbation theory
not to be spoiled. We see explicitly in this case that the non-decoupling behaviour of
the Zeµ vertex is due to the breaking of the SU(2) symmetry. On the other hand,
since Feµ = (MνN ′M †

νN ′)eµ is naturally expected to be ∼ (100 GeV)2, we see that Eq.
(21) indeed represents a strong constraint on the model, like the bounds on the mixing
matrix GG† discussed in the previous section and the limit from µ → eγ of the previous
paragraph.

To compare these different bounds, let us assume for simplicity that the mass dif-
ferences amongst the heavy states are smaller than their common scale M , namely
|M2

i − M2
j |/(M2

i + M2
j ) ≪ 1. The allowed regions in the LFV mixing parameter

S ≡ (GG†)1/2
eµ and the heavy mass scale M is then given in Fig. 2. For 200 GeV <∼ M ,

the constraint on S from µ–e conversion in nuclei, given by Eq. (21) and represented
by the full line in Fig. 22, is more stringent than the bound from µ → eγ (dashed line),
resulting from Eqs. (12), (13) and Ref. [27]. If the new states are lighter than ∼ 200 GeV,
the constraint from µ → eγ is the most stringent one. The indirect limit from Table 1,
S = (GG†)1/2

eµ <
√

0.004 = 0.063, is much worse and would be represented by a horizontal
line above the figure.

Let us now consider the case ii) of Section 2, in which the new states N mixing with
the light neutrinos are singlets under SU(2). Then from Eq. (18) we see that the mixing
factor depends of the fourth power of the light–heavy mixings. One could expect that
in this case no significant constraint can be obtained from Eq. (21); however the mass
eigenvalues Mi are no longer limited by 1 TeV. In fact, since the states N ′ are also assumed
to be isosinglets, the entries MNN ′ in Eq. (2) are not related to the electroweak scale and
can be expected to be generated at a higher scale. To have an idea of the impact of the
constraint of Eq. (21) in this case, let us assume again that the mass differences amongst
the heavy states are smaller than their common scale M . In this case, f(Mi, Mj) ≃ 1, and
using the identity MG† = KT MT

νN ′ (which can be deduced from Eqs. (3) and (4)), we find
that Feµ ≃ (GMG†)2

eµ = (GejG
†
iµ)(K

†M †
νN ′MνN ′K)ij. Since K is unitary, we can expect

that |(K†M †
νN ′MνN ′K)ij | ∼ M̄2

νN ′ , where M̄νN ′ is an average scale for the entries of the
SU(2)-breaking mass matrix MνN ′ , which is generated at the electroweak scale. Again,
we see explicitly that the non-decoupling behaviour is due to the spontaneous breaking
of the SU(2) symmetry.

A more drastic approximation, Feµ ∼ (GG†)eµM̄
2
νN ′ , gives an expression that is similar

to Eq. (22), corresponding to the mixing with doublet neutrinos. In fact, M̄νN ′ <∼ 1 TeV

2For M → 100 GeV, towards the left margin of the figure, the non-decoupling contribution to the Zeµ

vertex is not more important than the others we have neglected [28], but in this regime the bound from
µ → eγ dominates [5, 22].
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since it breaks SU(2), so that the considerations given in the previous case of doublet
new neutrinos can be repeated here. The constraint from µ–e conversion in nuclei can
be represented again by the full line in Fig. 2, after the substitution M → M̄νN ′ . In
particular, the constraint of Eq. (21) is more stringent than the constraint from µ → eγ
if M̄νN ′ >∼ 200 GeV.

If M̄νN ′ and M̄N ′N ′ ≃ M are the typical orders of magnitude of the entries of the
matrices MνN ′ and MN ′N ′, from Eq. (5) the typical value of the mixing angles is

S ≡ (GG†)1/2
eµ ∼ M̄νN ′/M, (23)

which is of course similar to the see-saw formula [4, 6], though no longer related to the
ratio of the physical mass eigenstates. Then the range 200 GeV <∼ M̄νN ′ <∼ 1 TeV and the
bound of Eq. (21) correspond to a heavy scale M >∼ (10− 300) TeV. This last constraint
is not problematic, since in the present case we are considering singlet new states which
can be originated by SU(2)-invariant VEVs. In fact, the model predicts observable LFV
effects if the latter inequality is (almost) an equality, corresponding to the existence of
an intermediate scale <∼ 300 TeV for the heavy states. However, for the mixing with
singlet neutrinos this assumption on the heavy scale would be somewhat arbitrary (unless
a justification is given by fully specifying the model), so that in general significant LFV
effects are not necessarily predicted in this case, contrary to the case of the mixing with
new ordinary states that we have considered above.

Moreover, Eq. (23) allows us to express the dependence of the leading contribution to
the µ–e vertex in terms of the mass parameters alone. In fact, for the mixing with singlet
neutrinos we get Feµ ∼ (M̄2

νN ′/M)2, which becomes vanishingly small when the invariant
mass term M → ∞, since M̄νN ′ <∼ 1 TeV. This can be considered as a generalization of
the decoupling theorem [24, 6] to the case of the mixing with singlet neutrinos N in the
class of models characterized by Eq. (2).

4.3 µ → ee+e−

The leading contribution from heavy neutrinos Ni of mass Mi ≫ MW arises from the
(convergent) loop diagrams in Fig. 3 involving the exchange of longitudinal W bosons
(more precisely of the would-be Goldstone bosons in the Feynman gauge). Again, since we
are interested only in the coefficient of the quadratic term in the masses Mi of the heavy
states, it is consistent to ignore all the other loop contributions to the process [5, 6, 22].
Neglecting the external momenta, and for Mi ≫ MW , we obtain for the branching ratio,
compared to the main channel µ → eνν̄:

B(µ → ee−e+)

B(µ → eνν̄)
= 8

(

g2

162π2M2
Z

)2 (

|Beµ − 2ǫLFeµ|2 +
1

2
|2ǫRFeµ|2

)

, (24)

where ǫL = −1/2 + s2
w ≃ −0.27 and ǫR = s2

w ≃ 0.23 are the SM left- and right- handed
current couplings of the electron to the Z. The mixing factor entering the box diagram is

Beµ ≡
∑

i,j=heavy

G∗
µiGeiG

∗
ejGejMiMjf(Mi, Mj), (25)

while Feµ and the loop integral f(Mi, Mj), entering also in the Zeµ vertex, are given by
Eqs. (17) and (18).
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The 90% C.L. experimental bound, B(µ → ee−e+) < 1.0 × 10−12 [34], then results in
the limit

(

|Beµ + 0.54Feµ|2 + 1
2
|0.46Feµ|2

)1/2

(100 GeV)2
< 1.4 × 10−3

(

B

10−12

)1/2

. (26)

This constraint is complementary to the limits from µ → eγ and from µ–e conversion in
nuclei, Eqs. (14) and (21), since it affects a different combination of the mixing parame-
ters, namely Beµ. As a general result, we see that the contribution to the amplitude for
µ → ee+e− presents a leading quadratic dependence on the heavy mass scale, similar to
that of the Zeµ vertex.

In the case i) of section 2, when the mixing is with new ordinary neutrinos, the vertex
contribution of Fig. 3.a depends quadratically on the light–heavy mixing angles, so that
we can neglect the the box diagram 3.b, which depends on the fourth power in the mixings.
Then the constraint of Eq. (26) becomes

|Feµ|
(100 GeV)2

<∼ 2.3 × 10−3
(

B

10−12

)1/2

. (27)

We find that in this case the limit of Eq. (21) from µ–e conversion in nuclei is stronger
by a factor ∼ 2, as could be expected from Ref. [31].

For this reason, the limit from µ → ee+e− can be important only in the case
ii) of section 2, when the new states N involved in the mixing are singlets, since in
the opposite case the contribution to the Zeµ vertex is quadratic in the mixing an-
gles and the bound from µ–e conversion in nuclei results in a stronger constraint.
When the mixing is with new singlets N , the two general constraints, Eqs. (21)
and (26), appear to be of similar strength. For a more quantitative confrontation,
let us consider again a particular case, when the mass differences amongst the heavy
states are smaller than their common scale, so that f(Mi, Mj) ≃ 1. In this case, we
have Beµ ≃ (GMG†)ee(GMG†)eµ, while Feµ ≃ (GMG†)2

eµ = (GMG†)ee(GMG†)eµ +
(GMG†)eµ(GMG†)µµ + (GMG†)eτ (GMG†)τµ. If (GMG†)ee(GMG†)eµ is the largest con-
tribution to Feµ, then Feµ ≃ Beµ ≃ (GMG†)ee(GMG†)eµ, and the constraint of Eq. (26)
becomes

|Feµ|
(100 GeV)2

<∼ 0.93 × 10−3
(

B

10−12

)1/2

, (28)

which is as stringent as the bound from µ–e conversion in nuclei, Eq. (21). On the other
hand, if (GMG†)ee(GMG†)eµ is not the main part of Feµ, e.g. (GMG†)ee(GMG†)eµ <
(GMG†)eτ (GMG†)τµ, then Feµ >∼ Beµ. If Beµ can be neglected, the rate for µ → ee+e−

is given mainly by the Zeµ vertex contribution, and the constraint of Eq. (26) is given
again by Eq. (27) and is less important by a factor ∼ 2 than the limit of Eq. (21) from
µ–e conversion in nuclei.

5 Conclusions

We have considered a class of models predicting new heavy neutral fermionic states, whose
mixing with the light neutrinos can be naturally significant. In contrast with the see-saw
models, the known neutrino masses are predicted to vanish due to a symmetry, such
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as lepton number. Possible non-vanishing masses for the light neutrinos could then be
attributed to small violations of such a symmetry. We have then reviewed the bounds on
the flavour-diagonal light–heavy mixing parameters, arising mainly from the constraints
on Charged Current Universality and the LEP data, and we have updated and collected
in Table 1 the indirect limits on the flavour non-diagonal mixing parameters.

In spite of these stringent constraints, the one-loop-induced rare processes due to the
exchange of virtual heavy neutrinos, involving the violation of the muon and electron
lepton numbers, which is tested with an impressive experimental precision, have then
been shown to be potentially significant. In particular, the Zeµ vertex, constrained by
the non-observation of µ–e conversion in nuclei, and the amplitude for µ → ee+e−, show
a non-decoupling quadratic dependence on the heavy neutrino mass M , while µ → eγ is
almost independent of the heavy mass above the electroweak scale. These three processes
are then used to set constraints on the LFV parameters entering the corresponding loop
diagrams, which turn out to be stronger than the indirect limits of Table 1.

If the mass scale M of the heavy states is in the range MZ <∼ M <∼ 200 GeV, the best
constraint on the light–heavy LFV mixing comes from µ → eγ. If M >∼ 200 GeV, and the
heavy neutrinos involved in the mixing are not singlets under SU(2), the best constraint
is given in most cases by the present data on the search for µ–e conversion in nuclei, and
the planned experiments looking for this process have an opportunity to find signals from
this kind of physics. In fact, we have pointed out that in this case a significant rate is
naturally expected in the class of models considered here.

In contrast, if the heavy neutrinos mixing with the light states are singlets under
SU(2), then the leading contribution to the Zeµ vertex is suppressed by two more powers
of the light–heavy mixing angles, and the constraint from µ–e conversion in nuclei is
comparable to that from µ → ee+e−. These two bounds turn out to be important in
a region of the parameter space corresponding to SU(2)-breaking mass entries in the
range 200 GeV <∼ MνN ′ <∼ 1 TeV. In contrast to the model with non-singlet heavy states
involved in the mixing, in this latter case of the mixing with isosinglet neutrinos no general
prediction can be made on the heavy mass scale, and our constraints are significant only
if it lies at an ‘intermediate’ scale M <∼ 300 TeV. Moreover, in this particular case the
prediction for the LFV observables decreases for increasing values of the heavy mass
scale M → ∞, resulting in a generalization of the decoupling theorem to this class of
‘non-see-saw’ models.

In all the cases considered, we have explicitly discussed how the non-decoupling be-
haviour is strictly related to the spontaneous breaking of the SU(2) symmetry. This result
could be expected, since the Appelquist–Carazzone theorem [24] applies to the unbroken
gauge theory.

ACKNOWLEDGMENTS

We are grateful to A. Santamaria, M.C. Gonzalez-Garcia, E. Nardi, S. Peris, N. Rius,
E. Roulet and J. Peltoniemi for several very useful discussions and for critically reading
the preliminary versions of the paper.

12



References

[1] P. Langacker and D. London, Phys. Rev. D38 (1988) 886;
E. Nardi and E. Roulet, Phys. Lett. B248 (1990) 139;
G. Bhattacharyya et al., Phys. Rev. Lett. 64 (1990) 2870;
G. Bhattacharyya et al., Mod. Phys. Lett. A6 (1991) 2921;
E. Nardi, E. Roulet and D. Tommasini, Nucl. Phys. B386 (1992) 239;
E. Nardi, E. Roulet and D. Tommasini, Phys. Rev. D46 (1992) 3040;
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Figure 1: One-loop diagram for the Zeµ vertex due to virtual heavy neutrinos Ni,j and
would-be Goldstone boson φ±, representing the Landau gauge leading contribution in the
limit Mi,j ≫ MZ .

Figure 2: 90 % C.L. allowed regions for the LFV mixing S ≡ (GG†)1/2
eµ versus the heavy

neutrino mass scale M , from the limits on µ → eγ (dashed line) and on µ–e conversion
in nuclei (full line).

Figure 3: One-loop diagrams for µ → ee+e− due to virtual heavy neutrinos Ni,j and
would-be Goldstone boson φ±, representing the Landau gauge leading contributions in
the limit Mi,j ≫ MZ .

e µ τ

e 0.007(0.005) 0.004(0.003) 0.015(0.004)
µ 0.004(0.003) 0.002 0.007(0.004)
τ 0.015(0.004) 0.007(0.004) 0.03(0.01)

Table 1: The 90% C.L. upper bound on the entries of the matrix GG† describing the effects
of the light–heavy neutrino mixing. The stronger limits in the parentheses correspond to
the mixing with isosinglet neutrinos.
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