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Preface

FLASY12 is the second international workshop on flavor symmetries in a series first held in
2011 in Valencia. With the exciting flavor and CP data from the LHC in heavy flavors and the
advent of a large θ13 in 2011 and many new theory ideas emerging “it was just about time”
to host a workshop on quark and lepton flavor physics with our research groups in Dortmund.
The major incentive for the event was to bring together international experts on the flavor
and beyond the Standard Model frontiers to discuss the status of the fields and further new
theory and phenomenology driven avenues. These proceedings represent a snapshop of this
enterprise as of summer/fall 2012. We look forward to future FLASY workshops!
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1 Sterile neutrinos for warm dark matter and
the reactor anomaly in flavor symmetry
models

J. Barry

Abstract Although existing theoretical models generally prefer extremely heavy right-handed
neutrinos to generate light neutrino masses via the seesaw mechanism, there are several
observed phenomena that point to the existence of both keV- and eV-scale sterile neutrinos.
We present two A4 flavor symmetry models that can accommodate light sterile neutrinos and
remain compatible with neutrino data. Higher order seesaw terms and higher-dimensional
operators are studied, and the phenomenological implications of light sterile neutrinos on
neutrinoless double beta decay are discussed.

1.1 Introduction: motivations for sterile neutrinos

The existence of neutrino masses requires physics beyond the standard model, as does the
presence of Dark Matter (DM). In the well-studied seesaw model [1–4] the light active neutrino
masses come from integrating out heavy GUT-scale right-handed (sterile) neutrinos. On the
other hand, keV-scale sterile neutrinos with small mixing to the active ones are good candidates
for Warm Dark Matter (WDM) [5–7], which addresses some of the unsolved problems of the
Cold Dark Matter model, i.e., the abundance of Dwarf satellite galaxies or cuspy DM halos.
Furthermore, there are several experimental hints for the existence of eV-scale sterile neutrinos,
such as the apparent neutrino flavor transitions at LSND and MiniBooNE and the “reactor
anomaly” [8, 9]. Recent results from precision cosmology and Big Bang Nucleosynthesis
[10–13] also point to an additional relativistic degree of freedom, for which light steriles are a
good candidate. Another phenomenological impact of light sterile neutrinos is in the amplitude
for neutrinoless double beta decay (0νββ), which can show markedly different behaviour (see
Section 1.2).

Reconciling these observed phenomena within a theoretical model is the aim of the present
work. The required mass hierarchy in the sterile sector is achieved with the Froggatt-Nielsen
mechanism [14]1, which suppresses both the Dirac and Majorana mass terms while leaving
the leading order seesaw formula invariant [20]; the neutrino flavor structure is provided by an
A4 flavor symmetry. Higher order seesaw terms are non-negligible in a model with eV-scale
sterile neutrinos, and in our case lead to deviations from tribimaximal mixing (TBM). In addition,

1Other approaches include the “split seesaw” [15], softly broken flavor symmetries [16, 17] or extended seesaw
models [18, 19].
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higher-dimensional operators can give values of θ13 compatible with recent fits [21], but their
effect on the active-sterile mixing, defined as a ratio of mass scales, is negligible.

1.2 Double beta decay with sterile neutrinos

The presence of light sterile neutrinos can have a significant effect on the amplitude for 0νββ.
In the case of one sterile neutrino, there are three additional mixing angles, θ4, ( = 1,2,3), as
well as four additional phases (two Dirac and two Majorana)2. The effective neutrino mass in
0νββ is given by

〈mee〉4ν =
�

�

�c212c
2
13c

2
14m1 + s212c

2
13c

2
14m2e

α + s213c
2
14m3e

β + s214m4e
γ
�

�

� , (1.1)

with cj = cosθj, sj = sinθj and α, β and γ the Majorana phases. Figure 1.1 displays the
allowed range of the effective mass as a function of the lightest mass mlight, using data from
Refs. [24, 25]. In the upper panel, with the sterile neutrino heavier than the active ones (the
3+1 case), the additional term proportional to m4 in Eq. (1.1) means that the whole effective
mass is larger, and can even vanish in the inverted hierarchy case, which is completely different
to the standard picture. The lower panel of Fig. 1.1 shows the effective mass in the 1+3
scenario when the sterile neutrino is lighter than the active ones; in this case there are three
quasi-degenerate neutrinos with mass

Æ

Δm2
41 ' 1.3 eV, which sets the scale of the effective

mass. This situation is relatively disfavored by cosmological bounds on the sum of neutrino
masses [12], since

∑

m ¦ 3
Æ

Δm2
41 ' 4 eV. Parts of the allowed parameter space are also

excluded from the latest limit on the effective mass, 〈mee〉 ¦ 0.4 eV, as shown in Fig. 1.1.
If taken at face value, this means that

p

1− sin2 2θ12 sin2 α/2 ® 0.4, thus already putting
strong constraints on the solar neutrino mixing angle and the Majorana phase α.

Things are different if the seesaw mechanism is at play. Neutrinos with mass below |q| '
100 MeV contribute to 0νββ via the effective mass, in analogy to Eq. (1.1), where one
sums over all the light neutrino mass eigenstates. The direct contribution of right-handed
neutrinos with masses much larger than |q| is strongly suppressed by the inverse of their mass.
Therefore, if all the right-handed neutrinos are light, i.e. M2


� q2, one obtains

〈mee〉 =

�

�

�

�

�

3
∑

=1

U2
e
m +

3
∑

=1

U2
e,3+M

�

�

�

�

�

=
�

M6×6
ν

�

ee
= 0 , (1.2)

showing that the effective mass cancels exactly, since the the (1,1) entry of the full 6 × 6
neutrino mass matrix is zero. However, if at least one of the right-handed neutrinos is very
heavy one should decouple this heavy neutrino in computing the amplitude for 0νββ, so that
the cancellation condition is not valid anymore.

2See Refs. [22, 23] for a detailed discussion of mixing parameterizations with sterile neutrinos.
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Figure 1.1: The allowed ranges in the 〈mee〉 −mlight parameter space, both in the standard
three-neutrino picture (unshaded regions) and with one sterile neutrino (shaded
regions), for the 3+1 (top) and 1+3 (bottom) cases. The current experimental upper
bound for 〈mee〉 is indicated by the horizontal dotted line.

1.3 Sterile neutrinos in flavor symmetry models

We present two different sterile neutrino models based on the discrete group A4, a popular
choice for model builders (see the classification tables in Refs. [26, 27]). In the effective
approach an additional sterile neutrino singlet is added to an existing model, whereas in the
seesaw approach we build a new model and discuss the effect of NLO seesaw terms. In both
cases higher-dimensional operators are required to generate nonzero θ13.

1.3.1 Effective A4 model

The Altarelli-Feruglio model of Ref. [28] can be modified by adding a sterile neutrino νs; the
relevant particle assignments are shown in Table 1.1. The right-handed charged leptons and
the sterile neutrino are charged under an additional U(1)FN symmetry, which will be used to
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Table 1.1: Particle assignments of the A4 model, modified from Ref. [28] to include a sterile
neutrino νs.

Field L ec μc τc h,d φ φ′ ξ νs
SU(2)L 2 1 1 1 2 1 1 1 1
A4 3 1 1′′ 1′ 1 3 3 1 1
Z3 ω ω2 ω2 ω2 1 1 ω ω 1

U(1)FN - Fe Fμ Fτ - - - - Fν

generate the correct mass hierarchy via the Froggatt-Nielsen mechanism; the Z3 symmetry
separates the neutrino and charged lepton sectors.

With the usual VEV alignments 〈φ〉 = (,0,0) and 〈φ′〉 = (′, ′, ′), the 4 × 4 neutrino
mass matrix is

M4×4
ν
=













+ 2d
3 −d

3 −d
3 e

· 2d
3 − d

3 e

· · 2d
3 e

· · · ms













, (1.3)

where  = 2
2



Λ2 , d = 2d
′2



Λ2 and e =
p
2e

′
Λ2 have dimensions of mass. The

first three elements of the fourth row of M4×4
ν

are identical because of the VEV alignment
〈φ′〉 = (′, ′, ′), which was necessary to generate TBM in the 3 neutrino case.

The mixing matrix is (to second order in the small ratio e/mS)

U '













2p
6

1p
3

0 0

− 1p
6

1p
3
− 1p

2
0

− 1p
6

1p
3

1p
2

0
0 0 0 1













+













0 0 0 e
ms

0 0 0 e
ms

0 0 0 e
ms

0 −
p
3e
ms

0 0













+



















0 −
p
3e2

2m2
s

0 0

0 −
p
3e2

2m2
s

0 0

0 −
p
3e2

2m2
s

0 0

0 0 0 − 3e2

2m2
s



















, (1.4)

with the eigenvalues

m1 = + d , m2 = −
3e2

ms
, m3 = −+ d , m4 =ms +

3e2

ms
. (1.5)

The reactor mixing angle retains its TBM value, sinθ13 = 0, whereas sin2θ12 and sin2θ23
receive small corrections:

sin2θ12 '
1

3

�

1− 2sin2θ14
�

, sin2θ23 '
1

2

�

1+ sin2θ14
�

. (1.6)

Non-zero θ13 can be generated by adding higher order terms, as discussed in Ref. [29]; the
active-sterile mixing is hardly affected.
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Table 1.2: Particle assignments of the A4 type I seesaw model, with three right-handed sterile
neutrinos.

Field L ec μc τc h,d φ φ′ φ′′ ξ ξ′ ξ′′ Θ νc1 νc2 νc3
SU(2)L 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1
A4 3 1 1′′ 1′ 1 3 3 3 1 1′ 1 1 1 1′ 1
Z3 ω ω2 ω2 ω2 1 1 ω ω2 ω2 ω 1 1 ω2 ω 1

U(1)FN - Fe Fμ Fτ - - - - - - - −1 F1 F2 F3

1.3.2 Seesaw model

In this case we introduce three right-handed neutrinos with different FN charges, three A4
triplets to generate the columns of the Dirac mass matrix, as well as three singlets for the
right-handed sector. The particle assignments of the model are shown in Table 1.2, and the
A4 × Z3 × U(1)FN invariant Lagrangian is

−LY =
ye

Λ
λ3 (φLhd)ec +

yμ

Λ
λ (φLhd)′ μc +

yμ

Λ
(φLhd)′′ τc

+
y1

Λ
λF1(φLh)νc1 +

y2

Λ
λF2(φ′Lh)′′νc2 +

y3

Λ
λF3(φ′′Lh)νc3 (1.7)

+
1

2

�

1λ
2F1ξνc1ν

c
1 +2λ

2F2ξ′νc2ν
c
2 +3λ

2F3ξ′′νc3ν
c
3

�

+ h.c.

In order to have a keV sterile neutrino as WDM, we choose F1 = 9, so that M1 ' 1 keV and
θ21 ' 10

−8, which effectively decouples νc1 from the seesaw mechanism. The remaining 5×5
mass matrix can be diagonalized using the formalism in Refs. [30–32], taking care to include
higher order corrections, proportional to MDM−1R . Note that the active-sterile mixing is defined
as

θ2

≡

∑

α=e,μ,τ

�

�

�

�

�

[MDV∗R ]α

M

�

�

�

�

�

2

, (1.8)

in seesaw models, which is just the ratio of two scales, MD and MR. In the normal ordering
case, for example, the VEV alignments 〈φ′〉 = (′, ′, ′) and 〈φ′′〉 = (0, ′′,−′′) give
TBM at leading order.

Different phenomenological scenarios are possible, depending on the FN charges F2 and
F3. Table 1.3 summarizes the different cases studied. In scenarios I and II, higher order
seesaw terms give deviations from TBM, but NLO operators are required to give nonzero
θ13. Figure 1.2 compares the model predictions to data from the global fit in Ref. [25], for the
inverted ordering. Here it is possible obtain mass and mixing parameters compatible with the
data, whereas in the normal ordering case the active-sterile mixing is too small.
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Table 1.3: Summary of the different scenarios discussed in the A4 seesaw model. In each case
the WDM sterile neutrino has a mass M1 = O(keV), and the corresponding active
neutrino is approximately massless. Δm2

S and Δm2
A are the solar and atmospheric

mass squared differences, respectively.

F1, F2, F3 Mass spectrum |Uα4| |Uα5|
〈mee〉 PhenomenologyNO IO

I 9, 10, 10 M2,3 = O(eV) O(0.1) O(0.1) 0 0 3+ 2 mixing

IIA 9, 10, 0 M2 = O(eV) O(0.1) O(10−11) 0 2
Æ

Δm2
A

3 3+ 1 mixing
M3 = O(1011GeV)

IIB 9, 0, 10 M2 = O(1011GeV) O(10−11) O(0.1)
Æ

Δm2
S

3

Æ

Δm2
A

3M3 = O(eV)

III 9, 5, 5 M2,3 = O(10GeV) O(10−6) O(10−6)

Æ

Δm2
S

3

Æ

Δm2
A Leptogenesis

Figure 1.2: The allowed ranges of |Ue4|2 − Δm2
41 (blue) and |Ue5|2 − Δm2

51 (red) in the
inverted ordering, requiring that the oscillation parameters lie in their currently
allowed 2σ ranges. The blue and red vertical and horizontal error bars indicate the
allowed 2σ range for the 3+ 2 mass and mixing parameters from Ref. [25], their
intersection is the best-fit point. The black errors bars are for the 3+ 1 case from
Ref. [25].
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1.4 Conclusion

Light sterile neutrinos exhibit distinct phenomenological signatures, both in terrestrial exper-
iments and in cosmology. From the theoretical point of view, one requires a mechanism to
suppress the sterile neutrino mass, while keeping the light neutrinos at the sub-eV scale.
Two different A4 models for sterile neutrinos have been discussed, and in both cases it is
possible to accommodate light sterile neutrinos by assigning the appropriate FN charges.
Higher order seesaw terms result in deviations from TBM. Nonzero θ13 can be generated from
NLO operators, suppressed by additional powers of the cutoff scale.
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2 Exotic Higgs phenomenology from S3
flavor symmetry

G. Bhattacharyya, P. Leser, H. Päs

Abstract We consider an S3 flavor symmetry model, and by imposing this global discrete
symmetry in the scalar potential we observe some interesting decay signatures of a light scalar
and a pseudo-scalar which might be buried in the existing collider data.

2.1 Introduction

Discrete flavor symmetries are often used to explain the masses and mixing of quarks and lep-
tons [1–4]. These scenarios predict nonstandard decay signatures involving scalars and gauge
bosons, and flavor changing neutral currents (FCNC). The flavor group S3 was introduced
early in Ref. [5] and has since been used in many different scenarios [6–16]. Our analysis is
based on the realization in Ref. [17]. The group structure of S3 favors maximal atmospheric
mixing angle which still gives a good fit after the recent measurements of non-zero θ13 [18–20].
S3 has three irreducible representations: 1,1′, and 2. The invariants 1 can be constructed
using the multiplication rules 2 ⊗ 2 = 1 ⊕ 1′ ⊕ 2 and 1′ ⊗ 1′ = 1. We take the particle
assignments [17], which we have followed also in Ref. [21, 22]:

(Lμ, Lτ) ∈ 2 , Le, e
c, μc ∈ 1 , τc ∈ 1′ ,

(Q2, Q3) ∈ 2 , Q1, 
c, cc, dc, sc ∈ 1 , bc, tc ∈ 1′ ,

(ϕ1, ϕ2) ∈ 2 , ϕ3 ∈ 1 .
(2.1)

The fields Q1/2/3 and Le/μ/τ are the quark and lepton SU(2) doublets of the three generations.
This assignment was motivated in Ref. [17] to have a reasonably successful reproduction of
quark and lepton masses and mixing. All the three scalar SU(2) doublets ϕ{1,2,3} take part in
electroweak symmetry breaking. The general structure of the model allows for tree-level FCNC
due to the absence of natural flavor conservation [23], although those are too suppressed
by the Yukawa couplings to cause any problem even for scalar masses of the electroweak
scale [21, 22, 24]. However, in models where the flavor symmetry does not apply on Yukawa
couplings, the scalar masses are pushed beyond the TeV scale [25]. In our analysis [21, 22]
we observe noteworthy decay properties of a scalar and a pseudo-scalar: () Two of the
three scalars hb,c have standard model (SM)-like gauge and Yukawa couplings, and they
can dominantly decay into the third absolutely non-SM-like scalar h; () The scalar (pseudo-
scalar) h (χ) has no (h/χ)VV-type vertices, where V ≡W±, Z; () h/χ has only flavor
off-diagonal Yukawa couplings with one fermion from the third generation. We have included all
scalar degrees of freedom: three CP-even neutral scalars, two CP-odd neutral scalars and two
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sets of charged scalars. The special features of our analysis are: () determination of the mass
spectrum of the neutral scalars/pseudoscalars and the charged scalars following an improved
potential minimization method, () calculation of their gauge and Yukawa couplings, and ()
identification of a novel decay channel of a scalar (pseudoscalar) which can be experimentally
tested.

2.2 Mass spectrum

The explicit form of the general S3 invariant scalar potential, which we do not give here
for brevity, is given in Refs. [21, 22, 26]. It has eight dimensionless couplings λ and two
mass-squared dimensional parameters m2 and m2

3.

The replacement ϕ →
�

h+ ,  + h + iχ
�ᵀ

is done, assuming 1 = 2 =  and 3, which
allow for maximal atmospheric neutrino mixing, where 22 + 23 = 2SM has to hold with
SM = 246GeV. After diagonalizing the mass matrices the physical CP-even, CP-odd and
charged scalars are denoted by h,b,c, χ,b and h+,b, respectively.

Note that by imposing 1 = 2 on the potential m2 and m2
3 are related to the couplings λ and

the VEVs  and 3. To make sure that this point is actually a minimum of the potential, the
determinant of the Hessian has to be positive, which is equivalent to imposing the condition of
positive squared scalar masses. As a first step towards potential minimization, we first try to
provide an analytical feel. We identify some simple-looking relations of the coefficients that
keep the potential always bounded from below. To do this we factorize the scalar potential into
a simplified polynomial in ϕ1, ϕ2 and ϕ3. Three distinct types of terms emerge with power four:
ϕ4

, ϕ2


ϕ2
j

and ϕ2

ϕjϕk, where , j, k = 1 . . .3. Of the nine terms, only six have independent

coefficients, which we call c{1...6}:

c1ϕ
4
1+c1ϕ

4
2+c2ϕ

4
3+c3ϕ

2
1ϕ

2
2+c4ϕ

2
1ϕ

2
3+c4ϕ

2
2ϕ

2
3+c5ϕ

2
1ϕ2ϕ3+c5ϕ1ϕ

2
2ϕ3+c6ϕ1ϕ2ϕ

2
3 .

(2.2)
It follows that

c1 = λ1/2+ λ2/2, c2 = λ4/2, c3 = λ1 − λ2 + λ3, c4 = λ5 + λ6, c5 = 2λ8, c6 = 2λ7 .
(2.3)

By inspection, the following conditions emerge:

c1, c2 > 0, 2c3,2c4 ≥ −c1, 2c3,2c4 ≥ −c2, 2c4 ≥ −c1, ,
−1/2c1 ≤ c5, c6 ≤ c1, −1/2c2 ≤ c5, c6 ≤ c2 .

(2.4)

Then we get an acceptable mass spectrum for all types of scalars, and the potential turns
out to be globally stable. However, this method overlooks a large part of the otherwise valid
parameter, and an uncomfortable feature is that none of the masses exceeds 300 GeV when
�

�λ{1...8}
�

� ≤ π.

Now we propose a better method for ensuring global stability. We transform Eq. (2.2) into
spherical coordinates (ρ, θ, ϕ), which splits the potential into a radial and an angular part.
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Figure 2.1: Scatter plots of masses of h, hb, hc and χ, fixing 3/ = 0.6. The lines give
the window between 114− 130 GeV. The highlighted strip in the middle plot is
disfavored by LHC which disfavors a second SM-like Higgs within 550 GeV.

Global stability then means the positivity of the angular part:

sin4 θ
�

(2c1−c3) cos(4ϕ)+6c1+c3
	

+8c2 cos4 θ+sin2(2θ)
�

2c4 sin2 ϕ+c6 sin(2ϕ)
�

+ 8c4 cos2 ϕ sin2 θ cos2 θ+ 4c5 sin(2ϕ) sin3 θ cosθ
�

sinϕ+ cosϕ
�

> 0 (2.5)

As it is a transcendental inequality, no simple-looking analytic solutions emerge by solving
Eq. (2.5). We therefore check the positivity of this function numerically at each point of the
parameter space. This method allows us to explore the so-far inaccessible territory of the
stable parameter space that could not be reached by Eq. (2.4). Interestingly, the heavy scalar
and pseudoscalar masses can be pushed well above 300 GeV even for

�

�λ{1...8}
�

� ≤ π.

We express the physical pseudo-scalar (χ) and scalar (h) states denoted by roman alphabets
as subscripts in terms of their weak eigenstates distinguished by hindu numerals:

χ1(2) = (/SM)G0 ∓
�

1/
p

2
�

χ − 3/
�p

2SM

�

χb, χ3 = (/SM)G0 +
p

2 (3/SM)χb ;

h1(2) = U1(2)b hb + U1(2)c hc ∓
�

1/
p

2
�

h, h3 = U3b hb + U3c hc ,
(2.6)

where Ub and Uc are complicated functions of the λ{1...8},  and 3. The corresponding
mixing relations for h+,b are obtained by substituting χ→ h+ and G0 → G+ in Eq. (2.6). The
masses for the CP-even scalars are [21, 22]

m2
h
= 4λ22 − 2λ32 − 3 (2λ73 + 5λ8) ,

m2
hb(c)

=
1

23

�

4λ123 + 2λ323 + 2λ433 − 2λ8
3 + 3λ823 ∓ Δm

3
�

,
(2.7)

where Δm3 is a complicated expression of the λ and the VEVs given in Refs. [21, 22].

The pseudo-scalar squared masses are

m2
χ
= −9λ83, m2

χb
= −2SM (2λ7 + λ8/3) , (2.8)

13



while the charged scalars’ squared masses are

m2
h+


= −2λ32 − 23 (λ6 + λ7) + 5λ83, m2
h+b
= −2SM (λ6 + λ7 + λ8/3) . (2.9)

The allowed ranges for the masses obtained by varying λ{1...8} ∈ [−π, π] and keeping the
ratio 3/ fixed to 0.6 (chosen in Ref. [21, 22] for compatibility with the quark masses) are
shown in Fig. 1. In view of the recent LHC results [27, 28] that claims discovery of a Higgs-like
boson at around 125GeV with a large excluded region above and below, the mass spectrum
in this model fits well with the following scenario:

1. hb is identified with the 125 GeV Higgs boson [27, 28]. The Yukawa and gauge couplings
of hb and hc are like those of the SM Higgs. hc is somewhat heavier than hb.

2. h and χ have nonstandard interactions that hide them from standard searches.

3. All other masses, including the charged scalars, can be above 550GeV, although from
the experimental point of view the charged scalars need not be that heavy.

2.3 Couplings

h±

W∓ h±bW

∓ χZ χbZ W±W∓ ZZ

h Ø – Ø – – –
hb – Ø – Ø Ø Ø
hc – Ø – Ø Ø Ø

h±

W∓ h±bW

∓

χ Ø –
χb – Ø

Table 2.1: 3-point vertices with at least one h (or χ) and W/Z boson. A checkmark means that
the vertex exists.

The couplings involving h do not depend on the scalar potential parameters, while those of of
hb and hc do and that too in a complicated way, which we refer by putting checkmark signs in
Tables 2.1 and 2.2 without displaying their expressions explicitly. The hχZ coupling is i

2Gqμ,

where G =
p

g2 + g′2 and qμ is the momentum transfer. Since neither h nor χ couples
to pairs of gauge bosons via the three-point vertex, their masses are not constrained from
direct searches at LEP2 or by electroweak precision tests. In fact, the conventional LHC Higgs
search strategy would not apply on them either. Now we come to Yukawa interaction, whose
explicit form is given in Refs. [21, 22].

The scalars are rotated to their physical basis {h, hb, hc}, and we obtain the Yukawa matrices
Y{,b,c}. The individual mixing matrices for up- and down-type quarks contain large mixing
angles as a consequence of S3 symmetry and the particle assignments [17]. Specifically, the
doublet representation of S3 generates maximal mixing when we set 1 = 2. Now, the CKM
matrix involves a relative alignment of those two matrices which yields small mixing for quarks.
Similarly, the PMNS matrix is given by the relative orientation of the mixing matrices for the
charged leptons and neutrinos. Since we assume that the neutrino mass matrix is diagonal

14



h∓

γ h∓


Z h∓bγ h∓bZ

h±


Ø Ø – –
h±b – – Ø Ø

hh hhb hhc h±

h∓


h±bh
∓
b h±


h∓b χχ χbχb χχb

h – Ø Ø – – Ø – – Ø
hb Ø – – Ø Ø – Ø Ø –
hc Ø – – Ø Ø – Ø Ø –

Table 2.2: Other 3-point vertices. A checkmark indicates that the vertex exists.
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FIG. 1. a) Possible decay channel of t into muon and tau via ha; b) Possible decay channel of ha into three muons and one tau.

Figure 2.2: Feynman graphs for dominant sources of h production and decays which might
be relevant at the LHC.

being generated by a type-II seesaw mechanism, the large mixing angles in the lepton sector
survive. There are two generic textures of Yukawa couplings in our model [21, 22]:

Y =







0 0 Y13
0 0 Y23
Y31 Y32 0






, Yb,c =







Y11 Y12 0
Y21 Y22 0
0 0 Y33






. (2.10)

Here Y symbolically describes the Yukawa couplings for h, χ and h+


, while Yb,c describe
the couplings for hb, hc, χb and h+b , and the pattern holds both for leptons and quarks. The off-
diagonal couplings in Yb,c are numerically small and can be controlled by one free parameter
which keeps dangerous FCNC processes under control. The largest off-diagonal coupling
in Y is (h/χ)ct ∼ 0.8; it leads to viable production channel of h via t decays. The next
largest couplings are (h/χ)sb ≈ 0.02 and (h/χ)μτ ≈ 0.008. The χμτ coupling leads
to an interesting decay channel that can lead to observable signatures at the LHC.

2.4 How to search for h at the LHC?

If kinematically allowed, h can be produced e.g. through t→ hc [Fig. 2.2(a)]. After that, if
mh <mχ , h decays dominantly into b and s quarks, or into τ and μ [see Fig. 2.2(b)]. The
branching ratio (BR) for t → hc is 0.17(0.06) for mh = 130(150)GeV. Then h → μτ
occurs with a BR of 10% and h → bs with 90%.

We stress on a spectacular channel that opens up when h → χZ is kinematically accessible
[Fig. 2.2(c)]. The corresponding BR is almost 100% since gauge couplings dominate over
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Figure 2.3: Different branching ratios involving the production and decay of h. In all cases,
mχ = 20GeV is assumed.

the light fermion Yukawa couplings. Then χ → τμ proceeds with a BR of 10%, and Z→ μμ
occurs with a BR of 3%. If two h are produced from tt̄ pairs, this could lead to a characteristic
signal with up to six muons with the taus used as tags. The relevant BRs are plotted in
Figs. 2.3(a)–(c). Throughout we have assumed that mχ = 20GeV.

2.5 Conclusions and outlook

We have analyzed the complete scalar/pseudoscalar sector of an S3 flavor model. We
simultaneously handle three CP-even, two CP-odd and two sets of charged scalar particles.
We followed a novel technique of potential minimization which allowed to us to explore the
parameter space better. The scalar hb mimicks the standard Higgs-like object weighing around
125GeV, while h and χ evade conventional collider searches at LEP/Tevatron/LHC and
hence can be rather light. The other scalars/pseudoscalars can stay beyond the current LHC
reach (e.g., 550GeV). We stressed on a promising channel for h search at LHC involving
up to six muons in the final state to be searched with the tau tags. We urge our experimental
colleagues to look for this channel.
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3 Neutrino Masses and LFV from
U(3)5→ U(2)5 in SUSY

G. Blankenburg

Abstract We analyze neutrino masses and Lepton Flavor Violation (LFV) in charged leptons
with a minimal ansatz about the breaking of the U(3)5 flavor symmetry, consistent with the
U(2)3 breaking pattern of quark Yukawa couplings, in the context of supersymmetry. Neutrino
masses are expected to be almost degenerate, close to present bounds from cosmology and
0νββ experiments. We also predict s13 ≈ s23|Vtd|/ |Vts| ≈ 0.16, in perfect agreement with
the recent results. For slepton masses below 1 TeV we expect B(μ → eγ) > 10−13 and
B(τ→ μγ) > 10−9, within the reach of future experimental searches.

3.1 Introduction

A TeV extension of the SM aimed to address, at least in part, both the stability of the electroweak
sector and the flavor problem is supersymmetry with heavy squark masses for the first two
families, in short split-family SUSY [1].

A hierarchical squark spectrum is not enough to suppress flavor violation to a level consistent
with experiments. This is why split-family SUSY with a minimally broken U(2)3 = U(2)q ×
U(2)d × U(2) flavor symmetry, acting on the first two generations of quarks (and squarks),
has been considered in Ref. [2]. This set-up has the following advantages: i) it provides some
insights about the structures of the Yukawa couplings; ii) it ensures a sufficient protection of
flavor-changing neutral currents; iii) it leads to an improved CKM fit with tiny and correlated
non-standard contributions to ΔF = 2 observables.

The purpose of this article is to extend the idea of a minimally broken flavor symmetry acting on
the first two generations to the lepton sector [3]. The extension is straightforward in the case of
charged leptons, enlarging the flavor symmetry from U(2)3 to U(2)5 = U(2)3×U(2)×U(2)e.
However, the situation is more involved in the neutrino sector, whose mass matrix has a rather
different flavor structure: no large hierarchies in the eigenvalues, and large mixing angles. A
simple ansatz to circumvent this problem is to a assume a two-step breaking in the neutrino
sector: first, a leading breaking of the maximal flavor symmetry, U(3) × U(3)e, that includes
the total lepton number (LN), giving rise to a fully degenerate neutrino spectrum. This would
be followed by a sub-leading LN-conserving breaking with a hierarchical structure similar to
the one occurring in the charged-lepton sector.
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3.2 Flavor symmetries and symmetry breaking

The U(2)2 = U(2) × U(2)e flavor symmetry, under which the lepton superfields transform
as

LL ≡ (LL1, LL2) ∼ (2̄,1) , LL3 ∼ (1,1) , (3.1)
ec ≡ (ec1, e

c
2)

T ∼ (1,2) , ec3 ∼ (1,1) , (3.2)

offers a natural framework to justify the hierarchal structure of the charged-lepton Yukawa
coupling, in close analogy to the U(2)3 symmetry introduced in Ref. [2] for the quark sector:

Y,d = yt,b
�

ΔY,d V
0 1

�

. (3.3)

However in the neutrino sector the large θ23 angle impose a strong connection between the
second and third family (large 2-3 mixing or strong degenerancy between second and third
eigenvalues), ie between the doublet and the singlet of U(2). This seems to be incompatible
with the breaking of U(2) ×U(2)e, but it can be easily obtained embedding U(2) in U(3).

In fact starting from a U(3) × U(3)e symmetry a degenerate configuration for mν is achieved
assuming that U(3) and the total lepton number, U(1)LN = U(1)+e ,are broken by a spurion
m(0)

ν
transforming as a 6 of U(3) and leaving invariant a subgroup of U(3) that we denote

O(3). By a proper basis choice in the U(3) flavor space we can set

m(0)
ν

∝
�

 0
0 1

�

. (3.4)

We shall also require that U(3)×U(3)e is broken by U(1)LN invariant spurions to the subgroup
U(2) × U(2)e relevant to the charged-lepton Yukawa coupling. However, it is essential for
our construction that this (sizable) breaking does not spoil the Majorana sector, at least in first
approximation. This can be achieved in a supersymmetric context introducing a new spurion
Y(0) ∼ (3, 3̄) that breaks U(3) × U(3)e to U(2) × U(2)e By means of Y(0) we can have a
non-vanishing Yukawa coupling for the third generation in the superpotential

LLY
(0)ec → y(0)

τ
L3e

c
3 . (3.5)

and, in first approximation, the Majorana mass matrix is unchanged. Note that supersymmetry
is a key ingredient for the the latter statement to hold. Indeed, if the mass operator was not
holomorphic, a Majorana term of the type LLY Y†m(0)ν

LT
L

could also be included and this
would spoil the degenerate configuration.

Summarizing, introducing the two spurions m(0)
ν

and Y(0) we recover phenomenologically
viable first approximations to both the neutrino and the charged-lepton mass matrices and we
are left with an exact O(2)×U(2)e symmetry that leaves invariant both mν and Ye. Moreover,
thanks to supersymmetry, the two sector considered separately are invariant under larger
symmetries: O(3) for the neutrinos and U(2) × U(2)e for the charged leptons.
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We can then proceed introducing the small O(2) × U(2)e breaking terms responsible for
the subleading terms in Ye in Eq. (3.3). This spurion V should be regarded as the O(2)
component of an appropriate 8 of U(3) with the following structure

X =
�

ΔL V
V† 

�

. (3.6)

This allows to write the additional Yukawa interaction LLXY(0) ec that, combined with the
leading term in (3.5) and with a proper redefinition of yτ and V implies

Y(1)
e
= yτ

�

0 V
0 1

�

. (3.7)

All the components of X do appear in the Majorana sector, via the terms LLXm(0)ν
LT
L

and
LLm(0)ν

XTLT
L
. These imply the following structure

mν =m(0)ν1

�

 + 
�

ΔL V
VT 

��

, (3.8)

where  is a O(1) complex coupling. Assuming that all the entries of X are at most of O(ε)
does not spoil the degenerate configuration of mν in first approximation. In addition, pursuing
the analogy with the squark sector and protecting against too strong FCNCs, we are forced to
assume (ΔL)12 at most of O(ε2) in the basis where V1 = 0:

V =
�

0
O(ε)

�

, ΔL =
�

0 O(ε2)
O(ε2) O(ε)

�

,  = O(ε). (3.9)

In the same basis, redefining the unknown parameters, we arrive to the following parametric
expression

mν = m̄ν1






 + eϕν







−σε γε2 0
γε2 −δε rε
0 rε 0












, (3.10)

where ϕν, σ, δ, γ, and r are real parameters expected to be of O(1).

The final step for the construction of a realistic charged-lepton Yukawa coupling is the introduc-
tion of the U(2) ×U(2)e bi-doublet ΔYe. The most economical way to achieve this goal in the
context of U(3) × U(3)e is to introduce a bi-triplet with the following from,

ΔŶe =
�

ΔYe 0
0 0

�

, (3.11)

which provides the desired correction to Ye and has no relevant impact on mν.

3.3 Predictions for neutrino masses and mixings

Given the above neutrino mass matrix we are ready to show few simple analytic results, valid
to leading order in ε, for masses and mixings. These results are also tested with a systematic
numerical scan of the four O(1) free parameters [3].
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We obtain almost degenerate eigenvalues

m2
ν1
= m̄2

ν1
(1− 2σ ε) , (3.12)

m2
ν2
= m̄2

ν1

�

1− δε− (δ2 + 4r2)1/2ε
�

, (3.13)

m2
ν3
= m̄2

ν1

�

1− δε+ (δ2 + 4r2)1/2ε
�

, (3.14)

with ε that controls the overall scale of neutrino masses, whose natural scale isO[(Δm2
tm)

1/2ε−1/2] =
O(0.3 eV), just below the existing bounds [4].

For the mixing angles we obtain in a first approximation

t23 =
s23

c23
=
δ± [δ2 + 4r2]1/2

2r
, (3.15)

s13e
δP = ses23e

αe+π , (3.16)

tn2θ12 =
4γε

2σ − δ− [δ2 + 4r2]1/2
c23 = O(1)×

ε

ζ2
. (3.17)

that means that t23 and t23 are generically O(1) while we obtain s13 = 0.16±0.02 assuming
in analogy to the quark sector se = sd = |Vtd|/ |Vts| (se and αe are the mixing parameters in
the 1-2 sector of the charged leptons).

3.4 The slepton sector and LFV

Having identified the minimal set of spurions necessary to build the lepton Yukawa coupling
and the neutrino mass matrix, we can now turn to study the consequences of this symmetry-
breaking pattern in the slepton sector.

Let’s start from the LL soft slepton mass matrix, which transforms as 8⊕1 under U(3) and is
invariant under U(3)e. Expanding to the first non-trivial order in the spurions, it assumes the
following form

m̃2
LL
=

�

(m2
L
)hh c3V∗

c3VT (m2
L
)33

�

m̃2
L
, (3.18)

(m2
L
)hh =  + c3Δ∗L + c4ΔY

∗
e
ΔYT

e
, (3.19)

(m2
L
)33 = 1+ c2|yτ |2 + c3 , (3.20)

with all constants being real and O(1).

In the sfermion sector, the main difference between the U(3)5 set-up we are considering,
and that based on a U(2)5 symmetry, lies on the fact that in the latter case one can naturally
have sfermions of the first two families considerably heavier than those of the third family,
while in the U(3)5 set-up this can be obtained at the price of some fine-tuning of the O(1)
symmetry-breaking terms (1 + c2|yτ |2 � 1 for m̃2

LL
). However, it is worth to stress that

in the slepton sector the requirement of a sizable mass splitting among the families is less
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motivated: the sleptons play a minor role in the hierarchy problem and there are no stringent
direct experimental bounds on any of the slepton families.

The RR soft slepton mass matrix transforms as 8 ⊕ 1 under U(3)e and is invariant under
U(3). Proceeding similarly to the LL case we find

m̃2
RR

=

�

(m2
RR
)hh ΔYT

e
V∗y∗

τ
yτVTΔY∗

e
(m2

RR
)33

�

m̃2
ecR
, (3.21)

(m2
RR
)hh =  + c′4ΔY

T
e
ΔY∗

e
+ c5ΔYTeΔ

∗
L
ΔY∗

e
, (3.22)

(m2
RR
)33 = 1+ y∗

τ
yτ(c′2 + c

′
3) . (3.23)

Here all off-diagonal terms are heavily suppressed by the first and second generation Yukawa
couplings and, to a good approximation, can be neglected.

Finally, let’s consider the trilinear soft-breaking term Ae, responsible for the LR entries in
the slepton mass matrices. The symmetry breaking structure of Ae is identical to that of the
Yukawas, albeit with different complex O(1) factors :

Ae =
�

1ΔYe 2V
0 3

�

yτA0 . (3.24)

We perform a analytical and numerical analysis of the main LFV processes [3]. Here we report
the main results where we take the (3,3) and (6,6) elements in the range (200 GeV)2 −
(1000 GeV)2, while we assume values between 52 and 1002 times heavier for the other
mass eigenvalues. The A0 parameter is assumed to be proportional to the heavy sfermion
mass with a proportionality constant in the range [−3,3]. The chargino soft mass is fixed to
M2 = 500 GeV, and we use gaugino unification arguments to set M1 = 0.5M2. We also fix
tnβ = 10, and μ = 600 GeV. In Figure 3.4 we show the correlation between B(τ → μγ)
and B(μ→ eγ). We show the current bounds for each branching ratio with solid brown lines
[5, 6], while the expected sensitivity of the relevant experiment (MEG for μ→ eγ , Belle II and
SuperB for τ → ℓγ) is shown using dashed brown lines. Figure 3.4 shows that, although a
small part of the parameter space is ruled out already, there exist a significant number of points
that can be probed by μ→ eγ, τ→ μγ and possibly also μ→ e conversion experiments in
the near future.
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3.5 Conclusion

We have proposed an ansatz for the neutrino mass matrix and the charged lepton Yukawa
coupling based on a minimal breaking of the U(3)5 flavor symmetry, consistent with the U(2)3

breaking pattern of the quark Yukawa couplings discussed in Ref [2]. The key hypothesis that
allows us to relate the non-hiearchical neutrino sector to the Yukawa sector is the assumption
of a two-step breaking structure in the neutrino case: a leading breaking of the maximal flavor
symmetry, U(3) × U(3)e, giving rise to a fully degenerate neutrino spectrum, followed by a
sub-leading hierarchical breaking similar to the one occurring in the Yukawa sector.

This framework is able to reproduce all the neutrino oscillation parameters without particular
tuning of the free parameters and it can naturally be implemented in supersymmetric extensions
of the SM and, more explicitly, within the well-motivated set-up with heavy masses for the first
two generations of squarks. LFV processes are expeted to be measured in the near future.
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4 On the Roles of Vb and Correlations
between Flavour Observables in Indirect
Searches for New Physics

A. J. Buras

Abstract We emphasize the important roles of |Vb| and of correlations between flavour
observables in indirect searches for New Physics (NP) by means of FCNC processes. We
illustrate with few examples how different scenarios of NP can be distinguished through the
value of |Vb| favoured phenomenologically by them and through correlations between different
flavour observables. Precise lattice calculations of the relevant non-perturbative parameters
are essential in this context.

4.1 Introduction

In this short presentation I would like to emphasize the important roles of |Vb| and of cor-
relations between flavour observables in indirect searches for New Physics (NP) by means
of FCNC processes. I will also reemphasize the important role of lattice calculations in this
context. Several of the points made below appeared already in the recent long review [1] but I
think it is useful to exhibit them here in isolation.

In indirect searches for NP through particle-antiparticle mixings in K, Bs,d and D meson
systems and rare decays of K, Bs,d and D mesons it is crucial to know the background to
NP: the predictions for various flavour observables within the Standard Model (SM). If these
predictions suffer from large uncertainties also the room left for NP is rather uncertain and if a
given NP model contains many free parameters, the characteristic flavour violating features of
this model cannot be transparently seen. They are simply often washed out by hadronic and
parametric uncertainties even in the presence of accurate data. Most prominent examples of
this type are the mass differences ΔMd,s and the parameter ϵK .

While the important role of lattice calculations in the search for NP is well known in the literature,
it appears to me that the important role of |Vb| in this context is underestimated in most
papers. Most people would agree that the ultimate precise value for |Vb| extracted one day
from tree-level decays will be found from present perspective at any place in the range

2.8× 10−3 ≤ |Vb| ≤ 4.6× 10−3. (4.1)

The determinations from exclusive semi-leptonic B-decays, supported by lattice, cluster around
the value of 3.1× 10−3, while the inclusive semi-leptonic B-decays imply values more like
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4.3×10−3. Even slightly higher value was favoured by B+ → τ+ντ until ICHEP 2012, but the
recent Belle data do not seem to require it anymore [2]. The new world average provided by
the UTfit collaboration [3] is B(B+ → τ+ν)exp = (0.99± 0.25)× 10−4 , which is consistent
with the SM.

This situation is really a problem for testing NP scenarios. After a lengthy calculation of tree,
one-loop and sometimes more-loop diagrams, including often QCD corrections at NLO and
NNLO level and derivation of very elegant expressions for various observables in a given
NP model, one is faced with the choice of input parameters, one of them being |Vb|. This
parameter is special, like θ13 in neutrino physics. It is the smallest element in the CKM matrix
and if it was vanishing, there would be no CP violation in the SM. Therefore its value is crucial
for knowing the size of CP violation in this model.

There are two extreme strategies one could adopt in this situation:

• Follow the advices of professionals like UTfitters, CKMfitters or PDG on CKM parameters
and in view of several new parameters in a given model combine this information with
sophisticated Markov-chain Monte Carlos, in particular improved versions of the classical
Metropolis algorithm [4–7] in order to find the allowed ranges for different observables.
While this strategy is clearly legitimate and many people would claim that there is no other
way out, I do not want to follow this route here. The main reason is that in the outcome of
such analyses, in which some average between exclusive and inclusive determinations
of |Vb|, with a sizable uncertainty is used, many of the features seen in the elegant
expressions of a given NP model are often washed out.

• Simplified approach by studying how a given NP model would face the future more
precise data with more precise input, in particular a precise value of |Vb|. In this
manner some of the characteristic features of the particular NP model are not washed
out and one discovers patterns of flavour violations, in particular correlations between
different observables, that could distinguish between different NP models. It is the second
approach, already used in several papers in my group at TUM [1], that I will follow here.

4.2 Setting the Scene

Our goal is to find out how the pattern of flavour violation in a given model, required to cure the
problems of the SM, depends on |Vb|. To this end we set all non-perturbative parameters
relevant for ΔF = 2 processes at their present central values [8] and the remaining three
parameters of the CKM matrix at

|Vs| = 0.2252, |Vs| = 0.0406, γ = 68◦. (4.2)

The first two are the central values from tree-level decays. The value of γ is fully consistent
with its known determinations, in particular by using the ratio ΔMd/ΔMs and also tree-level
decays.

We next consider two scenarios for |Vb|

• Exclusive (small) |Vb| Scenario 1: Here the SM value of |ϵK | is visibly smaller than
its experimental determination. On the other hand SψKS agrees well with experiment.

28



|Vb| × 103 3.1 3.4 4.0 4.3 Experiment

|ϵK | × 103 1.72(26) 1.87(26) 2.15(32) 2.28(32) 2.228(11)

B(B+ → τ+ντ)× 104 0.62(14) 0.74(14) 1.02(20) 1.19(20) 0.99(25)

(sin2β)true 0.623(25) 0.676(25) 0.770(23) 0.812(23) 0.679(20)

ΔMs [ps−1] 19.0(21) 19.0(21) 19.0(21) 19.1(21) 17.77(12)

ΔMd [ps−1] 0.56(6) 0.56(6) 0.56(6) 0.56(6) 0.507(4)

Table 4.1: SM prediction for various observables as functions of |Vb| and γ = 68◦.

• Inclusive (large) |Vb| Scenario 2: Now the SM value of |ϵK | is consistent with its
experimental value. On the other hand SψKS is significantly higher than its experimental
value.

In Table 4.1 we illustrate the SM predictions for these observables and ΔMs,d for different
values of |Vb|. The properties stated above are clearly seen. Moreover, with the present
lattice input ΔMs and ΔMd, although slightly above the data, are both in a good agreement
with the latter independently of |Vb|. Yet, one should emphasize that these results depend
significantly on the lattice input and in the case of ΔMd on the value of γ, the (-)phase of Vb.
Therefore to get a better insight both lattice input and the tree level determination of γ have to
improve. Fortunately this is expected to happen in coming years.

Table 4.1 illustrates the main point of this note clearly. There are tensions between various
observables within the SM which gives some signals for the presence of NP. However, depen-
dently which scenario for |Vb| is considered, this NP has to remove different discrepancies of
the SM with the data. In particular it has to provide constructive NP contributions to |ϵK | (Sce-
nario 1) or destructive NP contributions to SψKS (Scenario 2) without spoiling the agreement
with the data for SψKS (Scenario 1) and for |ϵK | (Scenario 2).

While models with many new parameters can face successfully both scenarios removing the
deviations from the data for certain range of their parameters, in simpler models, with a definite
structure of flavour violation and/or small numbers of free parameters, only one scenario for
|Vb| can be admitted as only in that scenario a given model has a chance to fit ϵK and
SψKS simultaneously. Let us then summarize how five simple extensions of the SM select the
scenario for |Vb| in order to remove the tension between ϵK and SψKS . Constrained Minimal
Flavour Violation (CMFV) [1] and maximally gauged flavour models (MGFM) [9], both favour
Scenario 1. The absence of new phases in these scenarios requires the exclusive |Vb| in
order to reach agreement of SψKS with the data. On the other hand the 2HDM with MFV and
flavour blind phases, 2HDMMFV [1, 10], selects Scenario 2 for |Vb| as the contributions in
this model to ϵK are tiny and there are new phases in the Bd − B̄d mixing which allow to obtain
good agreement with the data for SψKS in spite of a large value of |Vb|. Similar solution is
offered by a particular model with extended gauge group SU(3)c × SU(3)L × U(1)X (331) in
which NP contributions are governed by tree-level heavy neutral gauge boson (Z′) exchanges
[11]. On the other hand models with a global U(2)3 flavour symmetry, representing simple
non-MFV extensions of the SM can face successfuly both scenarios for |Vb| with interesting
consequences for the Sψϕ asymmetry as we will see below [12].
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Figure 4.1: Correlations within models with CMFV. See text and [1] for explanations.

Having made strong statements on the important role of Vb in the indirect searches for NP,
it should be stressed that its precise determination one day can only give us some direction
towards the class of successful NP models. Even more important are the correlations between
various flavour observables. This is the next topic I want to discuss.

4.3 Correlations Between Flavour Observables

It is my strong believe that searching for correlations between the measured observables is a
very powerful tool in the indirect searches for NP. Extensive studies of correlations between
various observables in concrete models performed in my group in the last ten years illustrate
very clearly the power of this strategy. Quite often only a qualitative behaviour of these
correlations is sufficient to eliminate the model as a solution to observed anomalies or to select
models as candidates for a new SM. A detailed review of such explicit studies can be found
in [1, 13–15]. They include in particular correlations in CMFV models, LHT, RS and SUSY
flavour models [16]. See also [4–7]. With improved data and theory all these results will be
increasingly useful.

In view of space limitations I just would like to list my favourite correlations that I hope will be
tested precisely in the coming years. To this end let me just quote the LHCb data for some of
the observables discussed below [17, 18]:

Sψϕ = 0.002± 0.087, SSM
ψϕ
= 0.035± 0.002, (4.3)

B(Bs → μ+μ−) ≤ 4.2× 10−9, B(Bs → μ+μ−)SM = (3.23± 0.27)× 10−9, (4.4)

B(Bd → μ+μ−) ≤ 8.2× 10−10, B(Bd → μ+μ−)SM = (1.07± 0.10)× 10−10. (4.5)

Here we have also shown the SM predictions for these observables with details on B(Bq →
μ+μ−) given in [1, 19]. In quoting these results we did not include the correction from Δs
[20–22] but it has to be taken into account when the data improve.
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4.3.1 Correlations in CMFV Models

In this class of models the absence of new sources of flavour violation beyond the CKM matrix
implies stringent relations among various observables [23]. The most important at present is
this one

B(Bd → μ+μ−)

B(Bs → μ+μ−)
=
τ(Bd)

τ(Bs)

mBd

mBs

F2
Bd

F2
Bs

�

�

�

�

Vtd

Vts

�

�

�

�

2

=
B̂d

B̂s

τ(Bs)

τ(Bd)

ΔMs

ΔMd
, (4.6)

where B̂d,s are non-perturbative parameters. The first relation is valid in all models with Minimal
Flavour Violation (MFV), while the second one only in CMFV models. We show this strict
CMFV correlation on the left in Fig. 4.1 taken from [1].

Within CMFV models there is also a unique correlation between |ϵK |, ΔMs and ΔMd. In fact it
can be shown that only enhancements over the SM values of |ϵK |, ΔMs and ΔMd are possible
in CMFV models [24] and the enhancement of one of these observables implies uniquely the
enhancements of other two. A look at Table 4.1 shows that this correlation is a problem for
CMFV models. The solution to the |ϵK | − SψKS tension in these models can only be provided
by enhancement of |ϵK | which in turn enhances ΔMs,d, that are already larger than the data.
Thus this solution generates a new tension: ΔMs,d − |ϵK | tension, which is shown on the right
in Fig. 4.1. The same difficulty is found in MGFM [9].

4.3.2 Triple Correlation: SψKS − Sψϕ − |Vb| in U(2)3 Models

In models with new sources of CP violation the mixing induced asymmetries SψKS and Sψϕ are
modified by new phases φBd and φBs , respectively:

SψKS = sin(2β+ 2φBd) , Sψϕ = sin(2|βs| − 2φBs) . (4.7)

In models with U(2)3 symmetry [4, 25–30] these new phases are equal to each other: φBd =
φBs . As pointed out in [12] this equality of new phases implies not only the correlation between
these two asymmetries but also a triple SψKS − Sψϕ − |Vb| correlation which will provide a
crucial test of this NP scenario. This is shown in Fig. 4.2 for fixed γ = 68◦. Varying γ between
63◦ and 73◦ does not change the result significantly. We note that negative Sψϕ is only
possible for small |Vb|, in the ballpark of the exclusive value, while for inclusive |Vb|, Sψϕ is
always larger than the SM prediction. The latter case is the only possibility in the 2HDMMFV
model for which the correlation shown in Fig. 4.2 also applies, but only for inclusive values of
|Vb|. Therefore, in the latter model a satisfactory description of the data for SψKS requires
Sψϕ ≥ 0.15, that is 2σ above the present central LHCb value.

The plot in Fig. 4.2 indicates that if the U(2)3 flavour symmetry in the minimal version turns
out to be true, one can determine |Vb| by means of precise measurements of SψKS and Sψϕ
with small hadronic uncertainties. For more details see [12, 31]
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Figure 4.2: SψKS versus Sψϕ in models with U(2)3 symmetry for different values of |Vb|. From
top to bottom: |Vb| = 0.0046 (blue), 0.0043 (red), 0.0040 (green), 0.0037
(yellow), 0.0034 (cyan), 0.0031 (magenta), 0.0028 (purple). Light/dark gray:
experimental 1σ/2σ region [12].

4.4 Summary

In this short note I have emphasized the important roles of |Vb|, lattice calculations and in
particular of correlations between various observables. Our simplified analysis shows that
once |Vb| will be precisely determined and non-perturbative parameters calculated precisely
by lattice simulations, the different patterns of flavour violation in various NP models will be
clearly seen.
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5 On the messenger sector of (SUSY) flavour
models

L. Calibbi

Abstract We discuss the phenomenological consequences of the messenger fields that
constitute the UV completion of generic flavour models, with particular emphasis on their
contribution to flavour changing operators and their impact on the soft SUSY breaking terms.

5.1 Introduction

Models based on new “horizontal” symmetries of flavour represent a common approach to
account for the observed hierarchies of fermion masses and mixing [1–3]. In this kind of
models, the Standard Model (SM) fermions transform under the flavour symmetry, which is
spontaneously broken by the vevs of scalar fields called flavons. Small Yukawa couplings are
forbidden at the renormalisable level and only arise from higher-dimensional operators involving
suitable powers of the flavons as determined by the symmetry. The flavour hierarchies are then
explained by small order parameters given by ratios of the flavon vevs and the UV cutoff scale.
This scale itself remains undetermined and can in principle be as large as the Planck scale.
In case it is smaller, one can interpret this cutoff as the typical mass scale of new degrees of
freedom, the so-called “flavour messengers”. The dynamics of this sector may have important
impact on low-energy physics. If its characteristic scale is relatively small, the unavoidable
contributions to flavour changing and CP violating operators can give sizeable deviations from
the SM predictions and strongly constrain the messenger scale and/or the structure of the
Yukawa matrices [4]. On the other hand, if the messenger scale is very high, such direct effects
are irrelevant, but the messenger sector can still have important consequences both for the
Yukawa couplings and the flavour structure of the sfermion masses in supersymmetric models
[5].

5.2 The messenger sector

Instead of working in a specific model, we consider a generic flavour symmetry group GF

spontaneously broken by the vevs of the flavon fields ϕ . The SM Yukawa couplings arise from
higher-dimensional GF-invariant operators involving the flavons [1–3]:

Lyk = yUj qLRj h̃+ y
D
j
qLdRj h+ h.c. yU,Dj ∼

∏



�

〈ϕ〉
M

�nU,D,j

, (5.1)
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Figure 5.1: Schematic supergraphs for Fermion (up) and Higgs (down) UV completions.

where the suppression scale M ¦ 〈ϕ〉 is the typical scale of the flavour sector dynamics.
The coefficients of the effective operators are assumed to be O(1), so that the hierarchy in
the Yukawa matrices arise exclusively from the small order parameters ε ≡ 〈ϕ〉/M. The
transformation properties of the SM fields and the flavons under GF are chosen such that the
parameters ε together with the exponents nU,D,j reproduce the observed flavour hierarchies.

In order to UV-complete models of this kind, one has to introduce new fields at the scale M.
These messenger fields are in vectorlike representations of the SM gauge group and charged
under GF. In order to generate the effective Yukawas of Eq. (5.1), the messengers must couple
to SM fermions and flavons. Depending on their nature, they mix either with the SM fermions or
with the SM Higgs. The first possibility corresponds to introducing vectorlike fermions with the
quantum numbers of the SM fermions (Qα +Qα, Uα + Uα, Dα +Dα . . . ), the second case
to scalar fields with the quantum numbers of the SM Higgs field, possibly together with heavy
SM singlets (Hα +Hα, Sα + Sα). The two possibilities are illustrated by the supersymmetric
graphs of Fig. 5.1. In the fundamental theory, small fermion masses arise from a small mixing
of light and heavy fermions for the first possibility, while they arise from small vevs of the new
scalars in the second case. We refer to the two cases as “Fermion UV completion” (FUVC)
and “Higgs UV completion” (HUVC), respectively.

More details on the construction of viable sets of messengers are provided in [5]. Here, we
just want to highlight an interesting feature of HUVC that allows to enforce texture zeros in
the Yukawa matrices in a very simple way. From the second graph of Fig. 5.1 it is clear that a
specific Yukawa entry can only arise if the corresponding coupling to a heavy Higgs is present.
Although a certain Yukawa entry would be allowed by the flavour symmetry, if the Higgs field
with the correct transformation properties under GF is missing, such entry vanishes in the
fundamental theory and remains zero in the low-energy effective theory.1

5.3 Phenomenology of low-energy messengers

We now discuss the effective flavour-violating operators that arise from messenger exchange
independently of the details of the particular flavour model [4]. From Fig. 5.1 we see that, for

1This elegant possibility to produce texture zeros has been first outlined in [6].
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Figure 5.2: Schematic diagrams responsible for the arising of flavour-violating operators.

both kinds of UVC, couplings of the form α ƒ XY must be present in the messenger Lagrangian.
Here α ∼ O(1), ƒ is a (mainly) light fermion and X and Y are a fermion and a scalar of which at
least one is a heavy messenger. As an example, we see that from box diagrams as in Fig. 5.2a
one obtains effective flavour-conserving operators of the kind |α|4(ƒ γμƒ)2/(16π2M2), where
M is the heaviest mass in the loop and O(1) factors were neglected. Similarly, the same
coupling enters a penguin diagram with a mass insertion in the external fermion line (see
Fig. 5.2b) that generates a dipole operator of the form m ƒ Lσ

μνƒRFμν, where m is the light
fermion mass. Finally there are also certain tree-level operators which unavoidably arise in
HUVC as shown in Fig. 5.2c.

The unavoidable flavour-conserving operators generated by the diagrams in Fig. 5.2 give rise
to flavour-violating operators, after rotating the light fermions to the mass basis. In abelian
models there is no reason for cancellations among different contributions to a FCNC operator
generated by such rotation, as the messengers have different O(1) couplings to light fermions
by construction. In non-abelian models these couplings can be universal (controlled by the
symmetry). Each flavour transition is then additionally suppressed by a factor that depends on
the flavon vevs responsible for universality breaking (see [4] for further details). In summary we
can obtain minimal predictions for the coefficients of certain flavour-violating effective operators,
which do not depend on the details of the flavour model but only on the rotation angles that
connect flavour and fermion mass basis. They can be compared with the experimental bounds
on flavour-violating operators [4] to constrain the messenger scale.

As an illustration, we show here the results in the hadronic 1-2 sector. In Table 5.1 the lower
bounds on the messenger scale (in TeV) are shown for different combinations of the left-handed
and right-handed quark rotations (with ε being of the order of the Cabibbo angle). Since the
left-handed rotation must be O(ε) either in the up or in the down sector or both, to account for
the Cabibbo angle, the messenger scale must be larger than the smallest entry in Table 5.1.
Up to unknown O(1) coefficients, one can therefore obtain an overall minimal bound on the
messenger scale, M ¦ 20 TeV. Since in non-abelian models there are additional suppression
factors, the minimal effects alone do not exclude the possibility that the messenger fields of
such models could be as light as a TeV and therefore in the reach of the LHC.

Let us finally mention that the minimal bound discussed above does not prevent effects in
Bq − Bq mixing and LFV decays in the reach of currently running and future experiments, with
the possibility of peculiar correlations such as BR(μ → eee)/BR(μ → eγ) ∼ O(10) in the
HUVC case, where μ→ eee arises at tree-level from Higgs messengers exchange [4].
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θDL12 θDR12 HUVC HUVC∗ FUVC FUVC∗

ε 0 19 310 19 310
ε ε 3,400 54,000 19 310
ε 1 4,900 80,000 42 680
0 1 42 680 42 680

θUL12 θUR12 HUVC HUVC∗ FUVC FUVC∗

ε 0 27 51 27 51
ε ε 1,100 2,200 27 51
ε 1 1,700 3,200 58 110
0 1 58 110 58 110

Table 5.1: Constraints from K − K (up) and D − D (down) mixing on the messenger scale
in TeV for Higgs and fermion UV completions with real and complex (*) rotations
angles.

.

5.4 Messenger-induced radiative effects in SUSY flavour models

Given the large number of messengers that one typically has to introduce, flavour theories
require very heavy messengers (M ¦ 1010 GeV ) to remain perturbative up to MPlnck [5].
This implies that all direct low-energy effects discussed above vanish. However, in SUSY
even such high scales can have an impact on TeV scale physics through SUSY particles.
Sfermion masses are determined by the underlying mechanism of SUSY breaking, and are
usually generated at very high scales as well. This means that the messenger sector can
interfere with the SUSY breaking sector. As the messenger sector strongly violates flavour
universality by construction, it can easily induce flavour violation in the sfermion masses with
drastic consequences for low-energy observables (for a review see [7]).

The most interesting consequence of the messenger sector on the sfermion masses is the
radiative breaking of flavour universality. Even in presence of a mechanism of SUSY breaking
that generates universal sfermion masses at a scale MS (as is the case of Gauge Mediation),
if MS is above the messenger scale, universality is spoiled by messenger loop corrections [5],
as in general happens in presence of flavour-dependent couplings of sfermions with new fields
beyond the MSSM [8]. The starting point is a universal sfermion mass matrix at MS. When this
matrix is evolved down to the scale M where the messengers decouple, all entries receive RG
corrections (for simplicity we restrict to 1st and 2nd generation):

m̃2
j
(M) =

�

m̃2
0 + Δm̃

2
11 Δm̃2

12
Δm̃2

21 m̃2
0 + Δm̃

2
22

�

. (5.2)

The final evolution to the soft SUSY breaking scale scale is determined by gauge (hence
flavour universal) terms and by Yukawa couplings that can be neglected in the case of the first
two generations. The 1-2 entry in the super-CKM basis is then approximately given by:

m̃2
12 ≈ Δm̃

2
12 +

�

Δm̃2
22 − Δm̃

2
11

�

θ12, (5.3)

where θ12 denotes the (complex) rotation angle in the fermion sector under consideration.
For simple flavour models like U(1), U(1)2 or SU(3) it is easy to see that the second term
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is always larger or equal than the first one, provided the rotation angle does not vanish [5].
Therefore in the following we restrict our attention on the second term in Eq. (5.3).

The sfermion mass splitting depends on the RG running. Since the sfermion-messenger
couplings are O(1) the RG coefficients are in general large (∼ 10 is a conservative estimate
[5]). In abelian models there is no extra suppression, because different generation sfermions
couple with different O(1) couplings to the messengers. Instead in non-abelian models there
can be additional suppression as above, since different generation sfermions can be embedded
in the same representation under the flavour group, which implies universal couplings to the
messengers [5]. To estimate the mass splitting we consider the case of abelian flavour
symmetries, and keep in mind possible non-abelian suppressions.2 We can then estimate the
off-diagonal sfermion mass at leading log by:

m̃2
12 ≈

�

Δm̃2
22 − Δm̃

2
11

�

θ12 ≈ θ12
m̃2
0

16π2
10 log

MS

M
. (5.4)

We notice that the radiatively generated m̃2
12 is roughly of the same order as one would expect

for a tree-level sfermion mass matrix only constrained by the flavour symmetry (see e.g. [9]).
The corresponding mass insertion δ12 ≡ m̃2

12/
Æ

m̃2
11m̃

2
22 then reads:

δb.12 ≈
θ12

16π2
10 R log

MS

M
, (5.5)

where R is the suppression due to the gaugino-driven evolution of the diagonal entries.3

In [5], the above estimate is compared to the various bounds on the mass insertions obtained
from FCNC and LFV processes. Since the effect in Eq. (5.5) depends only on the rotation
angle and the ratio of SUSY and messenger scale, for a given ratio one gets an upper bound
on the real and imaginary part of the rotation angle, which can be used to constrain the Yukawa
matrices. Such bounds are unavoidable whenever MS > M, which includes mSUGRA. For
instance, one typically finds θ12 ® 10−2 both in the leptonic and hadronic sectors. As either
θUL12 or θDL12 must be O(ε) ≈ 0.2, this puts abelian models in troubles, even under the strong
assumption of universal soft masses at MS. The constraints are less severe in non-abelian
models (that gives an additional suppression ® ε2 in the 1-2 sector), so that non-abelian
models are preferred from what concerns the radiative effects discussed above.

5.5 Conclusion

We have shown in a model-independent way that the messenger sector can have a strong
impact on the low-energy phenomenology of flavour models, as well as on the structure of
Yukawa matrices. In particular, low-energy flavour models are strongly constrained by flavour
and CP violating processes induced by messenger exchanges, while high-energy messengers
can still affect the flavour structure of the sfermion masses in SUSY models.

2The abelian case is also relevant in non-abelian models with (s)fermions transforming as singlets under GF.
3R is typically O(1) in the case of sleptons, while for squarks it ranges from O(1) down to O(0.1).
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6 Gravitino Dark Matter with colored NLSP
L. Covi

Abstract We will review the case for gravitino Light Supersymmetric Particle (LSP) and Dark
Matter and discuss in detail the cosmological constraints for a colored Next-to-Lightest or
Next-to-Next-to Lightest Supersymmetric Particle (NLSP or NNLSP respectively).

6.1 Introduction

The particle identity of Dark Matter is one of the still open questions of both cosmology and
particle physics. Indeed the evidence for Dark Matter is surely one of the stronger hints for
physics beyond the Standard Model, since no candidate for Dark Matter is to be found among
the known Standard Model particles (neutrinos are too light and constitute Hot Dark Matter
and their density is bounded to be at most 10-20% of the total Dark Matter density). It is
therefore imperative to look for interesting Dark Matter candidates in model of physics beyond
the Standard Model. Since supersymmetry is a leading candidate for such an extension,
providing e.g. a solution for the hierarchy problem and the possibility of Grand Unification at a
high scale, we will here concentrate on a supersymmetric candidate, the gravitino, superpartner
of the graviton (for a introduction to the graviton multiplet and supergravity, see e.g. [1]). Such
scenario is very attractive since the solution of the Dark Matter problem is then contained in
the gravitational sector of the theory, in some sense in the supersymmetrization, of gravity.
In general the question of flavour is considered to be independent of the question of Dark
Matter, but in certain cases the "flavour" of the NLSP can make a huge difference in the
phenomenology of a gravitino Dark Matter scenario. Also gravitino Dark Matter can be in some
cases compatible with thermal leptogenesis (for a review see e.g. [2]), which is connected to
lepton flavour. Thermal leptogenesis in the simplest realization needs reheat temperatures
above 109 GeV [2, 3]. We will in the following discuss in particular colored N(N)LSPs, like
the lightest stop or the gluino and see if some parameter space compatible with thermal
leptogenesis and present LHC searches can still be found.

6.2 Gravitinos as Dark Matter

Gravitinos are natural candidates for Dark Matter within supersymmetric models. They were
actually proposed as thermal Dark Matter even before the neutralino by Pagels & Primack in
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1982 [4]. In such models though, the gravitinos have to be very light since their number density
as relativistic relics is large, i.e.

Ω3/2h2 ∼ 0.1
� m3/2

0.1keV

�� g∗

106.75

�−1
(6.1)

where m3/2 is the gravitino mass and g∗ are the effective number of degrees of freedom
thermalized at the time of gravitino decoupling. Such a small gravitino mass corresponds to
Warm/Hot Dark Matter and it excluded by structure formation.

On the other hand, if the gravitinos never reach thermal equilibrium, they can be heavier and
nevertheless produced in the right number density to be Dark Matter by scattering processes in
the plasma involving in particular the gauge interactions. Since those processes are mediated
by a non-renormalizable dimension 5 operator, the resulting particle density is linear in the
thermal bath temperature and the largest gravitino population is produced at the highest
temperature reached by the thermal plasma, TRH. The gravitino energy density from thermal
scattering has been the study of detailed work in the recent years [5–7] and the result is given
by

Ω3/2h2 ∼ 0.3
�m3/2

1GeV

�−1� TRH

1010GeV

�

∑



c

�

M

100GeV

�2

(6.2)

where c are coefficients of order 1 and M denote the three gaugino masses at EW temperature
(RGE effects to TRH are included in the coefficients c).

Note that if the gravitino is not the LSP, such a population of gravitinos decays into the other
supersymmetric particles quite late in the cosmological history, during or after Big Bang
Nucleosynthesis causing the infamous "gravitino problem" [8, 9]. Therefore strong constraints
on the gravitino density and therefore the reheat temperature can be set in that case (for recent
results see [10]).

6.3 Stable gravitino and colored NLSP

BBN bounds on colored long-lived relics are even stronger than those for charged or neutral
particles since the colored particles can become bounded within the nuclei and change
the rates of the nuclear processes during Nucleosynthesis. Such constraints have been
recently computed by [11] and are very steep in the particle lifetime. They approximately
result in constraining the NLSP lifetime to be shorter than 200 s. Even increasing the colored
state annihilation cross-section thanks to the Sommerfeld effect does not relax those bounds
substantially. The only possibility is to consider a sufficiently heavy NLSP so that the decay
happens early enough. This gives approximately, assuming the dominant decay channel of the
stop is to top and gravitino,

mt̃ ≤ 1TeV
� m3/2

10GeV

�2/5

. (6.3)

A slightly weaker bound can be obtained for the gluino NLSP, which annihilates a bit more
efficiently.
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Figure 6.1: The bounds on the scenario of gravitino stable LSP with a light stop NLSP in the
plane of the stop versus gravitino mass: the upper region is excluded by the BBN
constraints on the stop lifetime as explained in the text, while the lower part of the
plane is excluded since the gravitino would be WDM. The yellow region indicated
by "CDM bound" gives a too large density of gravitino Dark Matter for the reheat
temperature indicated and the ratio of the gaugino masses to the gravitino mass of
1.1. In the blue corner on the right side, the stop lifetime is short enough to allow
for the stop to decay into top and gravitino in the LHC detectors.
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The BBN bounds for the stop case are shown in the Figure 1. The two lines practically
overlapping in the top part of the figure give the lifetime constraints from BBN depending
on the stop relic density, computed either without or with the Sommerfeld enhancement for
the stop annihilation cross-section as given in [12]. The region indicated by "CDM bound"
corresponds to a too large density of gravitino Dark Matter for the reheat temperature indicated
and a minimal ratio of gaugino to gravitino masses of 1.1. In the white region just at the upper
boundary of that line, the gravitino has exactly the right density to be Dark Matter for a reheat
temperature of 107 GeV. For larger reheat temperatures the curve moves up and touches the
BBN bounds for the range of stop masses considered for a reheat temperature of about 108

GeV, not quite compatible with "vanilla" thermal leptogenesis.

The characteristic signature of this scenario at colliders is that of a metastable stop: such a
particle has been searched by CMS with no evidence for any excess reaching a lower limit on
the mass at present of about 800 GeV [13].

Another possibility, which relaxes the BBN constraints, is to have a small breaking of R-parity,
allowing the stop NLSP to decay before BBN and therefore relaxing the constraints [14]. In
that case the dominant decay channel depends on the R-parity breaking model. For bilinear
R-parity violation, the decay into a b-quark and lepton is dominant and the lepton flavour gives
indication on the bilinear R-parity breaking pattern [15].

6.4 Gluino NNLSP

One way to avoid the BBN constraints for colored relics is to have a neutral NLSP with a
colored NNLSP. In this case, if the two particles are sufficiently degenerate in mass, co-
annihilation between the neutral and colored particles strongly reduces the NLSP density and
relaxes substantially the BBN constraints. It has been shown in [16], that the co-annihilation is
particularly effective for masses below 300 GeV and for degeneracy between the neutralino
and the gluino of the order of 1-3% , so that then the neutralino density is so suppressed that
even reheat temperatures above 109 GeV are allowed.

In that particular case, the gluino decays promptly into a neutralino and a gluon or a light
quark-antiquark pair, but the visible particles carry very small energy and have on average
such very low pT that they escape from the usual searches for Missing ET and jets. Then
the most sensitive channel is the one including one single monojet, either from Initial State
Radiation or from the associate production of gluino and squark, with the squark providing
a highly energetic jet in its decay into gluino. This channel has been studied by the LHC
collaborations for the case of graviton production in extra-dimensional scenarios and Dark
Matter searches [17, 18]. Recently such results have been also reinterpreted for the case of a
degenerate spectrum and they put severe constraints on this case, excluding gluino masses
up to 450-500 GeV [19] and therefore also the preferred region around 300 GeV.
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6.5 Conclusion

The gravitino is a good DM candidate, which can reconcile a relatively high reheat temperature
with supersymmetry, especially with colored NNLSP or NLSPs. Big Bang Nucleosynthesis
constrains the lifetime and density of the NLSP, also in case of colored relics, and tends to
point naturally to a heavy spectrum.

We discussed the case of stop or gluino NLSPs and the case of gluino NNLSP with neutralino
NLSP. In the first case it is difficult to find parameter space in agreement with thermal lep-
togenesis up to masses of the NLSP of order 2 TeV, which could still be in the reach of the
next phase of the LHC. Still the option remains to add a small amount of R-parity to evade
the BBN constraints and allow for larger gravitino masses. In the second case, higher reheat
temperatures are in principle allowed for degenerate masses of the NLSP/NNLSP around 300
GeVs, but such masses are now excluded by the LHC searches.

In conclusion, gravitino Dark Matter is compatible also with a relatively heavy SUSY spectrum
for low reheat temperature, but there is still the chance that some "exotic" signal at the LHC,
like a charged metastable particle or a displaced vertex, will show up soon and point us to this
specific scenario.

Acknowledgments

This project is supported by the German-Israeli Foundation for scientific research and devel-
opment(GIF). The author also acknowledges financial support by the EU FP7 ITN Invisibles
(Marie Curie Actions, PITN-GA-2011-289442)

The author would like to thank the organizers for the very interesting meeting and all her
collaborators for the enjoyable work together. Special thanks go to Federico Dradi who
produced the figures in time for the meeting.

47





Bibliography

[1] J. Wess and J. Bagger, Princeton University Press (1992), Supersymmetry and super-
gravity

[2] S. Davidson, E. Nardi, and Y. Nir, Phys.Rept. 466, 105 (2008), arXiv:0802.2962 [hep-ph]

[3] W. Buchmuller, P. Di Bari, and M. Plumacher, New J.Phys. 6, 105 (2004), arXiv:hep-
ph/0406014 [hep-ph]

[4] H. Pagels and J. R. Primack, Phys.Rev.Lett. 48, 223 (1982)

[5] M. Bolz, A. Brandenburg, and W. Buchmuller, Nucl.Phys. B606, 518 (2001), arXiv:hep-
ph/0012052 [hep-ph]

[6] J. Pradler and F. D. Steffen, Phys.Rev. D75, 023509 (2007), arXiv:hep-ph/0608344 [hep-
ph]

[7] V. S. Rychkov and A. Strumia, Phys.Rev. D75, 075011 (2007), arXiv:hep-ph/0701104
[hep-ph]

[8] M. Y. Khlopov and A. D. Linde, Phys.Lett. B138, 265 (1984)

[9] J. R. Ellis, D. V. Nanopoulos, and S. Sarkar, Nucl.Phys. B259, 175 (1985)

[10] M. Kawasaki, K. Kohri, T. Moroi, and A. Yotsuyanagi, Phys.Rev. D78, 065011 (2008),
arXiv:0804.3745 [hep-ph]

[11] M. Kusakabe, T. Kajino, T. Yoshida, and G. J. Mathews, Phys.Rev. D80, 103501 (2009),
arXiv:0906.3516 [hep-ph]

[12] C. F. Berger, L. Covi, S. Kraml, and F. Palorini, JCAP 0810, 005 (2008), arXiv:0807.0211
[hep-ph]

[13] S. Chatrchyan et al. (CMS Collaboration), Phys.Lett. B713, 408 (2012), arXiv:1205.0272
[hep-ex]

[14] W. Buchmuller, L. Covi, K. Hamaguchi, A. Ibarra, and T. Yanagida, JHEP 0703, 037
(2007), arXiv:hep-ph/0702184 [HEP-PH]

[15] L. Covi and F. Dradi(work in progress 2012)

[16] L. Covi, M. Olechowski, S. Pokorski, K. Turzynski, and J. D. Wells, JHEP 1101, 033 (2011),
arXiv:1009.3801 [hep-ph]

[17] G. Aad et al. (ATLAS Collaboration)(2012), arXiv:1209.4625 [hep-ex]

[18] S. Chatrchyan et al. (CMS Collaboration)(2012), arXiv:1206.5663 [hep-ex]

[19] H. K. Dreiner and M. K. J. Tattersall(2012), arXiv:1207.1613 [hep-ph]

49

http://arxiv.org/abs/{Supersymmetry and supergravity}
http://arxiv.org/abs/{Supersymmetry and supergravity}
http://dx.doi.org/10.1016/j.physrep.2008.06.002
http://arxiv.org/abs/0802.2962
http://dx.doi.org/10.1088/1367-2630/6/1/105
http://arxiv.org/abs/hep-ph/0406014
http://arxiv.org/abs/hep-ph/0406014
http://dx.doi.org/10.1103/PhysRevLett.48.223
http://dx.doi.org/10.1016/S0550-3213(01)00132-8, 10.1016/j.nuclphysb.2007.09.020
http://arxiv.org/abs/hep-ph/0012052
http://arxiv.org/abs/hep-ph/0012052
http://dx.doi.org/10.1103/PhysRevD.75.023509
http://arxiv.org/abs/hep-ph/0608344
http://arxiv.org/abs/hep-ph/0608344
http://dx.doi.org/10.1103/PhysRevD.75.075011
http://arxiv.org/abs/hep-ph/0701104
http://arxiv.org/abs/hep-ph/0701104
http://dx.doi.org/10.1016/0370-2693(84)91656-3
http://dx.doi.org/10.1016/0550-3213(85)90306-2
http://dx.doi.org/10.1103/PhysRevD.78.065011
http://arxiv.org/abs/0804.3745
http://dx.doi.org/10.1103/PhysRevD.80.103501
http://arxiv.org/abs/0906.3516
http://dx.doi.org/10.1088/1475-7516/2008/10/005
http://arxiv.org/abs/0807.0211
http://arxiv.org/abs/0807.0211
http://dx.doi.org/10.1016/j.physletb.2012.06.023
http://arxiv.org/abs/1205.0272
http://arxiv.org/abs/1205.0272
http://dx.doi.org/10.1088/1126-6708/2007/03/037
http://arxiv.org/abs/hep-ph/0702184
http://dx.doi.org/10.1007/JHEP01(2011)033
http://arxiv.org/abs/1009.3801
http://arxiv.org/abs/1209.4625
http://arxiv.org/abs/1206.5663
http://arxiv.org/abs/1207.1613




7 Higgs Mediated Lepton Flavour Violation in
the Supersymmetric Inverse Seesaw Model

D. Das

Abstract We have investigated Higgs mediated lepton flavor violating observables in the
inverse seesaw framework of Minimal Supersymmetric Standard Model. We have shown that,
lightness of the sterile (s)neutrinos can enhance the effective coupling H/A −  − j. As a
consequence, all Higgs mediated flavor violating observables are enhanced by as much as
two orders of magnitude.

7.1 Introduction

Neutrino oscillations have provided one of the most intriguing experimental evidence towards
the beyond Standard Model (SM) physics. Minimal Supersymmetric Standard Model (MSSM),
one of the most popular extension of the Standard Model can also accommodate neutral flavor
oscillation when it is extended to include the right handed neutrino superfields. The additional
supersymmetric (SUSY) states with masses in the TeV scale can provide contributions to
charged lepton flavor violations (cLFV), such as  → jγ or three body decays  → 3j. Thus,
any cLFV signal, if observed, would clearly convey the indirect evidence for new physics.

The introduction of the right handed neutrino superfields in the SUSY theories naturally invites
seesaw mechanism to embed with it. In the SUSY-seesaw theories, neutrino Yukawa couplings
can induce mixing term in the SUSY soft-breaking slepton mass matrices through renor-
malisation group evolution (RGE) of the aforementioned parameters. This in turn generates
observable effects in the charged lepton flavor violation through the mixings in the slepton mass
matrices. However, in this seesaw scheme, requirement of O(1) neutrino Yukawa couplings
leads the right handed neutrino mass scale or seesaw scale very close to the gauge coupling
unification scale which is impossible to probe experimentally.

On the contrary, inverse seesaw scenarios [1] offers an appealing alternative, where one can
retain O(1) neutrino Yukawa couplings while the right handed neutrino mass scale can reside
near the TeV scale. This at one hand offers testability by directly producing the sterile neutrinos
at the Large Hadron Collider, while on the other hand, can enhance the charged lepton flavor
violating processes through the unsuppressed lepton number conserving dimension-6 operator
�

Y†
ν

1
|M|2

Yν
�

(M represents right handed neutrino mass scale). Indeed, in view of this strong
potential, several phenomenological studies have been carried out in the recent past.

The singlet neutrinos with masses at the TeV scale may significantly contribute to cLFV
observables, irrespective of the supersymmetric states . Supersymmetric realisations of the
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inverse seesaw may enhance these cLFV rates even further [2, 3]. This particular work is
devoted to the Higgs mediated charged lepton flavor violation processes in the supersymmetric
inverse seesaw framework [4]. We have shown that the effective coupling H/A−  − j can be
enhanced significantly, thanks to the comparatively light right-handed neutrinos and sneutrinos
(which provide negligible contribution in the framework of a type I SUSY-seesaw). We find
that this new contribution, in particular leads to a significant enhancement of the several cLFV
observables.

7.2 Inverse Seesaw Mechanism in the MSSM

Here, the MSSM field contents is augmented by three pairs of singlet superfields, bνc


and bX
( = 1,2,3) with lepton numbers −1 and +1, respectively. Consequently, the superpotential
for the supersymmetric inverse seesaw model can be defined by

W = ϵb
h

Y
j
d
bD
bQb
j
bH
d
+ Y j


bU bQ


j
bHb

+ Y j

e
bE bL

b
j
bH
d

+ Y j
ν
bνc

bL
j
bHb

− μ bH

d
bHb


i

+MR bν
c

bX +

1

2
μX bX bX , (7.1)

The information of inverse seesaw are encoded in the last two terms in Eq: 7.1. Here, MR
represents the right-handed neutrino mass term that conserves lepton number while μX
violates the same by two units. The terms bνc


bX and bX bX are assumed to be diagonal in

generation space.
The soft SUSY breaking Lagrangian can be written as

− Lsoft = −LMSSMsoft +m2
eνc
eνc†

eνc

+m2

X
eX†

eX

+

�

AνY
j
ν
ϵb eν

c

eL
j
Hb

+ BMR

eνc

eX +

1

2
BμX

eX eX + h.c.

�

, (7.2)

where LMSSMsoft denotes the soft SUSY breaking terms of the MSSM. In the above, for the singlet
scalar states we assume m2

X
=m2

X
and m2

eνc
=m2

eνc . The parameters BMR
and BμX represent

the bilinear couplings for the sterile neutrino states. Note that while the former conserves
lepton number, the latter generates the lepton number violating ΔL = 2 term.

Now we illustrate the pattern of light neutrino masses in the inverse seesaw model considering
only one-generation case. In the {ν,νc, X} basis the (3× 3) neutrino mass matrix can be
written as

M =







0 mD 0
mD 0 MR

0 MR μX






, (7.3)

with mD = Yν, yielding the mass eigenvalues (m1 �m2,3):

m1 =
m2

D
μX

m2
D
+M2

R

, m2,3 = ∓
Æ

M2
R
+m2

D
+

M2
R
μX

2(m2
D
+M2

R
)
. (7.4)
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The advantage of the inverse seesaw is that, here the lightness of the smallest eigenvalue m1
can be attributed to the smallness of μX (μX ' m1). Technically, such small value of μX is
natural in the sense of ’t Hooft since in the limit μX → 0, the total lepton number symmetry is
restored. Thus the lepton number conserving mass parameters (mD and MR) are completely
unconstrained in this model.

Finally, the effective right-handed sneutrino mass term (Dirac-like) can be expressed as
M2
eνc
= m2

eνc + M2
R
+
∑

j |Y jν |
22


. Assuming MR ∼ O(TeV), the effective sneutrino mass

term also assumes O(1) TeV, in clear contrast to what occurs in the standard (type I) SUSY
seesaw where it takes masses O(MR). Such a light sneutrino (i.e. M2

eνc ∼ M
2
SUSY) leads to the

enhancement of Higgs mediated contributions to lepton flavour violating observables.

7.3 Lepton flavour violation: Higgs-mediated contributions

In the SUSY seesaw framework, the neutrino Yukawa couplings, which are non-diagonal to ac-
commodate the neutrino oscillation data are the only sources for flavour violation. The presence
of right handed neutrino would drive the soft SUSY breaking slepton mass parameter m2

L̃j
(for

 6= j) to acquire non vanishing contribution at the weak scale. Considering cMSSM/mSUGRA
like boundary condition at the GUT scale, in the leading logarithmic approximation this radiative
effect is proportional to Yν [5, 6] and can be expressed as

(Δm2
eL
)j ' −

1

8π2
(3m2

0 + A
2
0)(Y

†
ν
LYν)j , L = ln

MGUT

MR

= ξ(Y†
ν
Yν)j, (7.5)

where for simplicity, we assume degenerate right-handed neutrino spectrum, MR = MR. As
can be guessed from Eq:7.5, the factor ξ would be enhanced in the inverse seesaw framework
compared to the standard (type I) SUSY seesaw, thanks to smallness of the right handed
neutrino mass term.

On the other hand, Higgs-mediated flavor violating processes are induced by the non-
holomorphic Yukawa interactions D̄RQLH∗ at the one-loop level. This was first pointed out in
the context of quark families in [7]. On a similar note, in the lepton sector, the Higgs-mediated
flavour violating couplings are also induced at the one loop level by the non-holomorphic Yukawa
term ĒRLH∗ [8]. Consequently, its role has been studied in the context of several lepton flavor vi-
olating processes like τ→ 3μ [8], Bs → μτ, Bs → eτ [9], τ→ μη [10]. A detailed analyses of
the several μ−τ lepton flavour violating observables τ→ μX (X = γ, e+e−, μ+μ−, ρ, π, η, η′)
can be found in [11].

The effective Lagrangian that describes the coupling of the neutral Higgs fields to the charged
leptons can be expressed as

− Leff = Ē
R
Y 
e

�

δjH
0
d
+
�

ε1δj + ε2j(Y†νYν)j
�

H0∗


�

E
j
L + h.c. . (7.6)

The first term represents the usual Yukawa interaction, while the coefficient ε1 encodes the
corrections to the charged lepton Yukawa couplings. In the basis for diagonal charged lepton
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Figure 7.1: Right-handed sneutrino contribution to ε′2.

Yukawa couplings, the last term in Eq. (7.6), i.e. ε2j(Y†νYν)j, is in general non-diagonal which
introduces the flavor violating Higgs coupling H/A−  − j.

In the standard seesaw mechanism, the co-efficient ε2j encodes the sole contribution to the
cLFV processes where LFV is introduced via a radiatively induced non-diagonal terms in the
slepton masses (Δm2

eL
)j (see Eq. (7.5)) (For details see ref: [4]).

Now, in the framework of the inverse SUSY seesaw, there is an additional diagram: the
sneutrino-chargino mediated loop 1, depicted in Fig. 7.1 which provides the leading contribution.
This new contribution can be computed from

ε′2j =
1

16π2
μAνF1(μ2,m2

eν
,M2

eνcj
), (7.7)

with

F1 (, y, z) = −
y ln(/y) + yz ln(y/z) + z ln(z/)

(− y)(y− z)(z − )
. (7.8)

Here, we have parametrized the soft trilinear term for the neutral leptons as AνYν, and Aν is a
flavour independent real mass term. Consequently, the effective Lagrangian is modified as

− LLFV = Ē
R
Y 
e
εtot
2j(Y

†
ν
Yν)jH0∗ E

j
L + h.c. , (7.9)

with εtot
2 = ε2 + ε

′
2.

Note that ε′2j does not require any LFV mass insertions, thus naturally dominate over ε2j.
This can easily be understood from a simple analysis where we have assumed all dimen-
sionful parameters as mSUSY and MR ∼ 1TeV. In this limit, the loop functions are given by
F2 (, , , ) =

1
62 and F1 (, , ) =

1
2 . This leads to

ε2 ' −0.0007 , nd ε′2 ' 0.003 .

In the above, we have further assumed that at MGUT, one has A0 = 0, taking for the gauge
couplings α2 = 0.03 and α′ = 0.008. Thus, at the leading order in the inverse seesaw, the
lepton flavour violation coefficient becomes |εtot

2 | = |ε2 + ε
′
2| ' 2× 10

−3.

1Note that the large masses of eνc in the standard (type I) seesaw makes this effect negligible, thus has not been
taken into account in the literature.
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On the contrary, in the standard seesaw model (MR ∼ 1014 GeV), the coefficient ξ would be
small, thus one finds |εtot

2 | = |ε2| ' 2× 10
−4. This shows how in the inverse SUSY seesaw,

εtot
2 is enhanced by a factor of order ∼ 10 compared to the standard seesaw.

The effective Lagrangian describing Ē
R
E
j
LHk (where Hk = h,H,A) can be derived from

Eq. (7.6), and reads [8, 9] as

− Leff
 6=j = (2G

2
F
)1/4

mEκ
E
j

cos2 β

�

Ē
R
E
j
L

�

[cos(α − β)h+ sin(α − β)H− A] + h.c. , (7.10)

where α is the CP-even Higgs mixing angle and tnβ = /d, and

κE
j
=

εtot
2j(Y

†
ν
Yν)j

�

1+
�

ε1 + εtot
2(Y

†
ν
Yν)

�

tnβ
�2 . (7.11)

As clear from the above equation, large values of εtot
2 lead to large values of κE

j
. Since the

cLFV branching ratios are proportional to (κE
j
)2, a sizeable enhancement, as large as two

orders of magnitude, is expected for all Higgs-mediated LFV observables.

7.4 Results and Discussion

As can be seen from Eq:7.10, Higgs mediation would be more pronounced for large values of
tnβ and small values Higgs boson masses. Similarly, the corresponding amplitude strongly
depends on the chirality of the lepton. The cLFV observables would be maximized if the
right-handed particle is the heaviest lepton τ. In view of this we particularly focus on the
following observables:

1. Br(τ→ 3μ)

2. Br(Bs → ℓℓj)

3. τ→ μP (P = π, η, η′).

Analytical results for these observables can be found in ref: [4](also see the references therein).
Here, we numerically evaluate the LFV observables where the benchmark points are selected
from Ref: [12]. Moreover, we also consider scenarios of Non-Universal Higgs Masses (NUHM),
as this allows to explore the impact of the lightness of the CP-odd Higgs boson. In Table 7.1,
we list the chosen points: CMSSM-A and CMSSM-B respectively correspond to the 10.2.2 and
40.1.1 benchmark points in [12], while NUHM-C is an example of a non-universal scenario.
For these points, the low-energy SUSY parameters were obtained using SuSpect [13]. The
flavour-violating slepton mass term (Δm2

eL
)j or ξ, are calculated at the leading order using

Eq. (7.5). (For NUHM, we also use the same value of ξ as for CMSSM-A.) In addition, the
(physical) right-handed sneutrino masses are assumed M

eνc ≈ 3 TeV and
�

Y†
ν
Yν
�

= 0.7,
particularly in agreement with the Non-Standard Neutrino Interactions bounds [14]. Moreover,
in our numerical analysis, we have fixed the trilinear soft breaking parameter Aν = −500
GeV (at the SUSY scale). As can be seen (From Table 7.2) τ → μη is the most promising
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Point tnβ m1/2 m0 m2
HU

m2
HD

A0 μ mA

CMSSM-A 10 550 225 (225)2 (225)2 0 690 782
CMSSM-B 40 500 330 (330)2 (330)2 -500 698 604
NUHM-C 15 550 225 (652)2 −(570)2 0 478 150

Table 7.1: Benchmark points used in the numerical analysis (dimensionful parameters in GeV).

LFV Process Present Bound Future Sensitivity CMSSM-A CMSSM-B NUHM-C
τ→ μμμ 2.1× 10−8 (Belle) 8.2× 10−10 (SuperB) 1.4× 10−15 3.9× 10−11 8.0× 10−12
τ→ μη 2.3× 10−8 (Belle) ∼ 10−10 (SuperB) 8.0× 10−15 3.3× 10−10 4.6× 10−11
B0
s
→ μτ 7.7× 10−14 2.5× 10−8 7.8× 10−10

B0
s
→ eμ 2.0× 10−7 (CDF) 6.5× 10−8(LHCB) 3.4× 10−16 8.9× 10−11 3.4× 10−12

Table 7.2: Higgs-mediated contributions to the branching ratios of several lepton flavour violat-
ing processes, for the different benchmark points of Table 7.1. We also present the
current experimental bounds and future sensitivities for the LFV observables.

concerning the next generation of B factories. The B0
d,s
→ μτ decay is also interesting, but

there is not much hope concerning the future sensitivities.

7.5 Conclusion

Lepton flavor violation, if observed in the charged lepton sector would (i) manifest the presence
of new physics and (ii) could provide a hint for the origin of neutrino masses and mixings.
Assuming inverse seesaw framework in the Minimal Supersymmetric Standard Model we
have studied the impact of the Higgs mediation to the cLFV observables. We have argued
that TeV scale right-handed (s)neutrinos offer the possibility to enhance the Higgs-mediated
contributions. Consequently, different LFV branching ratios can be enhanced by as much as
two orders of magnitude when compared to the standard (type I) SUSY seesaw
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8 Probing the Flavour Structure of
Right-Handed Neutrinos in Left-Right
Symmetry at the LHC

F. F. Deppisch

Abstract Lepton flavour couplings can be probed at the LHC, complementing searches for
lepton flavour violation in low energy experiments. This can be used to shed light on the
flavour structure of new physics models and the presence of possible flavour symmetries.
We highlight this possibility in the context of left-right symmetry through the production and
decay of heavy right-handed neutrinos at the LHC and discuss the expected sensitivity on
the right-handed neutrino mixing matrix, as well as on the right-handed gauge boson and
heavy neutrino masses. By comparing the sensitivity of the LHC with that of searches for
low energy lepton flavour violating processes, favourable areas of the parameter space are
identified where the complementarity between lepton flavour violation at low and high energies
can be explored.

8.1 Introduction

It is natural to expect that the violation of lepton flavour observed in neutrino oscillations [1–3]
should also show up in charged lepton flavour violating (LFV) processes such as the decay
μ− → e−γ, and possibly also at the high energies accessible at the Large Hadron Collider
(LHC). Oscillation experiments also demonstrate that neutrinos have small but finite masses,
and many mechanisms of generating light neutrino masses have been discussed, the most
popular example being the seesaw mechanism. Here, heavy right-handed Majorana neutrinos
produce the light Majorana masses of the observed neutrinos through their mixing with the
left-handed neutrinos. The Majorana character of the light neutrinos can then be traced to the
breaking of lepton number symmetry at a very high energy scale [4–10].

Despite its theoretical attractiveness, the standard type-I seesaw mechanism has phenomeno-
logical shortcomings: The right-handed neutrinos have masses close to the unification scale
and can therefore not be directly observed. In addition, the right-handed neutrinos are gauge
singlets, and even if they are light enough to be produced at colliders, the heavy neutrinos
only couple through their mixing with the left-handed neutrinos which is tightly constrained
by the smallness of neutrino masses as well as electroweak precision data and searches
for LFV [11–13]. This means that the standard seesaw mechanism is difficult to test at the
LHC [14].
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A well known alternative of the standard Seesaw scheme is the left-right symmetrical model
(LRSM) which extends the electroweak Standard Model (SM) gauge symmetry to the group
SU(2)L ⊗ SU(2)R ⊗ U(1)B−L [15–18]. Right-handed neutrinos are a necessary ingredient and
they appear as part of an SU(2)R doublet. Consequently, heavy neutrinos can be produced
with gauge coupling strength, with promising discovery prospects.

This opens up the possibility to test the naturally expected presence of lepton flavour couplings
in the right-handed charged currents of the left-right symmetrical model. In fact, the large
mixing observed in oscillation experiments could suggest a similar pattern among right-handed
neutrinos in this framework. The observation of LFV processes mediated by the heavy
neutrinos would provide important information on the flavour structure of the model and could
help distinguish between models such as emerging from different flavour symmetries. On the
other hand, the non-observation of lepton flavour violating processes in low-energy experiments
so far puts stringent constraints on the strength of flavour violating couplings and the spectrum
of the mediating particles. It is therefore interesting to understand how searches for lepton
flavour violation in high-energy processes at the LHC can complement low-energy searches,
and how these can be combined to shed light on the flavour structure of new physics models.

8.2 Left-Right Symmetry

We will here highlight the sensitivity of LHC searches to LFV couplings in the minimal Left-Right
symmetric model, and the following results are mostly based on the analysis [19]. In the LRSM,
a generation of leptons is assigned to the multiplet L = (ν, ) with the quantum numbers
QLL = (1/2,0,−1) and QLR = (0,1/2,−1) under SU(2)L ⊗ SU(2)R ⊗ U(1)B−L. The Higgs
sector of the model contains a bidoublet ϕ and two triplets ΔL,R. The vacuum expectation value
(VEV) R of ΔR breaks SU(2)R ⊗ U(1)B−L to U(1)Y and generates the masses of the right-
handed WR boson, the right-handed ZR boson and the heavy right-handed neutrinos. Since
significant deviations from SM predictions and new heavy particles have not been observed,
R is required to be sufficiently large. The VEVs of the neutral component of the bidoublet
break the SM symmetry and are therefore of the order of the electroweak scale.

The LRSM accommodates a general 6× 6 neutrino mass matrix in the basis (νL, νcL)
T of the

form

M =
�

ML MD

MT
D

MR

�

, (8.1)

with Majorana and Dirac mass entries of the order ML,R ≈ yML,R and MD = yD, respectively.
Here, yM,D are Yukawa couplings,  denotes the electroweak mass scale and L is the VEV
of the left-handed triplet ΔL satisfying 2 = LR. The Dirac mass term MD leads to a mixing
between left- and right-handed neutrinos which is constrained to be MD/MR ® 10−2. The
following results are reported in the regime with a small Dirac mass term to accommodate the
light neutrino masses mν = M2

D
/MR and right-handed neutrino masses at the TeV scale. With

MD ® 10−4 GeV, an admixture between the light and heavy neutrinos is negligible.

Fig. 8.1 shows the contributions to the LFV processes μ→ eγ, μ→ e conversion in nuclei and
μ→ 3e, which are mediated by heavy neutrinos and doubly charged bosons δL,R. In general,
the rates of these processes depend on many parameters, but under the assumption of similar
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Figure 8.1: Contributions to μ → eγ (left, the photon line may be attached to any charged
particle line), μ→ e conversion in nuclei (center) and μ→ eee (right) in left-right
symmetry (from [19]). The grey circle represents the effective μ− e−gauge boson
vertex of μ→ eγ.

mass scales of the heavy LRSM particles, mN ≈mWR ≈mδL,R , simple approximations can
be derived [20]. As all these masses are generated through the breaking of right-handed
symmetry, such a spectrum is naturally expected, and in this case the branching ratio of
μ→ eγ can be approximated as [20]

Br(μ→ eγ) ≈ 1.5× 10−7|geμ|2
�

1 TeV

mWR

�4

, with geμ =
3
∑

n=1

V†
en
V
nμ

�

mNn

mWR

�2

. (8.2)

Here, V is the 3 × 3 flavour mixing matrix in the right-handed charged current interaction
between the heavy neutrinos with masses mNn and the right-handed charged leptons. The
other lepton flavour violating processes have the following properties in the chosen regime:
(i) Both Br(μ→ eγ) and the μ− e conversion rate in nuclei Rμe are proportional to the LFV
factor |geμ|2, and their ratio is Rμe/Br(μ→ eγ) = O(1). (ii) Unless there are cancellations
among the flavour couplings, one has Br(μ→ eee)/Rμe = O(300) (mδL,R ≈ 1 TeV). These
findings are in stark contrast to many other new physics models such as SUSY seesaw models,
where the photon penguin contribution dominates.

8.3 Dilepton Signals at the LHC

In [19], the discovery potential of flavour violating signals pp→WR → e±μ±,∓ + 2 jets at the
LHC via a heavy right-handed neutrino [21] was assessed (cf. Fig. 8.2), with opposite sign
(lepton number conserving) and same sign (lepton number violating) leptons in the final state.
If the masses of the three heavy neutrinos are sufficiently different, only one neutrino in the
intermediate state has to be taken into account. This is because either only one right-handed
neutrino is light enough to be produced in this process or the neutrino mass resonances can
be individually reconstructed.

Fig. 8.3 (left) shows the smallest coupling |VNe| of the heavy neutrino with an electron that
results in a signal at 5σ. Here, unitary flavour mixing in the e− μ sector is assumed, |VNe|2 +
|VNμ|2 = 1. With the direct limits from WR and NR searches, flavour violating heavy neutrino-
lepton couplings as small as |VNe(μ)| ≈ 10−1 can be tested at the LHC with 14 TeV and
L = 30 fb−1. This can be generalized to non-unitary mixing, and the sensitivity to the
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Figure 8.2: Production and decay of a heavy right-handed W boson and neutrino with dilepton
signature at the LHC (from [19]).

couplings |VNe| and |VNμ| can be assessed. This is shown in Fig. 8.3 (right) which gives both
the excluded parameter space in the case of non-observation as well as the expected precision
in measuring the couplings in four hypothetical scenarios. For LFV signals with a τ lepton, a
30% reduction of the signal efficiency is expected [22, 23].

If two heavy neutrinos are light enough to be produced at the LHC, a potentially small squared
mass difference Δm2

N
leads to interference effects and as the heavy neutrinos become more

and more degenerate, all LFV processes will suffer a GIM-like suppression if the flavour mixing
is unitary. A crucial difference to the radiative rare decays is that the heavy neutrinos are
produced on-shell at the LHC. Because of their small decay width, this results in a quick
decoherence of the right-handed neutrino oscillations, and the mass difference suppression is
∝ Δm2

N
/(mNN), rather than Δm2

N
/m2

N
[24]. Fig. 8.4 demonstrates this complementarity as it

compares the sensitivity of LHC searches and μ− e LFV processes, either as a function of the
heavy particle mass scales (left plot) or as a function of the heavy neutrino mass difference
and flavour mixing angle (right plot). The current limits on the rare processes put strong
constraints on the parameter space, with μ → eee proving to be most stringent due to the
tree-level doubly charged bosons contribution (cf. Fig. 8.1 (right)). As a consequence of the
decoherence in on-shell production, the LFV process rate at the LHC is independent of the
neutrino mass splitting until it becomes comparable to or smaller than the heavy neutrino
decay width. On the other hand, the low energy LFV processes exhibit the typical GIM-
suppressed behaviour ∝ sin2(2ϕ)(Δm2

N
)2 and can only test much larger mass differences

ΔmN/mN ¦ 10−3 − 10−4.

8.4 Conclusion

Our discussion in the context of left-right symmetry highlights that under favourable conditions,
lepton flavour violation can be probed directly at the LHC, complementary to low-energy
searches. Because the particles mediating the flavour violation can be produced on-shell, the
LHC has the potential to pin-point individual couplings and probe much smaller heavy neutrino
mass splittings than low energy LFV processes. In the scenario considered here, with the
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Figure 8.3: Sensitivity to the coupling (VNe)2 = 1 − (VNμ)2 as function of mWR and mNR

at the LHC with 14 TeV and L = 30 fb−1 using both opposite and same sign
LFV lepton events (left, from [19]). The solid contours indicate a 5σ discovery.
The shaded red areas are excluded by indirect (vertical bar) and direct LHC
searches. Sensitivity to the potentially non-unitary couplings |VNe| and |VNμ| with
(mWR ,mNR) = (2.5,0.5) TeV at the LHC with 14 TeV and L = 30 fb−1 (right,
from [19]). The shaded areas would be excluded at 90% CL using opposite sign
(OS) or both sign (OS+SS) signatures whereas the blue contours give the 1σ and
5σ uncertainty contours in measuring the couplings in four hypothetical scenarios.

resonant production of heavy right-handed neutrinos, the most optimistic scenario would be
that all three neutrinos are accessible with mass differences large enough so that they can be
individually reconstructed and their coupling strengths may be measured. This would provide
detailed information on the flavour structure of the model, directly complementary to light
neutrino oscillations, which is not accessible through the observation of rare LFV processes.
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9 TFH Mixing Patterns, Large θ13 and Δ(96)
Flavor Symmetry

G.-J. Ding

Abstract We perform a comprehensive analysis of the Toorop-Feruglio-Hagedorn (TFH)
mixing pattern within the family symmetry Δ(96). The possible realizations of the TFH mixing
in Δ(96) are analyzed in the minimalist framework. The dynamical model which naturally
produces the TFH mixing pattern at leading order is constructed based on flavor symmetry
Δ(96)× Z3 × Z3, and the next to leading order terms introduce corrections of order λ2

c
to the

three mixing angles. The allowed mixing patterns are studied under the condition that the Klein
four subgroups and the cyclic ZN subgroups with N ≥ 3 are preserved in the neutrino and the
charged lepton sector respectively. We suggest that the deformed tri-bimaximal mixing is a
good leading order approximation to understanding a largish reactor angle.

9.1 Introduction

Recently the T2K [1] and MINOS [2] collaborations reported the evidence for a relatively
large θ13 at the level of 2.5σ and 1.7σ respectively, this has been confirmed by the Daya-
Bay [3] and RENO [4] experiments at 5.2 σ and 4.9 σ confidence level respectively. The
global fitting including all the current neutrino oscillation data further support that θ13 is
somewhat large, Valle and Fogli’s groups find the 3 σ ranges of θ13 are 0.015 (0.016)≤
sin2 θ13 ≤ 0.036(0.037) [5] and 0.0149(0.015) ≤ sin2 θ13 ≤ 0.0344(0.0347) [6]
respectively. The the important question is whether and how can understanding this relative
large θ13 from symmetry. By analyzing the symmetry breaking of the finite modular group
N, Feruglio et al. suggested that the attractive mixing texture with sin2 θ13 = (2−

p
3)/6,

sin2 θ12 = (8 − 2
p
3)/13, sin2 θ23 = (5 + 2

p
3)/13, δCP = π can be generated if we

choose Δ(96) as the flavor symmetry and further break it into the Klein four (K4) and Z3
subgroups in the neutrino and charged lepton sectors respectively [7, 8]. In a particular phase
convention, the corresponding Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix is given
by

UTFH =









1
6 (3+

p
3) 1p

3
1
6 (−3+

p
3)

1
6 (−3+

p
3) 1p

3
1
6 (3+

p
3)

− 1p
3

1p
3

− 1p
3









, (9.1)

This mixing pattern will be denoted as THF henceforth, obviously it is an excellent approximation
to the current neutrino mixing data, especially a large θ13. In this work, we shall investigate
whether we can and how to consistently derive the TFH textures with the Δ(96) family
symmetry. This proceeding is based on the work [9]
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9.2 Pathway to TFH mixing within Δ(96)

The Δ(96) is a non-abelian finite subgroup of SU(3) of order 96, it is isomorphic to (Z4 ×
Z4) o S3, and it can be conveniently defined by four generators , b, c and d obeying the
relations:

3 = b2 = (b)2 = c4 = d4 = 1, cd = dc

c−1 = c−1d−1, d−1 = c, bcb−1 = d−1, bdb−1 = c−1

Note that the generator d is not independent. The structure of Δ(96) group is rather complex,
it has 10 irreducible representations: two singlets 1 and 1′, one doublet 2, six triplets 31, 3′

1
,

31, 3
′
1
, 32 and 3′

2
, and one sextet 6. The basic properties of Δ(96) such as the conjugate

classes, Kronecker product and Clebsch-Gordan coefficients have been presented in detail in
Ref. [9].

Now we investigate how to produce the TFH mixing from Δ(96) flavor symmetry. To simplify
the problem, we work in the so-called minimalist framework [10], where the charged lepton
masses are generated by the operator of the following form

Oℓ = Ecℓhdϕℓ , (9.2)

where Ec is the right-handed charged lepton field, ℓ is the lepton doublet field, hd is the
down-type Higgs doublet, and ϕℓ is the flavon field which breaks Δ(96) in the charged lepton
sector at LO. Neutrino masses are generated by the Weinberg operator

Oν = ℓhℓhϕν , (9.3)

where h is the up-type Higgs doublet, and ϕν is the flavon field in the neutrino sector. We
assign the fields Ec, ℓ, ϕℓ and ϕν to various representations of Δ(96), then write down all
the symmetry allowed forms of the operators Oℓ and Oν. We find that there are numerous
ways to produce TFH mixing within Δ(96). The possible assignments leading to TFH1 mixing
are listed in Table 9.1, it is remarkable that the lepton doublet ℓ can not be assigned to the
triplet 32 or 3′

2
. To generate TFH mixing, the vacuum expectation value (VEV) of ϕℓ should be

aligned as follows:

〈ϕℓ〉 =
¨

(0,0, ), ϕℓ ∼ 31,3′1,31,3
′
1
,32,3′2

(0,0, 3,0,0, 6), ϕℓ ∼ 6 .
(9.4)

It breaks the flavor symmetry Δ(96) into the Z3 subgroup generated by 2cd. The vacuum
configuration of ϕν is

〈ϕν〉 =
¨

(1,1,1), ϕν ∼ 3′1,3
′
1

(1, 2, (1 + 2)/2), ϕν ∼ 3′2
(9.5)

Δ(96) is broken into the K4 subgroup generated by the elements 2bd and d2. This mismatch
of the symmetry breaking induced by the VEV of ϕℓ and ϕν is exactly the origin of the TFH
mixing. In the realizations listed in Table 9.1, the three charged lepton masses are given in
terms of three independent parameters. However, in order to match the observed masses me,
mμ and mτ, we need to tune the parameters such that some sort of cancellation between them
happens. Further fine tuning is required if subleading corrections are included. To improve
upon this situation, we should further break the remnant Z3 symmetry in the charged lepton
sector, a explicit model is presented in the following section.
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ℓ Ec ϕℓ ϕν

31

τc ∼ 1, (μc, ec) ∼ 2 31, 3
′
1

3′
1

, 3′
2

τc ∼ 1′, (μc, ec) ∼ 2 31, 3
′
1

(μc, ec, τc) ∼ 31 31, 3′
1

, 3′
2

(μc, ec, τc) ∼ 3′
1

31, 3′
1

, 32
(ec, μc, τc) ∼ 31 1, 6
(ec, μc, τc) ∼ 3

′
1

1′, 6
(μc, ec, τc) ∼ 32 3′

1
, 6

(μc, ec, τc) ∼ 3′
2

31, 6

3′
1

τc ∼ 1, (μc, ec) ∼ 2 31, 3
′
1

3′
1

, 3′
2

τc ∼ 1′, (μc, ec) ∼ 2 31, 3
′
1

(μc, ec, τc) ∼ 31 31, 3′
1

, 32
(μc, ec, τc) ∼ 3′

1
31, 3′

1
, 3′

2
(ec, μc, τc) ∼ 31 1′, 6
(ec, μc, τc) ∼ 3

′
1

1, 6
(μc, ec, τc) ∼ 32 31, 6
(μc, ec, τc) ∼ 3′

2
3′
1

, 6

Table 9.1: Possible assignments of the fields Ec, ℓ, ϕℓ and ϕν for the TFH mixing, where
ℓ = (ℓ1, ℓ2, ℓ3) is the lepton doublet field. The assignments by performing complex
conjugation to all the involved fields are also admissible.

9.3 Model for TFH Mixing

Fields ℓ ec μc τc νc h,d χ ϕ η ξ ρ φ ψ

Δ(96) 31 1 1′ 1 31 1 31 31 2 3′
1

2 3
′
1

3′
2

Z3 0 2 2 2 0 0 1 1 0 0 0 0 0
Z3 0 1 2 0 0 0 0 0 1 1 0 0 0

Table 9.2: The transformation properties of the matter fields, the electroweak Higgs doublets,
the flavon fields and the driving fields under the flavor symmetry Δ(96)× Z3 × Z3.

We formulate our model in the framework of type I see-saw mechanism, and supersymmetry
(SUSY) is introduced to simplify the discussion of the vacuum alignment. In our model, the full
flavor symmetry is Δ(96)× Z3 × Z3. The fields in the model and their classifications under
the flavor symmetry are summarized in Table 9.2. We use the now-standard supersymmetric
driving field method to arrange the vacuum alignment, as is shown in Ref. [9], the following
vacuum configuration can be achieved naturally

〈χ〉 = (0,0, χ), 〈ϕ〉 = (0,0, ϕ), 〈η〉 = (η,0), 〈ξ〉 = (ξ,0,0)
〈ρ〉 = (1, ω)ρ, 〈φ〉 = (1,1,1)φ, 〈ψ〉 = (1, 2, (1 + 2)/2) (9.6)
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This LO vacuum alignment is stable under small perturbations, as usual we assume all the
VEVs scaled by the cutoff Λ are of order λ2

c
, where λc ' 0.23 is the well-known Cabibbo angle.

In this model, the charged lepton masses are described by the following Yukawa superpotential
at LO

ℓ =
yτ

Λ
τc(ℓϕ)hd +

yμ1

Λ2
μc(ℓ(χξ)3′

1
)′hd +

yμ2

Λ2
μc(ℓ(ηϕ)3′

1
)′hd +

ye1

Λ3
ec(ℓϕ)(ηη)hd

+
ye2

Λ3
ec(ℓ((ηη)2ϕ)31)hd +

ye3

Λ3
ec(ℓ(χ(ηξ)31)31)hd +

ye4

Λ3
ec(ℓ(χ(ηξ)3′

1
)31)hd

+
ye5

Λ3
ec(ℓ(χ(ξξ)3′2)31)hd , (9.7)

It is remarkable that the electron, muon and tau mass terms are suppressed by 1/Λ, 1/Λ2 and
1/Λ3 respectively. At LO, only the tau mass is generated, the flavor symmetry Δ(96) is broken
into Z3 by the VEV of ϕ, the remaining terms further break this Z3 symmetry completely. With
the vacuum alignment in Eq.(9.6), ℓ leads to a diagonal charged lepton mass matrix:

mℓ =









ω2ye2
2
η
ϕ

Λ3 + (ye4 − ye3)
ηξχ
Λ3 + ye5

2
ξ
χ

Λ3 0 0
0 yμ1

ξχ
Λ2 + yμ2

ηϕ
Λ2 0

0 0 yτ
ϕ
Λ









d ,

(9.8)
Obviously the mass hierarchies of the charged leptons are naturally recovered. The superpo-
tential for the neutrino sector can be written as

ν = y(νcℓ)h + ν1((ν
cνc)3′

1
φ) + ν2((ν

cνc)3′2ψ) + . . . (9.9)

We can straightforwardly read the Dirac and Majorana neutrino mass matrices as following,

mD = y1

mM =







−4ν1φ + 2ν22 2ν1φ + ν2(1 + 2) 2ν1φ + 2ν21
2ν1φ + ν2(1 + 2) −4ν1φ + 2ν21 2ν1φ + 2ν22
2ν1φ + 2ν21 2ν1φ + 2ν22 −4ν1φ + ν2(1 + 2)







The effective light neutrino mass matrix is given by the see-saw formula

mν = −mT
D
m−1

M
mD = UTFHdig(m1,m2,m3)UTTFH (9.10)

where m1,2,3 are the light neutrino masses

m1 =
y22



6ν1φ +
p
3ν2(1 − 2)

, m2 = −
y22



3ν2(1 + 2)
, m3 =

y22


6ν1φ −
p
3ν2(1 − 2)

Obviously the leptonic mixing matrix is exactly the desired TFH matrix. There are no correlations
among the above three light neutrino masses, the neutrino mass spectrum can be both normal
and inverted order hierarchy. After including the subleading order terms allowed by the
symmetry, the above LO predictions for lepton masses and flavor mixing are corrected by
both the shifted vacuum and the higher dimensional operators in the Yukawa superpotentials.
Detailed and lengthy analysis in Ref. [9] showed that all the three leptonic mixing angle
receive corrections of order λ2

c
, the agreement between the theoretical predictions and the

experimental data remains.
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9.4 Beyond TFH mixing within Δ(96)

In discrete flavor symmetry model building, the flavor symmetry is spontaneously broken by the
flavons into Gℓ and Gν subgroups in the charged lepton and neutrino sectors. The mismatch
between Gℓ and Gν, which results in the mismatch between the neutrino and charged lepton
mass matrices, could leads to some interesting mass-independent textures. There is a direct
group-theoretical connection between lepton mixing and the horizontal symmetry [11]. Given
the whole flavor symmetry and the surviving subgroups Gℓ and Gν, one can carry out a purely
group-theoretical analysis to obtain all the possible mixings, without the presence of flavon
fields nor the help of the Lagrangian. If neutrinos are Majorana particles, it could be shown
that the remnant symmetry of the left-handed neutrinos forms a K4 group for the TFH mixing.
Consequently we choose Gν to be the K4 subgroups of Δ(96), and Gℓ is taken to be the cyclic
ZN subgroups of Δ(96) with N ≥ 3, since the resulting three charged lepton masses would
be completely or partially degenerate if Gℓ is some non-abelian subgroups. Δ(96) has seven
K4 subgroups, sixteen Z3 subgroups, twelve Z4 subgroups and six Z8 subgroups. All these
subgroups are listed in Ref. [9] in terms of the generators , b, c and d. By considering the
large number of combinatorial choices of Gν and Gℓ, all the possible lepton mixing matrices
and the group structures generated by Gν and Gℓ are listed in Table 5 and Table 6 of Ref. [9].
These tables are too lengthy to be included in this proceeding, please refer to Ref. [9] for detail.
It is clear that seven mixing patterns including the tri-bimaximal, bimaximal and TFH mixings
can be reproduced within Δ(96). If we require that the elements of Gℓ and Gν generate the full
group Δ(96), only the TFH and the bimaximal mixing patterns are admissible. These results
are consistent with those obtained in Ref. [8].

It is worth noting that we are able to derive the tri-bimaximal mixing matrix, if Δ(96) is broken
into K4 and Z3 in the neutrino and charged lepton sectors respectively, one can refer to Ref.
[9] for concrete choices of Gℓ and Gν. However, the group generated subgroup is S4 instead
of Δ(96). This result is consistent with the claim that the minimal flavor symmetry capable
of yielding the tri-bimaximal mixing without fine tuning is S4 from group theory point of view
[12]. By exchanging the rows and columns of the tri-bimaximal mixing matrix, we find another
interesting mixing pattern,

||UPMNS|| =











1p
2

1p
3

1p
6

0 1p
3

Æ

2
3

1p
2

1p
3

1p
6











. (9.11)

This texture will be called deformed tri-bimaximal (DTB) mixing, and the resulting mixing angles
are

sin2 θ13 =
1

6
, sin2 θ12 =

2

5
, sin2 θ23 =

4

5
. (9.12)

In order to be compatible with experimental data, all the three mixing angles should undergo
large corrections of order 0.1 ∼ 0.2, which is roughly the size of the Cabibbo angle. This
mixing pattern is an interesting alternative for explaining largish θ13 and current atmospheric
neutrino mixing angle. Obviously the appropriate framework to derive DTB mixing is the S4
horizontal symmetry.
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9.5 Conclusion

The TFH mixing pattern is a good approximation to the current neutrino flavor mixing data,
especially it can help us to understand largish θ13. We show that the TFH texture can be
naturally derived with the flavor symmetry Δ(96). Within the so-called minimalist framework,
we study the possible ways to produce TFH mixing in Δ(96), the assignments of the matter
fields under Δ(96) and the associated flavons are presented. However, in these assignments,
we need to tune the involved parameters to account for the tiny masses of electron and muon.
This defect can be overcame by further breaking the remnant Z3 symmetry of the charged
lepton sector, and a consistent model realization of this scenario is presented. Furthermore we
investigate the possible mixing patterns if the family symmetry Δ(96) is broken into K4 in the
neutrino sector and the cyclic group ZN (N ≥ 3) in the charged lepton sector. We find that the
TFH mixing can be accommodated if certain Z3 subgroups are preserved in the charged lepton
sector. We suggest the so-called DTB mixing is an another good LO texture to understand
current leptonic flavor mixing. Finally we note that Δ(96) has doublet representation which
can be utilized to describe the quark sector, moreover we could combine the grand unification
theory with Δ(96) flavor symmetry [13].
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10 ΔACP in D-Decays and “Old Physics”
T. Feldmann

Abstract We investigate to what extent the recently measured value for a non-vanishing
direct CP asymmetry in D0 → K+K− and D0 → π+π− decays can be accommodated in the
Standard Model (SM).

10.1 Introduction

CP-violating asymmetries in D0 decays have been recently measured by different experiments,
including LHCb [1, 2], CDF [3] and the B-factories BaBar [4, 5] and Belle [6, 7], with different
sensitivities to direct and indirect contributions. The present situation (as of march 2012) has
been summarized by HFAG, see Fig. 10.1, and corresponds to a direct CP asymmetry in the
difference of two-body decays into charged kaons or pions of

ΔAdirCP = A
dir
CP(D

0 → K+K−)− AdirCP(D
0 → π+π−) = (−0.656± 0.154)% (10.1)

The size of the experimental average (several permille to almost a percent), is larger than the
naive SM expectation (for details, see below), where in the limit of exact U-spin symmetry
between s and d-quarks, one has

AdirCP(D
0 → K+K−) = −AdirCP(D

0 → π+π−) , (10.2)

and both decays contribute equally to ΔAdirCP with an estimated size of

ΔAdirCP = 2A
2 λ4 η · r sinΔϕstrong ' 0.11% · r sinΔϕstrong , (10.3)

where r eϕ parameterizes the relevant hadronic amplitude ratio which is expected to be
smaller than 1 in magnitude if the naive-factorization approximation of long-distance QCD
effects holds.

In this write-up, we will report about our analysis in [9] which focuses on a SM interpretation
of ΔACP and tries to answer the following questions: What is the size of U-spin breaking? —
What is the magnitude to expect for amplitude ratios and strong-phase differences beyond the
factorization approximation? — Does a simple relation to non-factorizable effects in B-meson
decays exist? Related work can be found, for instance, in [10–18]. For possible NP signatures
from ΔACP, we refer the reader to the contribution of J. Kamenik in chapter 18.
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Figure 10.1: HFAG average for direct and indirect CP asymmetries in D-meson decays [8].

10.2 Standard Model Analysis

If we include first-order U-spin breaking effects, the amplitudes for the various D0 decays to
charged pions or kaons can be parameterized as follows,

A[D0 → K−π+] = 2V∗
cs
Vd BU=1

h

1− r′1 e
 ϕ′1
i

,

A[D0 → π+π−] = BU=1
�

(λd + λs)
�

r e ϕ + r1 e ϕ1
�

+ (λd − λs)
�

1+ r0 e ϕ0
��

,

A[D0 → K+K−] = BU=1
�

(λd + λs)
�

r e ϕ − r1 e ϕ1
�

− (λd − λs)
�

1− r0 e ϕ0
��

,

A[D0 → K+π−] = 2V∗
cd
Vs BU=1

h

1+ r′1 e
 ϕ′1
i

, (10.4)

where λq = V∗
cq
Vcq in the standard notation for CKM factors. The two complex amplitude

ratios r0, r′1 (with their corresponding strong phases) describe the U-spin breaking in Cabbibo-
favoured terms (∼ 1, λ, λ2). The two complex amplitude ratios r, r1 parameterize U-spin
symmetric and U-spin breaking effects in the Cabbibo-suppressed terms (∼ λ5). The supposed-
to-be leading amplitude for ΔU = 1 transitions, BU=1, has been factored out.

From this parameterization, the amount of U-spin breaking can be quantified from the exper-
imental measurements of the 4 individual branching ratios together with the experimentally
fitted strong-phase difference in D0 → K±π∓ decays. A poor man’s χ2 analysis as explained
in [9] then leads to, see also Fig. 10.2,

r0 ' 0.52 , cosϕ0 ' −0.64 , r′1 ' 0.19 , cosϕ′1 ¦ 0.18 .

As concerns the size of sub-leading amplitude ratios, the experimentally measured value of
ΔAdirCP alone is not sufficient to determine the individual amplitude parameters. However, we
find that a certain average of amplitude ratios can be constrained,

r̄ ≡
Æ

r2/2+ r21 /2 ¦ 2(3) (with 2σ (1σ)) , (10.5)

which implies that at least one of the relevant amplitude ratios has to be larger than naively
expected. As an immediate consequence of the sizable amount of U-spin breaking, we also
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Figure 10.2: χ2 distribution for the amplitude parameters r0, cosϕ0,r′1, cosϕ′1 (top left to
bottom right).

find that the relation (10.2) between individual CP asymmetries can be violated by O(1) effects.
For instance, assuming universal strong phases between U = 0 and U = 1 amplitudes, one
obtains AdirCP /ΔA

dir
CP ' −50%.

The theoretical interpretation of the BRs and CP asymmetries in D0 → P+P− decays in the SM
shows that the factorization approximation in non-leptonic D-meson decays is badly violated,
inducing large amplitude ratios and strong phases. This implies that none of the expansion
parameters Λ/mc, αs(mc)/π, 1/NC, etc. is sufficiently small. It also allows for significant
contributions from both, ΔU = 0 and ΔU = 1 operators to ΔACP. A particular scenario, where
the hadronic enhancement is associated to long-distance penguin contractions, has been
discussed in [12]. The parametrization in that paper amounts to setting

r0

r′1
=
ε |2s1|
ε |t1|

� 1 , r1 =
ε |p1|
|t0|

∼ 1 , r =
2p0

t0
� 1 ,

and the power-counting assumes small U-spin breaking of order ε � 1, while penguin
amplitudes s1 and p1 are enhanced with respect to tree amplitudes t0,1.

To validate/falsify this or alternative assumptions, including NP explanation, further experimental
tests of other charm decay modes have to be performed. In particular, since the net CP
asymmetries in non-leptonic decays arise as the consequence of a rather involved interference
of several hadronic effects, one could expect that – within the SM – there will also be modes
with small CP violation due to destructive interference, for instance for decays with vector
mesons instead of pseudoscalars in the final state. On the other hand, if the observed ΔACP
arises dominantly from a NP source with definite flavour structure, one would expect correlated
deviations of several independent CP asymmetries from the SM expectation, or significant
violation of certain SM sum rules [20] between related decay modes. In extreme cases,
the presence of new sources of CP violation in the charm sector can even lead to sizeable
enhancement of electric dipole moments [21], or CP violation in tree decays. Below, we will
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briefly discuss an example for a NP model with constrained flavour sector. More on the NP
interpretation of ΔACP can be found in J. Kamenik’s contribution in chapter 18.

10.3 Sequential 4th Generation – A new physics example with
constrained flavour coefficients

Extensions of the SM by a fourth generation of quarks (and also leptons) have recently received
a lot of attention. From the flavour-symmetry perspective, they represent examples for NP with
“next-to-minimal flavour violation” (nMFV) [22], where the additional flavour mixing through the
4th generation (4G) is assigned to an additional complex “spurion field” which transforms as a
fundamental triplet under SU(3) rotations of the left-handed quark doublets, and the mixing
angles fulfill consistency relations in forms of inequalities,1

θ4θj4 ® θj , θj θj4 ® θ4 . (10.6)

In this sense, the 4G flavour sector represents a whole class of nMFV models, where the
experimentally explored flavour phenomenology already severely constrains the NP flavour
parameters. In particular, the constraints from B-meson and kaon observables imply that
for large new CP phases one has to require small 4G mixing angles, and vice versa — two
examples are shown in Fig. 10.3. As a consequence, the presence of a fourth quark generation

Figure 10.3: Two examples for implications of phenomenological flavour constraints on 4G
mixing parameters. Left: Allowed values for the new CP phases δ14 and δ24 for
small mixing angles θ4. Right: The same for large mixing angles, which requires
tuned values for CP phases, satisfying δ14 ' δ24. Taken from [23].

alone cannot lead to a large parametric enhancement of ΔACP (which receives additional
contributions proportional to sin(δ14 − δ24) and sinθ4). Therefore, in principle, the presence
of new 4G penguin contributions to ΔACP can constructively or destructively interfere with the
SM effects, leading to moderate enhancement or reduction.

1In the SM with 3 generations, one has θ12θ23 ∼ θ13, θ12θ13 � θ23, θ13θ23 � θ12.
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10.4 Relation to Non-Leptonic B-Decays?

In contrast to D-meson decays, QCD factorization works reasonably well in non-leptonic
B-meson thanks to the fact that the b-quark mass is sufficiently large. Still, the non-zero
sensitivity to non-factorizable effects in penguin-dominated decays, like in certain B → πK
modes, can be taken as an indicator for enhanced non-perturbative effects in non-leptonic
D-decays.

For a quantitative comparison, we consider the academic (i.e. not-expected-to-be-realistic)
example of non-leptonic b→ s transitions with additional up- and charm-quarks in the final
state which we will relate by “W-spin” symmetry (c↔ ) and its breaking in complete analogy
to the U-spin analysis of non-leptonic D-meson decays (10.4). We thus parameterize

A[B̄0 → D+K−] = 2VcbV∗s BW=1
h

1− r′1 e
 ϕ′1
i

,

A[B̄0 → K−π+] = BW=1
�

(λ + λc)
�

r e ϕ + r1 e ϕ1
�

+ (λ − λc)
�

1+ r0 e ϕ0
��

,

A[B̄0 → D−
s
D+] = BW=1

�

(λ + λc)
�

r e ϕ − r1 e ϕ1
�

− (λ − λc)
�

1− r0 e ϕ0
��

,

A[B̄0 → D−
s
π+] = 2VbV∗cs BW=1

h

1+ r′1 e
 ϕ′1
i

. (10.7)

Perhaps surprisingly, the fit to the available experimental data yields qualitatively similar results
as for the U-spin analysis of D → P+P− which may be due to the fact that mc � mb is as
good/bad an approximation for B-decays as ms �mc for D-decays. The essential features
are compared in Table 10.1. In particular, the fit result for the amplitude ratios in the W-spin
analysis could be taken as a “guesstimate” for an upper bound on the amplitude ratios in the
U-spin analysis.

Table 10.1: Comparison between non-leptonic B- and D-decays.
W-spin analysis of B→ P+P− U-spin analysis of D→ P+P−

solutions with r′1 < 1 r′1 ' 0.19

1 ®
q

r2+r20+r
2
1

2 ® 6 2− 3 ®
q

r2+r21
2

ACP(B̄0 → D−
s
D+) < 12% ACP(D0 → π+π−) 6= −ACP(D0 → K+K−)

10.5 (Inconclusive) Conclusions

At the moment, the situation concerning the theoretical understanding of ΔACP is still rather
unclear, and evidently our conclusions will be somewhat vague with some question marks left
open for future studies:

• If the central value of ΔACP is confirmed with higher experimental precision, can this be
used to rule out the SM? — The answer is: “Probably NO!”, because the factorization
approximation for the hadronic dynamics is clearly insufficient, and therefore a solid SM
prediction for both, the central value and the hadronic uncertainties is theoretically out of
reach.
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• Can one understand the presently measured value of ΔACP within the SM? — The answer
is: “Maybe.” As we have seen, an enhancement of non-factorizable effects compared
to non-leptonic B-decays like B → πK appears quite natural, and also the similarities
between the pattern of U-spin breaking in D→ PP and W-spin breaking in B→ PP does
not rule out amplitude ratios as large as being needed for the SM explanation of ΔACP.

• Can we still hope to see NP emerging in D-decays? — The answer is: “Let’s see. . . ”.
We have shown an example where the NP effects in the charm sector are already
constrained from flavour observables in B- and K-decays, such that the SM and the
NP effects interfere with similar magnitudes which makes it notoriously difficult to draw
definite conclusions. On the other hand, a global analysis of many independent D-decay
modes can help to identify the short-distance sources responsible for the observed CP
violation with less ambiguities.

In any case, a continuation of the charm-physics program with more experimental data on
various decay modes will shed more light on these issues in the future, see for instance the
recent discussions in [24–26].
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11 Correlations in Minimal U(2)3 models and
an SO(10) SUSY GUT model facing new
data

J. Girrbach

Abstract Models with an approximate U(2)3 flavour symmetry represent simple non-MFV
extensions of the SM. We compare correlations of ΔF = 2 observables in CMFV and in
a minimal version of U(2)3 models, MU(2)3. Due to the different treatment of the third
generation MU(2)3 models avoid the ΔMs,d − |ϵK | correlation of CMFV which precludes to
solve the SψKS − |ϵK | tension present in the flavour data. While the flavour structure in K
system is the same for CMFV and MU(2)3 models, CP violation in Bd,s system can deviate in
MU(2)3 models from CMFV. We point out a triple correlation between Sψϕ, SψKS and |Vb|
that can provide a distinction between different MU(2)3 models.

GUTs open the possibility to transfer the neutrino mixing matrix UPMNS to the quark sector
which leads to correlations between leptonic and hadronic observables. This is accomplished in
a controlled way in an SO(10) SUSY GUT model proposed by Chang, Masiero and Murayama
(CMM model) whose flavour structure differ significantly from the CMSSM. We present a
summary of a global analysis of several flavour processes containing Bs − Bs mixing, b→ sγ
and τ→ μγ. Furthermore we comment on the implications on the model due to the latest data
of Sψϕ, θ13 and the Higgs mass.

11.1 Current situation of the flavour data

With the start of the LHCb experiment a new era in precision measurements in flavour physics
started. The present 95% C.L. upper bound B(Bs → μ+μ−) ≤ 4.5 · 10−9 [1] is already close
to the SM prediction B(Bs → μ+μ−)SM = (3.1 ± 0.2) · 10−9 [2, 3]1. New data on mixing
induced CP violation in Bs − Bs mixing measured by Sψϕ = 0.002± 0.0087 [7] is consistent
with the SM prediction of SSM

ψϕ
= 0.0035 ± 0.002 and excludes ranges from CDF and DØ

with large Sψϕ. Thus there is not much room left for new physics (NP).

However a slight tension in the flavour data concerns |ϵK |, B+ → τ+ν and SψKS which can be
related with the so-called |Vb|-problem. Both |ϵK | ∝ sin2β|Vcb|4 and SψKS can be used to
determine sin2β. In Fig. 11.1 (left) one can see that the sin2β derived from the experimental
value of SψKS is much smaller that the one derived from |ϵK |. This issue was discussed in

1In [4] the “non-radiative” branching ratio that corresponds to the branching ratio fully inclusive of bremsstrahlung
radiation was calculated to B(Bs → μ+μ−) = (3.23± 0.27) · 10−9. When the corrections from Δs, pointed
out in [5, 6] are taken into account the experimental upper bound is reduced to 4.1 · 10−9.
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Figure 11.1: Left: sin2β determined from SψKS and |ϵK |. Right: ΔMs (blue) and 20 · ΔMd

(red) as functions of |ϵK | in models with CMFV for |Vb| = 0.0034 chosen by
these models. The short green and magenta lines represent the data, while the
large gray regions corresponds to the SM predictions [2].

[8, 9]. The “true” value of β depends on the value of |Vb| and γ. However there is a tension
between the exclusive and inclusive determinations of |Vb| [10]:

|V incl.
b
| = (4.27± 0.38) · 10−3 , |Vexcl.

b
| = (3.38± 0.36) · 10−3 . (11.1)

Now one can distinguish between these two benchmark scenarios: If one uses the exclusive
value of |Vb| to derive βtrue and then calculates SSM

ψKS
= sin2βtrue one finds agreement

with the data whereas |ϵK | stays below the data. Using the inclusive |Vb| as input for βtrue,
SψKS is above the measurements while |ϵK | is in agreement with the data. However in such
considerations one has to keep in mind the error on |ϵK | coming dominantly from the error of
|Vcb| and the error of the QCD factor η1 [11].

The branching ratio B(B+ → τ+ν) can also be used to measure |Vb|. The SM prediction
B(B+ → τ+ν)SM = (0.80 ± 0.12) · 10−4 as calculated in [12] where one eliminates the
uncertainties of FB+ and |Vb| by using ΔMd, ΔMd/ΔMs and SψKS is about a factor 2 below
the experimental world avarage based on results by BaBar [13] and Belle [14]: B(B+ →
τ+ν)exp = (1.67 ± 0.30) · 10−4 [15]. Consequently this favors a large |Vb| and leads
to a SψKS − B(B+ → τ+ν) tension discussed for example in [16]. Recently new results
have been provided by BaBar B(B+ → τ+ν)exp = (1.79 ± 0.48) · 10−4 [17] and by Belle
B(B+ → τ+ν)exp = (0.72±0.270.25 ±

0.46
0.51) · 10

−4 [18] where the latter value went down and is
consistent with the SM prediction.

It is now interesting to see if a certain new physics model can solve these problems and if yes,
which |Vb| scenario is chosen. In the following we will confront constraint minimal flavour
violation (CMFV) and models with a global U(2)3 symmetry to this tension. At the end we
discuss the CMM model as an alternative to MFV.

11.2 Correlations of ΔF = 2 observables: CMFV vs. MU(2)3

A very simple extension of the SM is CMFV, where the CKM matrix is the only source of
flavour and CP violation and only SM operators are relevant below the electroweak scale.
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Phenomenological consequences of CMFV concerning ΔF = 2 observables are the following:
First, since there are no new CP violating phases the mixing induced CP asymmetries stay as
in the SM: SψKS = sin2β, Sψϕ = sin2|βs|. Second, ΔMs,d and |ϵK | can only be enhanced
simultaneously relative to the SM [19, 20]. Third, CMFV chooses exclusive |Vb| because SψKS
stays as in the SM and |ϵK | can be enhanced. But if one wants to solve the |ϵK | −SψKS tension
one gets a problem with ΔMs,d. This ΔMs,d − |ϵK | tension is shown in Fig. 11.1 (right).

Models with a global U(2)3 flavour symmetry represent simple non-MFV extensions of the
SM and can help avoiding this ΔMs,d − |ϵK | tension. The U(2)3 symmetry was first studied
in [22, 23] and then in [24–30] where a detailed description of the model can be found (see
also talk by F. Sala during this workshop). A nice feature of U(2)3 is that one can easily
embed SUSY with heavy 1st/2nd sfermion generation and a light 3rd generation which is still
consistent with current collider bounds on sparticle masses. In a minimal version of this model,
called MU(2)3, the symmetry is broken minimally by three spurions and only SM operators
are relevant. General consequences of MU(2)3 concerning ΔF = 2 observables are the
following:

• The flavour structure in the K-meson system is governed by MFV (no new phase φK ).

• Corrections in Bd,s system are proportional to the SM CKM structure and universal.

• There exists one new universal phase that only appears in Bd,s system: φnew.

These properties lead to the following equations describing ΔF = 2 observables where only
three new parameters appear

SψKS = sin(2β+ 2φnew) , Sψϕ = sin(2|βs| − 2φnew) , (11.2)

ΔMs,d = ΔMSM
s,d
rB , ϵK = rKϵ

SM,tt
K + ϵSM,cc+ct

K . (11.3)
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The parameters rK,B are real and positive definite and further rK ≥ 1. In contrast to CMFV rB
and rK are in principle unrelated. However in concrete realizations of the model, e.g. SUSY
they both depend on SUSY masses. In [21] we point out a triple SψKS −Sψϕ− |Vb| correlation
which will provide a crucial test of the MU(2)3 scenario once the three observables will be
precisely known. This is shown in Fig. 11.2 (left) for fixed γ = 68◦2. Negative Sψϕ is only
possible for small |Vb| in the ballpark of the exclusive value. For inclusive |Vb|, Sψϕ is always
larger than the SM prediction. MU(2)3 models that are consistent with this correlation should
also describe the data for |ϵK | and ΔMd,s. For example for Sψϕ < 0 the particular MU(2)3

model must provide a 25% enhancement of |ϵK | (see Fig. 11.2 right plot). Moreover, if this
MU(2)3 flavour symmetry turns out to be true one can determine |Vb| by means of precise
measurements of SψKS and Sψϕ with small hadronic uncertainties. The dependence of |ϵK |
(only central values) on |Vb| for different values of rK is shown in the right plot of Fig. 11.2.
Fixing SψKS = 0.679 to its central experimental value we can use the triple correlation to get
the connection between |ϵK | and Sψϕ (see Fig. 4 in [21]). Thus we see that even in MU(2)3

models correlations between B- and K-physics are possible.

11.3 SO(10) SUSY GUT: CMM model

In an SO(10) SUSY GUT model proposed by Chang, Masiero and Murayama [31, 32] the
neutrino mixing matrix UPMNS is transfered to the right-handed down quark and charged lepton
sector. In [33] we have performed a global analysis in the CMM model including an extensive
renormalization group (RG) analysis to connect Planck-scale and low-energy parameters. A
short summary can be found in [2, 16, 34]. In view of the new knowledge about the Higgs mass
and the latest measurements of the reactor neutrino mixing angle θ13 an updated analysis of
this model would be desirable.

The basic ingredient of the flavour structure is that not only the neutrinos are rotated with
UPMNS but the whole 5-plets of SU(5) 5 = (dcR, ℓL, −νℓ)

T . Including SUSY the atmospheric
neutrino mixing angle θ23 ≈ 45◦ is responsible for large b̃R − s̃R- and τ̃L − μ̃L-mixing which
can then induce b→ s and τ→ μ transitions via SUSY loops. For a more detailed derivation
starting from an SO(10) superpotential see [33]. From the superpotential and the requirement
of perturbative couplings up to the Planck scale one can derive a range for tnβ: 2.7 ®
tnβ ® 10. Rotating from flavour to mass eigenstate basis the right-handed down squark
mass matrix at MZ reads

m2
D̃
= UDm2

d̃
U†
D
≈m2

d̃1







1 0 0
0 1− 1

2Δd̃ −12Δd̃e
ξ

0 −12Δd̃e
−ξ 1− 1

2Δd̃






, (11.4)

where the neutrino mixing enters through UD = U∗PMNS diag(1, eξ, 1) and Δd̃ ∈ [0, 1]
defines the relative mass splitting between the 1st/2nd and 3rd down-squark generation. It
is generated by RG effects of the top Yukawa coupling and can reach 0.4. Thus the CMM
model shares the feature of U(2)3 models of heavy 1st/2nd squark generations but a light
3rd generation. The 23-entry ∝ Δd̃ is responsible for b̃R − s̃R-mixing and a new CP violating

2Varying γ between 63◦ and 73◦ does not change the result significantly.
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Figure 11.3: Basic properties of the CMM model.

phase ξ enters that affects Bs − Bs-mixing. The “≈” sign in (11.4) gets a “=” if one uses
tribimaximal mixing in UPMNS. However, the latest data show that θ13 is non-zero [35–37].
Including θ13 6= 0 the 12- and 13-entry in (11.4) are no longer zero, but still much smaller than
the 23-entry. This gives small corrections to K − K- and Bd − Bd-mixing.

Flavour processes where we expect large CMM contributions are Bs − Bs mixing, b→ sγ and
τ → μγ since here the angle θ23 ≈ 45◦ enters. CMM effects in B(Bs → μ+μ−) are small
and compatible with the LHCb bound because at the electroweak scale the CMM model is a
special version of the MSSM with small tnβ. Due to the structure of (11.4) the contributions
to K − K mixing, Bd − Bd mixing and μ → eγ are absent. However there are two sources
of small corrections: a non-vanishing θ13 and corrections due to dimension-5-Yukawa terms
that are needed to fix Yd = Y>ℓ for the 1st/2nd generation. The latter point was worked out in
[38] where it was also shown that the |ϵK | − SψKS tension can be removed with the help of
higher-dimensional Yukawa couplings.

Results from our global analysis are the following: τ → μγ constrains the sfermion masses
of the first two generations to lie above 1 TeV while the third generation can be much lighter
(τ → μγ gives stronger bounds than b → sγ). Concerning Bs − Bs mixing the situation
changed after the LHCb data for Sψϕ. Due to the free phase ξ it is possible to get large CP
violation in the Bs system in the CMM model while at the same time ΔMs stays within its
experimental range. In view of the data from CDF and DØ on Sψϕ this property was very
welcomed in 2010. The new data on Sψϕ implies new constraints on the model parameters,
especially on ξ and on the ratio of gluino and squark masses mg̃/Mq̃ which must now be
smaller than before. This was exemplarily shown in [2].

Another observable that needs further investigation is the Higgs mass. In the CMM model
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the mass of the lightest neutral Higgs is very sensitive to tnβ3. In [33] we pointed out that
tnβ = 3 is excluded due to the LEP bound. For tnβ = 6 the Higgs mass can be up to
120 GeV in the parameter range consistent with flavour observables. Consequently one has to
increase tnβ further to accommodate a Higgs mass of 125 GeV.

11.4 Summary

In the first part we studied and compared correlations of ΔF = 2 observables in CMFV and
in a minimal version of models with an approximate global U(2)3 flavour symmetry. These
MU(2)3 models are very simple non-MFV extensions of the SM that avoid the ΔMs,d − ϵK
tension present in CMFV. We pointed out a triple correlation between Sψϕ, SψKS and |Vb|
that constitutes an important test for MU(2)3 models. In the last part an SO(10) SUSY GUT
model, the CMM model was under consideration where a summary can be found in Fig. 11.3.
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12 SU(3)-Flavons and Pati-Salam-GUTs
F. Hartmann, W. Kilian, K. Schnitter

Abstract We consider a multi step breaking of supersymmetric Pati-Salam GUT models. We
investigate how this can be achieved with different GUT-Higgs contents and derive ranges for
the associated energy scales. Starting from these models we enlarge the model by an SU(3)
flavour symmetry and demand that the SM Higgs boson should be a triplet under that symmetry.
This enables us to provide the possibility of “SM-matter-Higgs-unification”. Furthermore we
show how SM-like Yukawa couplings can be derived from the vacuum expectation values of
flavon fields that break the flavour symmetry.

12.1 Introduction

GUTs are often considered to unify all couplings at one scale. This leads to strongly constrained
models. A possible GUT gauge group is the Pati-Salam (PS) symmetry, which unifies only to a
semi simple group but can be further embedded into SO(10). We consider such a PS model
and allow for a intermediate left-right (LR) scale which corresponds to a right-handed neutrino
mass scale.
In order to reach “SM-matter-higgs-unification” in flavour models one has to consider the
implications of flavour triplet SM Higgs doublets. These lead to new invariant structures which
can be accommodated by certain flavon representations.

12.2 GUT

We consider a supersymmetric Pati-Salam GUT model which is broken down to the SM in
multiple steps [1]. All fields breaking the symmetry are allowed to have a different mass. The
lowest scale is accociated with the usual ew breaking.

SU(3)C ⊗ SU(2)L ⊗ U(1)Y
〈h〉
−→ SU(3)C ⊗ U(1)em (12.1)

The SM should be valid up to the left-right unification scale which may be at around 1013 GeV.

SU(3)C ⊗U(1)B−L ⊗ SU(2)L ⊗ SU(2)R ⊗Z2
〈HR

/d
〉

−−−→ SU(3)C ⊗ SU(2)L ⊗U(1)Y (12.2)

PS unification should happen roughly at the usual unification scale of 1016 GeV which then
may be valid up to the Planck scale where a complete gauge unification to e.g. SO(10) or
E6 can be realized. Because physics near the Planck scale is not understood jet, we do not
consider the breaking of the Planck scale symmetry.
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PS breaking Higgs

 = (15,1,1) to break SU(4)
�

45































78

E = (6,2,2) and TL = (1,3,1),TR = (1,1,3)

L-R breaking Higgs

HR

= (4,1,2) and HR

d
= (4,1,2) to break U(1)B−L × SU(2)R

�

16⊕ 16
HL

= (4,2,1) and HL

d
= (4,2,1) because of Z2

optional MSSM Higgs

h = (1,2,2): MSSM-higgs
�

10



















27

F = (6,1,1): possibly light triplets

matter

Ψ = (4,1,2) and Ψc = (4,2,1) 16

Table 12.1: Full field content and unification to SO(10) and E6

SU(4)⊗SU(2)L⊗SU(2)R⊗Z2
〈〉
−→ SU(3)C⊗U(1)B−L⊗SU(2)L⊗SU(2)R⊗Z2 (12.3)

We start with an higgs field content consistent with complete SO(10) representations, because
we want to be consistent with complete unification. The full field content is given in table 12.1.
For these fields we have constructed the full renormalisable higgs sector superpotential
and calculated the tree-level Higgs masses. For a large splitting of the LR and PS scales
(〈〉 � 〈HR〉) a new intermediate mass scale MF ∼mF+

〈HR〉2
〈〉 occurs. At this scale the colour

triplets from the field F are located. These light triplets can be useful for a unification with
intermediate PS symmetry as was shown in [2]. In addition we found that there is the possibility
of massless (“at the order of the MSSM scale”) Higgs doublets. These stem from the breaking
of the fields HL and are associated to the LR Goldstone bosons by the Z2 symmetry. Thus
they are similar to the MSSM higgs and make the field h optional. The unification conditions
are the following:

α−1
Y
(MLR) = α−1

R
(MLR) +

2
3 α

−1
B−L (MLR) (12.4)

α−14 (MGUT) = α−1
L
(MGUT) = α−1

R
(MGUT) (12.5)

α−14 (MPS) = α−13 (MPS) = α−1
B−L (MPS) (12.6)

These three unification conditions build a system of equations which constrain the possible
mass scales. They are not fixed completely, but depend on each other. Moreover we consider
the intermediate scale MF to be a free parameter. This scale is in principle fixed by the
potential, but it can be tuned over quite a large mass range by choosing the coefficients of the
superpotential.
In addition to the unification conditions shown above we have the additional constraint that the
mass scales have to be ordered MSUSY < MF < MLR < MPS < MGUT ≤ MPlanck. With these
inputs we calculate systematically different types of models from which the most important
ones should be mentioned now.
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(a) Minimal Model (b) Full Model

(c) E6 inspired Model

Figure 12.1: Running couplings in the different models including the possible variation of the
scales (blue: MLR, green: MPS, yellow: MGUT)

Minimal Model
In the minimal model only the fields HL/R

/d and  are included below the Planck scale. This
allows for unification of the couplings as shown in fig. 12.1(a). The apparent jump in the U(1)
coupling is required by eqn 12.4. The possible variation of the scales is indicated by the colored
areas. This leads to a (not independent) possible variation of the scales of

4.7 ≤ log (MLR) ≤ 15.8 ; 12.7 ≤ log (MPS) ≤ 16.4 ; 16.4 ≤ log (MGUT) ≤ 20.1

We find that the special case of a complete unification at a single mass scale (MLR = MPS =
MGUT) is not possible. Nevertheless, a unification of LR directly to a complete GUT (MPS =
MGUT) is possible.

Full Model
In the full model we consider the full higgs field content shown in table 12.1. These form the
complete SO(10) representation 10⊕ 16⊕ 16⊕ 45. The possible unification plot is shown
in fig. 12.1(b). The unification is possible for the following mass ranges

2.8 ≤ log (MLR) ≤ 15.8 ; 11.5 ≤ log (MPS) ≤ 16.4 ; 14.4 ≤ log (MGUT) ≤ 16.4

In such a model the unification to SO(10) is at a rather low scale far below the Planck scale.
Again it is possible for MPS and MGUT but not for MLR to coincide.
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E6 inspired Flavour Triplet Model
Here we consider a full model with three generations of MSSM higgs h. This enables a “SM
matter-higgs unification” à la E6 and can lead to interesting flavour models (see section 12.3).
The field content unifies to the complete E6 representations 3 × 27 ⊕ 78. The possible
unification plot is shown in fig. 12.1(c). The unification is possible in the following mass
ranges

5.4 ≤ log (MLR) ≤ 16.7 ; 9.6 ≤ log (MPS) ≤ 16.7 ; 11.8 ≤ log (MGUT) ≤ 18.4

In this model it is possible that all three mass scales coincide at M ≈ 1016.7 GeV, leading to
direct GUT unification. Below this scale it is again possible that the PS and GUT scale are
equal.

12.3 Flavour

We now consider Flavour models which are motivated by the Pati-Salam models discussed
above. These are only weakly dependent on the choice of an explicit model. The Flavour model
reproduces the flavour structure of the SM in an indirect approach. We consider an SU(3)F
flavour symmetry which is embedded in a supersymmetric Pati-Salam GUT framework. It is
broken by flavons which either transform as triplets or decuplets under the flavour symmetry
[1].

It was shown that a Yukawa matrix with the structure shown in eqn 12.7 can reproduce the
quark-data for the CKM matrix quite well [3]. In addition it has been shown that with such a
Yukawa structure and sequential right-handed neutrino dominance (SRHND) also the neutrino
data and thus the PMNS matrix can be reproduced [4]. Also values of θ13 6= 0 are possible.

Y/d ≈







0 O
�

ε3
�

O
�

ε3
�

O
�

ε3
�

O
�

ε2
�

O
�

ε2
�

O
�

ε3
�

O
�

ε2
�

O (1)






mt with ε ≈ 0.05 and εd ≈ 0.15 (12.7)

In our model we consider the left and right-handed matter representations Ψ and Ψc as well
as the MSSM Higgs h to transform as triplets under the flavour symmetry. This corresponds
to a realization of the “E6 inspired Flavour Triplet model”. For the other types of GUT models
mentioned above one Higgs doublet would be light and the two other very heavy (∼ MPlanck). In
such models a new trivial invariant ϵjk ΨL


ΨR
j
hk occurs. This is an antisymmetric combination

of the fields and thus leads to off diagonal entries. These are of order one, because no flavon
insertion is necessary. Therefore additional discrete symmetries are needed in order to forbid
such and other unwanted contributions.

12.3.1 Triplet Flavons

In the case of triplet flavons we consider a model similar to [5], but with three generations of
higgs. Therefore we have to find a new set of quantum numbers of the additional symmetry
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U(1)× Z2 reproducing the structure mentioned above. The flavon vevs are aligned in the 3-
and 2,3- direction (〈ϕ3〉 = 〈ϕ̄3〉 = (0,0,1)M and 〈ϕ23〉 = 〈ϕ̄23〉 = (0, ε,±ε)M).

Such a model is possible but one encounters large corrections to the Yukawa structure from
operators of next to leading order in flavon insertion. That is because an additional symmetry
can only forbid field configurations and not single invariants. Thus if one forbids all unwanted
terms one also forbids most terms creating the wanted structure up to high orders. A different
approach is to introduce some fine-tuning or different field configurations.

12.3.2 Decuplet Flavons

Flavons transforming as decuplet under the flavour symmetry are of special interest because
the decuplet is the symmetric combination of three triplets. Thus we can form at leading
order in flavon insertion the type of invariant we are interested in. Therefore the leading order
superpotential is particularly simple. Also the number of sub-leading terms is limited, because
the structure of the invariants is more complex. The field content shown in table 12.2 lead
to the leading order superpotential of eqn (12.8). Together with the vev alignment shown in
table 12.3 this potential generates the desired Yukawa structure of eqn (12.7).

Field SU(3)F PS U(1)
Ψ 3 (4,2,1) 1
Ψc 3 (4̄,1,2) 1
h 3 (1,2,2) 1

ϕ̄1 10 (1,1,1) −3
ϕ̄2 10 (1,1,1) −3
ϕ̄3 10 (1,1,1) −3
Hd 3 (4,1,2) −2

Table 12.2: Field content of the decuplet
model including all symmetries

〈ϕ̄1〉333 ≈ M

〈ϕ̄2〉223 ≈ ε2M

〈ϕ̄2〉233 ≈ ε2M

〈ϕ̄3〉123 ≈ ε3M

〈ϕ̄3〉133 ≈ ε3M

Table 12.3: Vev alignment

Wlead =
3
∑

=1

y

M
ΨΨchϕ̄ (12.8)

Together with additional anti-decuplets (which have to be introduced in order to guarantee D-
term flatness) and some driving fields (additional gauge and flavour singlets), a renormalisable
potential can be constructed leading to such a vev alignment. The potential for the right handed
Majorana mass matrix is at leading order shown in eqn (12.9). This leads to an Majorana
matrix with hierarchical eigenvalues of order (1, ε2, ε4) and thus to sequential dominance.

WMaj =
1

M3
Ψc2H2

d

�

C̃1 ϕ1ϕ1 + C̃2 ϕ1ϕ2 + C̃3 ϕ1ϕ3 + C̃4 ϕ2ϕ2
�

(12.9)
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12.4 Conclusion

We have shown that a multi-step breaking of a supersymmetric Pati-Salam model is possible.
The scales at which the different sub-unifications are present depend on the higgs content and
can vary over quite a large mass range. By doing the multi-step breaking we can naturally
introduce an intermediate left-right scale. This scale can be located at the mass scale of right
handed neutrinos. In addition, these models allow for a low scale of light colour triplets, due to
a seesaw like mechanism.
In the second part we have shown that models with flavour triplet Higgs are possible in the
framework of SU(3)F ⊗ PS models. Here we provide two possible Ansätze how such a model
can be realized, namely the breaking with triplet and decuplet flavons.
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13 Local Flavor Symmetries
J. Heeck

Abstract Augmenting the Standard Model by three right-handed neutrinos allows for an
anomaly-free gauge group extension Gmx = U(1)B−L × U(1)Le−Lμ × U(1)Lμ−Lτ . Simple
U(1) subgroups of Gmx can be used to impose structure on the right-handed neutrino mass
matrix, which then propagates to the active neutrino mass matrix via the seesaw mechanism.
We show how this framework can be used to gauge the approximate lepton-number symmetries
behind the normal, inverted, and quasidegenerate neutrino mass spectrum, and also how to
generate texture-zeros and vanishing minors in the neutrino mass matrix, leading to testable
relations among mixing parameters.

13.1 Introduction

A very nice explanation of the small neutrino masses (compared to the electroweak scale)
comes from the (type-I) seesaw mechanism. For this, three right-handed neutrino partners are
introduced, which can acquire a very large Majorana mass MR because they are Standard
Model singlets. Diagonalization of the neutral fermion mass matrix then leads to three light—
mainly active—neutrinos, with masses suppressed by the heavy mass scale MR. Since this
mechanism can not shed light on the peculiar lepton mixing angles, uncountable models have
been brought forward imposing discrete non-abelian global symmetries, such as A4, S4, Δ(27),
etc. (see various articles in these proceedings). These models typically involve an untestable
scalar sector at high energies, and in some cases suffer from other problems like vacuum
alignment, so we propose a much simpler set of symmetries, based on continuous abelian
local symmetries, i.e. additional U(1)′. While such symmetries can not yield tri-bimaximal
mixing, the very simple and economical scalar sector and the easily testable Z′ gauge boson
make up for the lack of definite mixing angle predictions.1

In order to only influence neutrino mixing, we assign the same universal U(1)′ charge to all
quarks: Y ′(qL) = Y ′(R) = Y ′(dR) ∀ = 1,2,3. To allow at least diagonal Dirac mass
matrices, we also set Y ′(ℓL) = Y ′(eR) = Y ′(NR), but with different charges for the lepton
generations in general, i.e. Y ′(ℓL) 6= Y ′(ℓLj).

Anomaly cancellation of the full gauge group SU(3)C × SU(2)L × U(1)Y × U(1)′ gives the
sole constraint

9Y ′(qL) + Y ′(ℓL1) + Y ′(ℓL2) + Y ′(ℓL3) = 0 , (13.1)

1U(1)′ flavor symmetries typically give vanishing, maximal, or undefined mixing angles.
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which leads to U(1)′ groups generated by

B−
∑

α

αLα with
∑

α

α = 3 , or
∑

α

yαLα with
∑

α

yα = 0 . (13.2)

Special cases include the well-known B− L symmetry—which contains no information about
mixing—and the lepton number differences Lα − Lβ, which are anomaly-free in the SM alone
and have been discussed extensively [1–3]. Some of the B−

∑

α αLα symmetries have been
discussed already in the literature [4, 5] (incomplete list).

Note that all solutions to Eq. (13.1) can be viewed as subgroups of the abelian group U(1)B−L×
U(1)Le−Lμ × U(1)Lμ−Lτ , which itself is a subgroup of the non-abelian U(1)B−L × SU(3)ℓ [6].
Consequently, all U(1)′ groups discussed here can be embedded into these larger groups, but
we omit a discussion due to the necessary enlarged scalar sector.

13.2 Neutrino Hierarchies

The U(1)′ groups generated by B −
∑

α αLα or
∑

α yαLα lead to different neutrino phe-
nomenology, depending on the coefficients α or yα. We will first show how the championed
symmetries behind normal, inverted and quasidegenerate neutrino mass hierarchy can be
promoted to local symmetries. As shown in Ref. [7] (see also Ref. [8]), good zeroth-order
Majorana mass matrices that conserve a lepton number are given by

MLe
ν
∼







0 0 0
0 × ×
0 × ×






, ML̄

ν
∼







0 × ×
× 0 0
× 0 0






, MLμ−Lτ

ν
∼







× 0 0
0 0 ×
0 × 0






, (13.3)

where × denotes a non-zero entry and L̄ ≡ Le − Lμ − Lτ. The Lμ − Lτ symmetry—which is a
good symmetry for quasidegenerate neutrinos—can be readily gauged and leads to numerous
interesting effects, e.g. the solution of the anomalous magnetic moment of the muon [3]. As
for the neutrino mixing angles, Lμ − Lτ leads to maximal θ23 and vanishing θ13 and θ12, but
small breaking terms suffice to generate valid angles [7]. To generate the observed θ13, the
Lμ − Lτ breaking scale should be ∼ 100 times below the seesaw-scale MR (see Fig. 13.1). A
more detailed discussion can be found in the given references.

To promote the lepton number Le—which leads to normal hierarchy solutions—to a local
symmetry, we note that a broken L̄ symmetry actually leads to an approximate Le symmetric
Mν via seesaw [9], so gauging the anomaly-free B+ 3L̄—and then breaking it spontaneously
in the right-handed sector—will lead to an approximate MLe

ν
. The B+ 3L̄ breaking scale can

be ∼ 20 times below the seesaw-scale MR to generate the right mixing angles.

Having found local symmetries that lead to a quasi-degenerate spectrum (Lμ − Lτ) or normal
hierarchy (B+ 3L̄), we turn to inverted hierarchy. As shown in Ref. [9], it suffices to decouple
one of the three right-handed neutrinos with an additional Z2 symmetry to flip the spectrum
of B + 3L̄ from normal to inverted. In this form, the reactor angle θ13 vanishes, even after
spontaneously breaking B+3L̄, so the model is excluded by now. This can be easily amended,
however, by introducing five instead of three right-handed neutrinos. The anomaly constraints
can still be fulfilled, and after decoupling one of the five singlets by a Z2, we find an inverted
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Figure 13.1: Scatter plots for Lμ − Lτ, spontaneously broken by two scalars with vacuum
expectation values S/MR ∼ 0.02.

hierarchy spectrum in the active neutrinos with θ13 6= 0. The Z2 symmetry that we introduced
to obtain inverted hierarchy of course makes the decoupled right-handed neutrino a (Majorana)
dark matter candidate, which interacts with the Standard Model via the Z′ gauge boson and the
Higgs portal. The arising phenomenology of this dark matter particle is similar to the recently
studied U(1)B−L ×Z2 model [10] and can be found in Ref. [9].

13.3 Texture Zeros and Vanishing Minors

As an extreme case of imposing structure on MR, we will show how to generate texture zeros.
Texture zeros in our case refer to vanishing entries in the low-energy Majorana neutrino mass
matrix Mν, which lead to constraints on the three mixing angles θj, three masses m and
three phases δ, α and β. More than two independent texture zeros are incompatible with
observations, and out of the 15 possible two-zero textures, only seven are allowed by current
data [11]. In a similar analysis, one can consider texture zeros in M−1

ν
, which are just vanishing

minors in Mν [12, 13]. Again, seven different two-zero textures are allowed, and four of them
coincide with two-zero patterns in Mν. So overall, there are ten different allowed two-zero
textures in Mν and M−1

ν
.

Looking at the charge-matrices of Y ′(N
c


Nj) for

∑

α yαLα and B−
∑

α αLα,







2ye ye + yμ −yμ
ye + yμ 2yμ −ye
−yμ −ye −2(ye + yμ)






,







−2e −e − μ μ − 3
−e − μ −2μ e − 3
μ − 3 e − 3 2e + 2μ − 6






, (13.4)

shows that we can easily generate texture zeros in MR. If we restrict ourselves to completely
family-non-universal charges, i.e. yα 6= yβ etc., the leptonic Dirac matrices mD and mℓ

are strictly diagonal, so the texture zeros in MR become texture zeros of M−1
ν

via seesaw,
i.e. vanishing minors in Mν ' −mDM−1

R
mT

D
.

All that is left is to determine the charges that lead to the allowed patterns and find the charges
that the symmetry-breaking scalars should carry. As an example, consider Lμ − Lτ again, but
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Symmetry generator Y′ |Y′(S)| S =
p
2 |〈S〉| Texture zeros in MR Texture zeros in Mν

Lμ − Lτ 1 ≥ 160 GeV (MR)33, (MR)22 (CR) –
B− Le + Lμ − 3Lτ 2 ≥ 3.5 TeV (MR)33, (MR)13 (BR4 ) (Mν)12, (Mν)22 (Bν3 )
B− Le − 3Lμ + Lτ 2 ≥ 4.8 TeV (MR)22, (MR)12 (BR3 ) (Mν)13, (Mν)33 (Bν4 )
B+ Le − Lμ − 3Lτ 2 ≥ 3.5 TeV (MR)33, (MR)23 (DR

2 ) (Mν)12, (Mν)11 (Aν1 )
B+ Le − 3Lμ − Lτ 2 ≥ 3.5 TeV (MR)22, (MR)23 (DR

1 ) (Mν)13, (Mν)11 (Aν2 )

Table 13.1: Anomaly-free U(1) gauge symmetries that lead to allowed two-zero textures
in the right-handed Majorana mass matrix MR with the addition of just one SM
singlet scalar S. Some of the texture zeros propagate to Mν ' −mDM−1

R
mT

D
after seesaw. Classification of the two-zero textures according to Ref. [6].

now with just one scalar S with charge Y ′(S) = 1. The symmetric right-handed neutrino mass
matrix consists of a part symmetric under the U(1)′ and a part proportional to the vacuum
expectation value of S:

MR = MLμ−Lτ







× 0 0
· 0 ×
· · 0






+ 〈S〉







0 × ×
· 0 0
· · 0






∼







× × ×
· 0 ×
· · 0






. (13.5)

We have therefore found a very economic realization of the allowed pattern CR [6]. Four
more allowed two-zero textures in MR can be obtained with the B −

∑

α αLα symmetries
with just one symmetry-breaking scalar (Tab. 13.1). The remaining two allowed patterns
can be obtained by introducing two instead of one scalar, or by using ZN subgroups of the
B−

∑

α αLα symmetries [6].

Since the Z′ gauge boson couples in all cases quite differently to electron, muon and tauon,
this framework provides a new handle to distinguish these patterns outside of the neutrino
sector.

13.4 Conclusion

The type-I seesaw mechanism provides a fascinating explanation of small neutrino masses.
The three additional right-handed neutrinos also significantly increase the number of anomaly-
free symmetries, which can be used to explain the peculiar leptonic mixing parameters. We
have shown how to use U(1)′ groups generated by B −

∑

α αLα or
∑

α yαLα to promote
the championed symmetries behind normal, inverted and quasidegenerate neutrino mass
hierarchy to local symmetries, with the obvious implications for collider physics. We have
further shown that all seven currently allowed two-zero textures in M−1

ν
can be realized very

economically by U(1)′ symmetries with at most two additional scalars.
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14 Neutrinoless double beta decay at LHC
J. C. Helo, M. Hirsch, S. Kovalenko, H. Päs

Abstract We analyze the possibility of discriminating different mechanisms of neutrinoless
double beta decay in the LHC experiments from a general point of view. We distinguish basic
topologies of these mechanisms with one or two heavy intermediate particles on-mass-shell
which can be accessible for observations in high-energy pp-collisions.

14.1 Introduction

Neutrinoless double beta decay is believed to be the most sensitive probe of lepton number
violation. On the other hand observation of this rare decay will not be easily interpreted
as evidence for a specific model of new physics beyond the Standard Model (SM). Several
mechanisms including exchange of heavy neutrinos [1], [2] right-handed WR bosons [3], [4],
leptoquarks [5], SUSY partners [6] etc. have been discussed in the literature (for recent
reviews see e.g. [7], [8]) besides the most popular mechanism with exchange of a light
Majorana neutrino. Although there exist in the literature several proposals of how to discriminate
different mechanisms [9], [10], [11], [12], they typically lack sensitivity to at least some of the
mechanisms and/or are difficult to observe experimentally.

If 0νββ decay is observed in the next generation experiments the question of which mecha-
nism produce the signal will immediately arise. What can the LHC say about this? To answer
this question we need first to identify possible topologies of the diagrams at the level of renor-
malizable interactions contributing both to 0νββ-decay and to like-sign dilepton production at
LHC.

At the level of renormalizable interactions all tree-level diagrams for 0νββ decay fall just
into two types of topologies, shown in fig. 14.3. Same topologies that contribute to 0νββ
may contribute to like-sign dilepton events at LHC accompanied with jets pp→ ±± + jets
[13], [14]. Here we consider renormalizable interactions which correspond to vertices in the
diagrams of Topology I and II (Fig. 14.3) with scalar S and/or (axial-)vector Vμ and fermionic
N intermediate particles. A complete list of renormalizable Lagrangian terms contributing to
0νββ and LHC will be analyzed in [15]. Here we consider the following interaction terms
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underlying the diagrams in Fig. 14.3:

LS = gS
q
Sd̄(1± γ5)+ gS Sē(1± γ5)N+ h.c. (14.1)

LV =
gV
q

2
p
2
Vμd̄γ

μ(1± γ5)+
gV


2
p
2
V−
μ
ēγμ(1± γ5)N+ h.c. (14.2)

LS2 = gS
q
Sd̄(1± γ5)+ gS SSS2 + g

S2
 S2 ē(1± γ5)e

c + h.c (14.3)

LV2 =
gV
q

2
p
2
Vμd̄γ

μ(1± γ5)+ gV VμVμS2 + gS2 S2 ē(1± γ5)e
c + h.c (14.4)

Here S = S−, Vμ = V−
μ

and S2 = S−−2 are single and doubly charged bosons while N is a
neutral fermion,  is a parameter with dimension of mass. The first two Lagrangians can
generate same-sing dileptons if Nc = N is a Majorana fermion. Below we denote masses of
the S,V and N particles as mS, mV and mN. Evidently the Largangians (14.1)-(14.2) lead to
the diagrams of Topology I while (14.3)-(14.4) to Topology II (see Fig. 14.3).

Following the notations of Ref. [16] we calculated the contributions of these diagrams to the
half-life of neutrinoless double beta decay T0νββ1/2 separately for the scalar and vector cases of
the above specified Lagrangians Eqs. (14.1), (14.2), (14.3), (14.4). The dependencies of the
half-life on masses and couplings are :

Topo I : T
0νββ
1/2(P) ∝

(M()eƒ ƒ (P))
10

(g()eƒ ƒ (P))
8

; Topo II : T
0νββ
1/2(P) ∝

(M()eƒ ƒ (P))
12

(g()eƒ ƒ (P)
1/4)8

(14.5)

where we have defined the effective masses and couplings

M
()
eƒ ƒ (P) = (m4

P
mN)1/5, g

()
eƒ ƒ (P) = (g

P
q
gS2 )

1/2 (14.6)

M
()
eƒ ƒ (P) = (m2

P
mS2)

1/3, g
()
eƒ ƒ (P) = ((g

P

)2gS2 gP)1/4 (14.7)

The current limit on T
0νββ
1/2 of 76Ge [17] excludes the region of these effective parameters

shown in Figs. 14.1, 14.2 as the black area. The red region of Figs. 14.1, 14.2 represents the
parametric region which could be excluded at the expected sensitivity T0νββ1/2 = 1× 1027yrs
of the future 0νββ experiments and the pink region in Fig. 14.1 is inaccessible for these
experiments.

14.1.1 Topolgy I

We will assume that a particle P (= S,V) is produced at LHC, decays to P → Ne and than
N decays to N→ e−d (See Fig. 9a), producing the events with same-sign lepton pairs and
two jets, as a clear signature of lepton number violation. This situation is described by the
Lagrangians (14.1), (14.2).

The lepton-number violating character of the process pp→ eejj leads to a very clear signature
at LHC. The background for this process, mainly coming from t̄t events, is very low due to
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the presence of two isolated leptons of the same sign. In Refs. [18, 19] detailed simulations
of this signal have been carried out. The kinematical region mN < mP enables ideal decay
kinematics with a large production cross section and isolated leptons except for mN ® mP

where the two-body decay P → eN is kinematically forbidden, and thus the LHC sensitivity
is suppressed [18]. In this paper we have assumed a sensitivity to the cross section up
to σ(pp → eejj) = 10−2ƒb for mN < mP when the LHC runs at

p
s = 14TeV. This is

consistent with the different simulations of the signal in Refs. [18], [19], [20]. The cross section
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Figure 14.1: LHC and 0νββ sensitivities on the LNV Lagrangians (14.1), (14.2). See text for
details.

σ(pp→ eejj) can be written as

σ(pp→ eejj) = F(mP)× (gPq)
2 × Br(P→ eN)× Br(N→ ejj) (14.8)

where the Branching ratios are, according to the Lagrangians (14.1), (14.2), equal to

Br(P→ eN) =
 (gS


)2

3(gS
q
)2 +  (gS )

2
; Br(N→ ejj) = 1/2. (14.9)

Here  < 1 is a phase space factor  = 1 − (mN/mP)2. The function F(mP) = σ(pp →
eejj)/(Br (gP

q
)2) has been calculated using CALCHEP [21]. We can rewrite this cross section

(14.8) in terms of the effective mass and couplings relevants for 0νββ using Eqs. (14.6)

σ(pp→ eejj) = F









4

√

√

√

√

(M()eƒ ƒ )
5

mN









×
(g()eƒ ƒ )

4

3(gP
q
)4/+ (g()eƒ ƒ )

4
×
1

2
(14.10)

Assuming that gP
q
, gP


< 1, for a fixed value of the effective coupling g()eƒ ƒ , the coupling gP

q
is

limited as (g()eƒ ƒ )
2 < gP

q
< 1. Using this limits we can put a lower limit on σ(pp→ eejj) which

depends on the effective parameters (14.6) and the fermion mass mN.

σ(pp→ eejj) > F









4

√

√

√

√

(M()eƒ ƒ )
5

mN









×
(g()eƒ ƒ )

4

3/+ 1
×
1

2
(14.11)
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If the LHC does not observe pp → eejj it will put limits on its cross section which we have
assumed to be σ(pp → eejj) < 10−2ƒb according to our previous discussion. Then with
this assumption and the numerical values of the function F() which have been calculated
using CALCHEP [21], we can extract limits on the parametric region (M()eƒ ƒ (P), g

()
eƒ ƒ (P)) from

Eq. (14.11) for different values of mN. We have drawn these limits as the solid yellow line in
Fig. 14.1 for mN = 200GeV, and compered them with the limits expected from the future
0νββ decay experiments. For larger masses mN > 200GeV these limits on (M()eƒ ƒ (P), g

()
eƒ ƒ (P))

will become even more strength except for the threshold region mN ® mP where the LHC
sensitivity gets very low as we discussed above. As we can see from Fig. 14.1 the LHC is
much more sensitive than 0νββ and has good perspective to rule out this mechanism, as a
possible dominant contribution to 0νββ decay, if after running at

p
s = 14TeV it does not find

positive signals of pp→ eejj.

It is important to emphasise that by construction of the Lagrangians (14.1), (14.2) we are not
considering flavour mixing and the Branching ratio of the neutral fermion decay is Br(N →
ejj) = 1/2. However even for Br(N→ ejj) = 10−2 our LHC limits are still more sensitive than
0νββ as can be seen from Fig. 14.1 where dashed yellow line represents the LHC limits for
Br(N→ ejj) = 10−2.

14.1.2 Topology II

In order to analyse the impact of the LHC experiments on Topology II contributions to 0νββ
described by the Lagrangians (14.3), (14.4) we have studied the production of the like-sign
dileptons pp→ eejj through the single production of S++2 via a SS or VV fusion pp→ S++2 jj
followed by the decay S++2 → ee at LHC. This process is experimentally interesting due to its
clear like-sign dilepton signature from the decay of the doubly charged scalar S++2 .They can
be easily distinguished from the SM background due its resonance contribution to the invariant
mass distribution of the two leptons which has a very small SM background for invariant masses
larger than 100GeV [19]. Then as an example we have estimated the LHC sensitivity to be
σ(pp→ eejj) ∼ 1.6× 10−2ƒb corresponding to 5 events at luminosity of 300ƒb−1.

The corresponding cross sections have been calculated using CALCHEP. [21]. These cross
sections are much smaller than the corresponding ones for the Topology I. Then the LHC is
not as competitive with 0νββ experiments as in the case of Topology I, being actually less
sensitive than 0νββ for a big part of the parametric space. However there are still some
parametric regions where the LHC is competitive and even more sensitive than 0νββ. To give
an example of this we case will analyzed a scenario where

mS2 < 2mP (14.12)

The cross section of the like-sign dileptons plus two jets process at LHC σ(pp→ eejj) can
be written as

σ(pp→ e+e+jj) = H(mP,mS2)× (gPq)
4 × (gP)2 × Br(S++2 → e+e+) (14.13)

In the scenario (14.12) the doubly charged scalar S++2 can decay into S++2 → e+e+ or back
to S++2 → jjjj. However this last channel will be very suppressed compared with the decay
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Figure 14.2: LHC and 0νββ sensitivities on the LNV Lagrangians (14.3), (14.4). See text for
details.

channel S++2 → e+e+. Then, we can approximately put Br(S++2 → e+e+) = 1. The function
H(mP,mS2) has been calculated using CALCHEP [21] for P = S,V. Using the numerical
values of H(mP,mS2) and the assumed LHC sensitivity σ(pp→ eejj) < 1.6× 10−2ƒb we
can extract limits on the parameters (mS2 , (gPq)

2gP) from Eq. (14.13) for fixed values of

mP. We can convert these limits on (mS2 , (gPq)
2gP) into limits on the effective parameters

(M()eƒ ƒ (P), g
()
eƒ ƒ (P)

1/4) of Eq. (14.7) fixing values of the coupling gS2 . Then for different values

of (mP, g
S2
 ) we have different LHC limits on the effective parameters (M()eƒ ƒ (P), g

()
eƒ ƒ (P)

1/4).
In Fig. (14.2) we have plotted these LHC limits on the effective parameters (14.7) as the yellow
lines and compered them with the 0νββ limits at the future sensitivities. As we can see from
Fig. (14.2) yellow lines cover only a segment of the possibles values of M()eƒ ƒ (P) in the plot. This
is because we have used for this calculation mS2 > 100GeV and the limit mS2 < 2mP defined
by the scenario (14.12) . These limits on mS2 impose upper and lower limits on the effective
mass (m2

P
100GeV)1/3 < M

()
eƒ ƒ (P) < (2m

3
P
)1/3 which are reflected in the borders of the yellow

lines of Fig. (14.2) for mP = 500GeV, 1000GeV. As we can see from Fig. 14.2 the LHC
is competitive to 0νββ in the scenario of Eq. (14.12) for (mP = 500GeV, g

S2
 = 10

−2) and
(mP = 1000GeV, g

S2
 = 10

−1) and much more sensitive than 0νββ for smaller values of
gS2 .

�
P

N P

(a)
d̄
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d

ūe+ e+

�
P

P S2
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u

u

e+
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d

d

Figure 14.3: Two types of diagrams (Topology I, II) contributing both to like sign lepton plus
two jets production at LHC pp→ eejj and to 0νββ decay. Here P = S,Vμ.
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14.2 Conclusion

We have analyzed the possibility of discriminating different mechanisms of 0νββ decay at LHC.
We have found that for the case of the mechanisms corresponding to the Topology I the LHC is
significantly more sensitive than 0νββ decay experiments and may be capable to probe or
rule out these mechanisms. For the case of Topology II the situation is more ambiguous and
the LHC could be more sensitive only in a particular part of the parametric space.
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15 Vacuum Alignment from Group Theory

M. Holthausen

Abstract Models based on non-abelian discrete symmetries that aim to explain mixing
patterns such as tri-bi-maximal mixing(or perturbations thereof) usually require the symmetry
group to be broken to different subgroups in the charged lepton and neutrino sectors by
scalar fields with a particular configuration of vacuum expectation values. This configuration
cannot be obtained from a straightforward minimization of the potential, but it requires an
additional dynamical mechanism. Here we present a mechanism based on group theoretic
considerations.

15.1 Introduction

Until quite recently, the tri-bi-maximal(TBM) ansatz for lepton mixing that corresponds to
the mixing angles sin2 θ12 =

1
3 , sin

2 θ23 =
1
2 , sin

2 θ13 = 0 was a quite good fit to the
experimental data. This peculiar mixing pattern might be understood as the consequence of
non-commuting remnant symmetries Ge of the charged lepton and Gν of the neutrino mass
matrices[1]:

ρ(ge)TMeM
†
e
ρ(ge)∗ = MeM

†
e
, ρ(gν)TMνρ(gν) = Mν nd ge ∈ Ge, gν ∈ Gν.

Indeed if one takes Gν to be the Klein group Gν = 〈S,U|S2 = U2 = E;SU = US〉 ∼= Z2 × Z2
and Ge to be Ge = 〈T |T3 = E〉 ∼= Z3 with the 3-dimensional generators

ρ(S) =







1 0 0
0 −1 0
0 0 −1






, ρ(U) = −







1 0 0
0 0 1
0 1 0






, ρ(T) =







0 1 0
0 0 1
1 0 0






(15.1)

the resulting mixing matrix is of TBM form. The symmetry group built up of S and T is A4, the
symmetry group formed out of S, T and U is S4. In A4 models that predict TBM at leading
order(LO) the symmetry U is accidental. Giving up on the accidental symmetry U, one has
Gν = 〈S|S2 = E〉 ∼= Z2 and the mixing matrix U = UHPSU13 is determined up to a 13-rotation.
This is called trimaximal mixing(TMM) and can bring discrete family symmetry models of this
type back in agreement with the experimental data(i.e. the large value of θ13).
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Figure 15.1: Distribution of the opening angle spanned by the two (effective) flavon fields
that couple to neutrinos and charged leptons, respectively, for random values
of potential parameters for the most general scalar potential of A4(left) and
Q8 o A4(right). For Q8 o A4 the relevant effective flavon in the neutrino sector
is (ϕ1ϕ2)31

. The tri-bi-maximal vacuum configuration depicted in the inlay

corresponds to an opening angle of 54.7◦.

15.2 Vacuum Alignment Problem

To break the symmetry group A4 to the subgroups S and T, scalar fields("flavons") χ and
ϕ are introduced with VEVs along the directions 〈χ〉 ∼ (′, ′, ′), that conserves T, and
〈ϕ〉 ∼ (,0,0), that conserves S. The most general scalar potential formed out of these two
scalar fields does not allow this VEV configuration, as may be seen from the fact that the
number of algebraically independent minimization conditions is higher than the number of
VEVs[2, 3] and therefore this VEV configuration requires special fine-tuned relations among
the potential parameters.1

Another way to see this is to take the full potential of the two scalar fields and scan over
the global minima that one obtains. In Figure 15.1, on the left-hand side, the distribution of
opening angles between the two flavons is plotted for a random scan over order one potential
parameters. One can see that there is no phase where the TBM vacuum configuration is
realized, but rather two phases can be identified: one phase where both flavons conserve
the same subgroup and point in the same direction(angle= 0◦) and one phase where the
symmetry is broken completely. The TBM vacuum is part of the later phase but it is not special.
If there is no TBM phase in the potential, the whole discrete symmetry approach amounts to
nothing more than replacing adjusting Yukawa couplings to adjusting potential parameters.

15.3 A Solution via Group Extensions

We have seen in the last section that the most general scalar potential does not allow the
desired vacuum pattern. This can be traced back to the existence of couplings such as

1This problem cannot be cured by introducing singlets, etc. as was shown in [4]
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(χχ)12
(ϕϕ)13

that connect the A4 transformations of χ and ϕ[4, 5]. To solve the vacuum
alignment problem we demand the following:

• we want to extend successful flavour groups H = A4, S4, T ′,Δ(27), T7, therefore there
should be an surjective homomorphism ξ : G→ H from G onto H. The homomorphism ξ
guarantees the existence of representations of G that are inherited from H: ρG = ρH ◦ ξ,
to which we will assign leptons. Therefore the lepton structure is the same as in H.

• we demand the existence of an irreducible representation ϕ, whose product ϕn should
contain 3G and the renormalizable potential formed out of ϕ and χ ∼ 3G should have an
accidental symmetry G× A4 such that χ can be rotated by independent A4 symmetry
transformations.

Using the computer algebra program GAP, we have performed a scan over all groups of order
smaller than 1000, and we have found a number of candidate groups. We do not repeat the
entire catalogue of groups here, but rather refer the reader to [4] and present the smallest
extensions of A4, S4 and T ′, of which only the first one was presented in detail in [4].

15.3.1 Q8 o A4

The group may be presented by the three generators S, T, X fulfilling the relations

S2 = T3 = X4 = SXSX3 = (ST)3 = T2XT2X3T2X3 = STX3T2STX3T2 = E (15.2)

One can see that the group element X2 commutes with all other elements. This generates the
center Z(Q8 o A4) = {E,X2}, representation can be classified according to ρ(X2) = ±1.

The defining representation matrices for the representations are given in [4]. Of importance is
the 3-dimensional representation with ρ31

(S), ρ31
(T) given in Eq.(15.1) and ρ31

(X) = 13,
which is exactly the inherited 3-dimensional A4 representations. Obviously, this representation
only knows about the A4 subgroup generated by S and T and it is therefore not-faithful. The
other crucial ingredient we needed was a faithful representation of G that did not contain any
A4 representation in its symmetric product. This representation can be readily identified to be
41

ρ41
(S) =σ3 ⊗ σ1, ρ41

(T) = dig(ρ(T),1), ρ41
(X) =− iσ2 ⊗ σ3.

with ρ(T) given in (15.1) and the crucial property 41 × 41 = 11S + 31A + 32S + 33S + 34S +
35A.

15.3.2 Z4.S4

This group in the GAP notation [96,67] is the smallest extension of S4 that allows for a solution
of the vacuum alignment problem. It is generated by 2 generators A and B that fulfil the
relations:

A4 = B4 = AB−1A−1BA−1B−1 = E (15.3)
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and the faithful representation that solves the VEV alignment problem is given by

A :
1
p
2











0 0 z13 z19

0 0 z13 z7

z11 z23 0 0
z5 z5 0 0











nd B :
1
p
2











0 0 z5 z5

0 0 z23 z11

z19 z 0 0
z7 z 0 0











(15.4)

with z = eiπ/12.

15.3.3 Q8 o T ′

This group is generated by S, T, R, X that fulfill the relations

S2R = T3 = (ST)3 = R2 = X4 = SXSX3 = (ST)3 = T2XT2X3T2X3 = STX3T2STX3T2 = RXRX3 = E

The generator R therefore commutes with all group elements and the center is enlarged to
Z(Q8 o T ′) = {E,R,RX2, X2} ∼= Z2 × Z2. The relevant representations can be constructed
from the homomorphism g : Q8 o T ′ → Q8 o A4 defined by g : {R, S, T, X}→ {E, S, T, X}.
To solve the vacuum alignment problem, the leptons should be assigned to ℓ ∼ ρ31

◦g and the
neutrino sector flavon ϕ ∼ ρ41

◦ g. The additional representations may be used to describe
the quark sector.

15.4 TBM Model based on Q8 o A4

To give a concrete model that solves the vacuum alignment problem, we introduce lepton
doublets ℓ ∼ 31 and lepton singlets ec + μc + τc ∼ 11 + 12 + 13 under Q8 o A4. Symmetry
breaking is done via χ ∼ 31 and ϕ1,2 ∼ 41

2. To lowest order, the charged lepton masses arise
from the operators

L(5)
e
= ye(ℓχ)11

ecH̃/Λ+ yμ(ℓχ)13
μcH̃/Λ+ yτ(ℓχ)12

τcH̃/Λ+ h.c. , (15.5)

with the Higgs field H̃ = iσ2H∗, and the neutrino masses are generated from the effective
interactions

L(7)
ν
= (ℓHℓH)11

(ϕ1ϕ2)11
/Λ3 + d(ℓHℓH)31

· (ϕ1ϕ2)31
/Λ3 + h.c. . (15.6)

The resulting mass matrices lead to TBM at LO, as in the Altarelli-Feruglio model[2]. The
vacuum configuration 〈χ〉 = (′, ′, ′)T , 〈ϕ1〉 = 1p

2
(, , b,−b)T , 〈ϕ2〉 = 1p

2
(c, c, d,−d)T

can be obtained as a natural solution of the most general scalar potential involving the given
scalars as has been shown in [4]. This can be seen in the right-hand side of Figure 15.1 where
the distribution of opening angles between the two flavon χ and the effective flavon (ϕ1ϕ2)31
is plotted for a random scan over order one potential parameters. We see that this vacuum
configuration is obtained for a finite portion of parameter space,i.e. there is a phase with the
TBM vacuum. This is to be contrasted with the potential without the alignment mechanism on
the left-hand side of Figure 15.1.

2We also need a discrete subgroup of lepon number L: L under which ϕ2 is odd.
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15.5 TMM Model based on Q8 o A4

Another possibility to generate deviations from TBM is the introduction of an additional flavon
ξ̃ ∼ 12 which transforms as i under the auxiliary Z4 and breaks the accidental symmetry U in
the neutrino sector by the VEV

¬

ξ̃
¶

= ̃. This scalar can couple to neutrinos via the effective
operator

δL(7)
ν
= c(ℓHℓH)12

ξ̃2/Λ3 + h.c. . (15.7)

that contributes to the neutrino mass matrix as

δMν =
2

2
p
3Λ3

c̃







1 0 0
0 ω 0
0 0 ω2






(15.8)

with c̃ = c̃2. A correction of this type leads to the so-called tri-maximal mixing pattern, which
gives a good fit to the neutrino mixing data and predicts a testable correlation  ≈ −12 r cos δ[6]
between the deviation from TBM in the mixing angles sinθ13 =

rp
2

and sinθ23 =
1p
2
(1+ ).

The purpose of this section is to demonstrate that the TMM VEV configuration can also be
naturally obtained in the Q8 o A4 model. At the renormalizable level the scalar potential for ξ̃
is given by

Vξ̃(ξ̃) = μ
2
4ξ̃

∗ξ̃+ λξ̃(ξ̃
∗ξ̃)2 (15.9)

and the cross-coupling terms are

Vcross = ξ̃∗ξ̃
�

ζ14(ϕ1ϕ1)11
+ ζ24(ϕ2ϕ2)11

+ ζ34(χχ)11

�

. (15.10)

Note that there are no non-trivial contractions between ξ̃ and the other flavons at the renormal-
izable level. Note further that this is a direct consequence of the model and that no additional
symmetries have been required. It is now trivial to confirm that the number of independent
minimization conditions matches the number of VEVs and that the TMM VEV pattern can be
naturally realized.

15.6 Conclusion

We have presented a solution to the vacuum alignment problem from group theory. The
essential point is to engineer particle content and symmetries of the model in such a way that
there emerges an accidental symmetry at the renormalizable level under which the flavons
of the charged lepton and neutrino sectors transform independently. We have presented the
smallest groups that extend A4, S4 and T ′ and have discussed a model based on the smallest
extension of A4, Q8 o A4. We have furthermore outlined how one could extend the model to
account for the large value of θ13.
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16 Determining Weak Phases from B→ J/ψP
Decays

M. Jung

Abstract Penguin pollution in the “golden mode” Bd → J/ψK has gained importance due
to the apparent smallness of new physics effects, together with the outstanding precision
expected from present and future collider experiments. A very recent analysis is presented,
which yields a stronger bound for the maximal influence of penguin contributions than previous
analyses and shows the corresponding uncertainty to be reducible with coming data.1

16.1 Introduction

Roughly 40 years after its proposal [2], the Kobayashi-Maskawa mechanism continues to
give a consistent interpretation of the available data on flavour observables and CP violation.
This fact is reflected in successful fits to the Unitarity Triangle (UT) [3, 4], where, despite the
precision data which has become available during the last decade, still no clear sign of physics
beyond the Standard Model (SM) is seen. However, in the extraction of the CKM angle β
(ϕ1) tensions have been present (see e.g. [5–9]). The main deviation used to be between the
extractions using B→ J/ψK on the one hand and B→ τν on the other. However, this effect
got very recently significantly reduced by the new Belle result on B→ τν [10], although the
resulting world average remains above the SM expectation. Other puzzles, like the difference
between |Vb| extracted from inclusive and exclusive decays or the largish εK remain, but
are less significant. The important lesson from these observations is that new physics (NP)
effects in the related observables have to be small. This, together with the bright experimental
prospects, renders precision predictions for the involved observables particularly important.
This implies an increased interest in the so-called “penguin pollution” in B→ J/ψK, which is
one of the key observables in these analyses.

16.2 Penguin Pollution in the Golden Modes

The impressive precision obtained for β became possible due to the fact that in the “golden
mode”, Bd → J/ψKS, explicit calculation of the relevant matrix elements can be avoided once
subleading doubly Cabbibo suppressed terms are assumed to vanish [11], in combination with
a final state with a very clear experimental signature. However, given the discussion above on

1The main part of this text has been published as part of an article in the proceedings of “The XIth International
Conference on Heavy Quarks and Leptons” [1].
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the size of NP effects and the precision the LHC experiments and planned next-generation B
factories are aiming at for this mode and related ones, a critical reconsideration of the used
assumptions is mandatory. Estimates yield corrections to the famous relation SJ/ψKS = sinϕd
of the order O(10−3), only [12–14]; it is, however, notoriously difficult to actually calculate the
relevant matrix elements, and non-perturbative enhancements cannot be excluded.

To include these subleading contributions, the size of their matrix elements relative to the
leading one has to be determined. An explicit calculation still does not seem feasible to an
acceptable precision for the decays in question, which is why typically symmetry relations are
used2, i.e. SU(3), relating up, down and strange quarks, or its subgroup U-spin, including
only down and strange quark. These allow for accessing the unknown matrix element ratios
via decays where their relative influence is larger (“control modes”) [16–20]. This method has
the advantage of being a completely data-driven method, and the resulting value for the B
mixing phase provides improved access to NP in mixing once the SM value of this phase is
determined independently.

The main limitations of that approach were firstly the limited data for the control modes, as their
rate is suppressed by λ2 ∼ 5% compared to the one of B→ J/ψK, and secondly corrections to
the symmetry limit. The first issue was already rendered less severe by recent data from CDF
and LHCb [21–23] and will be resolved by LHC in combination with the planned Super Flavour
Factories (SFF). The second was addressed by a recent paper [24]. Here the idea is to include
the symmetry-breaking corrections in a model-independent manner on a group-theoretical
basis (for earlier applications of this method see e.g. [25–28]). Extending furthermore the
symmetry group from U-spin (used in [16–20]) to full SU(3) then allows to relate a sufficiently
large number of decay modes (the full set of B → J/ψP modes, with B ∈ {B, Bd, Bs} and
P ∈ {π+, π0, K+, K0, K̄0}) to determine the parameters for the SU(3) breaking as well as
the penguin pollution from the fit, using mild assumptions which are mostly testable with data
[24].

Applying this method to presently available data for these decays [21–23, 29, 30] shows
clearly the importance of SU(3)-breaking effects. Even when allowing for huge values of the
penguin parameters, the fit in the SU(3) limit yields χ2min/d.o.f. = 22.3(23.9)/5, where
the first number corresponds to using the former world average for the rate of B− → J/ψπ−

(“dataset 1”), and the second to the new LHCb result (“dataset 2”), which yields a value about
3 standard deviations away from the former. This is why they are compared explicitly instead of
averaging the results. Importantly, correlations to the measured branching ratios drive the shift
ΔS = −S(B→ J/ψKS) + sinϕd to relatively large values in this case, in the opposite direction
of the tension observed in the UT fit. It is furthermore interesting to note that the inclusion
of neglected contributions does not improve the fit, confirming our choice to set them to zero.
The same is true for factorizable SU(3)-breaking corrections, which were included in the fit for
comparison purposes, only.

In a next step, SU(3)-breaking contributions are included in the fit, while neglecting penguin
pollution. This fit works rather well, yielding χ2min = 9.4(6.0) for 7 effective degrees of
freedom3. The best fit point yields a ratio of the larger SU(3)-breaking matrix element with the

2For an approach using theory input to extract the Bs mixing phase, see [15].
3Effective degrees of freedom are defined here as number of observables minus the number of parameters which

are effectively changing the fit.
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leading one of 19(24)%, which is perfectly within the expectations for this quantity. Therefore
the data can be explained with the expected amount of SU(3) breaking and small penguin
contributions.

Performing the full fit with both additional contributions, the fit improves slightly, to χ2min =
2.8(2.3) for 3 effective degrees of freedom, when we refrain from applying strong restrictions
on the parameter values4. In this fit, the SU(3)-breaking parameters allow to accommodate
the pattern of branching ratios, while the penguin contributions are mainly determined by
the CP and isospin asymmetries. The central values of the penguin parameters still tend to
larger values than theoretically expected. This is not surprising, given the fact that the isospin
asymmetry in B→ J/ψK has a central value about ten times larger than the naive expectation,
however with large uncertainties. The corresponding branching ratios are predicted to be
around one standard deviation higher (lower) for B̄0 → J/ψK̄0 (B− → J/ψK−), making an
additional measurement of their ratio important, which correspondingly is predicted to take
a significantly different central value than the one presently measured. Restricting the fit
parameters to the expected ranges, i.e. at most an SU(3) breaking of rSU(3) = 40%, and a
ratio of the penguin matrix element with the leading one of rpen = 50%, shows a preference
for dataset 2, where the minimal χ2 remains basically unchanged, while for dataset 1 it
approximately doubles. The new result for BR(B− → J/ψπ−)/BR(B− → J/ψK−) obtained
by LHCb seems therefore favoured by this fit. While it is too early to draw conclusions, this
observation demonstrates once more the importance of precise branching ratio measurements
in this context.

For both datasets, the shift ΔS now tends again to positive values, thereby lowering the
corresponding tension in the UT fit. It is however still compatible with zero, in agreement with
the above observation of a reasonable fit without penguin terms. The obtained ranges read

ΔSset 1
J/ψK

= [0.001,0.005]([−0.004,0.011]) , and (16.1)

ΔSset 2
J/ψK

= [0.004,0.011]([−0.003,0.012]) , (16.2)

for 68% (95%) CL, respectively, where the preferred sign change compared to the SU(3)
limit is due to relaxed correlations between S(B→ J/ψπ0) and the branching ratios in the fit,
because of the additional contributions. This underlines the necessity to treat SU(3) breaking
model-independently. Note that S(Bd → J/ψπ0) is predicted to lie below the present central
value of the measurement, thereby supporting the Belle result [31] over the BaBar one [32],
which indicates a very large value for this observable. These findings are illustrated in Fig. 16.1.
The same fit allows to predict the so far unmeasured CP asymmetries in Bs → J/ψK decays:
their absolute values lie for both datasets below approximately 30% at 95% CL. On the one
hand this allows for a crosscheck for the description in the above framework, on the other
hand it is clear that a measurement with a precision of ∼ 10% will already yield a significant
additional constraint on the model parameters. Especially the dependence on the (already
weak) theory assumptions will be further reduced with such a measurement [24].

The mixing phase is extracted as ϕfit
d
= 0.74 ± 0.03 (equal for both datasets), which is to

be compared with ϕSM
d,nive = 0.73 ± 0.03 when using the naive relation without penguin

4We do not allow for “exchanging roles” though, i.e. we continue to assume the leading matrix element to be the
one in the SU(3) limit with no penguin contributions.
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Figure 16.1: Fit results for datasets 1 (left) and 2 (right), for ΔS versus SCP(B0 → J/ψπ0),
including all available data. The inner areas correspond to 68% CL and 95%
CL with rSU(3) = 40% and rpen = 50%. The outer one is shown for illustration
purposes, only, and corresponds to 95% CL when allowing for up to rSU(3) =
60% and rpen = 75%. The light yellow area indicates the 2-σ range of the
S(B0 → J/ψπ0) average, the dashed line its central value. Figure taken from [24].

contributions. The inclusion of the correction therefore yields the same precision, but induces a
shift of the central value. The same is true for future data, as shown in [24] by the consideration
of several scenarios corresponding to additional data from the LHCb and SFF experiments.
This implies the corresponding error to be reducible, and therefore ensures the golden mode
to keep its special position among flavour observables.

In principle, the same approach can be used to constrain penguin pollution in the other “golden
mode”, Bs → J/ψϕ. Technical difficulties are the fact that the ϕ meson does not belong to
a single representation, and the more complicated structure of the final state. The latter is
also complicating the experimental analysis; so far only the B → J/ψK∗ decays have been
measured, which are b → s transitions as well. If the b → d modes can be measured
sufficiently precise to control the penguin pollution as well as the SU(3) breaking is subject to
further studies.

16.3 Conclusions

CP violation studies in heavy meson systems remain a very active field, and one of the main
paths to discover NP. The general picture remains consistent with the KM mechanism as the
only source of low-energy CP violation; in fact, the fits have improved very recently due to a
new measurement for B→ τν.

This – in many ways unexpected – situation requires a more precise knowledge of the corre-
sponding SM expectations, as potential small NP contributions will compete with subleading
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SM ones. The “golden modes” Bd → J/ψK and Bs → J/ψϕ are examples where subleading
contributions can affect the extraction of the mixing phase. For Bd → J/ψK, a new approach
to control them has been advocated, allowing to take into account SU(3) corrections model-
independently, which were shown to affect the procedure severely. The main result is a new
limit, |ΔSJ/ψK | ® 0.01 (95% CL), which can additionally be improved by coming data.

In conclusion, the apparent smallness of NP effects in flavour observables poses a challenge
to both theory and experiment. On the experimental side it is met by several high-luminosity
collider experiments, both running and under construction, allowing for unprecedented precision.
Also on the theory side the challenge is answered, by new strategies and adapting known ones
to higher precision. Together, these developments make for an exciting way ahead.
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17 RS-A4, θ13 and μ→ e,3e
A. Kadosh

Abstract In the first FLASY meeting I have introduced the RS-A4 model, aimed at a simulta-
neous explanation of quark and lepton masses and mixings. The model was shown to produce
realistic fermion masses and mixing patterns and has been tested "successfully" against vari-
ous phenomenological constraints coming from electroweak precision measurements (EWPM),
rare decays and more. These constraints allowed for a relatively low Kaluza-Klein (KK) mass
scale around 1.5TeV The recent measurement of θ13 ' θC/

p
2 by RENO and Daya Bay intro-

duce a more stringent test to the model’s ability to naturally generate large enough deviations
from tribimaximal (TBM) mixing. We repeat the preliminary analysis and consider all higehr
order corrections to the PMNS matrix. Most importantly, we show that the most significant
constraint on RS-A4 and similar constructions come from the measurement of BR(μ→ e,3e)
by SINDRUM and the future sensitivity of upcoming experiments

17.1 Introduction

Recently we have proposed a model [1] based on a bulk A4 flavor symmetry [2] in warped
geometry [3], in an attempt to account for the hierarchical charged fermion masses, the
hierarchical mixing pattern in the quark sector and the large mixing angles and the mild
hierarchy of masses in the neutrino sector. In analogy with a previous RS realization of A4 for
the lepton sector [4], the three generations of left-handed quark doublets are unified into a triplet
of A4; this assignment forbids tree level FCNCs driven by the exchange of KK gauge bosons.
The scalar sector of the RS-A4 model consists of two bulk flavon fields, in addition to a bulk
Higgs field. The bulk flavons transform as triplets of A4, and allow for a complete "cross-talk"
[5] between the A4 → Z2 spontaneous symmetry breaking (SSB) pattern associated with the
heavy neutrino sector - with scalar mediator peaked towards the UV brane - and the A4 → Z3
SSB pattern associated with the quark and charged lepton sectors - with scalar mediator
peaked towards the IR brane - and allows to obtain realistic masses and almost realistic mixing
angles in the quark sector. A bulk custodial symmetry, broken differently at the two branes [6],
guarantees the suppression of large contributions to electroweak precision observables [7],
such as the Peskin-Takeuchi S, T parameters. However, the mixing between zero modes of
the 5D theory and their Kaluza-Klein (KK) excitations – after 4D reduction – may still cause
significant new physics (NP) contributions to SM suppressed flavor changing neutral current
(FCNC) processes.

In general, when no additional flavor symmetries are present and the 5D Yukawa matrices
are anarchical, FCNC processes are already generated at the tree level by a KK gauge
boson exchange [8]. Stringent constraints on the KK scale come from the K0 − K0 oscillation
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parameter εK , the radiative decays b→ s(d)γ [8, 9], the direct CP violation parameter ε′/εK
[10], and especially the neutron electric dipole moment (EDM) [8], also in the presence of
an RS-GIM suppression mechanism [11, 12]. Conclusions may differ if a flavor pattern of
the Yukawa couplings is assumed to hold in the 5D theory due to bulk flavor symmetries.
They typically imply an increased alignment between the 4D fermion mass matrix and the
Yukawa and gauge couplings, thus suppressing the amount of flavor violation induced by the
interactions with KK states.

The most relevant consequence of imposing an A4 flavor symmetry is the degeneracy of the
left-handed fermion bulk profiles ƒQ, i.e. dg(ƒQ1,Q2,Q3) = ƒQ × 1. In addition, the distribution
of phases, CKM and Majorana-like, in the mixing matrices might induce zeros in the imaginary
components of the Wilson coefficients contributing to CP violating quantities [13].

An additional important source of flavor violation arise from anomalous off diagonal Z couplings,
which are a result of the KK mixing of fermions and gauge bosons after electroweak symmetry
breaking (EWSB). In the following we study Tree level Z exchange contributions to lepton flavor
violating (LFV) processes μ→ e,3e. In addition, we compare the RS-A4 predictions for θ13
to the new global fits, including RENO and Daya Bay.

17.2 Higher order corrections to the PMNS matrix and θ13

The new measurements of θ13 by RENO and Daya Bay allows one to rule out θ13 = 0 with a
significance of more than 10σ. This situation “poses a threat" to every model predicting TBM at
leading order and deviations from TBM should be thoroughly tested. Within the RS-A4 model,
the dominant cross-brane operator inducing deviations from TBM [14] mixing is ℓLχHνR [1].
If the bulk mass of χ(A4 → Z2) is vanishing, this operator is suppressed only by εχ ∼ 0.05,
compared to the leading order Dirac mass term.

We now recall that in general the effective Majorana Mass matrix is a 3×3 complex symmetric
matrix and thus contains 12 parameters. These parameters are the 3 masses, the 3 mixing
angles and 6 phases, out of which 3 can be absorbed in the neutrino fields and the remaining
are 2 Majorana and 1 KM phase. Notice also that, in general, the various couplings are
complex. Thus, considering only the contributions of operators of the form ℓLχmHνR, the
left-diagonalization matrix is now corrected to [1]:

Vν
L
=







1 0 0
0 1 0
0 0 eδ















1/2(
p
2− ε2

χ
) 0 −(1/

p
2+ εχ)

0 1 0
1/
p
2+ εχ 0 1/2(

p
2− ε2

χ
)















eα1 0 0
0 eα2 0
0 0 eα3






,

(17.1)
where εχ ∼ O(χ0/Λ3/25D ) stands for contributions from ε

χ
13 and ε

χ
11,22 in [1] and we have

omitted terms of O(ε3
χ
) and higher. The phases α can be absorbed in a rotation of the

neutrino fields, while the KM phase δ, given by

δ = Arg(M̃+ |M̃|εχ∗11 ))− Arg(M̃+ |M̃|ε
χ
11), (17.2)
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will contribute to CP violation in neutrino oscillations. The MNSP matrix at O(εχ) becomes:

VMNSP = U(ω)†Vν
L

=
1
p
6









1+ eδ + εχ(1− eδ))
p
2 eδ − 1− (eδ + 1)ε∗

χ
)

1+ωeδ + (ωeδ − 1)εχ)
p
2ω2 ωeδ − 1− (ωeδ + 1)ε∗

χ
)

1+ω2eδ + (ω2eδ − 1)εχ
p
2ω ω2eα − 1− (ω2eδ + 1)ε∗

χ
)









.

(17.3)

The middle column does not receive corrections. A non zero θ13 is generated, and θ23 deviate
from its maximal value. Defining θ = π/4+ εχ, the Jarlskog invariant turns out to be

m[V11 V∗12 V
∗
21 V22] =

p
3

18
(cos2θ− sin2θ sin δ) , (17.4)

where the Vj denote the entries of VMNSP.

Figure 17.1: Model predictions for θ13 vs. θ12 (left) and θ23 (right) including all dominant
higher order and cross talk effects. The white rectangles represent the 3σ allowed
regions from the global fit of [15, 16].

The global fits based on the recent indications of νμ → νe appearance in the RENO, Daya Bay,
T2K, MINOS and other experiments, allow one to obtain a significance of 10σ for θ13 > 0,
with best fit points at around θ13 ' 0.15, depending on the precise treatment of reactor fluxes
[15, 16]. We wish the RS-A4 higher order corrections to the PMNS matrix to be such that the
new fits are still “accessible" by a significant portion of the model parameter space.

We are able to obtain analytic expressions for the corrected diagonalization matrices of both
charged leptons and neutrinos, considering all dominant NLO effects. The resulting expressions
are incredibly long and depend on the ̃e


, ỹe


, yHχ

ν
, yχ

2

ν
parameters and Cχ [1], which is also
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constrained by the quark sector. Most importantly, these results do not depend on the LO
Yukawa couplings (Form diagonalizable LO rotation matrices). We write below approximate
expressions for θ12,13,23, considering the dominant effects in the neutrino and charged lepton
sectors, parameterized by (δ, εχ ∼ 0.06) and (̃ℓ


, ỹℓ


, λℓ ∼ 0.05), respectively.

θNLO13 '
eδ − 1
p
6
−
εχ
p
3
+
1−ωeδ
p
6

(̃ℓ2 + ỹ
ℓ
2 +ω̃

ℓ
3 +ωỹ

ℓ
3)λℓ,

θNLO23 '
ωeδ − 1
p
6

−
εχ
p
3
+
eδ − 1
p
6
(̃ℓ∗2 + ỹ

ℓ∗
2 )λℓ +

1−ω2eδ
p
6

(̃ℓ∗3 +ω
2ỹℓ∗3 )λℓ,

θNLO12 '
1
p
3
−
ω2
p
3
(̃ℓ2 + ỹ

ℓ
2)λℓ −

ω
p
3
(̃ℓ3 + ỹ

ℓ
3)λℓ. (17.5)

We performed a scan over all NLO Yukawa couplings in the range [0.3,3] and with random
complex phases. In Fig. 17.1 we present the model predictions for sin2 θ13 vs. sin2 θ12 (left)
and sin2 θ23 (right) for a set of 3000 randomly generated points, with the 3σ allowed ranges
of [15, 16] depicted as white rectangles.
We realize that the RS-A4 predictions significantly overlap with the allowed ranges for the
neutrino mixing angles, which (re-)demonstrates the viability of models predicting TBM at
LO.

17.3 Anomalous Z couplings and LFV

As stated in the introduction the main source of charged lepton flavor violation (cLFV) in
RS-A4 is anomalous Z couplings, induced by KK mixing and generating Tree level Z exchange
contributions to μ→ e,3e, Bs → μ+μ− and more. While the effect of EWSB on the mixing of
the Z boson with its KK partners and those of the (custodial) Z′, can be studied directly from
the equations of motion in the vicinity of an EWSB IR boundary condition, the KK mixing of
fermions has to be studied directly from the mass matrix.

To account for overlap effects and illustrate the flavor patterns generated in RS-A4 we write the
LO mass matrix for the first generation in the down-type sector following [9, 10], including the
zero modes and first level KK modes and overlap effects [13]

M̂KK
ℓ

(MKK)
=















ℓ̄
e(0)
L

ē
(1−−)
L

ℓ̄
e(1)
L
¯̃e(1

+−)
L















T










y̆eƒ−1ℓ ƒ−1
e
r00 0 y̆eƒ−1ℓ r01 y̆νƒ−1ℓ r101

0 y̆∗
e
r22 1 0

y̆eƒ−1e r10 1 y̆er11 y̆νr111
0 y̆∗

ν
r222 0 1

























e
(0)
R

ℓ
e(1−−)
R

e
(1)
R

ẽ
(1−+)
R















,

(17.6)
where we factorized a common KK mass scale MKK , y̆e,ν ≡ 2ye,ν4D ekπR/k and the pertur-
bative expansion parameter is defined as  ≡ /MKK [13]. In the above equation the various
r’s denote the ratio of the bulk and IR localized effective couplings of the modes correspond-
ing to the matrix element in question. For simplicity, we define r111 ≡ r11−+ , r101 ≡ r01−+ ,
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r22 ≡ r1−1− , r222 ≡ r1−1+− and the notation for the rest of the overlaps is straightforward.
The corresponding Yukawa matrix, Ŷe

KK
is obtained by simply eliminating  and the 1’s from

the above matrix and it leads the flavor structure of the contributions of (++), (−−), (+−)
and (−+) KK modes. The full three generation mass matrix will be 12× 12 and of similar
structure, which is modified mainly by the A4 flavor structure. Unfortunately, it can only be
diagonalized numerically, due to its dimension and the large number of input parameters. The
reason fermion KK mixing is so important for off diagonal Z couplings is the presence of
“fake" custodial partners, which are the SU(2)R partners of (eR, μR, τR) with (−+) and (+−)
boundary conditions. Recall that a 5D fermion corresponds to two chiral fermions in 4D. As a
result we will have LH states which are charged under Z as RH states and vice versa. Thus,
the Z coupling matrix, which was proportional to the identity in the zero mode approximation,
contains instead both types of (diagonal) entries gZ

L
, gZ

R
and will thus acquire non vanishing off

diagonal elements, once rotated to the common mass basis of KK and zero mode fermions.
The effect of EWSB translates via the EOM to a distortion of the Z wave function near the
IR brane, which generate subdominant non universality in the interaction basis Z coupling
matrices. We performed a matching to the operators contributing to μ→ e,3e, scanned over
the various parameters (LO and NLO Yukawa couplings) and included both brane peaked
and cross-brane 5D interactions, to obtain δgμeZL,R for a random sample of 40000 points. Since

BR(μ→ e,3e) ∝ (gZμeL,R )
2 and δgL generally dominates, we can plot the constraints coming

from the various cLFV experiments as vertical lines in the δgμeZL −δgμeZR plane. The results are
depicted in Fig. 17.2. When cross brane effects are neglected, corrections to the TBM pattern
can come only from higher order corrections to the heavy Majorana mass matrix, for which
achieving θ13 ∼ θC/

p
2 is slightly less natural. The bound from SINDRUM [17] “eliminates"

around 50% of the cross-brane RS-A4 setup and is easily and naturally satisfied. We conclude
that if no μ→ e,3e events will be actually observed in Mu3e, MuSIC and Dee-Mee the “cross
talk" RS-A4 model will be severely constrained and less appealing. The same situation holds
for the previous (brane localized) realizations of RS-A4, this time with the Mu2e, COMET and
PRIME future experiments.

17.4 Conclusion

The RS-A4 setup is one of the most elegant ways to simultaneously address the gauge
and flavor hierarchy problems and generate realistic neutrino masses and mixing patterns.
Furthermore, this construction was shown to relax the "little" CP problem associated with flavor
anarchic RS setups. The most significant constraints come from the Zbb anomalous coupling
and Z mediated contributions to μ → e,3e. Hopefully, the situation of such models will be
further clarified in the near future cLFV experiments mentioned above, although their results
can serve only as an indirect test. The search for unique collider and experimental signatures
is on the go, but the anticipated strength of the cLFV constraints still remains a very appealing
feature of the RS-A4 setup.
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Figure 17.2: The RS-A4 predictions for the anomalous Zμe couplings (LH and RH) in the presence
(left) or absence (right) of cross brane interactions. Each point represents the contributions
coming from both gauge boson mixing and KK fermion mixing. The dashed lines represent
the maximum sensitivities of past, present and future LFV experiments taking place at
PSI, FERMILAB and J-PARC.
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18 Implications of ΔACP Measurement for
New Physics

J. F. Kamenik

Abstract I review the implications of recent measurements of CP violation in D meson
decays in the context of standard model extensions. Using effective theory methods, one can
derive significant constraints on the possible non-standard contributions from measurements
of D0 − D̄0 mixing and CP violation in kaon decays (ε′/ε). Due to an approximate universality
of CP violation in new physics scenarios which only break the SU(3)Q flavor symmetry of
the standard model kinetic Lagrangian, such contributions are particularly constrained by
ε′/ε. Explanations of the observed effect within several explicit well-motivated new physics
frameworks are briefly discussed. Finally I comment on possible future experimental tests
able to distinguish standard vs. non-standard explanations of the observed CP violation in the
charm sector.

18.1 Introduction

CP violation in charm provides a unique probe of New Physics (NP). Not only is it sensitive
to NP in the up sector, in the Standard Model (SM) charm processes are dominated by two
generation physics with no hard GIM breaking, and thus CP conserving to first approximation.
Until very recently, the common lore was that “any signal for CP violation in charm would have
to be due to NP". The argument was based on the fact the in the SM and in the heavy charm
quark limit mc � ΛQCD, CP violation in neutral D meson mixing enters at O(|λb/λs|) ∼ 10−3
(λq ≡ VcqV∗q), while CP violating contributions to singly Cabibbo suppressed D decays only

appear at O(|λb/λs|αs(mc)/π) ∼ 10−4 [1].

18.2 CP Violation in D Decays: Experiment vs. SM Expectations

CP violation in neutral D meson decays to CP eigenstates ƒ is probed with time-integrated
CP asymmetries (ƒ ). These can arise from interferences between decay amplitudes with
non-zero CP odd (ϕƒ ) and even (δƒ ) phase differences

dir
ƒ
= −

2rƒ sin δƒ sinϕƒ

1+ 2rƒ cos δƒ cosϕƒ + r2ƒ
, (18.1)
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Figure 18.1: Comparison of the experimental ΔCP values with the SM reach as a function of
|ΔRSM|. See text for details.

where rƒ is the absolute ratio of the two interfering amplitudes. Recently both the LHCb [2]
and CDF [3] collaborations reported evidence for a non-zero value of the difference ΔCP ≡
K+K− −π+π− . Combined with other measurements of these CP asymmetries [4], the present
world average is

ΔCP = −(0.67± 0.16)% . (18.2)

This observation calls for a reexamination of theoretical expectations within the SM. Using
CKM unitarity (

∑

q=d,s,b λq = 0), the relevant D0 → K+K−, π+π− decay amplitudes (AK,π)

can be written compactly as AK,π = λs,d(A
s,d
K − Ad,sK )− λbA

d,s
K . In the isospin limit the two

different isospin amplitudes in the first term provide the necessary condition for non-zero δK,π,
while ϕSM

K,π
= Arg(λb/λs,d) ≈ ±70◦. On the other hand rK,π are controlled by the CKM ratio

ξ = |λb/λs| ' |λb/λd| ≈ 0.0007. Parametrizing the remaining unknown hadronic amplitude
ratios as RSM

K,π
≡ −Ad,sK,π/(A

s,d
K,π − A

d,s
K,π), the SM contribution to ΔCP can be written as

ΔCP ≈ (0.13%)m(ΔRSM) , (18.3)

where ΔRSM = RSM
K
+ RSM

π
. Comparison of this estimate with current experimental results is

shown in Fig. 18.1. One observes that |m(ΔRSM)| = O(2− 5) is needed to reproduce the
experimental results in Eq. (18.2) , in contrast to perturbative estimates in the heavy charm
quark limit (|RK,π | ∼ αs(mc)/π ∼ 0.1) (see [1] and the more recent analyses in Refs. [5]).
However, ξ suppressed amplitudes in the numerator of R cannot be constrained by rate
measurements alone, and it has been pointed out a long time ago that “Δ = 1/2 rule" type
enhancements are possible [6] (see also [7, 8]). Recently [9], an explicit estimate of potentially
large 1/mc suppressed contributions has been performed, yielding ΔSM

CP
® 0.4 % . Although

this is an order of magnitude above naïve expectations, the experimental value in Eq. (18.2)
cannot be reached.
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18.3 Implications of ΔCP for Physics Beyond SM

In the following we will therefore assume the SM does not saturate the experimental value,
leaving room for potential NP contributions. These can again be parametrized in terms of an
effective Hamiltonian valid below the W and top mass scales

Heff−NP
|Δc|=1 =

GF
p
2

∑



C
NP(′)
 Q(′) , (18.4)

where the relevant operators Q(′) have been defined in [10]. Introducing also the NP hadronic

amplitude ratios as RNP,K,π ≡ GF〈K+K−, π+π−|Q(′) |D0〉/
p
2(As,dK,π − A

d,s
K,π) and writing CNP


=

2EW/Λ
2, the relevant NP scale Λ is given by

(10 TeV)2

Λ2
=
(0.61± 0.17)− 0.12m(ΔRSM)

m(ΔRNP,)
. (18.5)

Comparing this estimate to the much higher effective scales probed by CP violating observables
in D mixing and also in the kaon sector, one first needs to verify, if such large contributions can
still be allowed by other flavor constraints. Within the effective theory approach, this can be
estimated via so-called “weak mixing" of the effective operators. In particular, time-ordered
correlators of Heff−NP

|Δc|=1 with the SM effective weak Hamiltonian can, at the one weak loop order,
induce important contributions to CP violation in both D meson mixing and kaon decays (ε′/ε).
On the other hand, analogue correlators, quadratic in Heff−NP

|Δc|=1 turn out to be either chirally
suppressed and thus negligible, or yield quadratically divergent contributions, which are thus
highly sensitive to particular UV completions of the effective theory [10].

18.3.1 Universality of CP Violation in ΔF = 1 processes

The strongest bounds can be derived for a particular class of operators, which transform
non-trivially only under the SU(3)Q subgroup of the global SM quark flavor symmetry GF =
SU(3)Q × SU(3)U × SU(3)D, respected by the SM gauge interactions. In particular one can
prove that their CP violating contributions to ΔF = 1 processes have to be approximately
universal between the up and down sectors [11]. Within the SM one can identify two unique
sources of SU(3)Q breaking given by A ≡ (YY†)/tr and Ad ≡ (YdY†d)/tr, where /tr denotes
the traceless part. Then in the two generation limit, one can construct a single source of
CP violation, given by J ≡ [A,Ad] [12]. The crucial observation is that J is invariant under
SO(2) rotations between the A and Ad eigenbases. Introducing now SU(2)Q breaking NP
effective operator contributions of the form QL =

h

(XL)jQγμQj

i

Lμ, where Lμ denotes a
flavor singlet current, it follows that their CP violating contributions have to be proportional to J
and thus invariant under flavor rotations. The universality of CP violation induced by QL can be
expressed explicitly as [11]

m(X
L
)12 = m(XdL )12 ∝ Tr (XL · J) . (18.6)
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The above identity holds to a very good approximation even in the three-generation framework.
In the SM, large values of Yb,t induce a SU(3)/SU(2) flavor symmetry breaking pattern [13]
which allows to decompose XL under the residual SU(2) in a well defined way. Finally, residual
SM SU(2)Q breaking is necessarily suppressed by small mass ratios mc,s/mt,b, and small
CKM mixing angles θ13 and θ23.

The most relevant implication of Eq. (18.6) is that it predicts a direct correspondence between
SU(3)Q breaking NP contributions to ΔCP and ε′/ε [11]. It follows immediately that stringent
limits on possible NP contributions to the later, require SU(3)Q breaking contributions to the
former to be below the per mile level (for ΔRNP, = O(1)).

The viability of the remaining 4-quark operators in Heff−NP
|Δc|=1 as explanations of the ΔCP value

in Eq. (18.2), depends crucially on their flavor and chiral structure. In particular, operators
involving purely right-handed quarks are unconstrained in the effective theory analysis but may
be subject to severe constraints from their UV sensitive contributions to D mixing observables.
On the other hand, QED and QCD dipole operators are at present only weakly constrained by
nuclear EDMs and thus present the best candidates to address the ΔCP puzzle [10].

18.4 Explanations of ΔCP within NP Models

Since the announcement of the LHCb result, several prospective explanations of ΔCP within
various NP frameworks have appeared in the literature. In the following we briefly discuss
ΔCP within some of the well-motivated beyond SM contexts.

In the Minimal Supersymmetric SM (MSSM), the right size of the QCD dipole operator
contributions can be generated with non-zero left-right up-type squark mixing contributions
(δ12)LR [1, 14, 15]. Parametrically such effects in ΔCP can be written as [14]

|ΔSUSY
CP

| ≈ 0.6%×
� |m(δ12)LR|

10−3

��

TeV

m̃

�

, (18.7)

where m̃ denotes a common squark and gluino mass scale. At the same time dangerous
contributions to D mixing observables are chirally suppressed. It turns out however that even
the apparently small (δ12)LR value required implies a highly nontrivial flavor structure of the UV
theory, in particular large trilinear (A) terms and sizable mixing among the first two generation
squarks (θ12) are required [14]

m(δ12)LR ≈
m(A)θ12mc

m̃
≈
�

m(A)

3

��

θ12

0.3

��

TeV

m̃

�

0.5× 10−3 .

Similarly, warped extra dimensional models [16] that explain the quark spectrum through flavor
anarchy [16, 17] can naturally give rise to QCD dipole contributions affecting ΔCP as [18]

|ΔRS
CP
| ≈ 0.6%×

� Oβ

0.1

�

�

Y5

4

�2�3TeV

mKK

�2

, (18.8)
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where mKK is the KK scale, Y5 is the 5D Yukawa coupling in appropriate units of the AdS
curvature and the function Oβ parameterizes the Higgs profile overlap with the fermion KK
state wavefunctions. Reproducing the experimental value of ΔCP requires near-maximal
5D Yukawa coupling, close to its perturbative bound [19] of 4π/

p

NKK ' 7 for NKK = 3
perturbative KK states. In term, this helps to suppress dangerous tree-level contributions to
CP violation in D− D̄ mixing [20]. This scenario can also be interpreted within the framework
of partial compositeness in four dimensions, but generic composite models typically require
smaller Yukawas to explain ΔCP and consequently predict sizable contributions to CP violation
in ΔF = 2 processes [21].

On the other hand, in the SM extension with a fourth family of chiral fermions ΔCP can be
affected by 3× 3 CKM nonunitarity and b′ penguin operators

|Δ4thgenCP | ∝ m
�

λb′

λd − λs

�

. (18.9)

However, due to the existing stringent constraints on the new CP violating phases entering
λb′ [22], only moderate effects comparable to the SM estimates are allowed [8].

18.5 Prospects

Continuous progress in Lattice QCD methods (c.f. [23]) gives hope that ultimately the role of
SM long distance dynamics in ΔCP could be studied from first principles. In the meantime it is
important to identify possible experimental tests able to distinguish standard vs. non-standard
explanations of the observed value.

Explanations of ΔCP via NP contributions to the QCD dipole operators generically predict
sizable effects in radiative charm decays [24]. First, in most explicit NP models the short-
distance contributions to QCD and EM dipoles are expected to be similar. Moreover, even
assuming that only a non-vanishing QCD dipole is generated at some high scale, the mixing
of the two operators under the QCD renormalization group implies comparable size of the
two contributions at the charm scale. Unfortunately, the resulting effects in the rates of
radiative D → Xγ decays are typically more than two orders of magnitude below the long-
distance dominated SM effects [18]. This suppression can be partly lifted when considering
CP asymmetries in exclusive D0 → P+P−γ transitions, where MPP =

p

(pP+ + pP−)2 is close
to the ρ,ω,ϕ masses [24]. Related observables in rare semileptonic D decays have also been
studied recently [25].

An alternative strategy makes use of (sum rules of) CP asymmetries in various hadronic D
decays (necessarily including neutral mesons). It is effective in isolating possible non-standard
contributions to ΔCP if they are generated by effective operators with a Δ = 3/2 isospin
structure [26] (which unfortunately does not include the QCD dipoles).

Finally, correlations of non-standard contributions to ΔCP with other CP violating observables
like electric dipole moments, rare top decays or down-quark phenomenology are potentially
quite constraining but very NP model dependent [14, 27].
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19 Flavour Symmetry Models after Daya Bay
and RENO

S.F. King

Abstract We discuss the impact of the recent measurements of the lepton mixing angle θ13
by the Daya Bay and RENO reactor experiments on neutrino mass models based on flavour or
family symmetry.

19.1 Introduction

It is one of the goals of theories of particle physics beyond the Standard Model to predict quark
and lepton masses and mixings, or at least to relate them. While the quark mixing angles are
known to all be rather small, by contrast two of the lepton mixing angles, the atmospheric angle
θ23 and the solar angle θ12, are identified as being rather large. Until recently the remaining
reactor angle θ13 was unmeasured. Recently Daya Bay [1] and RENO [2], collaborations have
measured sin2(2θ13) ≈ 0.1 corresponding to θ13 ≈ 9o.

Figure 19.1: Simple lepton mixing patterns, all involving zero reactor angle and maximal
atmospheric angle, and distinguished by solar angles as shown.
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From a theoretical or model building point of view, one significance of this measurement is that
it excludes the well known tri-bimaximal (TB) lepton mixing pattern shown in Fig.19.1 in which
the atmospheric angle is maximal, the reactor angle vanishes, and the solar mixing angle is
approximately 35.3◦. When comparing global fits to TB mixing it is convenient to express the
solar, atmospheric and reactor angles in terms of deviation parameters (s,  and r) from TB
mixing[3, 4]:

sinθ12 =
1
p
3
(1+ s), sinθ23 =

1
p
2
(1+ ), sinθ13 =

r
p
2
. (19.1)

For example, the global fit in [5] yields the 1σ ranges for the TB deviation parameters:

−0.066 ≤ s ≤ −0.013, −0.146 ≤  ≤ −0.094, 0.208 ≤ r ≤ 0.231, (19.2)

assuming a normal neutrino mass ordering. As well as showing that TB is excluded by the
reactor angle being non-zero, Eq. 19.2 shows a preference for the atmospheric angle to
be below its maximal value and also a slight preference for the solar angle to be below its
tri-maximal value. An interesting possibility consistent with the data is Tri-bimaximal-Cabibbo
(TBC) mixing [6] with  = s = 0 and r set equal to the Wolfenstein parameter λ, corresponding
to θ13 = 9.2o.

As a result of the rapidly changing landscape of neutrino mixing parameters, many models
based on discrete family symmetry which were proposed initially to account for TB mixing
are now either excluded, or have been subjected to modification [7]. This not only applies
to TB mixing but also to other simple lepton mixing patterns as shown in Fig.19.1, including
bi-maximal (BM) and Golden ratio (GR). All these simple mixing patterns can all be enforced
by an underlying symmetry, as we will shortly discuss. The fact that they are all excluded
therefore calls into question the symmetry approach. However it is worth noting at the outset
that simple variants of TB mixing are still viable such as those shown in Fig.19.2, and they may
also arise from family symmetry, as we shall discuss later.

Some authors regard the large reactor angle as signalling an anarchical neutrino mass matrix
[8]. The basic choice facing theorists following Daya Bay and RENO is therefore: symmetry
vs anarchy, as shown in the left panel of Fig. 19.3. In this talk we shall continue to follow the
symmetry approach, based on family symmetries such as those shown in the right panel of
Fig. 19.3, where the family symmetry may be implemented either directly or indirectly as also
indicated in the left panel, where this classification was introduced in [9].

It is worth recalling the situation before the measurement of the reactor angle. For example, let
us consider TB mixing. In this case, simple finite family symmetries such as A4 and S4 were
capable of embedding the Klein symmetry of the TB neutrino mass matrix. For example S4
contains the Klein generators S,U, together with T enforcing the diagonality of the charged
lepton mass matrix in this basis. In the direct approach to models of TB mixing, the family
symmetry GF is broken by flavons such that the S,U preserving flavons ϕS,U only appear
in the neutrino sector, while the T preserving flavon ϕT only appears in the charged lepton
sector as shown in the left half of Fig.19.4. Similar arguments may be applied to account
for the other simple mixing patterns, where BM mixing can also emerge from S4, while GR
mixing may arise from A5. All these possibilities BM, TB, GR involve zero reactor angle and
maximal atmospheric angle due to the 2-3 symmetry enforced by the U generator of the Klein
symmetry.
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Figure 19.2: Simple variants of TB mixing, namely: tri-bimaximal-reactor (TBR) mixing; tri-
maximal mixing with first column of TB form (TM1); tri-maximal mixing with second
column of TB form (TM2). The distinctive atmospheric sum rules are indicated in
the notation of Eq.19.1.

Figure 19.3: Left panel shows the simple choice facing theorists after Daya Bay and RENO.
The right panel shows some possible family symmetries.

Alternatively, in the indirect approach, the family symmetry GF is completely broken by three
flavons whose VEVs are aligned along the columns of the TB mixing matrix, but which appear
quadratically in the neutrino sector, as shown in the right half of Fig.19.4.

Following Daya Bay and RENO, the possible strategies for direct models are as shown in
Fig.19.5. For the smaller groups such as A4, S4, A5, on the left-hand part of Fig.19.5, which
all predict zero reactor angle at the leading order (LO), the possible options are: break the
T generator by invoking charged lepton corrections; break the U generator by some special
higher order (HO) corrections, leaving the S generator in tact, leading to special mixing patterns
such as tri-maximal mixing; or break both S,U by general HO corrections, leading to a generally
unpredictive scheme. We now consider each possibility in turn.

The case where only the T generator is broken by a non-diagonal charged lepton mass matrix
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Figure 19.4: The direct vs indirect approach to family symmetry models of TB mixing before
Daya Bay and RENO.

Figure 19.5: Possible strategies for direct models after Daya Bay and RENO.

leads to solar sum rules involving cos δ as follows [10, 11]:

BM : θ12 ≈ 45o + θ13 cos δ
TB : θ12 ≈ 35.26o + θ13 cos δ
GR : θ12 ≈ 31.7o + θ13 cos δ. (19.3)

Since θ13 ≈ 9o the requirement of a solar angle θ12 ≈ 34o leads to a distinctive prediction for
cos δ in each case. The basic assumption is that the charged lepton correction is dominated
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by Cabibbo-like (1,2) mixing with a charged lepton mixing angle equal to the Cabibbo angle,
giving θ13 = λ/

p
2 as in TBC mixing [6].

The case where only the U generator is broken (with S, T preserved) can lead to a simple
pattern of mixing, namely TM2 mixing, with examples of such models given in [12–14]. Other
TB variants in Fig.19.2 can also arise from the indirect approach as shown in Fig.19.6. For
example, TBR and TM1 mixing can arise from different kinds of sequential dominance (SD)
with the alignments shown in Fig.19.6. CSD2 yields TM1 mixing as shown in Fig.19.2 [15]
. PCSD yields TBR mixing as shown in Fig.19.2 [16, 17]. If we set r = λ then special case
corresponds to TBC mixing [6].

Finally, if a larger family symmetry such as Δ(96) is assumed, as in the right-hand part of
Fig.19.5, then it is possible to have a different kind of Klein symmetry at the LO which already
gives a reactor angle of θ13 ≈ 12o, together with θ12 ≈ θ23 ≈ 36o, closer to the desired
value. However, in the framework of a GUT model, modest charged lepton corrections of about
3o can correct these angles to acceptable values of θ13 ≈ 9.6o, together with θ12 ≈ 33o and
θ23 ≈ 37o [18].

Figure 19.6: Possible strategies for indirect models before/after Daya Bay and RENO. CSD
yields TB mixing. CSD2 yields TM1 mixing as shown in Fig.19.2. PCSD yields
TBR mixing as shown in Fig.19.2. If we set r = λ then special case corresponds
to TBC mixing.
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20 Neutrino Mass Generation by
Higher-Dimensional Effective Operators
in GUTs

M. B. Krauss

Abstract We will discuss neutrino mass generation by higher-dimensional effective operators
in SUSY. As opposed to the standard type-I seesaw, these models are testable in experiments
and have phenomenological implications at the LHC, such as processes with displaced vertices
and lepton number violation. We will also discuss the possibility of embedding these effective
operators into Grand Unified Theories and their agreement with Cosmological constraints.

20.1 Introduction

The standard type-I seesaw mechanism implies new physics close to the GUT scale, which is
not testable in experiments. Therefore new models that introduce new particles with masses
at the order of 1 TeV for the generation of neutrino mass have come into discussion recently.
Due to the lower mass scale, these models have phenomenological implications at the LHC.
Examples are radiative mass generation, where loop suppression factors enter, or models with
a small lepton number violating contribution, such as the inverse seesaw mechanism or SUSY
with R-parity violation. In a further group of models the generation of neutrino mass via a
dimension 5 operator is forbidden so that the leading contribution is of higher dimension [1–13].
In the following we want to discuss the latter option in the context of supersymmetry [14].

20.2 Neutrino mass and effective operators

In general at low energies we can describe physics beyond the Standard Model (SM) by a
tower of effective operators which are added to the SM Lagrangian:

L = LSM + Ld=5eff + Ld=6eff + · · · , with Ldeff ∝
1

Λd−4NP

Od , (20.1)

where d is the dimension of the operator, which is supressed by the new physics scale ΛNP to
the power d − 4. The type-I seesaw, for example, becomes, after integrating out the heavy
right handed neutrinos, the so called Weinberg operator [15],

Ld=5 ⊃
YN

2

mN
〈H〉2νcν, (20.2)
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where YN is the Yukawa coupling between the SM lepton doublet and the right handed neutrinos
and mN the mass of the latter. Inserting the vacuum expectation value of the Higgs fields after
electroweak symmetry breaking we obtain a small mass term for the left handed neutrinos,
which is suppressed by mN. In models that include additional Higgs fields, such as Two Higgs
Doublet Models and the (Next to) Minimal Supersymmetric Standard Model ((N)MSSM), higher
contributions to the neutrino mass appear:

md=6
eff =

1

Λ2
〈H〉2〈S〉, md=7

eff =
1

Λ3
〈H〉2〈H〉〈Hd〉, . . . (20.3)

If the d = 5 operator is forbidden, the leading mass term will be of dimension > 5 and therefore
suppressed by higher powers of the new physics scale Λ. As a consequence Λ can be at a
significantly lower scale in order to obtain the small observed neutrino masses. In a SUSY
framework we can use, for example, a discrete Z3 symmetry to have the d = 7 operator as
leading contribution. (See also the discussion in Ref. [8, 14])

20.3 A d = 7 example

The Weinberg operator can be decomposed into the type I, type II or type III seesaw model [16].
Analogously there exist several possible fundamental theories, which lead to the same higher-
dimensional operator after integrating out the heavy fields. One example of such a de-
composition of a d = 7 operator, which has been studied in Ref. [14], is specified by the
superpotential

W = WNMSSM + YNN̂L̂ · Ĥ − κ1N̂′ξ̂ · Ĥd + κ2N̂′ξ̂′ · Ĥ +mNN̂N̂
′ +mξξ̂ · ξ̂′ , (20.4)

where the mediators N and N′ are SM singlets and ξ and ξ′ are doublets. From this superpoten-
tial we obtain the mass matrix for the neutral fermion fields. In the basis ƒ0 = (ν,N,N′, ξ0, ξ′0)
it reads

M0
ƒ
=















0 YN 0 0 0
YN 0 mN 0 0
0 mN 0 κ1d κ2
0 0 κ1d 0 mξ

0 0 κ2 mξ 0















. (20.5)

By integrating out the heavy fields we obtain an effective mass matrix for the three SM
neutrinos

mν = 3dY
2
N

κ1κ2

mξm2
N

, (20.6)

where the couplings carry a flavor index. The flavor structure of the neutrino mass matrix can
be obtained by choosing the coupling parameters accordingly.

We can have masses of the mediator fields at the TeV scale for couplings O(10−3), which is
in the range of the SM Yukawa couplings. Accordingly this model can be tested at the LHC.
The SM singlet fields N and N′ are only produced in small amounts due to the smallness of
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the Yukawa couplings. The SU(2) doublets ξ and ξ′, however, can be produced in Drell-Yan
processes, similarly to charginos and neutralinos, with a cross-section of up to σ ∼ 102 fb.
These particles will then decay into vector bosons and leptons. Since the mixing between
the heavy and the light neutrinos is small, large decay length of up to several millimeters are
expected. As an effect displaced vertices can be used to identify these processes. To establish
the connection to neutrino physics, also lepton number violating signals have been studied.
In a numerical calculation we obtained a cross-section for the lepton number conserving
process pp→Wℓℓ of O(102) fb whereas the corresponding lepton number violating process
is suppressed due to pseudo-Dirac pairs (< O(10−9) fb). For pp → WℓWℓ, however, the
lepton number violating process is larger than naively expected (O(10−2) fb).

20.4 GUT completion

Since the introduction of additional particles modifies the running of the gauge couplings, the
presented model will spoil unification unless we add complete SU(5) multiplets to the (N)MSSM.
The mediators are embedded as follows:

5M =













dc1
dc2
dc3
e−

−νe













L

=
�

dc
L
L

�

5ξ′ =















d′c1
d′c2
d′c3
ξ′−

−ξ′0















L

=
�

d′c
L
ξ′
L

�

5ξ =















d
′′

1
d
′′

2
d
′′

3
ξ+

−ξ0















R

=

�

d
′′

R
ξR

�

H5 =













H1
H2
H3
H+


H0














=
�

Hcol
H

�

H5 =















H′1
H′2
H′3
H−d
H0
d















=
�

H′col
Hd

�

N,N′(S) fermionic singlets .

(20.7)

The possible interaction terms which must be invariant under SU(5) can be realized either as
an extension of the MSSM

W = y1N5ξH5 + y2N5ξ′ H5 + y3N5MH5 +

y′1, N
′ 5ξH5 + y

′
2N
′ 5ξ′ H5 + y′3N

′ 5MH5 +

mξ′ 5M 5ξ +mξ 5ξ′ 5ξ +mNN
′N+mNNNN+mN′N′N

′N′ +

yd 5M 10H5 + y
′
d
5ξ′ 10H5 + y 1010H5 (20.8)

or the NMSSM

W = y1N5ξH5 + y2N5ξ′ H5 + y3N5MH5 +

y′1, N
′ 5ξH5 + y

′
2N
′ 5ξ′ H5 + y′3N

′ 5MH5 +

λξ′ S5M 5ξ + λξ S5ξ′ 5ξ + λNSN′N+ λNNSNN+ λN′N′SN′N′ +

yd 5M 10H5 + y
′
d
5ξ′ 10H5 + y 1010H5 . (20.9)

In the NMSSM case the mediator mass scale is determined by 〈S〉, which is of order 1 TeV
and results in the required mass scale for the light neutrinos. Furthermore the NMSSM avoids
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some problems of the μ-term of the NMSSM (see also Ref. [8, 14]). We obtain, however,
effective operators of the type

1

〈S〉
LLHH,

1

〈S〉3
(LLHHd)(HHd) .

As a consequence 〈S〉 breaks any discrete symmetry under which it is charged. This prevents
us from choosing a simple discrete symmetry group to avoid the d = 5 contribution to neutrino
mass.

As a further point, the promotion of the SM SU(2) doublets to 5-plets of SU(5) requires the
introduction of additional d-quarks, which are expected to have masses of TeV and to be
stable. Their stability is a consequence of the same symmetry that forbids the d = 5 operator.
Stable heavy d-quarks, however, cause conflicts with cosmological constraints. Their presence
during Big Bang Nucleosynthesis would alter the observed abundances of the light elements
in the universe (see, e.g., Ref. [17] for a review). Further bounds come, e.g., from direct heavy
element searches in water or from the stability of neutron stars. When the heavy quarks are in
thermal equilibrium in the early universe they have the possibility of pair annihilation via gluons
into the lighter SM quarks or gluon pairs. This is, however, insufficient to lower the particle
yield after freeze-out below observational constraints [18]. A decay of the heavy quarks via
leptoquarks is possible and less suppressed then proton decay, due to the higher mass of the
involved particles, but the lifetime of the heavy quarks is still not sufficiently small to avoid the
given bounds. For those reasons it will be studied if there are other ways to reduce the number
density of additional d-quarks, or if these constraints are sufficient to rule out this particular
model. Also a more systematic study how other decompositions of higher dimensional effective
operators are affected by bounds will be done.

20.5 Conclusion

We have demonstrated that neutrino mass generation by higher-dimensional effective operators
can lower the new physics scale to TeV. Phenomenological studies predict displaced vertices
and lepton number violating signals at the LHC for certain decompositions of these effective
operators. We have also discussed that in order to conserve gauge coupling unification the
introduction of complete SU(5) multiplets is necessary. Additional heavy d-quarks that appear
as a consequence, have cosmological constraints on their abundances.
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21 LHCb results now and tomorrow
M. Kreps

Abstract We discuss the status of the LHCb experiment in mid 2012 together with prospects
for near and long term future.

21.1 Introduction

With start of the LHC and its dedicated quark flavour physics experiment LHCb we are entering
a new era in flavour physics. In this new era, we expect an unprecedent improvement of
several key measurements, which should reveal new physics or put stringent constraints on
it. The length of any proceedings is practically insufficient to cover any details of the existing
measurements, so we will only briefly summarize presented results and supplement this with
information on running and expectations for near and longer term future as such information is
not always readily available in a single place. When listing results, unless specified otherwise,
the first uncertainty is always statistical and second systematic.

21.2 Current running

The LHCb experiment started its data taking useful for flavour physics in 2010. During 2011
we collected a dataset with an integrated luminosity of 1.0 fb−1. This was achieved by running
at an instantaneous luminosity well above design, which brings an increased number of
collisions within a bunch crossing from the designed value of μ = 0.4 to μ = 1.7. While μ
is significantly above the design, physics results proved that the detector and reconstruction
software can handle this without major issues. Another significant achievement was the
successful commissioning of luminosity levelling, a process which allows LHCb to run at a
constant instantaneous luminosity over an LHC accelerator fill which should be contrasted
with the general purpose experiments ATLAS and CMS. The capability to run at the constant
instantaneous luminosity not only allows us to maximize the amount of data we collect, but
also ensures quite extraordinary stability of running conditions, which practically do not change.
Since the restart of the data taking in April 2012, in about three months we collected 0.62
fb−1. Projection from this value into the end this year data taking suggests, that we will collect
around 2.0 fb−1 of data this year.

From a detector point of view, LHCb is running very well with an overall efficiency above 95%.
We not only collect data with high efficiency, but we collect practically only good data, with only
a tiny fraction which has to be discarded from the data analysis.
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21.3 Preview of physics results

Here we present a brief review of LHCb results prior to the ICHEP 2012 conference. As in time
of the workshop we could add less then half of the statistics of 2011, practically all results are
obtained on the full 2011 dataset with exceptions to this explicitly marked. While there are
many results available from this dataset, we concentrate on those which are of highest interest
for constraining new physics.

The first set of results to discuss are determinations of CKM angle γ. This is the only angle in
the CKM matrix which can be determined from tree level processes and as such is expected
to receive a negligible contribution from possible new physics. Without it the CP-violating
phase in the standard model is not well determined and one could always question whether
new physics is just hiding in the methods used to determine the parameters of the standard
model. While important to define the standard model, the angle γ is not yet well determined
experimentally. This is due to an interplay of small CP violation in decays which have relatively
large rate and tiny rate in decays which have sizeable CP violation. Thus only in recent years
experiments started to see significant signals which can be used to extract the angle γ. We
perform measurement in both ADS and GLW decay modes and we obtain 5.8 σ significance for
direct CP violation in the B± → DK± decays [1]. For the observables relevant for the γ angle
extraction we obtain RCP+ = 1.007 ± 0.038 ± 0.012, ACP+ = 0.145 ± 0.032 ± 0.010,
RADS(K) = 0.0152 ± 0.0020 ± 0.0004 and AADS(K) = −0.52 ± 0.15 ± 0.02. All those
results are limited by statistics with one of the largest systematic uncertainties stemming from
the detector asymmetry, knowledge of which will improve with increased statistics.

An alternative way of extracting the CKM angle γ is the use of Bs → DsK decays. While
theoretically the method is very clean, the process involves Bs mixing and as such could be
possibly affected by new physics. With 370 pb−1 we observe about 400 signal events which
are used to measure the branching fraction of (1.90± 0.12± 0.13+0.12−0.14)× 10

−4 with the
last uncertainty coming from ƒs/ ƒd measurement [2]. With full statistics collected in 2011 we
expect about 1200 signal events, which can be used for time dependent analysis to extract the
angle γ, results are expected in autumn 2012.

Moving on to measurements which are relevant for search for new physics we start with
the CP-violating phase ϕS, which is the phase between B0

s
mixing diagrams and b → cc̄s

decays. Traditionally this is measured using B0
s
→ J/ψϕ decays, which is a mixture of CP-even

and CP-odd final state. To disentangle the two, angular distributions have to be analyzed.
With data collected in 2011, LHCb has about 21000 signal events in this decay, which yields
measurements of ϕS = −0.001 ± 0.101 ± 0.027 and the decay width difference Δs =
0.116 ± 0.018 ± 0.006 ps−1, both the most precise values [3]. With the unprecedent
dataset collected by LHCb we are able to use also B0

s
→ J/ψπ+π− decays. Those provide

a practically pure CP-odd final state to complement the ϕS measurement without need of
the angular analysis. In case of this decay, we constrain the mean decay width and decay
width difference to the values obtained in the analysis of B0

s
→ J/ψϕ decays and extract

ϕS = −0.019+0.173−0.174
+0.004
−0.003 [4]. Combination of the two measurements yields ϕS = −0.002±

0.083± 0.027. The dominant systematic uncertainty in these measurements comes from
assumptions of no CP violation in mixing or decay and with an increased dataset we should
have enough sensitivity to remove those assumptions.
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While listing only a single solution, both analyses above have a symmetrical solution with the
opposite sign of Δs and CP-violating phase π − ϕS. To resolve the ambiguity, we turn to the
B0
s
→ J/ψK+K− decays, which are dominated by B0

s
→ J/ψϕ, but have also a contribution

from K+K− s-wave component. Following the analysis in bins of the kaon pair invariant mass,
we can see variation of the CP-conserving phase between B0

s
→ J/ψϕ and s-wave. From this

variation we can conclude that the physical solution is that with positive Δs and thus ϕS is
close to its standard model expectation [5].

Significant attention has been received by B→ hh′ decays. These proceed through gluonic
b→ s penguins and b→  trees. While they have sensitivity to a new physics, this sensitivity
is screened by hadronic physics, so any interpretation is difficult or needs some assumptions.
One model independent test is the comparison of direct CP violation between B0 → K+π−

and B0
s
→ K−π+ decays. Based on the measured ACP in B0 decay, one can in the standard

model predict ACP for B0
s

[6]. At LHCb we have the worlds largest samples from which we
measure ACP(B0) = −0.088± 0.011± 0.008 [7]. This result is consistent with the average
of other measurements [8] and its precision is close to that of the world average. For the B0

s
decay we measure ACP(B0s ) = 0.27± 0.08± 0.02 with 3.3σ significance for CP violation
[7], which is the first significant signal for any CP violation in the B0

s
system. The measured

value is also consistent with the standard model expectation [6].

The next natural step is to exploit the large samples and move towards time dependent studies.
The first result to mention is a measurement of the effective lifetime in B0

s
→ K+K− decays.

Here, the B0
s

decays in to the CP-even final state and in the standard model lifetime measured
in this decay gives approximately the lifetime of light B0

s
mass eigenstate. Even if new physics is

present, the effective lifetime can be used to constrain CP violation and Δs in a global analysis.
With dataset from 2011 collected by a dedicated decay time unbiased trigger we measure
τeff = 1.455±0.046±0.006 ps [9]. A second time dependent analysis, which demonstrates
the capabilities of LHCb, is the measurement of CP violation in B0 → π+π− and B0

s
→ K+K−

decays. We measure Adr
ππ
= 0.11 ± 0.21 ± 0.03 with Am

ππ
= −0.56 ± 0.17 ± 0.03 for

B0 and Adr
KK
= 0.02 ± 0.18 ± 0.04 with Am

KK
= 0.17 ± 0.18 ± 0.05 for B0

s
[10]. While

not yet competitive with B-factories on B0, with more data to come and hopefully some
improvements in the flavour tagging there are prospects on improving the knowledge from
previous experiments. For the B0

s
, while uncertainties are large, this is a first measurement

and will remain unique to the LHCb experiment.

The next class of decays to discuss are ones governed by the b → s transition. Those
proceed through electroweak penguin diagrams and provide a rich set of observables based
on angular distributions. The best studied decay in this class is B → K∗μ+μ−. With about
900 B0 → K∗0μ+μ− events, LHCb has the worlds largest sample, which is used to make th
best measurements of several quantities [11]. One of the best known is the forward-backward
asymmetry AFB, which we show in Fig. 21.1. The high statistics available directly reflects in the
precision, which is by far the best of all existing measurements. Additionally, for the first time,
we also measure the q2 point at which AFB is crossing zero to be q20 = 4.9

+1.1
−1.3 GeV2/c4. In

the determination of q20, systematic uncertainties are completely negligible, so we quote only
statistical uncertainties. An other rather exciting result in this area is the measurement of isospin
asymmetry in B→ K(∗)μ+μ− decays [12]. The measurement is essentially a comparison of
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Figure 21.1: The forward-backward asymmetry AFB as a function of dimuon invariant mass
squared (q2) in B0 → K∗μ+μ− decays (left) and the isospin asymmetry in
B→ Kμ+μ− decays as a function of q2.

the differential decay widths between B0 and B+. For B→ K∗μ+μ− the asymmetry across
dimuon invariant mass is found to be consistent with zero. For the B → Kμ+μ− we show
the asymmetry in Fig. 21.1. We find an indication of a non-zero asymmetry at both low
and high dimuon invariant masses. The asymmetry itself appears to be caused mainly by a
deficit of B0 → K0

S
μ+μ− decays compared to the expectation. While exploitation of b→ s

transitions has been pursued by previous experiments, for the first time LHCb could also detect
a signal from b→ d transition. Specifically we observe the B+ → π+μ+μ− decay with 5.2σ
significance and measure its branching fraction to be (2.4± 0.6± 0.2)× 10−8 [13].

The above studies are supplemented by b → sγ transitions, which proceed purely through
electromagnetic penguins. While the LHCb calorimeter is not as performant as those at the
B-factories it has sufficient capabilities for significant improvement of the world knowledge on
radiative decays. With huge production rates of B0

s
and baryons, we are unique in this sector.

As an example we measure B(B0 → K∗γ)/B(B0
s
→ ϕγ) to be 1.12±0.08+0.06−0.04

+0.09
−0.08 where

first uncertainty is statistical, second systematic and third is due to the uncertainty on the
production fraction ratio [14]. This translates to B(B0

s
→ ϕγ) = (3.9±0.5)×10−5. The large

sample of B0 → K∗γ decays is also used for the most precise measurement of CP violation in
this mode with the obtained value ACP = 0.008± 0.017± 0.009 [15].

The final result to mention is a search for the Bs → μμ decay. This decay started to be an
effective hammer to new physics models already with limits several orders of magnitude away
from the standard model. This is mainly caused by the fact that in SUSY models the rate goes
with a high power of tnβ which for large tnβ gives huge enhancements. A search was
performed on 2011 data with expected limit at 95% C.L. of 3.4×10−9 under pure background
hypothesis and 7.2× 10−9 assuming data have in addition to the background also standard
model signal [16]. The observed limit is 4.5×10−9, which is the best in the world. Comparing
the observed limit to expectation we can conclude that there are likely to be some signal events
in the sample, but the total number of events is smaller than expected. With the limit being only
about 1.4 times the standard model and with the good performance of the LHC this year, we
should be closing this gap in the near future. It should be noted that while at this stage we are
limited by the available statistics, once we observe the signal, a precise determination of the
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fragmentation fraction ratio ƒs/ ƒd becomes important for the measurement of the branching
fraction.

21.4 Short term expectation

So what to expect in the near future? We are running very well and in mid-August 2012 we
already collected about 1.0 fb−1 of data, the same as the 2011 total. While our goal was to
collect 1.5 fb−1 this year, with extension of the LHC run we are likely looking to a dataset
above 2.0 fb−1, which would triple the statistics from 2011. With such samples, practically
all our results can be meaningfully updated on the time scale of about one year. As in most
cases we are not limited by systematic uncertainties, and typically the dominant ones will
improve with more data, there is no real show stopper for improvements. The exception might
be measurements of decay rates, which have to be normalized and thus improvements in
lattice calculations which enter the determination of ƒs/ ƒd would make a difference. For the
measurements of asymmetries, we are certainly far from the wall of systematic uncertainties.

One thing of personal opinion I would like to stress, is the long shutdown of LHC in 2013 and
2014. If we add year 2015 to collect data which would again allow a meaningful addition of the
statistics to the current round of analyses, there is some time when we will be looking to new
ideas and new measurements. If theory community has new ideas, I’m sure in a year from now
there will be lots of eager people to translate them to new measurements not done before.

21.5 Upgrade and long term expectation

While we are taking data only for the third year, already now the time to double the dataset
takes a significant fraction of a year and soon it would take more than a year. Thus if we
continue with existing LHCb detector rather soon we have to wait too long for increase of
statistics to make significant progress. One obvious solution is to increase luminosity, but with
the current detector and its readout, the increased luminosity does not translate to an increase
of yields, which is specially true for fully hadronic final states. To overcome the limitation and
to get to higher luminosities, LHCb collaboration proposed to upgrade detector and run also
during the next phase of LHC running [17]. The idea was well received and in response we
worked out some more details in a Framework TDR [18]. For theory community, one useful
piece of information contained in it is an update on our sensitivities on the scale of 2018
and then with 50 fb−1 collected by the upgraded detector. Without listing all details here, in
most of the measurements we can do, our statistical precision will be in the region of theory
uncertainties. While most of the way to the upgrade is ahead of us, prospects for the future are
definitely bright.

21.6 Conclusion

In summary, the LHCb experiment is running extremely well and producing a large set of
world best measurements in important areas of quark flavour physics. With quickly increasing
datasets our sensitivity is constantly increasing. In addition we are on the road to upgrade the
detector in order to further increase the amount of data we can collect. This suggests a bright
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future for quark flavour physics and keeps us excited about the possibility to finally discover
new physics beyond the standard model.
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22 Multi-Component Dark Matter System
with non-standard annihilation processes
of Dark Matter

M. Aoki, M. Duerr, J. Kubo, H. Takano

Abstract We study multi-component DM systems with conversions and semi-annihilations of
dark matter (DM) particles in addition to the standard annihilation processes. It is found that the
relic abundance of DM can be very sensitive to these non-standard DM annihilation processes
even if the DM masses are not degenerate. To consider a concrete model of a three-component
DM system, we extend a radiative see saw model, so that the DM stabilizing symmetry is
promoted to Z2 × Z′2. The semi-annihilation process in this model produces a monochromatic
left-handed neutrino. We estimate the observation rates of the monochromatic neutrinos
produced by the semi-annihilation of the captured DM particles in the Sun. Observations
of high energy monochromatic neutrinos from the Sun may indicate a multi-component DM
system.

22.1 General Formalism

DM particle can be made stable by an unbroken symmetry such as Z2. In this talk, which is
based on the recent work [1], we consider multi-component DM systems. In multi-component
DM systems, there are non-standard DM annihilation processes that are different from the stan-
dard DM annihilation processes. The importance of the non-standard annihilation processes
such as the DM conversion [2–4] and the semi-annihilation of DM [2, 4] in two-component
DM systems for the temperature evolution of the number density of DM has been recently
reported. Here we assume the existence of K stable DM particles χ with mass m. To simplify
the situation, we restrict ourselves to three types of processes which enter the Boltzmann
equation:

χ χ↔X X
′

, (22.1)

χ χ↔ χj χj (DM conversion) , (22.2)
χ χj↔ χk Xjk (DM semi-annihilation), (22.3)

where X’s stand for standard model (SM) particles in thermal equilibrium.

Using the dimensionless inverse temperature  = μ/T (1/μ = (
∑

m
−1
 )), we obtain the

Boltzmann equation for the number per comoving volume Y = n/s (n is the number density

169



Table 22.1: The matter content of the model and the corresponding quantum numbers. The quarks are
suppressed.

field SU(2)L U(1)Y Z2 Z′2
(νL, ) 2 −1/2 + +
c


1 1 + +
Nc


1 0 − +
H = (H+, H0) 2 1/2 + +
η = (η+, η0) 2 1/2 − +

χ 1 0 + −
ϕ 1 0 − −

of χ, and s is the entropy density) [1]:

dY

d
= −0.264 g1/2∗

�

μMPL

2

�

n

<σ(;XX′ )>
�

YY − ȲȲ
�

+
∑

>j

<σ(; jj)>

�

YY −
YjYj

ȲjȲj
ȲȲ

�

−
∑

j>

<σ(jj; )>

�

YjYj −
YY

ȲȲ
ȲjȲj

�

+
∑

j,k

<σ(j;kXjk)>

�

YYj −
Yk

Ȳk
ȲȲj

�

−
∑

j,k

<σ(jk; Xjk)>

�

YjYk −
Y

Ȳ
ȲjȲk

�

o

,(22.4)

where g∗ is the total number of effective degrees of freedom, T and MPL are the temperature
and the Planck mass, respectively. < σ(XX′ ) > e.t.c. are thermally-averaged cross sec-
tions. We have integrated this system of coupled non-linear differential equations numerically
in fictive models with K = 2 and 3 and found that the non-standard DM annihilation processes
can influence the relic abundance of DM significantly, which has been recently also found for
two-component DM systems in [2–4].

22.2 A Model with three dark matter particles

To consider a concrete three-component DM system we extend [1] the radiative seesaw model
of [5] by adding an extra Majorana fermion χ and an extra real scalar boson ϕ. The matter
content is given in Table I. The DM stabilizing symmetry is promoted to Z2 × Z′2, and we have
assumed that η0

R
(the CP even neutral component of the inert Higgs SU(2)L doublet), χ and

ϕ are DM particles. The η0
R

dark matter in the inert Higgs model without ϕ and χ has been
studied in [6–8], while Nc dark matter has been studied in [9].
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22.2.1 Relic abundance of dark matter

To compute the relic abundance of DM we have to take into account the following annihilation
processes:

•η0
R
η0
R
↔SMs , • ϕ ϕ↔SMs (Standard annihilation) (22.5)

•η0
R
η0
R
↔ϕ ϕ , • χ χ↔ϕ ϕ (Conversion) (22.6)

•η0
R
χ↔ϕ νL , • χ ϕ↔ η0

R
νL , • ϕ η0R↔ χ νL (Semi-annihilation) , (22.7)

where η0
R
(η0


) is the real (imaginary) part of η0, and we have neglected the coannihilations

such as that of η0
R

with η0


and η±. The lower mass region 60 GeV < mη0R
< 80 GeV is

consistent with all the experimental constraints in the absence of χ and ϕ [8, 10], where it is
noted that there exists a marginal possibility to expend slightly this upper bound [11]. But the
elastic cross section σ(η0

R
) ' 7.9× 10−45(λL/0.05)2(60 GeV/mη0R

)2 cm2 with λL > 0.05
in this mass range may exceed the upper bound of the XENON100 result [12], 2× 10−45 cm2

for the DM mass 55 GeV at 90 % C.L. In the presence of χ and ϕ the situation changes. The
separation of two allowed regions of mη0R

[6–8] disappears, because χ and ϕ also contribute
to the relic abundance. To see how the allowed parameter space of the model without χ and ϕ
changes, we have considered a set of (δ1 = mη± −mη0R

, δ2 = mη0
−mη0R

), for which the
allowed parameter space without χ and ϕ is very small. For (δ1 = 10 , δ2 = 10) GeV, for
instance, there is no allowed range of mη0R

< 500 GeV [8] without χ and ϕ; the low mass range
of mη0R

, for which the relic abundance Ωηh2 is consistent, does not satisfy the LEP constraint.
The LEP constraint implies that the region satisfying mη0R

> 80 GeV and mη0
> 100 GeV

with δ2 < 8 GeV is excluded [8]. Therefore, for (δ1 = 10 , δ2 = 10) GeV we have to consider
only mη0R

> 80 GeV. Our calculations [1] have shown that the region mη0R
> 80 GeV indeed

becomes an allowed area in the presence of χ and ϕ.

22.2.2 Direct detection

Fig. 22.1 shows the spin-independent cross section off the nucleon versus the DM mass
of the present model; the green area for the η0

R
dark matter and the violet area for the

ϕ dark matter. (the spin-independent cross section for the χ dark matter is suppressed,
because it has no tree-level interaction with the nucleon.) All the constraints from collider
experiments, and perturbativity, in addition to those coming from μ → eγ, g − 2 of muon,
the stability of the vacuum and the electroweak precision measurements are imposed, where
we have used: δ1 = δ2 = 10 GeV with mχ = mη0R

− 10 GeV, mϕ = mη0R
− 20 GeV

and M(mass of right-handed neutrino) = 1000 GeV. We see from Fig. 22.1 that the spin-
independent cross sections are not only consistent with the current bound of XENON100 [12],
but also are within the accessible range of future experiments. We see here, too, that the
previously found separation [6–8] of the allowed parameter space in the low and high mass
regions for η0

R
disappears in the presence of χ and ϕ [1].
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Figure 22.1: The spin-independent cross section off the nucleon is plotted as a function of the DM mass. The
green (violet) area stands for the η0

R
(ϕ ) dark matter.

22.2.3 Indirect detection

As we see from (22.7) the semi-annihilation produces a left-handed neutrino. Therefore, it
would be interesting to investigate the neutrinos which are produced by the semi-annihilation
of the captured DM in the Sun. These neutrinos are monochromatic (Eν 'mη0R

+mϕ −mχ

for instance) and can be observed at neutrino telescopes [13, 14]. Diffuse neutrinos from the
decay of W and b that are produced by the standard annihilation of the captured DM in the
Sun can also arrive at neutrino telescopes [15–17] (see [18] for the case of the inert Higgs
model without ϕ and χ).

To compute the DM numbers in the Sun, we have to solve their evolution equations in the Sun.
In contrast to the one-component DM case, they are coupled in the multi-component DM case
[1]:

Ṅη = Cη − CA(ηη↔SM)N2
η
− CA(ηη↔ϕϕ)N2

η
− CA(ηχ↔ϕνL)NηNχ

−CA(ηϕ↔ χνL)NηNϕ + CA(ϕχ↔ ηνL)NχNϕ ,

Ṅχ = Cχ − CA(χχ↔ϕϕ)N2
χ
− CA(ηχ↔ϕνL)NηNχ

+CA(ηϕ↔ χνL)NηNϕ − CA(ϕχ↔ ηνL)NχNϕ , (22.8)

Ṅϕ = Cϕ − CA(ϕϕ↔SM)N2
ϕ
+ CA(ηη↔ϕϕ)N2

η
+ CA(χχ↔ϕϕ)N2

χ

+CA(ηχ↔ϕνL)NηNχ − CA(ηϕ↔ χνL)NηNϕ − CA(ϕχ↔ ηνL)NχNϕ ,

where the number of η(= η0
R
), χ and ϕ in the Sun are denoted by N with  = η, χ and ϕ. The

C’s are the capture rates in the Sun and the CA’s are given by [16]

CA(j↔•) =
< σ(j; •) >

Vj
, Vj = 5.7× 1027

�

100 GeV

μj

�3/2

cm3 , (22.9)

172



with μj = 2mmj/(m +mj) in the limit → 0. As we see from (22.8) there exist fixed points
of the evolution equations. So, they describe approaching equilibrium between the capture and
annihilation rates of DM, where we set the numbers N equal to zero at the time of birth of the
Sun. The annihilation, conversion and semi-annihilation rates at t = t� (the age of the Sun
' 4.5× 109 years) are then given by

(j; •) = djCA(j↔•)N(t�)Nj(t�) , (22.10)

where d = 1/2 and dj = 1 for  6= j. We have solved (22.8) numerically for a benchmark set
of parameters and calculated the annihilation rates:

(SM) = CA(ηη↔SM)N2
η
/2+ CA(ϕϕ↔SM)N2

ϕ
/2 , (22.11)

(ν) = CA(ηϕ↔ χν)NηNϕ + CA(ηχ↔ϕν)NηNχ + CA(χϕ↔ ην)NχNϕ ,(22.12)

(νν) = CA(ηη↔νν)N2
η
/2 (22.13)

at t = t�, where (SM) can be related to the observation rates of the diffuse neutrinos.
We have obtained [1]: 0.28 × 1020 s−1 for (SM), 1.1 × 10−3 × 1020 s−1 for (ν), and
1.3× 10−7 × 1020 s−1 for (νν). (SM) is consistent with the recent upper limit ∼ 2.73×
1021 s−1 for mDM = 250 GeV of the AMANDA-II / IceCube neutrino telescope [14]. As for
the monochromatic neutrinos we use detect = AP(Eν)inc [19] to estimate the detection rate
detect, where A is the detector area facing the incident beam, P(Eν) is the probability for
detection as a function of the neutrino energy P(Eν), and inc = /4πR2� is the incoming
neutrino flux (R� is the distance to the Sun). We have obtained for the benchmark set of
parameters that 0.05 events of monochromatic neutrinos with ∼ 200 GeV per year may be
detected at IceCube, where we have used: A = 1km2, L = 1km [14, 19]. 0.05 events per
year may be too small to be realistic. However, we would like to note that we have studied only
one point in the whole parameter space. We also note that if at least one of the fermionic DM in
a multi-component DM system has odd parity of the discrete lepton number, a monochromatic
left-handed neutrino, which is also odd, can be produced together with this fermionic DM in a
semi-annihilation of DM’s.
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23 The finite subgroups of SU(3)
P. O. Ludl

Abstract The finite subgroups of SU(3) are frequently used in particle physics. Though they
were classified already at the beginning of the 20th century, there have been many new and
interesting developments in the last few years. In this article we will list the finite subgroups of
SU(3) and summarize some of their properties.

23.1 Introduction

Particle physics offers a wide range of applications for the theory of finite groups, and in
particular the finite subgroups of SU(3) have been intensively studied in the past. The wide
range of applications of SU(3)-subgroups covers different fields such as hadron physics and
computational tools in lattice QCD. The field of particle physics which has made the most
intensive use of the finite subgroups of SU(3) in the recent years is flavour physics, where
finite SU(3)-subgroups are frequently used as symmetries in the quark, lepton and scalar
sector [1, 2].

The classification of the finite subgroups of SU(3) presented in this article is based on the work
of H.F. Blichfeldt as published in the famous book [3]. A short summary of the history of the
contributions to the analysis of the finite subgroups of SU(3) (from a physicist’s perspective)
can be found in the introduction of [4].

There is a lot of literature covering aspects of the finite subgroups of SU(3). Apart from the
classic textbook [3] we refer the reader to the review articles [5–7] and references therein.

23.2 The finite subgroups of SU(3)

In 1916 H.F. Blichfeldt classified the finite subgroups of SU(3) into the following five classes [3].

(A) Abelian groups.

(B) Finite subgroups of SU(3) with faithful two-dimensional representations.

(C) The groups C(n, , b) generated by the matrices

E =







0 1 0
0 0 1
1 0 0






, F(n, , b) = dig(η, ηb, η−−b), (23.1)

where η = exp(2π/n), n ∈ N\{0,1} and , b ∈ {0, ..., n− 1}.
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(D) The groups D(n, , b;d, r, s) generated by E, F(n, , b) and

eG(d, r, s) =







δr 0 0
0 0 δs

0 −δ−r−s 0






, (23.2)

where δ = exp(2π/d), d ∈ N\{0} and r, s ∈ {0, ..., d− 1}.

(E) Six exceptional finite subgroups of SU(3):

– (60) ∼= A5, (168) ∼= PSL(2,7),

– (36× 3), (72× 3), (216× 3) and (360× 3),

as well as the direct products (60)×Z3 and (168)×Z3.

In the following we will go through these five types of groups and dwell a bit on the structures
of their members.

(A) Abelian groups The possible structures of the Abelian finite subgroups of SU(3) are
strongly restricted by the following theorem [4].

Theorem 1. Every finite Abelian subgroup G of SU(3) is isomorphic to Zm ×Zp, where

m =mx
∈G

ord() (23.3)

and p is a divisor of m.

Thus every finite Abelian subgroup of SU(3) is either a cyclic group or a direct product of
two cyclic groups. Examples for cyclic subgroups of SU(3) are the three-dimensional rotation
groups about one axis. An example for a direct product of two cyclic groups is Klein’s four
group Z2 ×Z2.

(B) Groups with two-dimensional faithful representations Suppose we are given a finite
group possessing a two-dimensional faithful representation (i.e. a finite subgroup of U(2)), then
via the homomorphism

A 7→
�

detA∗ 0
0 A

�

∈ SU(3) (A ∈ U(2)) (23.4)

we can construct an isomorphic finite subgroup of SU(3) [6]. In this way every finite subgroup
of U(2) can be interpreted as a finite subgroup of SU(3). Examples for SU(3)-subgroups
possessing a two-dimensional faithful representation are

• the dihedral groups Dn and

• the double covers eT, eO, e, eDn of the finite three-dimensional rotation groups.1

1The finite three-dimensional rotation groups (SO(3)-subgroups) are [8]: the rotation groups about one axis
(cyclic groups), the dihedral groups Dn, the tetrahedral group T ∼= A4, the octahedral group O ∼= S4 and the
icosahedral group  ∼= A5.
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The groups of type (C) The groups C(n, , b) are generated by the permutation matrix E
and a diagonal matrix F(n, , b)–see equation (23.1). The subgroup N(n, , b) of all diagonal
matrices is generated by

F(n, , b) and EF(n, , b)E−1, (23.5)

from which follows that N(n, , b) is a normal subgroup of C(n, , b). Therefore the groups of
type (C) have the structure of a semi-direct product

C(n, , b) ∼= N(n, , b)oZ3, (23.6)

where the Z3-subgroup is generated by E. Since N(n, , b) is an Abelian finite subgroup of
SU(3), we can use theorem 1 to arrive at

C(n, , b) ∼= (Zm ×Zp)oZ3. (23.7)

There are two important special cases emerging from (23.7):

• p = 1⇒ Groups of the type2 Tm ∼= Zm oZ3.

• p =m⇒ Groups of the type (Zm ×Zm)oZ3 ∼= Δ(3m2).

Examples for groups of type (C) are well-known groups such as A4 ∼= Δ(12), Δ(27), T7 and
T13. However, there are also groups of type (C) which are neither of the form Tm, nor of the
form Δ(3m2). The smallest example, which is not a direct product, is the group [4]

C(9,1,1) ∼= (Z9 ×Z3)oZ3. (23.8)

The groups of type (D) The groups D(n, , b;d, r, s) are generated by the generators E
and F(n, , b) of (C) and the additional generator eG(d, r, s)–see equation (23.2). It was shown
in [6] that by means of a unitary transformation one can obtain a different set of generators
consisting of three diagonal matrices and the two S3-generators

E =







0 1 0
0 0 1
1 0 0






and B =







−1 0 0
0 0 −1
0 −1 0






. (23.9)

Thus, as in the case of (C), the subgroup N(n, , b;d, r, s) of diagonal matrices is an invariant
subgroup, and the structure of the groups of type (D) is found to be

D(n, , b;d, r, s) ∼= (Zm ×Zp)o S3, (23.10)

where N(n, , b;d, r, s) ∼= Zm ×Zp and S3 is generated by E and B.

For the special case of p = m we obtain the groups (Zm ×Zm)o S3 ∼= Δ(6m2). Thus the
groups of type (D) comprise the well-known groups S4 ∼= Δ(24), Δ(54) and Δ(96). The
smallest group of type (D), which is neither a direct product, nor of the form Δ(6m2), is [4]

D(9,1,1; 2,1,1) ∼= (Z9 ×Z3)o S3. (23.11)

2m must be a product of powers of primes of the form 6k + 1, k ∈ N [5].
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(E) The exceptional finite subgroups of SU(3) This set of groups collects all finite sub-
groups of SU(3) which do not fall into one of the categories (A)–(D). Among these groups are
the two simple groups (60) ∼=  ∼= A5 and (168) ∼= PSL(2,7). For a detailed treatment
of these two groups we refer the reader to [9]. Also the direct products (60) × Z3 and
(168)×Z3 are finite subgroups of SU(3).

The remaining four exceptional groups are (36×3), (72×3), (216×3) and (360×3).
Their generators can be found in [3]. For a detailed study of the first three groups we refer
the reader to [10]. The largest exceptional finite SU(3)-subgroup (360 × 3) possesses
only one non-trivial invariant subgroup, namely the center {1, ω1, ω21} ∼= Z3 of SU(3)
(ω = exp(2π/3)). The corresponding factor group (360) ≡ (360× 3)/Z3 is isomorphic
to the permutation group A6 [11]. The character table of (360 × 3) can be found in [7].
(60) ∼=  ∼= A5 is a subgroup of (360× 3).

23.3 Representations of the finite subgroups of SU(3)

By definition a finite subgroup of SU(3) possesses at least one three-dimensional representation
of determinant one. This representation is not necessarily irreducible, however many SU(3)-
subgroups possess three-dimensional irreps.

• The groups of type (A) are Abelian, which implies that all their irreps are one-dimensional.

• Much less is known about the representations of the groups of type (B), which are the
finite subgroups of U(2). By definition they possess at least one two-dimensional faithful
representation. The dihedral groups Dn and their double covers possess only one- and
two-dimensional irreps [12], while the double covers eT, eO and e of the rotation groups T,
O and  possess also three- and higher-dimensional irreps [6].

• It was shown in [6] that the groups of type (C) possess only one- and three-dimensional
irreps.

• Also the dimensions of the irreps of the groups of type (D) can be determined in general.
A group of type (D) can possess one-, two-, three- and six-dimensional irreps [6].

• All of the exceptional finite subgroups (E) of SU(3) possess three-dimensional irreps.
Since (60) ∼=  ∼= A5 and (168) ∼= PSL(2,7) are simple, all their non-trivial irreps
are faithful. Detailed information on the irreps of (36× 3), (72× 3) and (216× 3)
can be found in [10]. The largest exceptional SU(3)-subgroup (360× 3) possesses
irreps of dimensions 1,3,5,6,8,9,10 and 15 [7].

Let us finish this section with a theorem, which can be very helpful when one looks for finite
groups which possess irreps of a given dimension.

Theorem 2. The dimension of an irrep of a finite group is a divisor of the order of the group.

A collection of helpful theorems including references to their proofs can be found in [6].
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23.4 Summary and outlook

In this work we reviewed the structure of the finite subgroups of SU(3). A summary of these
results can be found in figure 23.1, which shows the finite subgroups of SU(3) classified into
the five types defined in [3]. Among the five types, we studied (A), (C) and (D) in more detail.

Figure 23.1: The finite subgroups of SU(3) as presented in section 23.2.

The Abelian finite subgroups of SU(3) were found to have the structure of a direct product
Zm × Zp. This insight allowed to determine the general structure of the hitherto not very
well-known SU(3)-subgroups of type (C) and (D) which is similar to the one of the well-known
series Δ(3n2) and Δ(6n2), which are subseries of (C) and (D), respectively.

The finite subgroups of SU(3) comprise an interesting field of study, especially with respect to
their application as symmetries in particle physics. An interesting question frequently arising in
the context of flavour physics is the breaking of a group to one of its subgroups. For works
dealing with this question–especially in the context of SU(3)-subgroups–we refer the reader
to [13, 14].

Finally we would like to mention two very helpful tools for studying finite groups, namely the
computer algebra system GAP [15] and the SmallGroups library [16], a GAP-package which
provides valuable information on all finite groups up to order 2000. Two examples for works
where these tools have been successfully used are [17, 18].
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24 A4, θ13, and δCP
E. Ma

Abstract Since nonzero θ13 is now well established, tribimaximal neutrino mixing is no
longer valid. However, it only means that the previously very restrictive application of the
non-Abelian discrete symmetry A4 was a mistake. A new simple application shows that for
the current experimental central value of sin2 2θ13 ' 0.1, leptonic CP violation is necessarily
large, i.e.| tn δCP| > 1.3.

24.1 Short History of A4

In 1978, soon after the putative discovery of the third family of leptons and quarks, it was
conjectured by Cabibbo and Wolfenstein independently that

Uν
CW
=

1
p
3







1 1 1
1 ω ω2

1 ω2 ω






, (24.1)

where ω = exp(2π/3) = −1/2 + 
p
3/2. This implies sin2 θ12 = sin2 θ23 = 1/2,

sin2 θ13 = 1/3, δCP = ±π/2, i.e. bibitrimaximal mixing. In 2001, Ma and Rajasekaran showed
that UCW occurs in A4 which allows me,μ,τ to be arbitrary, predicting also sin2 2θ23 = 1,
θ13 = 0. In 2002, Babu, Ma, and Valle showed how θ13 6= 0 can be radiatively generated
in A4 with δCP = ±π/2, i.e. maximal CP violation. In 2002, Harrison, Perkins, and Scott
proposed the tribimaximal mixing matrix, i.e.

Uν
HPS
=









p

2/3 1/
p
3 0

−1/
p
6 1/

p
3 −1/

p
2

−1/
p
6 1/

p
3 1/

p
2









. (24.2)

This means sin2 2θ23 = 1, tn2 θ12 = 1/2, θ13 = 0. In 2004, I showed that this may be
obtained in A4, with

U†
CW

MνUCW =







+ 2b 0 0
0 − b d
0 d − b






(24.3)

in the basis that M is diagonal. At that time, SNO data gave tn2 θ12 = 0.40± 0.05, but it
was changed in early 2005 to 0.45± 0.05. Tribimaximal mixing and A4 then became part
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of the lexicon of the neutrino theorist. After the 2005 SNO revision, two A4 models quickly
appeared. (1) Altarelli and Feruglio proposed

U†
CW

MνUCW =







 0 0
0  d
0 d 






, (24.4)

i.e. b = 0, and (2) Babu and He proposed

U†
CW

MνUCW =







′ − d2/′ 0 0
0 ′ d
0 d ′






, (24.5)

i.e. d2 = 3b(b− ). The challenge, however, is to prove experimentally that A4 exists. If A4
is realized by a renormalizable theory at the electroweak scale, then the extra Higgs doublets
required will bear this information. Specifically, A4 breaks to the residual symmetry Z3 in the
charged-lepton sector, and all Higgs Yukawa interactions are determined in terms of lepton
masses. This notion of lepton flavor triality [Ma, Phys. Rev. D 82, 037301 (2010)] (exact if
neutrino masses are zero) may be the key to such a proof, and these exotic Higgs doublets
could be seen at the Large Hadron Collider (LHC) [Cao et al., Phys. Rev. Lett. 106, 131801
(2011), Phys. Rev. D 83, 093012 (2011)].

24.2 Nonzero θ13 in A4

There is now very strong experimental evidence for nonzero θ13. The Daya Bay collaboration
reported sin2 2θ13 = 0.089± 0.010± 0.005; the RENO collaboration 0.113± 0.013±
0.019; and the Double CHOOZ collaboration 0.109± 0.030± 0.025. There is also some
evidence for nonmaximal θ23, i.e. sin2 2θ23 = 0.96± 0.04 from the MINOS collaboration.
To understand this in the context of A4, let

U†
CW

MνUCW =







 ƒ e
ƒ  d
e d 






, (24.6)

from 4 Higgs triplets ∼ 1,3 under A4. The old idea was to enforce e = ƒ = 0 to obtain
tribimaximal mixing. Technically this was very difficult (but not impossible) to do. Suppose
d, e, ƒ are arbitrary (which is very easy to do), and let b = (e+ ƒ )/

p
2 and c = (e− ƒ )/

p
2,

then in the tribimaximal basis,

M(1,2,3)
ν

=







+ d b 0
b  c
0 c − d






. (24.7)

Note that the (1,3) and (3,1) entries are automatically zero. If , b, c, d are all real, then

sin2 2θ23 ' 1− 2sin2 2θ13. (24.8)

Since sin2 2θ23 > 0.92, it would predict sin2 2θ13 < 0.04 which is of course excluded by
recent data. This looks like bad news, but it is actually good news.
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24.3 Large δCP in A4

In general, , b, c, d are not real, although  may be chosen real by convention. What the
A4 structure tells us is that there are relationships among the three masses, the three angles,
and the three phases. To see how this works analytically, let us consider the simplifying case
of b = 0 (which may be maintained by an interchange symmetry), then M(1,2,3)

ν
can be

diagonalized exactly by Uε with an angle θ and a phase ϕ. Let U′ = UTBUTε , then

U′
e1 =

È

2

3
, U′

e2 =
cosθ
p
3
, U′

e3 = −
sinθ
p
3
e−ϕ, (24.9)

U′
μ3 = −

cosθ
p
2
−
sinθ
p
3
e−ϕ, U′

τ3 =
cosθ
p
2
−
sinθ
p
3
e−ϕ. (24.10)

The angles θ12, θ23, θ13, and the phase δCP are extracted from tn2 θ12 = |U′e2/U
′
e1|

2,

tn2 θ23 = |U′μ3/U
′
τ3|

2, and sinθ13e−δCP = U′e3e
−α′3/2, where α′3 depends on the specific

values of the mass matrix. As a result,

tn2 θ12 =
1− 3sin2 θ13

2
, (24.11)

tn2 θ23 =

�

1−
p
2sinθ13 cosϕp
1−3sin2 θ13

�2

+ 2sin2 θ13 sin2 ϕ
1−3sin2 θ13

�

1+
p
2sinθ13 cosϕp
1−3sin2 θ13

�2

+ 2sin2 θ13 sin2 ϕ
1−3sin2 θ13

. (24.12)

Let sinθ13 = 0.16 (i.e. sin2 2θ13 = 0.10), then tn2 θ12 = 0.46 which agrees well with
data, but if m(c) = 0 as well, then ϕ = 0, and sin2 2θ23 = 0.80, which is ruled out. Thus
sin2 2θ23 > 0.92 implies | tnϕ| > 1.2. In a full numerical analysis [Ishimori and Ma,
arXiv:1205.0075], it is found that b is indeed numerically very small and that | tn δCP| > 1.3
for sin2 2θ23 > 0.92. The only solution in this case is for normal hierarchy of neutrino
masses.

24.4 Scotogenic Majorana Neutrino Mass

In 2006, neutrino mass is linked to dark matter in a one-loop mechanism [Ma, Phys. Rev.
D 73, 077301 (2006)] by having a second scalar doublet (η+, η0) and three neutral fermion
singlets N1,2,3, all of which are odd under an exactly conserved Z2 symmetry whereas all
standard-model particles are even. This may be called ’scotogenic’ from the Greek ’scotos’
meaning darkness, The η doublet was proposed later by itself [Barbieri, Hall, and Rychkov,
Phys. Rev. D 74, 015007 (2006)] and became known as ’inert’, although it has both gauge and
scalar interactions. Since the (1/2)λ5(†η)2 + H.c. term is allowed, η0 = (ηR + η)/

p
2

is split so that ηR, have different masses. The one-loop diagram for scotogenic Majorana
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solution Im(D) class | tn δCP| mee

I 0 IH 2.05 0.020
II Re(D) IH 4.65 0.022
III 0 NH 3.59 0.002
IV 0 QD 2.20 0.046
V Re(D) QD 1.84 0.051

neutrino mass is exactly calculable and is given by

(Mν)j =
∑

k

hkhjkMk

16π2





m2
R

m2
R
−M2

k

ln
m2

R

M2
k

−
m2



m2

−M2

k

ln
m2



M2
k



 . (24.13)

In the limit m2
R
−m2


= 2λ52 <<m2

0 = (m
2
R
+m2


)/2 << M2

k
, this reduces to the so-called

radiative seesaw:

(Mν)j =
λ52

8π2

∑

k

hkhjk

Mk



ln
M2
k

m2
0

− 1



 . (24.14)

24.5 Scotogenic Nonzero θ13 and Large δCP in A4

Let (ν, ) ∼ 3, c

∼ 1,1′,1′′ as before. Add (η+, η0) ∼ 1, and N ∼ 3, then ν is con-

nected to N by the identity matrix. The structure of the NNj Majorana mass matrix is then
communicated to ν through UCW to j. Assume the same form as Eq. (6), i.e.

MN =







A F E
F A D
E D A






, (24.15)

with F = −E, which may be maintained by gauging B−L with scalars σ0 ∼ 1 and σ ∼ 3 under
A4, and then broken by soft terms respecting the interchange symmetry σ1 → σ1, σ2 →−σ3,
σ3 →−σ2. In the tribimaximal basis,

M(1,2,3)
N =







A+D 0 0
0 A C
0 C A−D






, (24.16)

where C = (E− F)/
p
2 =
p
2E. Rescale Mk so that

m′
k
=
1

Mk

 

ln
M2
k

m2
0

− 1

!

. (24.17)

Using the inputs Δm2
21 = 7.59×10

−5 eV2 and Δm2
32 = 2.45×10

−3 eV2, five representative
solutions for sin2 2θ23 = 0.96 and sin2 2θ13 = 0.10 are obtained [Ma, Natale, and Rashed,
arXiv:1206.1570].

188



In contrast to the simplest model presented earlier which admits only normal hierarchy (NH) of
neutrino masses, inverted hierrachy (IH) is also possible in this case as well as quasidegenerate
(QD) masses. The effective neutrino mass mee (in eV) in neutrinoless double beta decay is
also displayed.

24.6 Conclusion

With the new precise measurement of sin2 2θ13, tribimaximal mixing is dead, but not A4. In
fact, the original A4 model had two important parts: (A) diagonalizing the charged-lepton mass
matrix with UCW for arbitrary values of me,μ,τ, (B) allowing the neutrino mass matrix to be
restricted. The special case of tribimaximal mixing requires a condition which is very difficult to
enforce theoretically. Relaxing (B) and keeping (A) do very well with present data. Predictions
for necessarily large | tn δCP| and their associated mee are given in two A4 models.

Acknowledgments

This work is supported in part by the U. S. Department of Energy under Grant No. DE-AC02-
06CH11357.

189





25 On explicit and spontaneous symmetry
breaking – in regard to SU(3) and its
finite subgroups

A. Merle, R. Zwicky

Abstract We discuss the breaking of SU(3) to is finite subgroups. We show that the
explicit and spontaneous symmetry breaking are in one-to-one correspondence through
the representation functions of SU(3), called complex spherical harmonics. We review the
formalism of the Molien function which serves to construct all types of invariants, called primary
and secondary. Further aspects of Ref. [1] are summarised, such as the necessary and
sufficient conditions for breaking of SU(3)→ H for a large number of subgroups.

25.1 Introduction

These proceedings aim at giving a short, largely self-contained, summary of the somewhat
extensive work presented [1], where the breaking of SU(3) → ... → H in chains of (finite)
subgroups is discussed. The finite subgroups of SU(3) are, for example, of interest for family
symmetries aiming to uncover structures in mass and mixing patterns of the Standard Model
fermion sector. Throughout this write-up we shall refer to SU(3) [or SO(3)] as the parent group
and to H as the target group. We shall mostly use a language familiar to the physics community,
occasionally introducing and using mathematical terminology when it seems economic.

It is an indisputable fact that the description of phenomena in terms of symmetries and
symmetry-breaking is one of the most powerful tools in physics. Of which, the known types are
explicit (ESB), spontaneous (SSB), and anomalous symmetry breaking. Often physics or the
physicists choose, initially, to assign a higher symmetry to the problem than is usually visible in
the phenomena, necessitating the inclusion of SSB and ESB respectively. The first point we
would like to make, c.f. Sec. 25.2.1, is that there is a one-to-one relation between the vacuum
expectation value (VEV) in SSB and the breaking term in ESB even though at the level of
physics the two are very different. Accepting the formal correspondence, we choose to discuss
the problem in terms of the language of ESB which corresponds to invariant polynomials of the
subgroups, Sec. 25.2.2. The construction of the latter can almost be cast in algorithmic form,
yet the non-trivial problem is to find the necessary and sufficient conditions for breaking into a
particular group, and not into one of its parent or subgroups. This is known as the little group
problem, and it is unsolved in the general case. In [1], we presented solutions for SU(3) and
its subgroups by resorting to explicit fundamental representations (rep’s), c.f. Sec. 25.2.3.
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In order to ease the presentation and reading we shall adhere to the concrete example of
breaking from the three-dimensional rotation group to the four permutation group, SO(3)→ S4.
The fundamental rep of the latter can be defined by all 3× 3 matrices O of unit determinant
satisfying OTO = 1, or by all linear operation acting on the vector (, y, z), which leave the
polynomials 2 + y2 + z2 and (yz)2 invariant. The group S4 is algebraically defined, also
known as the presentation, by all words that can be formed out of the symbols  and b
subject to the constraints: {4 = 1, b3 = 1, b2 = b}. A three-dimensional irreducible
representation (irrep) of the latter is given by [2]:

 =







−1 0 0
0 0 −1
0 1 0






, b =







0 0 1
1 0 0
0 1 0






. (25.1)

25.2 A snapshot of SU(3) breaking to its finite subgroups

25.2.1 One-to-one: explicit and spontaneous symmetry breaking

SSB is described, formally, by collecting the elements of a given rep which leave a specific
element of the representation space, the VEV , invariant. Only a subset of the initial group,
say SO(3), called the little group H, leaves the VEV invariant, and thus SO(3) → H. It
seems worthwhile to emphasise that in the fundamental rep of SO(3), which selects one
preferred direction, this necessarily breaks to SO(2) as should be clear from three-dimensional
visualisation. Thus, for breaking into discrete subgroups it is necessary resort to higher
dimensional reps.

ESB is described by adding terms to a Lagrangian L which explicitly break the symmetry. In
terms of the example SO(3)→ S4:

LSO(3) → LSO(3) + cIS4 , I4[S4] = 4 + y4 + z4 , (25.2)

where c is a number and I4[S4] is an invariant of the S4 irrep (25.1) but not of SO(3). As
we have shown in Ref. [1], I4[S4] is sufficient to break SO(3) → S4. This can be visually
illustrated, cf. Fig. 25.1 (left).

The key to the correspondence is to realise that the invariant polynomial I4[S4] can be
expanded in representation functions of SO(3), the celebrated spherical harmonics Ym, which
in turn furnish a rep space. Thus there is a one-to-one correspondence between the invariant
polynomial I4[S4] and the S4-VEV [S4] of the nine-dimensional  = 4 irrep of SO(3):

ESB: I[S4] = 4 + y4 + z4 ∼ Y4−4 +

È

14

5
Y40 + Y44 ←→

SSB: [S4] ∼ (1,0,0,0,

È

14

5
,0,0,0,1) , (25.3)
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Figure 25.1: The geometric illustration of the explicit breaking SU(3)→ SO(3)→ S4, by the invariant
pairs (I2[S4],I4[S4]) (left panel) and (I2[S4],I6[S4]) (right panel), respectively. The
invariant I2[S4] (25.9) breaks SU(3)→ SO(3) and the further imposition of I4,6[S4],
respectively, breaks SO(3) → S4. In both figures the two surfaces intersect at a finite
number of objects, which can be scaled to points, and thus correspond to a finite group.
In fact a cube (octahedron) and a hexagon emerge in the left and right panel respectively
correspond to the geometric interpretation of S4. Recall that the cube and the octahedron
are dual under interchange of the number of edges and surfaces. (Figure taken from
Ref. [1].)

in a rep space ordered from m = −4, ..,4.1 This readily generalises to other Lie Groups, e.g.
for SU(3) the 5-parametric complex spherical harmonics have to be considered [1].

25.2.2 Invariant polynomials

Once understood that invariants are essential to symmetry breaking, the question of how many
invariants a group has got and how to construct them arises. Fortunately this is rather well-
known territory in mathematics. According to Noether [3], there are exactly three algebraically
independent invariants for finite groups of three-dimensional irreps, and further information can
be gained from the Molien function [4].2 The latter is easily computed for a finite group H, by
taking the average of the inverses of the characteristic polynomials of all matrices in a certain
representation R(H) of H,

MR(H)(P) ≡
1

|R(H)|
∑

h∈R(H)

1

det(1− Ph)
=
∑

m≥0
hmP

m . (25.4)

1In terms of branching rules this reads: 9SO(3)|S4 → 1S4 + .., where the dots stand for higher representations
which we do not specify here.

2An excellent and comprehensive treatment of this subject in mathematics can be found in Ref. [5].
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According to the Molien theorem [4] this function can can be cast in a fraction of the following
form

MH(3)(P) =
1+

∑

≥1 nP
n

(1− Pm1)(1− Pm2)(1− Pm3)
, n ∈ positive integers, (25.5)

for a three-dimensional irrep. The exponents m1,2,3 in the denominator correspond to the de-
grees of the three so-called primary invariants Im1,2,3 , while the exponents n in the numerator
signal the degrees of the secondary invariants In .3 The form of Eq. (25.5) has got to obey
certain consistency conditions, such as 1+

∑

 n =
m1 ·m2 ·m3
|H| [5], which are of great help in

practice to eliminate potential ambiguities, c.f. appendix D.1 of [1]. Note that the number of
linearly independent invariants of degree, say m, corresponds to hm in the Taylor expansion
of the Molien function, MH(3)(P) =

∑

m≥0 hmP
m. Knowing the degrees of the invariants, the

construction of the latter can be attempted by the Reynolds operator (symmetrisation),

I(, y, z) =
1

|R(H)|
∑

h∈R(H)
ƒ (h ◦ , h ◦ y, h ◦ z) , (25.6)

where ƒ (, y, z) is some trial polynomial function, e.g., ƒ (, y, z) = 2yz in case a four-
dimensonial invariant is sought for. If by this procedure one is able to find a set of candidate
primary and secondary invariants, there are only two things left to check: First the primary
invariants must be algebraically independent, and second the squares of the secondary
ivariants obey certain relations called syzygies, of the following form:

I 2
n
= ƒ0(Im1 ,Im2 ,Im3) +

∑

j

ƒ
(j)
1 (Im1 ,Im2 ,Im3) · Inj . (25.7)

Once these two remaining points have been verified, a valid set of invariant polynomials for the
group H has been found.

For our example S4, the Molien function Eq. (25.4) reads:

MS4(P) =
1+ P9

(1− P2)(1− P4)(1− P6)
, (25.8)

which suggests primary invariants of degrees 2, 4, and 6, as well as one secondary invariant
of degree 9.4 Applying Eq. (25.6) immediately leads to primary and secondary invariants5:

I2[S4] = 2 + y2 + z2 , I6[S4] = (yz)2 , I4[S4] = 4 + y4 + z4 ,
I9[S4] = yz(2 − y2)(y2 − z2)(z2 − 2) . (25.9)

It is easy to show the algebraic independence of I2,4,6, and the syzygy (25.7) reads explicitly:

I29 = I 42 I4I6 −
1

4
I 62 I6 −

5

4
I 22 I

2
4 I6 +

1

2
I 34 I6 + 5I

3
2 I

2
6 − 9I2I4I

2
6 − 27I

3
6 . (25.10)

3The primary invariants are algebraically independent, whereas the secondary invariants obey relations of the
form (25.7) called syzygies.

4Strictly speaking, there is one more secondary invariant of degree 0, namely the trivial polynomial 1.
5Note that I6[S4] is an alternative to I4[S4] in order to break from SO(3)→ S4, cf. Fig. 25.1 (right). In SSB

this correspond to 13SO(3)|S4 → 1S4 + ..., where the 13-dimensional irrep orginates by 2+ 1|=6 = 13 from
the degree  of the invariant polynomial.
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25.2.3 Little group problem: On necessary & sufficient conditions

We shall first illustrate the little group problem and then discuss the solution for SU(3) presented
in [1]. It is certain that a set of polynomials, say I2,4,6 (25.9), defines a group H. The subtle
point is though that knowing a group or rep, say H′ or R(H′), which leaves these polynomials
invariant does necessarily mean that H and H′ are identical as they could be subgroups of
each other: H′ ⊂ H. For example A4 ⊂ S4, the group of even 4-permutations, leaves I2,4,6
invariant, too. Thus the problem can be reformulated as: finding the maximal group leaving a
certain set of polynomials invariant. This problem has no general solution.6

The representation matrices of the finite SU(3)-subgroups have been known for a long time [6,
7],7 which can be cast in a small number of matrices with a few discrete parameters [1, 10].
Using these explicit reps it is possible to determine directly the maximal subgroup for a given
set of polynomials. The explicit subgroup-tree, c.f. Fig. 4 and Tab. 6 in Ref. [1], is of great help
in this endeavour. The robustness of the result with respect to the embedding is proven in
Sec. 5 of [1].

25.3 Epilogue

After presenting a shortened version of the core of our work [1] let us summarise what else has
been done besides showing the equivalence of SSB and ESB, Sec. 25.2.1, and the necessary
and sufficient conditions, Sec. 25.2.3:

• Generalisations of the Molien function to tensor generating function, c.f. appendix C of [1],
from where the branching rules follow.

• A Mathematica package, SUtree, where the invariants, Molien and generating functions,
syzygies, VEVs, branching rules, character tables, and Kronecker products can be
obtained for the groups discussed above.

http://theophys.kth.se/∼amerle/SUtree/SUtree.html

• Computation of all primary and secondary invariants for all proper finite subgroups of
order smaller than 512, and for the entire series of groups Δ(3n2), Δ(6n2) and all
crystallgraphic groups, stored in the package SUtree mentioned above.

As further possible extension we would like to mention that the breaking of U(3) to its finite
subgroups might be of interest as well, as the restriction to unit determinant is not necessary in
general. This is however difficult as, to the best of our knowledge, no complete classification
of finite U(3)-subgroups has been worked out. Let us emphasise that studying subgroups of
U(3) ' U(1)× SU(3) is by far more complicated than studying the subgroups of U(1) and
SU(3) individually as there can be, colloquially speaking, twists between them. A completely
separate direction would be the study the potentials or their minima respectively that correspond

6Let us note, though, that in the case where the parent group is finite all groups that lie within a sequence
P ⊂ ..H ⊂ H can be constructed algorithmically.

7Modulo things as the topological structure such as (semi-) direct produtcs and the order of the groups. Progress
in this direction is still ongoing, e.g. [8, 9].
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to a certain VEV. One could for example write down generic potentials bounded by the degrees
and then study the frequency of the VEVs under the variation of the parameters.

Let us mention at last that finite or discrete groups can orginate from orbifolding (e.g. [11–13])
or string compactifications (e.g. [13, 14]), as well as from a continuous group as discussed
here. Examples of SSB from SU(3) [SO(3)] to a specific subgroup have been discussed
in [15–20] though the relation to ESB has not been made.
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26 A SUSY SU(5)× T ′ Unified Model of
Flavour with large θ13

A. Meroni

Abstract We present a SUSY SU(5)× T ′ unified flavour model with type I see-saw mecha-
nism of neutrino mass generation with θ13 ≈ 0.14 close to the recent results from the Daya
Bay and RENO experiments. The model predicts also values of the solar and atmospheric
neutrino mixing angles, which are compatible with the existing data. The T ′ breaking leads to
tri-bimaximal mixing in the neutrino sector, which is perturbed by sizeable corrections from the
charged lepton sector. The model exhibits geometrical CP violation: all complex phases arise
from the complex Clebsch–Gordan coefficients (CGs) of T ′. Both normal and inverted ordering
are possible for the light neutrino mass spectra. We give also predictions for the 2β0ν-decay
effective Majorana mass.

26.1 Introduction

The recent results of the short-baseline reactor experiments on θ13, Daya Bay [1] and RENO
[2], clearly indicate that the precise measurements era for neutrino physics has started. A
non zero value of θ13 has been reported with an accuracy around 5σ by both experiments.
More specifically, Daya Bay and RENO measured sin2 2θ13 = 0.092± 0.016± 0.005 and
sin2 2θ13 = 0.113± 0.013± 0.019, respectively. Motivated by the fact that at present we
know all three angles in the PMNS mixing matrix with a good precision, we tried to construct
a unified model of flavour, which describes correctly the quark and charged lepton masses,
the mixing and CP violation in the quark sector, the mixing in the lepton sector and predicts
a value of the angle θ13 compatible with the recent data (all the details in [3]). The model
is supersymmetric and is based on two main ingredients: i) a GUT embedding using SU(5)
as gauge group; this may eventually lead to a sizable θ13 [4] ii) a discrete family symmetry
T ′, double-valued group of the tetrahedral symmetry T which is isomorphic to A4; the latter
has three inequivalent spinorial unitary irreducible representations which are relevant in the
description of the quarks and lepton mixing. Moreover the complex CGs of the T ′ group can
be source of CP violation, so-called “geometrical” CP violation.

We must notice that an interesting model based on SU(5) × T ′ as symmetry group was
proposed in the literature [5] [6], but it is now ruled out by the current data on θ13. In contrast,
due to a non-standard Higgs sector content [4, 7], the model we are going to describe predicts
a value for this angle compatible with the recent data.

The model presented in this talk includes three right-handed (RH) neutrino fields NR,  =
e, μ, τ, which possess a Majorana mass term. The light active neutrino masses are generated
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by the type I see-saw mechanism and are naturally small. The corresponding Majorana
mass term of the left-handed flavour neutrino fields νL(),  = e, μ, τ, is diagonalized by the
so-called tri-bimaximal unitary matrix:

UTBM =









p

2/3
p

1/3 0
−
p

1/6
p

1/3 −
p

1/2
−
p

1/6
p

1/3
p

1/2









. (26.1)

Of course this mixing pattern has to be “corrected” in order to get a non zero value for θ13
in the standard PMNS mixing matrix, UPMNS. Indeed from the simultaneous diagonalization
of the neutrino and the charged lepton mass matrices the PMNS mixing matrix reads (RL
convention):

UPMNS = U†eLUν (26.2)

Moreover, a relation between the charged leptons and the down-type quarks mass matrices is
established through the SU(5) gauge symmetry in such a way that the antireactor mixing angle
θ13 results connected to the Cabibbo angle θc: sin2 θ13 ∼= C2(sin2 θc)/2 where C ∼= 0.9 is
a constant determined from the fit.

26.2 Matter and Scalar Fields

The model we proposed in [3] is based on SU(5) as gauge group and T ′ as discrete family
symmetry plus an extra shaping symmetry, Z12×Z38×Z

2
6×Z4, which is required to select the

correct vacuum alignments and to forbid unwanted terms and couplings in the superpotential.
We impose as well the U(1)R symmetry, the continuous generalization of the usual R-parity.
The three generations of matter fields are defined in the usual 5̄ and 10, representations
of SU(5), F̄ = (dc, L)L and T = (q, c, ec)L and we introduce three heavy right-handed
Majorana neutrino fields N as singlets under SU(5). The Higgs sector is composed by a
number of copies of Higgs fields in the 5 and 5̄ representation of SU(5) which contain as linear
combinations the two Higgs doublets of the MSSM. To get realistic mass ratios between down-
type quarks and charged leptons and to get a large reactor mixing angle we have introduced
Higgs fields in the adjoint representation of SU(5), 2̄4, which are as well responsible for
breaking the GUT group. In Tab. 26.1 we summarize the charge assignments of the matter

T3 T F̄ N H
(1)
5 H

(2)
5 H

(3)
5 H̄

(1)
5 H̄

(2)
5 H̄

(3)
5 H̄′′5 H′′24 H̃′′24

SU(5) 10 10 5̄ 1 5 5 5 5̄ 5̄ 5̄ 5̄ 24 24
T ′ 1 2 3 3 1 1 1 1 1 1 1′′ 1′′ 1′′

Table 26.1: Matter and Higgs field content of the model including quantum numbers.

and the Higgs fields under SU(5)× T ′ (the charge assignments under the extra symmetries
are given in full detail in [3]). Note that the right-handed neutrinos N are accommodated in T ′

triplets in such a way that the tri-bimaximal mixing pattern arises in the neutrino sector before
considering corrections from the charged lepton sector. Notice that the complex CGs, involved
whenever the spinorial representation is used, is a source of CP violation in the quark and in
the lepton sector.
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The scalar sector of fields related to the breaking of T ′ is composed by 13 flavons. We
introduce triplets with two possible alignment in flavour space:

〈ϕ〉 =







0
0
1






ϕ0 , 〈ϕ̃〉 =







0
0
1






ϕ̃0 , 〈ξ〉 =







1
1
1






ξ0 . (26.3)

The alignment (0,0,1) is relevant for the quark and the charged lepton sector while the
(1,1,1) alignment couples only to the neutrino sector. For the doublets we considered two
possible orthogonal alignments:

〈ψ′〉 =
�

1
0

�

ψ′0 ∼ 2
′ , 〈ψ′′〉 =

�

0
1

�

ψ′′0 ∼ 2
′′ ,

〈ψ̃′〉 =
�

1
0

�

ψ̃′0 ∼ 2
′ , 〈ψ̃′′〉 =

�

0
1

�

ψ̃′′0 ∼ 2
′′.

(26.4)

Furthermore we have introduced six flavons in one-dimensional representations of T ′ which
receive all non-vanishing (and real) vevs

〈ζ′〉 = ζ′0 , 〈ζ′′〉 = ζ′′0 , 〈ζ̃′〉 = ζ̃′0 , 〈ζ̃′′〉 = ζ̃′′0 , 〈ρ〉 = ρ0 , 〈ρ̃〉 = ρ̃0 . (26.5)

The primes indicates the type of singlets 1, 1′, 1′′. We assume here that all flavon vevs are real
i.e. we considered as only source of CP violation the complex CGs introduced geometrically by
the group T ′. In the Appendix of [3] we show a superpotential that provides the desired flavon
vev structure. The latter is obtained adding the so called “driving fields”, fields that are gauge
singlets but transform non trivially under T ′ and the extra shaping symmetry.

26.3 Yukawa couplings

When T ′ breaks and the flavons take their real vevs, one can write down at GUT scale the
Yukawa coupling matrices (RL convention). In our model the elements of the Yukawa coupling
matrices are generated dynamically through a number of effective operators up to dimension
seven which structure is tightly related to the matter fields assignment under the T ′ discrete
symmetry. CP violation in the quark and charged lepton sector is entirely due to the CGs of
the T ′ discrete group. For the up-type quarks we find:

Y =







ω̄ b 0
b c ωd
0 ωd e






, (26.6)

while in the down-type sector and the charged lepton sector the Yukawas read:

Yd =







ωd b′
d

0
ω̄ bd cd 0
0 0 dd






and Ye =







−32 ωd ω̄ bd 0
6  b′

d
6 cd 0

0 0 −32 dd






, (26.7)

where ω = (1+ )/
p
2 and ω̄ = (1− )/

p
2. The ten parameters appearing in the matrices are

(real) functions of the underlying parameters. Notice that in this model b− τ unification is not
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realized. Indeed in order to get fermion mass ratios compatible with experimental data we used
new relations that have been recently proposed in the literature [7], for instance yτ/yb = −3/2
and yμ/ys ≈ 6. Furthermore it was shown in [4] (see also [8]) that those new SU(5) CGs
might also give a large reactor neutrino mixing angle θ13. More importantly, due to the SU(5)
symmetry of the model, Yd and Ye are related (and therefore the corresponding down quark
and charged lepton mass matrices) and are expressed in terms of the same parameters. As
a consequence, since Ye (and as well Yd) is a block diagonal matrix in the 1-2 sector it is
diagonalizable by a rotation of angle θe12 (i.e. UeL ∼ R12(θe12)). In this way θe12 is related
to the Cabibbo angle θc ∼= 0.226. Specifically using the results of a fit performed on the 10
parameters that appear in the Yukawas from GUT scale down to the electroweak scale (more
details in [3]) we get:

|Vs| =
�

�

�

�

bd

cd

�

�

�

�

+O(d)

θe12 =

�

�

�

�

�

6b′
d

6cd

�

�

�

�

�

+O(d) =
�

�

�

�

�

b′
d

bd

�

�

�

�

�

θc, (b′
d
= 0.9bd)

One can also get an expression for the angle θPMNS
13 using the equation (26.2):

θPMNS
13 =

1
p
2
θe12 =

0.9
p
2
θc.

This value is compatible with the recent Daya Bay and RENO results.

26.4 Neutrino Sector

The model includes three heavy right-handed Majorana neutrino fields N which are singlets
under SU(5) and form a triplet under T ′. Through the type I seesaw mechanism we gen-
erate light neutrino masses. The neutrino sector is described by the following terms in the
superpotential

Wν = λ1NNξ+NN(λ2ρ+ λ3ρ̃) +
yν

Λ
(NF̄)1(H

(2)
5 ρ)1 +

ỹν

Λ
(NF̄)1(H

(2)
5 ρ̃)1 , (26.8)

where we have given the T ′ contractions as indices at the brackets for non-renormalizable
terms. From the superpotential we get the mass matrix for the Majorana right-handed neutrinos
and the Dirac neutrino mass matrix

MR =







2Z + X −Z −Z
−Z 2Z −Z + X
−Z −Z + X 2Z






, MD =







1 0 0
0 0 1
0 1 0







ρ′

Λ
, (26.9)

where X, Z and ρ′ are real parameters. The right-handed neutrino mass matrix MR is
diagonalized by the tri-bimaximal mixing (TBM) matrix such that the heavy RH neutrino masses
read:

UT
TBM

MRUTBM = DN = diag(3Z + X,X,3Z − X)
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It is more convenient to change parametrization and to use α ≡ |3Z/X| > 0 and ϕ ≡
rg(Z)− rg(X) so the diagonal Majorana mass matrix becomes :







3Z + X 0 0
0 X 0
0 0 3Z − X






−→ |X|







|1+ αeϕ|eϕ1 0 0
0 eϕ2 0
0 0 |1− αeϕ|eϕ3







where ϕ1 = ϕ2 = ϕ3 = 0, π. The light neutrino Majorana mass term is obtained via type I
see-saw mechanism:

Mν = −MT
D
M−1
R
MD = U∗ν diag (m1,m2,m3)U†ν ,

where the unitary matrix Uν that diagonalize the Majorana light mass matrix is proportional to
UTBM, precisely:

Uν =  UTBM diag
�

eϕ1/2, eϕ2/2, eϕ3/2
�

.

The masses of the light neutrinos result:

m =

�

ρ′

Λ

�2 1

M
,  = 1,2,3 m > 0

The value of the phase ϕ defines the type of the neutrino mass spectrum in the model since
one can show that:

Δm2
31 ≡ Δm

2
A
=

1

|X|2

�

ρ′

Λ

�4 4α cosϕ
�

�1+ αeϕ
�

�

2 �
�1− αeϕ

�

�

2 . (26.10)

Thus, for cosϕ = +1, we get Δm2
31 > 0, i.e., a neutrino mass spectrum with normal ordering

(NO), while for cosϕ = −1 one has Δm2
31 < 0, i.e., neutrino mass spectrum with inverted

ordering (IO). In order to find the numerical values of the light masses one can use as input

parameters the experimental values of Δm2
21 and r =

Δm2
�

|Δm2
A |
= 0.032± 0.006. For a given

type of neutrino mass spectrum, i.e., for a fixed ϕ = 0 or π, one can find a value of the
parameter α. It is easy in this way to get the value of the lightest neutrino mass, which together
with the data on Δm2

21 and Δm2
31(32) allows to obtain the values of the other two light neutrino

masses. Knowing the latter one can find also the two ratios of the heavy Majorana neutrino
masses. In the case of NO neutrino mass spectrum (ϕ = 0), there are two possible values of
α and so there are two possible spectra (solution A and B):

m1
∼= 4.44×10−3 eV ,m2

∼= 9.77×10−3 eV ,m3
∼= 4.89×10−2 eV , soltion A (NO) .

(26.11)
m1
∼= 5.89×10−3 eV ,m2

∼= 1.05×10−2 eV ,m3
∼= 4.90×10−2 eV , soltion B (NO) .

(26.12)
The ratios of the heavy Majorana neutrino masses read for the solution (A) M1/M3

∼= 11.0
and M2/M3

∼= 5.0. For solution B we find: M1/M3
∼= 8.33 and M2/M3

∼= 4.67. In both
cases we have M3 < M2 < M1. For the IO spectrum (ϕ = π), we find only one possible value
for α and in this case the light neutrino masses read:

m1
∼= 5.17× 10−2 eV ,m2

∼= 5.24× 10−2 eV ,m3
∼= 1.74× 10−2 eV , (O) , (26.13)
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i.e., the light neutrino mass spectrum is not hierarchical exhibiting only partial hierarchy. For
the heavy Majorana neutrino mass ratios we obtain: M1/M2

∼= 1.014 and M3/M2
∼= 3.01.

Thus, in this case N1 and N2 are quasi-degenerate in mass: M1
∼= M2 < M3.

In this model is possible to predict also the values of observables such as the fundamental
parameter of 2β0ν-decay, the Majorana effective mass 〈m〉. At this purpose one has to find
the values of the angles and phases of the PMNS mixing matrix and this can be done with
standard formulae (see [4] for instance) recasting the PMNS mixing matrix in the standard
parametrization. We list in table 26.2 the numerical values of the angles and phases found
in our analysis. We found that the Dirac phase is δ ∼= 84.3◦ and the values of the Majorana
phases in the standard parametrization are not CP conserving. As one can see the value of
δ predicted by the model is close to π/2: this implies that the magnitude of the CP violation
effects in neutrino oscillations, is predicted to be relatively large. The rephasing invariant
associated with the Dirac phase reads JCP = m(U∗e1Uμ1Ue3U

∗
μ3) = 0.0324. Finally we are

Quantity Experiment (2σ ranges) Model
sin2 θ12 0.275 – 0.342 0.340
sin2 θ23 0.36 – 0.60 0.490
sin2 θ13 0.015 – 0.032 0.020

δ - 84.3◦

β1 - 337.1◦ + ϕ3
β2 - 11.5◦ + ϕ3 - ϕ2

Table 26.2: Numerical results for the neutrino sector. The experimental results are taken from
[9] apart from the value for θ13 which is the DayaBay result [1].

able to compute the value of the Majorana effective mass 〈m〉 for NO:

〈m〉 = 4.90 (7.95)× 10−3 eV , soltion A (B) ,

and for IO:
〈m〉 = 2.17× 10−2 eV.
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27 The S3 flavour symmetry: quarks, leptons
and Higgs sectors.

F. González Canales, A. Mondragón, M. Mondragón, U. Saldaña Salazar

Abstract We present a brief overview of the minimal S3 extension of the Standard Model, in
which the concept of flavour is extended to the Higgs sector by introducing in the theory three
Higgs fields which are SU(2) doublets. In both the quark and lepton sectors the mass matrices
are reparametrized in terms of their eigenvalues, thus allowing to express the mixing angles in
terms of mass ratios. In the leptonic sector, the S3×Z2 symmetry implies a non-vanishing θ13,
which is different from zero and in very good agreement with the latest experimental data.

27.1 The S3 symmetry

The success of the Standard Model (SM) in describing the fundamental particles and their
interactions has been confirmed with the recent observation of a state compatible with a
(SM-like) Higgs boson at the LHC [1, 2]. Despite this success, the SM leaves many open
questions and has too many free parameters whose value can only be determined by the
experiment. Among these open questions is the whole subject of flavour physics, namely the
origin of the masses and mixings of quarks and leptons.

It is possible to ask if the data on quark and lepton masses suggests already a flavour
symmetry at the Fermi scale. The fact that the third generation is heavier than the first two
already proposes a path to follow: if instead of looking at the masses alone we look at the mass
ratios obtained by dividing the masses of each type of quarks and leptons by the heaviest
of each sector, then a clear pattern emerges. The first two generations belong to a doublet
representation and the third generation to a singlet one. The simplest flavour symmetry
with doublet and singlet irreducible representations is the permutational flavour symmetry S3
[3–5].

In the Standard Model analogous fermions in different generations have identical couplings to
all gauge bosons of the strong, weak and electromagnetic interactions. Prior to electroweak
symmetry breaking, the Lagrangian is chiral and invariant under the action of the group of
permutations acting on the flavour indices of the matter fields. Since the Standard Model has
only one Higgs SU(2)L doublet, which can only be an S3 singlet, it is necessary to break the
S3 symmetry in order to give different masses to all quarks and leptons. Hence, in order to
impose S3 as a fundamental symmetry, unbroken at the Fermi scale, we are led to extend the
Higgs sector of the theory [6–12]. The quark, lepton and Higgs fields are QT = (L, dL), R,
dR, LT = (νL, eL), eR, νR, and HS, H1 and H2, in an obvious notation. All these fields have
three species, and we assume that each one forms a reducible representation 1S ⊕ 2 of the
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S3 group. The doublets carry capital indices  and J, which run from 1 to 2 and the singlets
are denoted by Q3, 3R, d3R, L3, e3R, ν3R and HS. Note that the subscript 3 denotes the
singlet representation and not the third generation. The most general renormalizable Yukawa
interactions for the lepton sector of this model are given by LY = LYE + LYν , where

LYE = −Ye1LHSeR − Ye3L3HSe3R − Ye2[ LκJH1eJR + LηJH2eJR ]
−Ye4L3HeR − Ye5LHe3R + h.c.,

(27.1)

LYν = −Yν1 L(σ2)H
∗
S
νR − Yν3 L3(σ2)H

∗
S
ν3R − Yν4 L3(σ2)H

∗

νR

−Yν2 [ LκJ(σ2)H
∗
1 νJR + LηJ(σ2)H

∗
2 νJR ]− Y

ν
5 L(σ2)H

∗

ν3R + h.c.,

(27.2)

and

κ =
�

0 1
1 0

�

and η =
�

1 0
0 −1

�

. (27.3)

We also add to the Lagrangian the Majorana mass terms for the right-handed neutrinos, LM =
−νT

R
CMνRνR , where C is the charge conjugation matrix and MνR = diag{M1,M2,M3} is

the mass matrix for the right-handed neutrinos. The Lagrangian for the quark sector of this
model has a similar form [7].

Due to the presence of the three Higgs fields, the Higgs potential is more complicated than that
of the Standard Model [7, 13–15]. The S3 Higgs potential was first analyzed by Pakvasa and
Sugawara [3] who found that in addition to the S3 symmetry, it has an accidental permutational
symmetry S′2: H1 ↔ H2, which is not a subgroup of the flavour group S3. With these
assumptions,the Yukawa interactions, eqs. (27.1)-(27.2) yield mass matrices, for all fermions in
the theory, of the general form [6]

M =







μ1 + μ2 μ2 μ5
μ2 μ1 − μ2 μ5
μ4 μ4 μ3






. (27.4)

In principle, all entries in the mass matrices can be complex since there is no restriction coming
from the flavour symmetry S3.

27.2 Quarks

Quark models using the S3 permutational symmetry as the flavour symmetry have been already
explored, see for instance [3–6, 15–18]. Some of these studies have been done through
numerical approaches, and all of them show very good agreement with the experimental
data. Recently we have been able to reparametrize the quark mass matrices in terms of their
eigenvalues, which allowed us to express the mixing angles in terms of quark mass ratios, an
independent phase parameter, and a free parameter, when we do not consider the accidental
S′2 symmetry [3], for more details see [19].

An interesting result from this analysis of the S3 quark model is the fact that, after electroweak
symmetry breaking, the generic mass matrix that comes from the S3-invariant Yukawa interac-
tions is equivalent, when demanding hermiticity, to the four-zero Fritzsch-like texture and, when
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hermiticity is not demanded, to the Nearest Neighbour Interaction mass matrix form (NNI),
both of which have been found not only to have a viable phenomenology, but also to allow a
unified treatment of both quarks and leptons [20, 21]. The mass matrices are,

M
ƒ
Hermtn =









0 |μƒ2|sinθcosθ(3− tn2θ) 0
|μƒ2|sinθcosθ(3− tn2θ) −2|μƒ2|cos

2θ(1− 3tn2θ) μ
ƒ
8secθ

0 μ
ƒ∗
8 secθ |μƒ3| − Δƒ









,(27.5)

M
ƒ
NN =



















0
2
p
3
μ
ƒ
2 0

+
2
p
3
μ
ƒ
2 0

2
p
3
μ
ƒ
7

0
2
p
3
μ
ƒ
8 μ

ƒ
3 − Δƒ



















, (27.6)

where Δƒ << 1, tnθ =1/2, μƒ2 ≡ Y
ƒ
32, μƒ3 ≡ 2Y

ƒ
1S, μƒ7 ≡

p
2Y ƒ52, μƒ8 ≡

p
2Y ƒ61,

where Y ƒ are the complex Yukawa couplings, and S, 1 and 2 are the vacuum expectation
values of the three Higgs SU(2)L doublets, HS and HD = (H1, H2)T , singlet and doublet of
S3, respectively [19].

27.3 Lepton masses and mixings

A further reduction of the number of parameters in the leptonic sector may be achieved
by means of an Abelian Z2 symmetry [6], which forbids the following Yukawa couplings
Ye1 = Ye3 = Yν1 = Yν5 = 0. Therefore, the corresponding entries in the mass matrices vanish.
The resulting expression for Me, reparametrized in terms of its eigenvalues and written to
order

�

mμme/m2
τ

�2
and 4 =

�

me/mμ

�4
, is

Me ≈mτ



























1p
2

m̃μp
1+2

1p
2

m̃μp
1+2

1p
2

Ç

1+2−m̃2
μ

1+2

1p
2

m̃μp
1+2

− 1p
2

m̃μp
1+2

1p
2

Ç

1+2−m̃2
μ

1+2

m̃e(1+2)
q

1+2−m̃2
μ

eδe m̃e(1+2)
q

1+2−m̃2
μ

eδe 0



























. (27.7)

This approximation is numerically exact up to order 10−9 in units of the τ mass. Notice that
this matrix has no free parameters other than the Dirac phase δe [6, 22].

The mass matrix of the left-handed Majorana neutrinos,MνL , is generated by the type I seesaw
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mechanism. The mass matrix MνL takes the form [22, 23]:

MνL =















2
�

μν2
�2

M

2λ
�

μν2
�2

M

2μν2μ
ν
4

M
2λ
�

μν2
�2

M

2
�

μν2
�2

M

2λμν2μ
ν
4

M
2μν2μ

ν
4

M

2λμν2μ
ν
4

M

2
�

μν4
�2

M
+
�

μν3
�2

M3















, with
λ = 1

2

�

M2−M1
M1+M2

�

,

M = 2 M1M2
M2+M1

.

(27.8)

where M (  = 1,2,3 ) are the masses of right-handed neutrinos, whereas the μ2, μ3 and
μ4 are complex parameters that come from the mass matrix of the Dirac neutrinos, which is
obtained from the S3 ⊗ Z2 flavour symmetry [22, 23].

The identity of the leptons is encoded in the mass matrices Me and MνL , for charged leptons
and left-handed neutrinos, respectively. Nevertheless, these matrices are basis dependent,
since given any pair Me, MνL one can obtain other pairs of matrices through a unitary rotation,
without affecting the physics. On the other hand, the phase factors may be factored out of
MνL if ϕ2 = rg

¦

μν2
©

and ϕ3 = rg
¦

μν3
©

satisfy the relation ϕ2 = ϕ3 [23]. Hence, the mass
matrix of the left-handed Majorana neutrinos can be written as:

MνL = QU π
4

�

μ03×3 + cM
�

U†
π
4

Q, (27.9)

where μ0 = 2|μν2 |
2|M|−1 (1− |λ|),Q = eϕ2diag

¦

1,1, eδν
©

with δν = rg
¦

μν4
©

−rg
¦

μν2
©

,

U π
4
=









1p
2

0 1p
2

− 1p
2
0 1p

2
0 1 0









, and cM =







0 A 0
A B C
0 C 2d






, (27.10)

with A =
p
2|μν2 ||μ

ν
4 | (1− |λ|) |M|

−1, B = 2|μν4 |
2|M|−1+ |μν3 |

2M−13 −2|μ
ν
2 |
2|M|−1 (1− |λ|),

C =
p
2|μν2 ||μ

ν
4 ||M|

−1 (1+ |λ|) and d = 2|λ||μν2 |
2|M|−1. The diagonalization of MνL is

reduced to the diagonalization of matrix cM, which is a matrix with two texture zeroes of
class I [20]. For this we use all the information we already have about the diagonalization
of a matrix with two texture zeroes [4, 5, 20, 21]. Thus, the matrix MνL is diagonalized by a
unitary matrix Uν = QνU π

4
O

N[]

ν
where the orthogonal matrix O

N[]

ν
reparametrized in terms of

the neutrino masses is given by [23]:






















r

[−1](mν3−μ0 )(mν2−μ0 )ƒ1
DN[]
1

È

�

mν3[1]−μ0
��

μ0−mν1[3]

�

ƒ
N[]
2

DN[]
2

−

È

[−1](μ0−mν1 )(mν2−μ0 )ƒ
N[]
3

DN[]
3

r

[−1]2d(μ0−mν1 )ƒ1
DN[]
1

È

2d(mν2−μ0 )ƒ
N[]
2

DN[]
2

È

[−1]2d(mν3−μ0 )ƒ
N[]
3

DN[]
3

−

È

[−1](μ0−mν1 )ƒ
N[]
2

ƒ
N[]
3

DN[]
1

È

(mν2−μ0 )ƒ1ƒ
N[]
3

DN[]
2

−

È

(mν3−μ0 )ƒ1ƒ
N[]
2

DN[]
3























, (27.11)

where ƒ1 =
�

2d+ μ0 −mν1
�

, ƒ
N[]

2 = [−1]
�

2d+ μ0 −mν2
�

, ƒ
N[]

3 = [−1]
�

mν3 − μ0 − 2d
�

,
DN[]

1 = 2d
�

mν2 −mν1
�

�

mν3[1] −mν1[3]

�

, DN[]

2 = 2d
�

mν2 −mν1
�

�

mν3[2] −mν2[3]

�

and
DN[]

3 = 2d
�

mν3[1] −mν1[3]

��

mν3[2] −mν2[3]

�

. The values allowed for the parameters μ0
and 2d+ μ0 are in the following ranges: mν2[1] > μ0 >mν1[3] and mν3[2] > 2d+ μ0 >mν2[1] .
The superscripts N and  denote the normal and inverted hierarchies, respectively.
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The neutrino mixing matrix

The neutrino mixing matrix VPMNS is the product U†
eLUνK, where K is the diagonal matrix of

the Majorana phase factors, defined by K = dg(1, eα, eβ) [24]. The theoretical expression
for the lepton mixing matrix, V

th

PMNS
is:











m̃e

m̃μ
O

N[]

11 −O
N[]

21 e
δ

�

m̃e

m̃μ
O

N[]

12 −O
N[]

22 e
δ
�

eα
�

m̃e

m̃μ
O

N[]

13 −O
N[]

23 e
δ
�

eβ

−ON[]

11 −
m̃e

m̃μ
O

N[]

21 e
δ

�

−ON[]

12 −
m̃e

m̃μ
O

N[]

22 e
δ
�

eα
�

−ON[]

13 −
m̃e

m̃μ
O

N[]

23 e
δ
�

eβ

O
N[]

31 O
N[]

32 e
α O

N[]

33 e
β











(27.12)
where the elements O

N[]
are given in eq. (27.11) and δ = δν − δe.

The reactor mixing angle

In the case of an inverted neutrino mass hierarchy (mν2 > mν1 > mν3), the theoretical
expression for the neutrino reactor mixing angle as function of the ratios of the lepton masses
and, in a preliminary analysis, the numerical values are:

sin2 θ13 ≈
(μ0+2d−mν3)(μ0−mν3)
(mν1−mν3)(mν2−mν3)

, sin2 θ13 ≈ 0.029 −→ θ13 ≈ 9.8
◦, (27.13)

with the following values for the neutrino masses mν2 = 0.056 eV, mν1 = 0.053 eV and
mν3 = 0.048 eV, and the parameter values δ = π/2, μ0 = 0.049 eV and d = 8× 10−5 eV,
we get θ13 in very good agreement with experimental data [25, 26].

27.4 The Higgs potential

As already mentioned, the Higgs potential of this model is more complicated than the one of
the SM, because of the extended Higgs sector. The correct computation of the potential is
important for a meaningful and significative comparison of theory and experiment. Thus, any
conclusions on the Higgs phenomenology depend strongly on the form of the Higgs potential.
Work on the phenomenology implied by the Higgs potential has been done before [3, 14, 16–
18, 27–34]. Nevertheless, it has not been made clear how the S3 symmetry should be used
among the different and independent terms of the Higgs potential expression, such that it has
the highest degree of flavour symmetry. In this sense, we have explored the possibility that
the different combinations of SU(2)L indices contractions belonging to the same S3-invariant
term are assigned to the same self coupling parameter. A preliminary analysis following this
proposal can be found in ref. [35].

211



27.5 Conclusions

The permutational group S3 is well motivated by the data on quarks and lepton masses as an
underlying flavour symmtery. To be able to impose S3 as a fundamental, unbroken symmetry,
the Higgs sector of the theory has to be extended with two extra Higgs SU(2) doublets. Both
in the quark and lepton sectors it is possible to reparametrize the mass matrices in terms of
their eigenvalues, thus allowing to express the mixing angles in terms of mass ratios. The
resulting form of the quark and lepton mixing matrices allows for a unified treatment of quarks
and leptons under the flavour symmetry. In the quark sector it is possible to express the
mixing angles in terms of the quark mass ratios, an independent phase parameter, and a free
parameter. In the leptonic sector, the flavour symmetry, together with the seesaw mechanism,
imply a non-vanishing reactor mixing angle θ13, and from a preliminary numerical analysis,
gives results for all mixing angles in very good agreement with the most recent experimental
data. Finally, from symmetry arguments regarding the gauge and flavour symmetries, it is
possible to find the most general form of the Higgs potential with the highest degree of flavour
symmetry.
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28 Predictive Discrete Dark Matter Model
S. Morisi

Abstract We propose a type-II seesaw model where left-handed matter transforms non-
trivially under the flavor group Δ(54), providing correlations between neutrino oscillation
parameters, consistent with the recent Daya-Bay and RENO reactor angle measurements,
as well as lower bounds for neutrinoless double beta decay. Dark Matter stability is achieved
through a partial breaking of a flavor symmetry and its phenomenology is provided by a
Higgs-portal.

The discovery of neutrino oscillations and the growing evidence for the existence of dark matter
provide strong indications for the need of physics beyond Standard Model (SM). However
the detailed nature of the new physics remains elusive. On the one hand, the typology
of mechanism responsible for neutrino mass generation and its flavor structure, as well as
the nature of the associated messenger particle are unknown. Consequently the nature of
neutrinos, their mass and mixing parameters are all unpredicted.

Likewise the nature of Dark Matter (DM) constitutes one of the most challenging questions in
cosmology since decades, though recently some direct and indirect DM detection experiments
are showing tantalizing hints favoring a light WIMP-like DM candidate opening hopes for an
imminent detection.

Linking neutrino mass generation to dark matter, two seemingly unrelated problems into a
single framework is not only theoretically more appealing, but also may bring us new insights
on both issues.

Among the requirements a viable DM candidate must pass, stability has traditionally been
ensured through the ad hoc imposition of a stabilizing symmetry; usually a parity. Clearly a
top-down approach where stability is naturally achieved is theoretically more appealing. This is
what motivated attempts such gauged as U(1)B−L [1], gauged discrete symmetries [2] and the
recently proposed discrete dark matter mechanism (DDM) [3–6], where stability arises as a
remnant of a suitable flavor symmetry 1. The DDM scenario provides a potential link between
DM and the neutrino sector through the stability issue. The main idea behind DDM is outlined
below.

Consider the group of the even permutations of four objects A4. It has one triplet and three
singlet irreducible representations, denoted 3 and 1,1′,1′′ respectively. A4 can be broken
spontaneously to one of its Z2 subgroups. Two of the components of any A4 triplet are odd
under such a parity, while the A4 singlet representation is even. This residual Z2 parity can be

1For other flavor models with DM candidates see [4, 7–11]
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used to stabilize the DM which, in this case, must belong to an A4 triplet representation, taken
as an SU(2)L scalar Higgs doublet, η ∼ 3 [3–6]. Assuming that the lepton doublets L are
singlets of A4 while right-handed neutrinos transform as A4 triplets N ∼ 3, the contraction rules
imply that the DM couples only to Higgses and heavy right-handed neutrinos LN η̃. In this
case η and N have even as well as odd-components while L are even so that LN η̃ interaction
preserves the Z2 parity. Invariance under Z2 implies that N components odd under Z2 are
not mixed with the Z2-even light neutrinos ν. This forbids the decay of the lightest Z2-odd
component of η to light neutrinos through the heavy right handed neutrinos, ensuring DM
stability. However, simplest schemes of this type lead to θ13 = 0 as a first-order prediction [3],
at variance with recent reactor results.

In contrast, assigning the three left-handed leptons to a flavor-triplet implies that the “would-
be” DM candidate decays very fast into light leptons, through the contraction of the triplet
representations, see general discussion in ref. [7]. This problem has been considered by Eby
and Framptom [12] using a T ′ flavor symmetry. While the suggested model has the merit of
incorporating quarks nontrivially, it requires an “external” Z2 asymmetry in order to stabilize
dark matter. In fact this observation lead ref. [13] to claim that a successful realization of the
DDM scenario requires the lepton doublets to be in three inequivalent singlet representations
of the flavour group.

Here we provide an explicit example of a model based on a Δ(54) flavour symmetry in
which left-handed leptons are assigned to nontrivial representations of the flavour group, with
a viable stable dark matter particle and a nontrivial inclusion of quarks. We demosntrate
the phenomenological viability of the scenario by performing a fit of the neutrino oscillation
parameters, taking into account the recent reactor angle measurements.

We search for a group G that contains at least two irreducible representations of dimension
larger than one, namely r and rb with dim(r,b) > 1. We also require that all the components
of r transform trivially under an abelian subgroup of G ⊃ ZN (with N = 2,3) while at least
one component of rb is charged with respect to ZN. The stability of the lightest component of
rb is guaranteed by ZN giving a potential 2 DM candidate.

The simplest group we have found with this feature is Δ(54), isomorphic to (Z3 × Z3)o S3.
In addition to the irreducible triplet representations, Δ(54) contains four different doublets
21,2,3,4 and two irreducible singlet representations, 1±. The product rules for the doublets are
2k × 2k = 1+ + 1− + 2k and 21 × 22 = 23 + 24. Of the four doublets 21 is invariant under
the P ≡ (Z3 × Z3) subgroup of Δ(54), while the others transform nontrivially, for example
23 ∼ (χ1, χ2), which transforms as χ1 (ω2, ω) and χ2 (ω,ω2) respectively, where ω3 = 1
[14]. We can see that by taking r = 21 and rb = 23 that Δ(54) is perfect for our purpose.

Let us now turn to the explicit model, described in table 28.1, where LD ≡ (Lμ, Lτ) and
D ≡ (μR, τR). There are 5 SU(2)L doublets of Higgs scalars: the H is a singlet of Δ(54),
while η = (η1, η2) ∼ 23 and χ = (χ1, χ2) ∼ 21 are doublets. In order to preserve a remnant
P symmetry, the doublet η is not allowed to take vacuum expectation value (vev). Such a
prescription is not necessary for H, χ1 and χ2 since these are all invariant under P. We also
need to introduce an SUL(2) Higgs triplet scalar field Δ ∼ 21 whose vev will induce neutrino
masses through the type-II seesaw mechanism. Regarding dark matter, note that the lightest

2Of course, other requirements are necessary in order to have a viable DM candidate, such as neutrality, correct
relic abundance, and consistency with constraints from DM search experiments.
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P-charged particle in η1,2 can play the role of “inert” DM [15], as it has no direct couplings to
matter. The conceptual link between dark matter and neutrino phenomenology arises from the
fact that the DM stabilizing symmetry is a remnant of the underlying flavor symmetry which
accounts for the observed pattern of oscillations. See phenomenological implications below.

Le LD eR D H χ η Δ
SU(2) 2 2 1 1 2 2 2 3
Δ(54) 1+ 21 1+ 21 1+ 21 23 21

Table 28.1: Lepton and higgs boson assignments of the model.

The lepton part of the Yukawa Lagrangian is given by

Lℓ = y1LeeRH+ y2LeDχ+ y3LDeR χ+ (28.1)
+y4LDDH+ y5LDDχ

Lν = ybLDLDΔ+ yLDLeΔ (28.2)

After electroweak symmetry breaking the first term Lℓ gives the following charged lepton mass
matrix

Mℓ =







 br b
cr d e
c e dr






(28.3)

where  = y1 〈H〉, b = y2 〈χ1〉, c = y3 〈χ1〉, d = y5 〈χ1〉, e = y4 〈H〉, and

r = 〈χ2〉 / 〈χ1〉 .

On the other hand the Lν is the term responsible for generating the neutrino mass matrix.
Choosing the solution 〈Δ〉 ∼ (1,1) and 〈χ1〉 6= 〈χ2〉, consistent with the minimization of the
scalar potential one finds that

Mν ∝







0 δ δ
δ α 0
δ 0 α






, (28.4)

where δ = y 〈Δ〉, α = yb 〈Δ〉.

Our model corresponds to a flavour-restricted realization of the inert dark matter scenario
proposed in [15]. As such, it has nontrivial consequences for neutrino phenomenology, which
we now study in detail. As seen in eq. (28.4) the neutrino mass matrix depends only on two
parameters, δ and α (taken to be real), which can be expressed as a function of the measured
squared mass differences, as follows

mν
1,3 =

α ∓
p

8δ2 + α2

2
, mν

2 = α. (28.5)

For simplicity, we fix the intrinsic neutrino CP–signs [16] as η = dg(−,+,+), where η is
defined as U? = Uη, U being the lepton mixing matrix. It is easy to check that, in this case, only
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a normal hierarchy spectrum is allowed. In contrast, a different permutation of the eigenvalues
corresponding to our η matrix, namely (1,2,3) → (1,3,2) in Eq. 28.5, gives only inverse
hierarchy spectrum. Moreover, notice that the masses in eq. (28.5) obey a neutrino mass sum
rule of the form mν

1 +m
ν
2 =m

ν
3 which has implications for the neutrinoless double beta decay

process [17], as illustrated in Fig. (28.1).

Figure 28.1: Effective neutrinoless double beta decay parameter mee versus the lightest
neutrino mass.

We now turn to the second prediction. Although in our scheme neutrino mixing parameters in
the lepton mixing matrix are not strictly predicted, there are correlations between the reactor
and the atmospheric angle, as illustrated in Figs. 28.2 3 for the cases of normal and inverse
mass hierarchies, respectively.

While the solar angle is clearly unconstrained and can take all the values within in the experi-
mental limits, correlations exist with the reactor mixing angle, indicated by the curved yellow
bands in Fig. 28.2. These correspond to 2σ regions of θ23 as determined in Ref. [18]. The
horizontal lines give the best global fit value and the recent best fit values obtained in Daya–Bay
and RENO reactors.

Now we turn to quarks. In Ref. [3–6] quarks were singlets of the flavor symmetry to guarantee
the stability of the DM. Consequently the generation of quark mixing was difficult [19]. This
problem has been recently considered in [12] using T ′ flavor symmetry.

A nice feature of our current model is that with Δ(54) we can assign quarks to the singlet and
doublet representations as shown in table 28.2. This opens new possibilities to fit the CKM
mixing parameters. Indeed, as shown in table 28.2 quarks transforming nontrivially under the
flavor symmetry can be consistently added in our picture.

3There is also a second band allowed in this case which is, however, experimentally ruled out by the measurents
of θ12 and θ13.
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Figure 28.2: (Left)– The shaded (yellow) curved band gives the predicted correlation between
solar and reactor angles when θ23 is varied within 2σ for the normal hierarchy
spectrum. (Right)– Same for the inverse hierarchy case.

Q1,2 Q3 (R, cR) tR dR sR bR
SU(2) 2 2 1 1 1 1 1
Δ(54) 21 1+ 21 1+ 1− 1+ 1+

Table 28.2: Quark gauge and flavour representation assignments.

The resulting up- and down-type quark mass matrices in our model are given by

Md =







rd rbd rdd
−d bd dd
0 cd ed






, M =







r b d
b  rd
c rc e






. (28.6)

Note that the Higgs fields H and χ are common to the lepton and the quark sectors and in
particular the parameter r. Assuming for simplicity real couplings we have 11 free parameters
characterizing this sector, 10 Yukawa couplings plus the ratio of the the isodoublet vevs, r,
introduced earlier in the neutrino sector. We have verified that we can make a fit of all quark
masses and mixings provided r lies in the range of about 0.1 < r < 0.2. We do not extend
further the discussion on the quark interactions which can be easily obtained from table 28.2 (a
full analysis of the quark phenomenology is beyond the scope of this paper and will be taken
up elsewhere).

Notice that our scalar Dark matter candidate η1 has quartic couplings with the Higgs scalars
of the model such as η†ηH†H and η†ηχ†χ. These weak strength couplings provide a Higgs
portal production mechanism, and ensure an adequate cosmological relic abundance. Direct
and indirect detection prospects are similar to a generic WIMP dark matter, as provided by
multi-Higgs extensions of the SM.

In short we have described how spontaneous breaking of a Δ(54) flavor symmetry can stabilize
the dark matter by means of a residual unbroken symmetry. In our scheme left-handed leptons
as well as quarks transform nontrivially under the flavor group, with neutrino masses arising
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from a type-II seesaw mechanism. We have found lower bounds for neutrinoless double
beta decay, even in the case of normal hierarchy, as seen in Fig. 28.1. In addition, we have
correlations between solar and reactor angles consistent with the recent Daya-Bay and RENO
reactor measurements, see Fig. 28.2.

Unfortunately, however, the DM particle is not directly involved as messenger in the neutrino
mass generation mechanism. This issue will be considered elsewhere.
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29 Extraction of the CP phase and the life
time difference from penguin free tree
level Bs decays

S. Nandi

Abstract In this talk I present alternative methods for the extraction of the CP phase 2βs
and lifetime difference Δs using penguin-free tree level two body Bs → D0

CP
ϕ and three body

Bs(B̄s)→ D0
CP
KK decays.

29.1 Introduction

Apart from the direct searches at colliders, low energy observables in flavor physics play an
essential role for an indirect search of NP; in this respect FCNC processes are important. The
data from the decays of K, D and B mesons have so far been consistent with the Cabbibo-
Kobayashi-Maskawa (CKM) paradigm of Standard Model (SM), however the flavor changing
neutral current (FCNC) processes involving b→ s transitions are expected to be sensitive to
many sources of new physics (NP) since FCNC decays are rare (i. e. loop-suppressed) in the
SM [1–3].

In light of this, it is particularly important to study b→ s transitions and look for new-physics
(NP) effects. Now, if NP is present in ΔB = 1 b→ s decays, it would be highly unnatural for it
not to also affect the ΔB = 2 transition, in particular B0

s
-B̄0

s
mixing. At the same time, we do

hope wealth of data on Bs system from LHCb.

In order to see where NP can enter, we briefly review the mixing. Effective Hamiltonian for
Bq − B̄q mixing

Heƒ ƒ =

 

M11q − 
211q M12q − 

212q
M∗
12q −


2

∗
12q M11q − 

211q

!

,

where M = M† and  = † correspond respectively to the dispersive and absorptive parts of
the mass matrix. The off-diagonal elements, Ms

12 = Ms∗
21 and s12 = 

s∗
21 , are generated by

B0
s
-B̄0

s
mixing.

We define

s ≡
H + L
2

, ΔMs ≡ MH −ML, Δs ≡ L − H , (29.1)
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Figure 29.1: Diagrams contribute to M12 and 12.

where L and H indicate the light and heavy states, respectively. ML,H and L,H are the masses
and decay widths of the light and heavy mass eigenstates respectively. Mass difference and
width difference can be calculated from the dispersive and absorptive part of the box diagram
shown in 29.1

Expanding the mass eigenstates, we find, to a very good approximation [4],

ΔMs = 2|Ms
12| , Δs = 2|

s
12| cosϕs ,

q

p
= e−2βs

�

1−


2

�

, (29.2)

where ϕs ≡ rg(−Ms
12/

s
12) is the CP phase in ΔB = 2 transitions. In Eq. (29.2) the small

expansion parameter , the semileptonic asymmetry, is given by

 = s
s
=
|s12|

|Ms
12|

sinϕs . (29.3)

This is expected to be� 1, and hence can be neglected in the definition of q/p. The weak
phase 2βs appears in the indirect (mixing-induced) CP asymmetries.

The SM predictions of all these observables are given by [5]

ΔMs = (17.3± 2.6)ps−1, Δs = (0.087± 0.021)ps−1

2βs ≈ 2◦, ϕs = 0.22◦, s
s
= (1.9± 0.3)× 10−5 (29.4)

The present world averages are given by [6–10]

ΔMs = (17.69± 0.08)ps−1, Δs = (0.103± 0.014)ps−1

2βs = 0.14+0.11−0.16, s
s
= −0.0105± 0.0064 (29.5)

Therefore, the present data still allow 20% to 30% CP-violating NP effects. There is no separate
measurement on ϕs and it is not wise to consider ϕs = 2βs, as we can see from Eq. (29.4),
even in the SM they are not equal. However, it is possible to constrain ϕs along with s12 from
the measurement of Δs and semileptonic asymmetry s

s
. Combining Eqs. (29.2) and (29.3)

we obtain

tnϕs =
s
s
ΔMs

Δs
= −1.80± 1.12 ,

|s12| =

Æ

Δs2 + ss
2 ΔMs

2

2
= 0.106± 0.051 . (29.6)

The constrained values of the phase ϕs and |s12| are consistent with the SM within the error bar,
however, significant deviations can not be ruled out. Once we include s

s
= (−1.81±1.06)%,
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the data provided by DØ from dimuon asymmetry measurement [11] , the situation will be
further worsen with respect to SM predictions. Therefore, more precise measurements of Δs
and s

s
are essential.

So far 2βs seems to be SM like, however, there are facts to remember. Extraction of 2βs
from Bs → J/ψM decays is theoretically clean, provided the subleading terms are assumed
to vanish. In the next few years, with the LHCb we are entering the era of high precision
physics. For example, the CP asymmetry Sψϕ in B0

s
→ J/ψϕ decay will be measured with 3%

accuracy. Hence, subleading SM contributions will become important. On the other hand due
to our poor understanding of low energy QCD it is extremely hard to estimate/calculate reliably
the ratio of leading to the subleading contributions [12]. The problem lies with the evaluation
of the hadronic matrix element. At the same time, the possibility of NP in b → cc̄s decays
can not be ruled out [13]. Therefore, it is worthwhile to look for a process in which NP in the
decay can essentially be neglected, and permits the determination of 2βs and Δs without any
ambiguity. In this regard, tree level Bs decays via b→ c̄s and b→ c̄s transitions may play
an interesting role. In the following sections, we discuss the extraction of 2βs and Δs from
two and three body Bs decays.

29.2 Two body decays: B0
s
(B̄0

s
)→ D0ϕ, D̄0ϕ

We consider first the two body decays via b→ c̄s and b→ c̄s transitions, and try to see
what can we learn from such decays. Consider a final state ƒ to which both B0

s
and B̄0

s
can

decay, and the decay amplitudes are dominated by a single weak phase.

(B0
s
(t)→ ƒ )− (B̄0

s
(t)→ ƒ )

(B0
s
(t)→ ƒ ) + (B̄0

s
(t)→ ƒ )

=
C cosΔmst − S sinΔmst

cosh(Δst/2)−AΔ sinh(Δst/2)
. (29.7)

Therefore, the following interesting observables can be extracted

C ≡
1− |λƒ |2

1+ |λ|2
, S ≡

2 mλƒ

1+ |λƒ |2
, AΔ ≡

2Reλƒ

1+ |λƒ |2
, (29.8)

where λƒ ≡ q
p
Āƒ
Aƒ
= |λƒ |e−(ϕ

m
s
+θ−δ), ϕm

s
is the mixing phase and θ − δ = −Arg

�

Āƒ
Aƒ

�

.

The weak and strong phase difference between the decay amplitudes Āƒ = B̄0
s
→ ƒ and

Aƒ = B0s → ƒ are given by θ and δ respectively. Similarly, for the final state ƒ̄ we get

S̄ ≡
2 mλ̄ƒ

1+ |λ̄ƒ |2
, ĀΔ ≡

2Reλ̄ƒ

1+ |λ̄ƒ |2
, (29.9)

with λ̄ƒ ≡ p
q

Aƒ̄
Āƒ̄
= 1
|λƒ |

e−(ϕ
m
s
+θ+δ). The various combination of the these observables are

useful to extract the CP phase.

In the SM, the amplitude of the B0
s
→ D0ϕ and B̄0

s
→ D0ϕ decays are of the same order,

hence, leads to interference effects between B0
s
-B̄0

s
mixing and decay process. By measuring
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the time dependence of the decays, one can obtain S, S̄, AΔ and ĀΔ as given in Eqs. (29.8)
and (29.9), for detail see Ref. [14]. Using these observables we extract sin(2βs + γ+ δϕ),
sin(2βs+γ− δϕ), cos(2βs+γ+ δϕ), cos(2βs+γ− δϕ), which allows us to obtain 2βs+γ
with a twofold ambiguity; similar information as in B0

s
(B̄0

s
)→ D±

s
K∓ decays [15, 16].

The advantage of these decays is that there is a third decay which is related: B0
s
(B̄0

s
)→ D0

CP
ϕ,

where D0
CP

is a CP eigenstate (either CP-odd or CP-even). In our analysis we consider D0
CP

as

the CP-even superposition (D0 + D̄0)/
p
2. In this case, time dependent decay distributions

allow to extract two more functions cos(γ+δϕ) and cos(γ−δϕ). Therefore, various algebraic
combination of all these functions allow one to determine sin2βs, cos2βs, sin(2βs + 2γ),
cos(2βs + 2γ). Hence, unambiguous determinations of 2βs and 2γ is possible.

29.3 Three body B0
s
(B̄0

s
)→ D0

CP
KK̄ decays: Dalitz analysis

In the previous section we discussed two-body b̄ → c̄s̄/b̄ → ̄cs̄ decays; in this section
we examine the corresponding three-body decays. In recent years, various tests of the SM,
as well as the extraction of weak phases, have been examined in the context of B → Kππ,
B → KK̄K, B → πK̄K and B → πππ decays [17, 18], which uses Dalitz-plot analyses. The
extra piece of information available in Bs decays, due to the sizeable lifetime difference Δs,
can provide important insights into the CP violation studies of three body Dalitz analysis. The
B0
s
(B̄0

s
) → D0

CP
KK̄ decays receive a tree contribution. The CKM matrix elements of these

decays are the same as in the corresponding two-body decay modes, and will therefore exhibit
very similar time-dependent CP asymmetries.

In the following, we perform a time-dependent Dalitz-plot analysis of the B0
s
(B̄0

s
)→ D0

CP
KK̄

decays, which can decay either via intermediate resonances (ϕ, ƒ0 etc.) or non-resonant
contributions. This permits the measurement of each of the contributing amplitudes, as well
as their relative phases. In the isobar model, the individual terms are interpreted as complex
production amplitudes for two-body resonances, and one also includes a term describing the
non-resonant component. The amplitude is then given by

A(s+, s−) =
∑

j

jFj(s+, s−), Ā(s+, s−) =
∑

j

̄jF̄j(s−, s+) (29.10)

where the sum is over all decay modes (resonant and non-resonant). Here, the j are the
complex coefficients describing the magnitudes and phases of different decay channels, while
the Fj(s12, s13) contain the strong dynamics. It takes different (known) forms for the various
contributions.
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The time-dependent decay rates for decay to the same final state ƒ , are given by [14]

(B0
s
(t)→ ƒ ) ∼

1

2
e−st

h

Ach(s+, s−) cosh(Δst/2)− Ash(s+, s−) sinh(Δst/2)

+ Ac(s+, s−) cos(Δmst)− As(s+, s−) sin(Δmst)
i

,

(B̄0
s
(t)→ ƒ ) ∼

1

2
e−st

h

Ach(s−, s+) cosh(Δst/2)− Ash(s−, s+) sinh(Δst/2)

− Ac(s−, s+) cos(Δmst) + As(s−, s+) sin(Δmst)
i

. (29.11)

Here

Ach(s+, s−) = |A(s+, s−)|2 + |Ā(s+, s−)|2 ,
Ac(s+, s−) = |A(s+, s−)|2 − |Ā(s+, s−)|2 ,
Ash(s+, s−) = 2Re

�

e−2βsĀ(s+, s−)A∗(s+, s−)
�

,

As(s+, s−) = 2m
�

e−2βsĀ(s+, s−)A∗(s+, s−)
�

. (29.12)

Maximum likelihood fit over the entire Dalitz plot, allows to extract the magnitudes and relative
phases of the j or ̄j.

As mentioned before the B0
s
(B̄0

s
)→ D0

CP
KK̄ decays can proceed via various two body reso-

nances, here for simplicity we consider only the interefernce of two such resonances. Maximum
likelihood fit to the Dalitz-plot PDFs allows to extract tnγ without ambiguity from ADKK

c
and

ADKK
ch

,

ADKK
c

=
∑

=ϕ,ƒ0

h

�

|A|2 − |Ā|2
�

+ 2Re
�

AϕA
∗
ƒ0
− ĀϕĀ∗ƒ0

�

i

,

ADKK
ch

=
∑

=ϕ,ƒ0

h

�

|A|2 + |Ā|2
�

+ 2Re
�

AϕA
∗
ƒ0
+ ĀϕĀ∗ƒ0

�

i

, (29.13)

for detail see [14]. Hadronic uncertainties cancel, theoretically clean determination of the CKM
angle γ is possible.

From the interference of two resonances in ADKK
s

,

ADKK
s

= m
�

e−2βsA∗Ā
�

= m
h

e−2βs
�

A∗
ϕ
Āϕ + A∗ϕ Āƒ0 + A

∗
ƒ0
Āϕ + A∗ƒ0 Āƒ0

�

i

, (29.14)

we extract sin2βs, sin(2βs + γ ± δ), cos(2βs + γ± δ), sin(2βs + 2γ± δj), cos(2βs +
2γ± δj), where  = ϕ or ƒ0. In the above functions δ is the strong phase difference between
the amplitudes of the Bs and B̄s decay to the final state . From these trigonometric functions,
it is straightforward to find expressions for tn2βs and tnγ. We can extract sin2βs along
with constraining tn2βs, hence, an unambiguous determination of 2βs is possible. The
tagged analysis alone allows the extraction of 2βs without ambiguity [14].

The time dependent untagged differential decay distribution is given by

ntgged(D0CPK
+K−, t) = e−st

�

ADKK
ch

cosh(Δst/2) + ADKKsh
sinh(Δst/2)

�

. (29.15)
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For a single resonance, say ϕ,

ADKK
ch

= A2
ϕ
+ Ā2

ϕ
,

ADKK
sh

= Re
h

e−2βs |Cϕ2 |
2|Fϕ|2

�

1+ rϕ2e−2γ + rϕ(e−(γ+δϕ) + e−(γ−δϕ))
	

i

.(29.16)

ADKK
ch

is fully known from the CP-averaged branching fraction of the intermediate resonance ϕ.
Fit to the tagged decay rate distribution determines: 2βs, (2βs + γ± δϕ) and cos(2βs + 2γ)
without ambiguity, hence, ADKK

sh
can be fully obtained Therefore, Δs is the only unknown in

the untagged decay rate distribution given in Eq. (29.15), it can be determined from the fit, for
detail see [14].

29.4 Conclusion

We are entering a new era of high precision studies, the CP phase 2βs and Δs will be
measured with better accuracy. Extraction of same observable from various processes are
always encouraging, in particular from those modes which are theoretically clean, as was
done in Bd decays. In this regard, the tree level processes via b → c̄s and b → c̄s
transitions may play an interesting role. Combining tagged and untagged measurements
of B0

s
(B̄0

s
) → (D0, D̄0, D0

CP
)ϕ decays, we can extract 2βs without any ambiguity. Time

dependent Dalitz analysis of the B0
s
(B̄0

s
)→ D0

CP
KK allows us to extract 2βs (from tagged) and

Δs (from untagged) without any ambiguity. In addition, this processes allow a theoretically
clean determination of the CKM angle γ.
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30 Top FB asymmetry and charge
asymmetry in chiral U(1) flavor models

P. Ko, Y. Omura, C. Yu

Abstract We study the flavor-dependent chiral U(1)′ model where only the right-handed
up-type quarks are charged under U(1)′ and additional Higgs doublets with nonzero U(1)′

charges are introduced to give proper Yukawa couplings. We find that some parameter regions
could achieve not only the top forward-backward asymmetry at the Tevatron, but also the
charge asymmetry at the LHC without exceeding the upper limit of the same-sign top-quark
pair production at the LHC.

30.1 Introduction

The top forward-backward asymmetry (AtFB) is one of the most interesting observables because
there exists discrepancy between theoretical predictions in the standard model (SM) and
experimental results at the Tevatron. The most recent measurement for AtFB at CDF is
AtFB = 0.162± 0.047 in the letpon+jets channel with a full set of data [1], which is consistent
with the previous measurements at CDF and D0 within uncertainties [2]. The SM predictions
are between 0.06 and 0.09 [3, 4], so that the deviation is around 2σ.

If the discrepancy in AtFB is generated by new physics, the new physics model would be tested
at the LHC. One of the good measurements is the charge asymmetry AyC, which is defined by
the difference of numbers of events with the positive and negative Δ|y| = |yt | − |yt̄ | divided
by their sum. The current values for AyC are A

y
C = −0.018 ± 0.028 ± 0.023 at ATLAS [5]

and AyC = 0.004±0.010±0.012 at CMS [6], respectively, which are consistent with the SM
prediction ∼ 0.01 [3]. Another interesting observable at the LHC is the cross section for the
same-sign top-quark pair production, σtt, which is not allowed in the SM. The current upper
bound on σtt is about 17 pb at CMS [7] and 2 pb or 4 pb at ATLAS depending on the model [8].
1 Some models which were proposed to account for AtFB at the Tevatron, predict large A

y
C

and/or σtt so that they are already disfavored by present experiments at the LHC.

In this work, we examine the so-called chiral U(1)′ model with flavored Higgs doublets and
flavor-dependent U(1)′ charge assignment [10]. This model is an extension of a Z′ model
with off-flavor-diagonal interactions [11], which is excluded by AyC and σtt at the LHC. In the
Refs. [10], the authors proposed a model with chiral U(1)′ symmetry for the construction of
a realistic Z′ model with flavor-off-diagonal couplings, where only the right-handed up-type
quarks are charged under U(1)′. Then, in order to construct a realistic Yukawa interactions,

1Very recently it is updated by CMS [9].
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Figure 30.1: At
FB

at the Tevatron and AyC at the LHC for m′
Z
= 145 GeV.

additional Higgs doublets with U(1)′ charges should be introduced. New chiral fermions should
also be introduced in order to cancel the gauge anomaly. For more details of the chiral U(1)′

models, we refer readers to Refs. [10]. We point out that the simple Z′ model may be disfavored
by the experiments at the LHC, but if one considers more complete model, then the extended
model could be revived.

In this proceeding, we consider two scenarios of the chiral U(1)′ model. One is a light Z′

boson case with a neutral scalar Higgs boson H and a pseudoscalar Higgs boson . The
other is a light Higgs boson h case with a heavier Z′ boson, a heavier Higgs boson H, and a
pseudoscalar Higgs boson , motivated by the recent observation of a SM-like Higgs boson at
the LHC [12]. The other particles newly introduced in the model are assumed to be heavy or
have small couplings so that they are decoupled from top physics.

30.2 Light Z′ case

In this section, we consider a light Z′ boson case with a mass mZ′ = 145 GeV. In order to
suppress the non-SM decay of the top quark, we require that the Higgs bosons H and  are
heavier than the top quark. However, this requirement might be inconsistent with the recent
observation of an SM-like Higgs boson at the LHC [12] and with non-observation of a Higgs-like
signal in a large region between 130 GeV and 600 GeV [13]. In order to accommodate these
results, we assume that lightest Higgs h has a zero -t-h coupling, and its branching ratio is
SM-like.
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at the Tevatron and AyC at the LHC for mh = 125 GeV.

In this model, the Z′ boson can contribute to the top-quark pair production through its s-channel
and t-channel exchanges in the ̄→ tt̄ process. While the Higgs bosons contribute to the
top-quark pair production only in the t channel because the diagonal elements of their Yukawa
couplings to light quarks are negligible. We scan the following parameter regions: 180 GeV ≤
mH, ≤ 1 TeV, 0.005 ≤ α ≤ 0.012, 0.5 ≤ YH,t ≤ 1.5, and (g

R
)2
t
= (g

R
)(gR)tt, where

α ≡ (gR)
2
t
g′2/(4π) is defined and YH,t are flavor-off-diagonal Yukawa couplings. One can

also consider the case where the s-channel exchange of the Z′ boson is negligible by setting
the coupling (g

R
) = 0, but the numerical results are not so different.

In Fig. 30.1, we show the scattered plot for AtFB at the Tevatron and AyC at the LHC. The green
and yellow regions are consistent with A

y
C at ATLAS and CMS in the 1σ level, respectively.

The blue and skyblue regions are consistent with At
FB

in the lepton+jets channel at CDF in the
1σ and 2σ levels, respectively. The red points are in agreement with the cross section for the
top-quark pair production at the Tevatron in the 1σ level and the blue points are consistent
with both the cross section for the top-quark pair production at the Tevatron in the 1σ level and
the upper bound on the same-sign top-quark pair production at ATLAS. We find that a lot of
parameter points can explain all the experiments: the total cross section, the forward-backward
asymmetry, the same-sign top-pair production, and the top charge asymmetry, which are
considered in this work. We emphasize that the simple Z′ model is excluded by the same-sign
top-quark pair production, but in the chiral U(1)′ model, this strong bound could be evaded due
to the destructive interference between the Z′ boson and Higgs bosons.
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30.3 Light Higgs boson case with heavier Z′

In this section, we discuss the scenario that a light Higgs boson h with mh = 125 GeV,
motivated by the recent observation of an SM-Higgs like scalar boson at the LHC [12], also
has a nonzero Yh

t
. In this case, the Z′ boson and Higgs bosons h, H, and  contribute to

the top-quark pair production. In order to suppress the exotic decay of the top quark into h
and , we set the Yukawa coupling of h to be Yh

t
≤ 0.5 and masses of Z′, H, and  are

larger than the top-quark mass or approximately equal to the top-quark mass. We scan the
following parameter regions: 160 GeV ≤ mZ′ ≤ 300 GeV, 180 GeV ≤ mH, ≤ 1 TeV,
0 ≤ α ≤ 0.025, 0 ≤ YH,t ≤ 1.5, 0 ≤ Yh

t
≤ 0.5 and (g

R
)2
t
= (g

R
)(gR)tt. The mass

region of the Z′ boson is taken to avoid the constraint from the tt̄ invariant mass distribution at
the LHC. If (g

R
) ' 0 and the s-channel contribution of the Z′ could be ignored, the mass

region of the Z′ boson could be enlarged.

In Fig. 30.2, we show the scattered plot for AtFB at the Tevatron and AyC at the LHC formh = 125
GeV. All the legends on the figure are the same as those in Fig. 30.1. We find that there exist
parameter regions which agree with all the experimental constraints considered in this work.
We emphasize that in some parameter spaces σtt is less than 1 pb.

30.4 Summary

The top forward-backward asymmetry at the Tevatron is the only quantity which has deviation
from the SM prediction in the top quark sector up to now. A lot of new physics models have
been introduced to account for this deviation or it has been analyzed in a model-independent
way [14]. Some models have already been disfavored by experiments at the LHC and some
new observables are introduced to test the models [14]. In this work, we investigated the chiral
U(1)′ model with flavored Higgs doublets and flavor-dependent couplings. Among possible
scenarios, we focused on two scenarios: a light Z′ boson case and a light Higgs boson
case. We found that both scenarios can be accommodated with the constraints from the
same-sign top-quark pair production and the charge asymmetry at the LHC as well as the top
forward-backward asymmetry at the Tevatron.

The chiral U(1)′ model has a lot of new particles except for the Z′ boson and neutral Higgs
bosons. The search for exotic particles may constrain our model severely. For example, our
model is strongly constrained by search for the charged Higgs boson in the b→ sγ, B→ τν,
and B→ D(∗)τν decays. In order to escape from such constraints, we must assume a quite
heavy charged Higgs boson or it is necessary to study our model more carefully by including all
the interactions which have been neglected in this work. Search for the dijet resonances would
also give strong constraints on the Z′ boson. If the s-channel contribution is not negligible, the
coupling (g

R
) is constrained by the search for the dijet resonances. New chiral fermions

must also be included for the anomaly cancellation. Then, search for the exotic fermions
like the 4th generation fermions would also constrain our model. Furthermore, there could
be cold dark matter candidates in our model so that the dark matter experiments could be
discussed. The most severe constraints arise from the search for the Higgs boson. In this work,
we discussed the cases where mh = 125 GeV, but we did not take into account its branching
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ratios. If the branching ratios of the SM-like Higgs boson observed at the LHC settle down
at the present values, our model will severely be constrained. We emphasize that this study
is not complete yet, because there are extra fields which are subdominant in the top-quark
production. To a complete study, we need to consider especially the Higgs phenomenology
more carefully.
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31 Reactor angle and flavor symmetries
E. Peinado

Abstract Recently experiments on neutrino mixings indicate large reactor neutrino mixing
angle θ13. Here we discuss the possibility to achieve large θ13 within the T2K region with
maximal atmospheric mixing angle, sin2 θ23 = 1/2, and trimaximal solar mixing angle,
sin2 θ12 = 1/3, through the deviation from the exact tri-bimaximal mixing.

31.1 Introduction

Recently with the new neutrino data (see M. Tortola in this proceedings) [1–3], the neutrino
mixing angles are very different to the ones we have before and Tri-bimaximal mixing (TBM)
is far from the best fit values. This is challenge for the flavor symmetries point of view. If
we want to explain the neutrino mixing pattern from flavor symmetries scenarios, the general
perspective change. Basically we have three paths to this:

• Tri-bimaximal mixing, Bi-maximal mixing, golden-ratio or other patterns predicting zero
reactor mixing angle1 can be modified by means of non-diagonal charged lepton mass
matrix or by modification of the neutrino mass matrix itself (see the contribution by E. Ma
in this proceeding).

• Start with another option like TBM-reactor (see the contribution by S. F. King in this
proceeding)[4, 5]

• Start with something less trivial and make a fit of the neutrino mixing angles and see
what kind of correlation the flavor symmetry gives, see for instance [6, 7].

A model for Tri-bimaximal reactor

Lets see the structure of the neutrino mass matrix (in the diagonal basis of the charged leptons)
that gives maximal atmospheric angle θ23 = π/4, trimaximal solar angle sinθ12 = 1/

p
3 and

an arbitrary reactor angle θ13 = λ. In the standard PDG [8] parametrization, the lepton mixing
matrix with the above values of mixing angles is given by [4, 5]

UTBR = R23(
π

4
)R13(λ)R12(θ12) =











Æ

2
3

1p
3

λ

− 1p
6
+ λp

3
1p
3
+ λp

6
− 1p

2
− 1p

6
− λp

3
1p
3
− λp

6
1p
2











+O(λ2). (31.1)

1 and also probably maximal atmospheric
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Figure 31.1: Pictorial representation of the three mixing angles, in blue (right up) we present the
solar, the reactor in light-red (bottom left) and in green the atmospheric (bottom
right). The dark blue bands are for the 3σ for the different fitting groups, the red
band is for the 1σ and the green dot is for the best fit value. The vertical lines are
for the corresponding TBM values.

We do not consider the CP violation in the lepton sector assume that the above parameters
are real for simplicity. The neutrino mass matrix diagonalized by (31.1) is given by

mTBR
ν
= UTBR ·mdiag

ν
· UTTBR =m

TB
ν
+ δmν (31.2)

where mdiag
ν

is a diagonal matrix with the neutrino mass eigenvalues, mν1 , mν2 and mν3 . This
leads to the following structure of the neutrino mass matrix

mTB
ν
=







2y−   
 y+ z y− z
 y− z y+ z






, (31.3)

where  = (m2 −m1)/3, y = (m1 + 2m2)/6 and z =m3/2 and

δmν = λ







0 α1 −α1
α1 β1 0
−α1 0 −β1






+λ2







γ α2 α2
α2 β2 −β2
α2 −β2 β2






+
∑

n≥3
λn







0 αn (−1)nαn
αn 0 0

(−1)nαn 0 0






,

(31.4)
with α1 = −( − 2y + 2z)/

p
2, β1 =

p
2, α2 = −/2, β2 = −( − 2y + z)/2 and

γ = − 2y+ 2z. Note that β2 can be reabsorbed into the TB term mTB
ν

. The above form of
neutrino mass matrix predicts maximal atmospheric mixing angle and trimaximal solar mixing
angle if all the terms with all powers of λ are taken into account. If one truncates the series in
eq. (31.4) at n < 3, the neutrino mass matrix then implies
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• (A) negligible deviations from maximality in the atmospheric mixing angle;

• (B) small deviation from trimaximality in the solar mixing angle;

• (C) prediction of 0νββ ∝ λ2.

The prediction (C) is evident from eq. (31.4). We observe that the main structure of the
deviation δmν of order λ in eq. (31.4) is μ-τ antisymmetric, see [9]2. Therefore a possible
flavor symmetry with neutrino mass matrix texture (31.2) must contain the group S2 of the
μ-τ permutation and must be compatible with tri-bimaximal in the unperturbed limit. One
possible flavor symmetry with such features is S4 which contains S2 as a subgroup and leads
to tri-bimaximal mixing. We assume S4 flavor symmetry and extra Abelian ZN symmetry in
order to separate the charged leptons from the neutrino sector as usual in models for TB
mixing, In order to simplify the model as much as possible and to render more clear the main
features of the model, we do not enter into the details of the particular ZN symmetry required
in this model. Our purpose is to show that the neutrino mass matrix (31.2) with the structure
given by (31.3) and (31.4) can be obtained from symmetry principle. We assume that light
neutrino masses arise from both type-I and type-II seesaw and introduce only one right-handed
neutrino. The matter content of our model is given in table 31.1.

L R νR h Δ ϕ φ ξ
SUL(2) 2 1 1 2 3 1 1 1
S4 31 31 11 11 31 31 2 11

Table 31.1: Matter content of the model giving TB mixing at the leading order

In the scalar sector, we have one SUL(2) triplet Δ and one singlet ϕ in the neutrino sector
transforming both as 31 of S4. We have two electroweak singlets φ and ξ in the charged
lepton sector, transforming as doublet and singlet of S4 respectively. The Yukawa interaction of
the model is

− L =
1

Λ
y1(LR)11hξ +

1

Λ
y2(LR)2hφ + h.c. (31.5)

−Lν = yLLΔ+
yb

Λ
(Lϕ)11 h̃νR +

1

2
Mνcνc + h.c. (31.6)

where Λ is an effective scale. We assume the following S4 alignment in the vacuum expectation
values (vevs) of the scalar fields.

〈Δ0〉 = Δ(1,1,1)T , 〈ϕ〉 = ϕ(0,1,−1)T , 〈φ〉 = (1, 2)T , (31.7)

where 1 6= 2. Using the product rules shown in appendix A, one can easily see that the
charged lepton mass matrix is diagonal and the lepton masses can be fitted in terms of three
free parameters y1, 1 and 2, see [11] for details.

The type-II seesaw gives a contribution to the neutrino mass matrix with zero diagonal entries
and equal off diagonal entries since it arises from the product of three S4 triplets. Since we

2Note that the main structure of the deviation δmν of order λ in eq. (31.4) is similar to the one found in [10] where
(contrary with respect to us) the solar angle is not fixed to be the trimaximal one.
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introduced only one right-handed neutrino, Dirac neutrino mass matrix is a column mD ∼
(0,1,−1)T and the light-neutrino mass matrix from seesaw relation is given by

mtype-I
ν

=
1

M
mDm

T
D
∼







0 0 0
0 1 −1
0 −1 1






(31.8)

Considering both the type-I and type-II contributions, we have the light neutrino mass matrix
which can be diagonalized by TBM matrix,

mTB
ν
=







0  
 b − b
 − b b






, (31.9)

The mass eigenvalues of the above matrix are m1 = −, m2 = 2 and m3 = −+ 2b. Here
 = yΔ and b = y2

b
2
h
2
ϕ
/(Λ2M) where h = 〈h0〉. This neutrino mass matrix is compatible

with the normal hierarchy only and predicts zero neutrinoless double beta decay mee = 0.

In order to reproduce deviations like eq. (31.4) in the neutrino mass matrix, we introduce in the
scalar sector one Higgs triplet Δd that transforms as a doublet under S4 and an electroweak
singlet ϕd that transforms as a triplet 31 under S4. With inclusion of these fields, the Yukawa
interaction Lagrangian Lν contains also the terms

− Lν ⊃ yβLLΔd +
yα

Λ
(Lϕd)11 h̃νR + h.c. (31.10)

We assume that Δd and ϕd take vevs along the following directions

〈Δ0
d
〉 = d(1,0)T , 〈ϕd〉 = d(1,0,0)T . (31.11)

Here we also assume that yα,β � y,b. This can be realized assuming that Δd and ϕd are
charged under some extra Abelian symmetry like ZN or UFN(1).

After electroweak symmetry breaking and integrating out the right-handed neutrino, eq. (31.10)
gives the following contribution to the neutrino mass matrix

ybyα2h
Λ2M

(νϕ)11(νϕd)11 +
y2
α
2
h

Λ2M
(νϕd)11(νϕd)11 . (31.12)

The second term in eq. (31.12) is smaller with respect to the first since we have assumed
yα � yb. In particular assuming yb ∼ 1 and yα ∼ λ the first term is proportional to λ and the
second term is proportional to λ2. The extra contributions to the neutrino mass matrix from the
type-I see-saw are as follows

δmtype-I
ν

∼ c1λ







0 1 −1
1 0 0
−1 0 0






+ c2λ2







1 0 0
0 0 0
0 0 0






. (31.13)

where, c1 and c2 are coefficients of order O(1). From the extra type-II seesaw term in eq.
(31.10) and using the vev alignments as in (31.11), the additional contribution to the perturbed
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neutrino mass matrix will be proportional to ν1ν1 − ν2ν2, therefore the contribution to the
neutrino mass matrix coming from Type-II see-saw is

δmtype-II
ν

∼







0 0 0
0 1 0
0 0 −1






. (31.14)

Putting all these results together, the structure of the deviation in neutrino mass matrix can be
written is

δmν =







γ′ α′ −α′
α′ β′ 0
−α′ 0 −β′






, (31.15)

where α′ = ybyα2hϕd/(Λ
2M), β′ = yβd, γ′ = y2

α
2
h
ϕd/(Λ2M). The deviation ob-

tained in our model equal to the neutrino mass deviation in eq. (31.4) truncated at λ2 with
α2 = 0. Such a difference does not modify significantly the prediction of maximal atmo-
spheric angle and trimaximal solar angle. In the next section, we study the phenomenological
implication of our neutrino mass texture.

31.2 Conclusion

We found the structure for the deviation in the neutrino mass matrix from the well known TB
pattern in such a way that the lepton mixing matrix has large atmospheric mixing angle and
trimaximal solar mixing angle with an arbitrary large reactor angle. The deviation must be
approximately μ-τ antisymmetric. This fact suggests us that the flavor symmetry could be
some permutation symmetry containing S2 (μ-τ exchange) subgroup. S3 is too small since
it does not give the TB mixing. The smallest permutation group with this property is S4. We
provide a candidate model based on S4 where in the unperturbed limit the neutrino mass
matrix is TB. Then assuming extra scalar fields we show the possibility to generate deviations
from the TB that give a large θ13 in agreement with T2K result, maximal atmospheric mixing
angle and trimaximal solar mixing angle in good agreement with neutrino data.
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32 Flavour physics from an approximate
U(2)3 symmetry

F. Sala

Abstract The approximate U(2)3 symmetry exhibited by the quark sector of the Standard
Model, broken in specific directions dictated by minimality (Minimal U(2)3), can explain the
current success of the CKM picture of flavour and CP violation while allowing for large deviations
form it at foreseen experiments. On top of this, one can consider all the possible breaking
terms appearing in the quark Yukawas (Generic U(2)3), and derive the most relevant bounds
on these new parameters. In this extended framework, if needed, one could account for the
recently observed CP asymmetry in D→ ππ, KK decays, while being consistent with all the
other constraints.

32.1 Introduction

The Standard Model (SM) description of flavour and CP violation (CPV) in the quark sector,
encoded in the Cabibbo Kobayashi Maskawa (CKM) matrix, is substantially in excellent
agreement with any experimental data, leaving in several cases little room for new physics
(NP) contributions. In other words if NP effects in flavour and CP violation are parameterized
via the effective Lagrangian

ΔL =
∑



1

Λ2
O + h.c. , (32.1)

where O are generic dimension 6 gauge invariant operators obtained by integrating out the
new degrees of freedom appearing above the scale Λ, one finds that lower limits on the scales
Λ are in many cases of the order of 103 ÷ 104 TeV [1]. If one believes some new physics has
to appear at a scale ΛNP in the TeV range, whatever the reason for this belief is (naturalness of
the Fermi scale, Dark Matter, . . . ), then the flavour and CP structure of the NP theory have to
be highly non trivial. A possibility is the requirement for this new theory to respect some flavour
symmetry, so that the effective Lagrangian

ΔL =
∑



c

Λ2NP

ξO + h.c. , (32.2)

where ξ are small parameters controlled by the symmetry, is in agreement with all current
data for coefficients c of O(1).

The most popular attempt in this direction is the so called Minimal Flavour Violation paradigm
[2–4]: the Yukawa couplings are promoted to spurions transforming as Y ∼ (3, 3̄,1) and
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Yd ∼ (3,1, 3̄) under U(3)3 = U(3)q × U(3) × U(3)d, so that the SM is formally invariant
under this symmetry, then also NP effects are assumed to be formally invariant via the only
use of the spurions Y,d. In this way one obtains parameters ξ equal to some power of
the CKM matrix elements (depending on the specific operator O), in such a way that a
scale ΛNP ∼ a few TeV is in agreement with all experimental data. Why then the need to
go beyond this paradigm? First of all, the U(3)3 symmetry is already badly broken in the
SM, so that it appears more natural to take as a starting point a symmetry which is instead
preserved to a good level of approximation. One can think of other reasons for not being
satisfied with U(3)3, for example the lack of an explanation for the non observation of electric
dipole moments (EDMs), if not setting all the flavour blind NP phases to zero. An attempt to
address these issues already pursued in the literature is the reduction of U(3)3 to a U(2)
acting on the first two generations of quarks, irrespective of their chiralities [5, 6]. While
providing a rationale for explaining both the quark’s hierarchies and the smallness of EDMs,
this framework does not yield to enough suppression of right-handed currents contribution to
the εK parameter [7, 8]. The considerations developed so far motivate us to study the flavour
symmetry U(2)3 = U(2)q ×U(2) ×U(2)d, exhibited by the SM if one neglects the masses
of the quarks of the first two generations, as well as their mixing with the third generation ones.
The subjects presented here are mainly based on [9, 10], where we built on previous work in
the specific context of Supersymmetry [7, 11]1.

32.2 Construction of the framework

The logic we follow is assuming that some small parameters in the Yukawa matrices have
definite transformation properties under U(2)3, and control at the same time its breaking in
any extension of the SM. In order to reproduce the light quark masses, we introduce two
spurions ΔY ∼ (2, 2̄,1) and ΔYd ∼ (2,1, 2̄). We introduce another spurion V ∼ (2,1,1)
to let the first two generations communicate with the third one. This is the minimal choice that
reproduces the correct pattern of masses and mixing angles of the quark sector of the SM, we
call it Minimal U(2)3. One can complete the list of spurions to all the possible breaking terms
entering the quark masses, by adding V ∼ (1,2,1) and Vd ∼ (1,1,2). We call this Generic
U(2)3. An exhaustive list of the U(2)3 breaking (but formally invariant) terms appearing in the
quark Yukawa matrices then is

λt(q̄LV)tR, λtq̄LΔYR, λtq̄3L(V†R), (32.3)

λb(q̄LV)bR, λbq̄LΔYddR, λbq̄3L(Vd†dR), (32.4)

where qL,R,dR stand for doublets under U(2)Q, U(2), U(2)d respectively2.

We perform appropriate U(2)3 transformations to put the spurions in the forms

V =
�

0
εL

�

, V =
�

0
ε
R

�

, Vd =
�

0
εd
R

�

, (32.5)

1For a recent analysis of some aspects of the phenomenology of Minimal U(2)3 see also [12] and the talk by
Jennifer Girrbach during this workshop (chapter 11).

2In (32.4) we have extracted out the bottom Yukawa coupling λb as a common factor, which in principle requires
an explanation due to its smallness. One could consider for this pourpose a symmetry, either continuous or
discrete, acting in the same way on all the right-handed down-type quarks, broken by the small parameter λb.
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ΔY = L12 ΔY
dig



R
R12, ΔYd = LLd12 ΔY

dig
d d

R
Rd12, (32.6)

L = dig
�

eϕ,1
�

, ,d
R
= dig

�

eϕ
,d
1 , eϕ

,d
2
�

, (32.7)

where εL and ε,dR are real parameters, L,d12 and R,d12 are two dimensional rotations of angles
θ,dL and θ,dR respectively, and for convenience we define s,dL,R = sinθ

,d
L,R. Note that in Minimal

U(2)3 one has ε,dR = s,dR = ϕ,d1,2 = 0. The diagonalization to the mass basis, which is done
perturbatively by taking into account the smallness of the parameters, results in a unique form
for the CKM matrix V which depends only on the 4 Minimal U(2)3 parameters

V =







c
L
cd
L

λ s
L
s e−δ

−λ c
L
cd
L

c
L
s

−sd
L
s e(δ−ϕ) −cd

L
s 1






, (32.8)

where s ∼ O(εL), c,dL = cosθ,dL and s
L
cd
L
− sd

L
c
L
eϕ = λeδ. Then a direct fit to tree level

observables, assumed not to be influenced by NP, fixes the values of s, s,dL and ϕ, while the
extra parameters of Generic U(2)3 remain uncostrained.

32.3 Effective Field Theory analysis

In the mass basis we give as an example, to a sufficient level of approximation, the form of
some relevant flavour-violating operators, which again we build using the spurions in order to
be consistent with the U(2)3 symmetry (in parentheses the processes they contribute to):

cK
LL

�

VtsV
∗
td

�2 �
d̄LγμsL

�2 �

K − K̄ mixing
�

, (32.9)

cB
LL
eϕB

�

VtbV
∗
t

�2 �
d̄
L
γμbL

�2 �

Bd,s − B̄d,s mixing
�

, (32.10)

c7γe
ϕ7γmbVtbV

∗
t

�

d̄
L
σμνbR

�

eFμν
�

b→ s(d)γ
�

, (32.11)

cDe
ϕDmt

ε
R

εL
VbV

∗
cb

�

̄LσμνT
cR

�

gsG

μν

�

D→ ππ, KK
�

, (32.12)

cK
LR
eϕ

K
R

sd
R

sd
L

 

εd
R

εL

!2
�

VtsV
∗
td

�2 �
d̄LγμsL

��

d̄RγμsR
�

�

K − K̄ mixing
�

, (32.13)

where cK
LL

, cB
LL

, c7γ, cD and cK
LR

are real coefficient, in principle of order one, and in each
operator we understood a factor 1/Λ2. Some remarks are in order: (i) exactly as in MFV, flavour-
violating operators are suppressed by products of the CKM matrix elements; (ii) conversely,
the above operators are more constrained in U(3)3, where cB

LL
= cK

LL
and ϕB = 0. This extra

freedom of U(2)3 can be used to solve the CKM unitarity fit tensions; (iii) in Minimal U(2)3, as
well as in MFV, the operators (32.12) and (32.13) are absent.

In Minimal U(2)3 we performed a global fit to the experimental data, the resulting allowed
regions for the coefficients of the operators defined in (32.9), (32.10) and (32.11) are shown in
fig. 32.1. In this derivation we fixed the energy scale Λ to the value of 3 TeV ' 4π, which can
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Figure 32.1: 68 and 95% C.L. allowed regions for some ΔF = 2 (left and centre) and ΔF = 1
(right) coefficients in U(2)3.

be either the typical scale of a new strong interaction or the one associated with new weakly
interacting particles of mass '  = 246 GeV circulating in loops. The constraints on the other
operators are similar to those we showed, so that the picture that emerges is consistent with
an effective Lagrangian like (32.2), with the coefficients |c| ranging between 0.2 and 1.

An analogous fit can be performed for the Generic U(2)3 case, in fig.32.2 we show the allowed
regions for the real parameters ε,dR and s,dR coming from the most stringent (to the best
of our knowledge) observables, assuming all the real coefficients cα


to be unity and all the

phases to maximize the corresponding bounds, to be conservative. If needed, the recently
measured [13, 14] CP asymmetry in D decays, ΔACP = ACP(K+K−)− ACP(π+π−), could be
accounted for by new physics compatible with U(2)3 without violating all the other constaints.
Independently of this, both Generic and Minimal U(2)3 are not expected to give rise to any
sizeable effect neither in CPV in D− D̄ mixing nor in flavour changing neutral current (FCNC)
top decays at near future experiments. We stress that the bounds shown in fig. 32.2 carry order
one uncertainties due to the lack of theoretical control over the SM long distance contributions.

32.4 Summary and conclusions

A suitably broken U(2)3 flavour symmetry acting on the first two generations of quarks3

could be consistent with the SM explanation of current experimental data, while allowing from
sizeable deviations from it at near future experiments. A qualitative summary of FCNC and
CPV effects in U(3)3 and in Minimal and Generic U(2)3 is given in Table 32.1.
Quantitatively, in U(3)3 with moderate tnβ the effects are smaller than in the other cases,
because of the stronger constraints due to the extra correlation of some coefficients.

Suppose now some NP effect is observed at foreseen experiment: how could one tell if it is
compatible with an approximate U(2)3 symmetry of Nature? The most promising way would

3For a possible extension of U(2)3 to the charged lepton sector, both from an EFT point of view and in composite
Higgs models, see [9]. For a discussion in Supersymmetry with the inclusion of both charged leptons and
neutrinos see [15] and the talk by Gianluca Blankenburg during this workshop (chapter 3).
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Figure 32.2: Shaded: 90% C.L. disfavoured regions for the free parameters of Generic U(2)3,
normalized to those of Minimal U(2)3. The bounds come from the neutron EDM
(both plots, black solid line), εK and ε′

K
(right-hand plot, red dashed and blue

dotted lines respectively). The green dashed lines in the left-hand plot correspond
to a NP contribution to ΔACP of 50% and 100 % respectively of the measured
central value, so that in the lighter green region NP could account for the large
experimental value.

Chirality conserving Chirality breaking

ΔB = 1,2 ΔS = 1,2 ΔB = 1 ΔC = 1

U(3)3 moderate tβ R R C 0

Minimal U(2)3, U(3)3 large tβ C R C 0

Generic U(2)3 C C C C

Table 32.1: Expected new physics effects in U(3)3 and both Minimal and Generic U(2)3, for
ΔF = 1,2 FCNC operators in the B, K, D systems. R denotes possible effects,
but aligned in phase with the SM, C denotes possible effects with a new phase,
and 0 means no or negligible effects. In U(3)3 with moderate tnβ an additional
feature is that the effects in b→ q (q = d, s) and s→ d transitions are perfectly
correlated.

be to look for correlations in d and s final states of B decays, which would have to be SM-like.
This could be actually reproduced by U(3)3 in the presence of two Higgs doublets and at
large values of tnβ [16, 17], but it would in turn imply other peculiar effects which are not
necessarily present in U(2)3. In the absence of an extra Higgs doublet (or in the case of
small tnβ) MFV could be distinguished by U(2)3 by means of new CP violating effects in B
decays, and/or non SM-like correlations between semileptonic B and K decays.
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We conclude by mentioning the possible embedding of U(2)3 in concrete extensions of the
SM, like Supersymmetry or composite Higgs models. We stress two important differences with
respect to the MFV case: (i) thanks to the freedom to separate the NP energy scale associated
with the third generation from the one associated with the first two, in both cases this embedding
leaves space to satisfy collider constraints without spoiling significantly the naturalness of
the theory; (ii) in Supersymmetry there is now the possibility to suppress the EDMs via the
heaviness of the first two generation squarks, while keeping lighter stops and sbottoms. For a
thorough discussion of the relevant features in Supersymmetry and in composite Higgs models
we refer to [7, 11] (see [18] for a summary) and to [9] respectively.
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33 Squark Flavor Implications from
B̄→ K̄ (∗)+−

S. Schacht

Abstract We present new results on supersymmetric flavor from the recently improved
constraints on B̄→ K̄(∗)+−. In part of the parameter space the bound on the scharm-stop
left-right mixing is as strong as

�

δ23
�

LR
® 10%. We inspect the reach of Supersymmetry

(SUSY) models with flavor violation and present implications for models based on Radiative
Flavor Violation.

33.1 Introduction

SM and SUSY Flavor Puzzle In the Standard Model (SM) the question for the origin of the
hierarchy of the Yukawa couplings is not answered: The only natural Yukawa coupling is the
one of the top quark λTop ∼ 1 which is of the order of the gauge couplings. The other Yukawa
couplings are small yet hierarchical, which forms the SM flavor puzzle. When we switch on
Supersymmetry (SUSY) we do not only have a puzzle but a serious problem: SUSY itself says
nothing about flavor violation in SUSY breaking so generically SUSY flavor violation can be
∼ O(1). On the other hand, flavor changing neutral current (FCNC) data partly drastically
constrains SUSY flavor violation, so also here, in the SUSY breaking, a non-generic structure
is necessary.

The many new sources of flavor violation in SUSY can be parametrized by 6 × 6 squark
mass matrices that are in general not diagonal. Commonly, one normalizes the off-diagonal
elements of these matrices to the average of the diagonal elements in form of mass insertion
(MI) parameters δj = Δj/M2


. In writing so, we use the super-CKM basis which is determined

by rotating the squarks and quarks in parallel while diagonalizing the quark Yukawa couplings.
The bounds on the MI parameters by FCNC data are partly as strong as ® 10−4 [1].

Here, we present a recent study of the implications of improved constraints on B̄→ K̄(∗)+−

on SUSY flavor [2]. In this channel we are especially sensitive to the scharm-stop left-right
mixing

�

δ23
�

LR
. This MI parameter does not have strong bounds at present. Without the new

semileptonic data it could be ∼ O(1).
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Low Energy Effective Field Theory An inevitable tool for benefiting from data on rare
decays is the effective field theory framework. In order to describe the semileptonic decay
b → s+− we use the ΔB = 1-Hamiltonian Heff ∝

∑

 C(μ)O(μ). For b → s+− the most
important operators are the electromagnetic dipole operator

O7 =
e

16π2
mb

�

s̄LσμνbR
�

Fμν (33.1)

and the 4-fermion semileptonic operators

O9 =
e2

16π2
�

s̄LγμbL
��

̄γμ
�

, O10 =
e2

16π2
�

s̄LγμbL
��

̄γμγ5
�

. (33.2)

In the Minimal Supersymmetric Standard Model (MSSM) we get additional contributions to the
Wilson coefficients of the latter operators C = CSM + CNP


,  = 7,9,10, with the new physics

(NP) contributions CNP


. For the Wilson coefficients we employ the results from [3, 4]. We use
here the SM operator basis as we only take into account small values of tnβ ® 15. In this
regime we can neglect the contributions of the additional scalar operators which contribute at
higher tnβ [5]. A study of flavor-diagonal SUSY at larger values of tnβ can be found in [6].
Preceding SUSY studies of b→ s+− can also be found in [7–9]. The calculation is done by
extending EOS, a tool for the calculation of flavor observables [10].

33.2 Comparison of SUSY Predictions with Data

In order to confront SUSY predictions with data it is useful to compare directly the possible
spread of SUSY models in the planes of the Wilson coefficients with the associated model
independent bounds on the latter. As is well-known, the radiative decay B̄→ Xsγ gives quite
strong constraints on C7. Recent experimental data [11, 12] on the semileptonic process
B̄→ K̄(∗)+− gives in addition to that new model independent constraints on C9, C10 [13–16].
Therefore, it is very interesting to study the reach of flavor violating SUSY models in the
plane of the Wilson coefficients C9 and C10. We do so before actual applying the bound from
B̄→ K̄(∗)+− in order to see how much influence the observables of this particular channel
have.

We perform a scan of the SUSY parameters at the electroweak (EW) scale, not specifying
a dedicated mechanism of SUSY breaking and thus keeping a more model independent
perspective. Consequently, we allow for a light stop quark mt̃1 ≥ 100 GeV [17] which is
without further model assumptions not excluded by data at present. Other existing recent
stronger bounds on the light stop mass [18–20] are model dependent. Vice versa, light stop
masses are also an important part of many SUSY models [21–24].

The result of the scan is shown in Figure 33.1. In addition to the bound on the squark masses
we also include here the other bounds from direct searches. Especially, we account for the
bound on the Higgs mass by calculating mh0 including the effects from flavor violation using
FeynHiggs [25–29]. Very recently, the finding of a new scalar boson has been reported which
can be interpreted as the Higgs boson [30, 31]. We show therefore how the spread of SUSY
models in the plane of the Wilson coefficients depends on these exciting news.
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Figure 33.1: Spread of the 4-fermion semileptonic Wilson coefficients at μb = 4.2 GeV for
SUSY models including flavor violation in

�

δ23
�

LR
6= 0. Gray: Model independent

bounds from [15]. Red line: Z penguin dominance. Red dot: SM value. Left
figure, taken from [2]: mh0 ≥ 114.4 GeV. Right: Taking into account points with
large

�

δ23
�

LR
not allowed by FeynHiggs. Middle: Applying the cuts 100GeV ≤

mt̃1 ≤ 250 GeV and 120GeV ≤mh0 ≤ 130 GeV.

We start on the left hand side of Figure 33.1 where we show the result of the SUSY scan using
a Higgs mass bound of mh0 ≥ 114.4 GeV [32]. Note that solutions for C7 > 0 are not shown
here as they are disfavored by the zero of AFB(B̄→ K∗μ+μ−) [33]. Furthermore, there is a
strong correlation between C9 and C10 which is due to the Z penguin dominance which leads
to CSUSY10 /CSUSY9 ' 1/(4s2


− 1). As a consequence of this strong correlation the bounds in

the MSSM are stronger than the model independent ones.

The NP effect can be measured by the ratio of Wilson coefficients R ≡
�

�

�CNP

/CSM



�

�

�. By applying
the semileptonic bounds the maximal range of R10 on the left hand side of Figure 33.1 is
reduced from R10(μb) ® 47% to R10(μb) ® 16% (at 68% C.L.), i.e. the semileptonic bounds
cut deeply into the parameter space of the MSSM.

Now, on the right hand side of Figure 33.1 we also include points with large
�

δ23
�

LR
that were

not accepted by FeynHiggs. These points still fulfill all the other constraints including the
B̄→ Xsγ constraint. It is clearly visible that the inclusion of the Higgs mass constraint has a
huge impact.

With a Higgs mass of mh0 ∼ 126 GeV, global CMSSM fits give quite large results for the light
stop mass [34, 35]. It is therefore interesting if there are parameter points in the C9-C10 plane
which are not only near the measured Higgs mass but in addition to this also include a light
3rd generation squark. In order to inspect this in the middle of Figure 33.1 we apply the cuts
100GeV ≤ mt̃1 ≤ 250 GeV and 120GeV ≤ mh0 ≤ 130 GeV. One observes two things:
Firstly, the characteristics of the SUSY scan persist also in light of the new results on the mass
of a scalar boson. Secondly, the parameter space subset where a light stop is still allowed has
a significant spread in the C9-C10 plane. We note however, that larger values for the trilinear
coupling At are also needed for that.

Finally, one can translate the semileptonic bounds shown in Figure 33.1 into an improved bound
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Figure 33.2: Bound on |
�

δ23
�

LR
| for the SUSY example point given in Table 33.1 before (left)

and after (right) applying the semileptonic bounds at 68% C.L. Figures taken from
[2].

on |
�

δ23
�

LR
|. This can be seen in Figure 33.2 in the At vs. mt̃R plane for the SUSY example

point given in Table 33.1. In part of the parameter space the bound has significantly improved,
to |
�

δ23
�

LR
| ® 10%. Regarding the dependence of the bounds on the other parameters, for

|μ| � M2 they get stronger and for larger tnβ they get somewhat weaker. Note that in Figure
33.2 the Higgs bounds are not taken into account as we only want to show the effect of the
flavor bounds here.

mH± tnβ M2 μ mt̃R mq̃ At mν̃ mg̃

300 4 150 −300 300 1000 1000 100 700

Table 33.1: Example SUSY point at μ0 = 120 GeV, all masses in GeV.

33.3 Implications for SUSY flavor models

In SUSY flavor models, the expectations for
�

δ23
�

LR
are commonly rather small: In MFV

models the trilinear couplings can be written as an expansion in the Yukawa coupling matrices
A = A

�

1+ bYdY
†
d

�

Y with  and b ∼ O(1). From this expansion it follows
�

δ23
�

LR
∼

λ2
b
VcbV∗tb(mt/mq̃), i.e. there is not only a suppression by λ2

b
but also by Vcb [36, 37]. In

models with horizontal flavor symmetries [38] one gets
�

δ23
�

LR
∼ Vcb(mt/mq̃). Also here

the predictions are an order of magnitude below the limits.

A model with rather large predictions for
�

δ23
�

LR
is Radiative Flavor Violation (RFV) [39–41].

In this framework one traces back the SM flavor puzzle to the SUSY flavor puzzle. One
supposes that the bare CKM matrix is as simple as possible, being just the unit matrix. The
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Figure 33.3: Left: Requisite
�

δ23
�

LR
for generating Vcb for mq̃ = 1000 GeV, Figure taken

from [2]. Middle and Right: Interplay of constraints on the RFV parameter space.
Red: Stop mass limit. Orange: Hypothetical stop mass limit. Blue: Bound from
b → sγ. Green: Bound from ϵK through

�

δ23
�∗

LR

�

δ13
�

LR
. Black: Bound from

b → s+−. Right: M2 = 800 GeV, Figure taken from [2]. Middle: M2 = 500
GeV.

small off-diagonal elements of the CKM matrix then stem from quantum corrections through
non-diagonal trilinear SUSY breaking couplings. These must have just the right values in order
to generate the CKM matrix elements through loop diagrams.

The requisite
�

δ23
�

LR
for the generation of Vcb through quantum corrections in the up-sector

is shown on the left hand side in Figure 33.3. One can recognize that relatively large values
of
�

δ23
�

LR
are needed. In the middle and on the right side of Figure 33.3 we study how this

translates into a constraint on the RFV parameter space. The strongest bounds come both
from Kaon mixing and from b→ s+− data. The former is due to chargino contributions from
double mass insertions

�

δ23
�∗

LR

�

δ13
�

LR
[42–44]. As can be seen in the middle of Figure

33.3 for small values of M2 the bound from Kaon mixing dominates. As M2 gets larger the
semileptonic bounds get in part of the parameter space even stronger than the bounds from
Kaon mixing. For large mt̃R this effect is again washed out by the Glashow-Iliopoulus-Maiani
(GIM) mechanism. Altogether, from Figure 33.3 we conclude that the spectrum of RFV with
up-sector CKM generation must be ¦ 1 TeV.

33.4 Conclusion

New results on B̄ → K̄(∗)+− give improved constraints on squark flavor violation through
large chargino contributions to the Wilson coefficients C9, C10. Depending on the parameter
space the bound on scharm-top left-right mixing is as low as

�

δ23
�

LR
® 10%. This gives

bounds on RFV models that partly are even sharper then from ϵK . For lighter stops the bounds
get stronger. This is reflected in the large spread of SUSY models in the C9-C10 plane. In
the future, even more precise measurements are to come for the LHCb roadmap channel
B→ K∗0+− so that we expect more statistics and additional observables [45].
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34 Direct Detection of Leptophilic Dark
Matter in a Model with Radiative Neutrino
Masses

D. Schmidt

Abstract Direct detection of fermionic Dark Matter (DM) enabled at the 1-loop level is
discussed for the Ma model of radiative neutrino mass generation. Effectively, there are charge-
charge, dipole-charge and dipole-dipole interactions. The parameter space consistent with
constraints from neutrino masses and mixing, charged lepton-flavor violation, perturbativity,
and the thermal production of the correct DM abundance is investigated and the expected
event rate in DM direct detection experiments is calculated. Current data from XENON100
start to constrain certain regions of the allowed parameter space, whereas future data from
XENON1T has the potential to significantly probe the model. This talk is based on [1] where
detailed calculations and relevant references can be found if they are not included here.

34.1 Introduction

Astroparticle physics meets two main challenges, namely -Neutrinos have mass and the
Universe has Dark Matter (DM)-, which only physics beyond the Standard Model (SM) can
cope with. The two challenges are established by neutrino flavor oscillation experiments and
by cosmological observations ranging from small to large scales.
Neutrino masses and DM must not be related to each other at all, however, it is tempting to link
a neutrino mass generation mechanism with a DM particle. Among the many ideas on such a
common framework, those generating neutrino masses radiatively are appealing because the
loop suppression factors of 16π2 make the relevant physical scale at which neutrino masses
and DM appear accessible at the TeV range, e.g., [2] and references therein.
We elaborate on the model proposed by Ma [3], in which neutrino masses are generated
through 1-loop interactions and the particles which propagate in the loop can be DM candidates,
being leptophilic by construction. The DM phenomenology of the model and extended versions
thereof has been studied in the literature. In this talk, the lightest right handed neutrino is
considered to be the the DM candidate which is assumed to be almost degenerated with
the second lightest right handed neutrino. Under this situation, inelastic scattering induced
by a lepton-loop coupled to the photon gives the dominant contribution to the event rate in
direct detection experiments. We calculate the event rate in the model and compare it with
XENON100 [4], KIMS [5] and DAMA [6] data.

265



34.2 The Model

The invariant Lagrangian is

LN = N /∂PRN +
�

Dμη
�†
(Dμη)−

M

2
N

cPRN + hαℓαη†PRN + h.c.− V(ϕ, η), (34.1)

with the scalar potential

V(ϕ, η) =m2
ϕ
ϕ†ϕ+m2

η
η†η+

λ1

2

�

ϕ†ϕ
�2
+
λ2

2

�

η†η
�2

+ λ3
�

ϕ†ϕ
��

η†η
�

+ λ4
�

ϕ†η
��

η†ϕ
�

+
λ5

2

�

ϕ†η
�2
+ h.c.,

where ϕ is the SM Higgs doublet and the new Yukawa couplings are h = |h|eφ including
the phases φ. The vacuum expectation value (VEV) of η is assumed to be zero, so that Dirac
neutrino masses are not generated through the Yukawa couplings in Eq. (34.1). However,
Majorana neutrino masses are generated radiatively involving the DM candidate, such that
neutrino physics and the existence of DM are correlated to each other. Due to θ13 6= 0 [7], the
flavor structure for the Yukawa couplings hα (rows are labeled by α = e, μ, τ and columns by
 = 1,2,3) can be chosen as

hα =







ε1 ε2 h′3
h1 h2 h3
h1 h2 −h3






+O(ε2), (34.2)

where ε1 and ε2 are small perturbations allowing sinθ13 = ε3 6= 0 with

ε1h1 + ε2h2 =
p

2
�

h21 + h
2
2

�

�

h21 + h
2
2

�

Λ1 − sec2 θ12h23Λ3
�

h21 + h
2
2

�

Λ1 − h23Λ3
ε3 ≡ Pε3. (34.3)

The branching ratio for μ→ eγ is sensitive to θ13 6= 0:

Br (μ→ eγ) =
3αem

64πG2
F
M4
η

�

�

�

�

�

Pε3F2





M2
1

M2
η


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p

2 tnθ12|h3|2F2





M2
3

M2
η





�

�

�

�

�

2

. (34.4)

Given Br(μ→ eγ) < 2.4× 10−12 [8], we take as benchmark points M3 = 6000GeV and
|h3| = 0.3. Using the correlations between neutrino oscillation data and lepton-flavor structure
the independent parameters are Mη, M1, δ ≡ M2 −M1 and ξ ≡ Im(h∗2 h1). The region of the
parameter space consistent with neutrino data, lepton-flavor violation, perturbativity and DM
relic density is shown in Figure 34.1, where A, B, C, D, correspond to different assumptions
on Mη, with A: 2.0 < Mη/M1 < 9.8, B: 1.2 < Mη/M1 < 2.0, C: 1.05 < Mη/M1 < 1.20,
D: 1.0 < Mη/M1 < 1.05. The curves show the upper bound on sinθ13 from μ→ eγ with
respect to Eq. (34.4).
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Figure 34.1: Region in the space of DM mass M1 and ξ = |h1h2| sin(φ1 − φ2).

34.3 Direct Detection

Inelastic scattering of DM off nuclei is realized by photon exchange in 1-loop processes
involving charged leptons and the charged component of the inert doublet. The 3-point vertex
effective interactions of N1, N2 and γ which give a dominant contribution are written as

Leff = 12N2γμN1∂νFμν + 
�μ12

2

�

N2σ
μνN1Fμν + c12N2γμN1Aμ, (34.5)

where the factor  is a conventional factor to obtain real couplings 12, c12 and μ12, and Fμν
is the electromagnetic field strength. The coefficient μ12 is known as the transition magnetic
moment between N1 and N2. To our knowledge, the relevant loop processes for inelastic
scattering of fermionic DM in the Ma model [3] have not been previously calculated. The
effective interactions yield three types of differential scattering cross sections with a nucleus
which has atomic number Z, mass number A, mass mA, spin JA and magnetic moment μA.
They are called charge-charge (CC), dipole-charge (DC), and dipole-dipole (DD) couplings:

dσCC

dER
=
Z2b212mA

2π2
F2(ER), (34.6)

dσDC

dER
=
Z2αemμ212

ER

�

1−
ER

2

�

1

2mA
+
1

M1

�

−
δ

2
1

μDM
−
δ2

2
1

2mAER

�

F2(ER), (34.7)

dσDD

dER
=
μ2
A
μ212mA

π2

�

JA + 1

3JA

�

F2
D
(ER), (34.8)

with the coefficient b12 = (12 + c12/q2)e, the nuclear form factor F(ER) and the nuclear
magnetic form factor FD(ER), both of which depending on the recoil energy ER. Typically CC
interactions are more important for small masses M1, which follows from the different depen-
dence on the DM mass of b12 and μ12. As can been seen in Figure 34.2, for XENON100 [4]
the DC coupling is more important, whereas for KIMS [5] and DAMA [6] DD dominates, be-
cause of the large magnetic moments of iodine and sodium. text From the effective interactions
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Figure 34.2: Effective interactions. Mη/M1 = 1.5 and δ = 0 is assumed. Left : Contribu-
tion from CC relative to the sum of DC+DD. Right : Ratio of the DC and DD
contributions.

we calculate the total event rate R. The constraints on the model are obtained by demanding
that the predicted rate is less than the observed rate in each experiment, respectively. Our
results are shown in Figure 34.3.

34.4 Conclusion

We have studied the model proposed by Ma [3], which adds three right handed neutrinos N

( = 1,2,3) and one inert Higgs doublet η to the SM. Given that new particles are Z2-odd
we have assumed that the lightest right handed neutrino N1 is the lightest of the Z2-odd
particles, and hence it serve as the DM candidate. Our main conclusion is that direct detection
of leptophilic DM is possible by photon exchange which we have calculated for the first time to
our knowledge. To obtain a sizable scattering rate N1 and N2 have to be highly degenerate.
Although the scattering cross section in this model is too small to account for the DAMA annual
modulation signal, we find that current data from the XENON100 experiment start to exclude
certain regions of the parameter space. The predicted event rate for XENON100 is dominated
by the charge-charge interaction. Future data, for example from XENON1T, will significantly
dig into the allowed parameter space and provide a stringent test for the model provided δ is
small enough.
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Figure 34.3: Results for CC (up), DC+DD (middle) interactions and Yukawa couplings (down).
Left : δ = 0 keV. Right : δ = 80 keV. Regions A, B, C and D as described above.
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35 Spontaneous leptonic CP violation and
θ13

H. Serôdio

Abstract In this work one reviews a simple scenario [1] where the above three aspects
(leptogenesis, leptonic mixing and spontaneous CP violation) are related. To this aim, we shall
add to the Standard Model (SM) a minimal particle content: two Higgs triplets Δ ( = 1,2)
with unit hypercharge and a complex scalar singlet S with zero hypercharge.

35.1 The model

The SM is extended with two Higgs triplets Δ ( = 1,2) of unit hypercharge and a complex
scalar singlet S with zero hypercharge. In the SU(2) representation:

Δ =

�

Δ0


−Δ+

/
p
2

−Δ+

/
p
2 Δ++



�

. (35.1)

CP invariance is imposed at the Lagrangian level and a Z4 symmetry is introduced under
which the scalar and lepton fields transform as indicated in Table. 35.1

The most general scalar potential invariant under the above symmetries can be written as

VCP×Z4 = VS + Vϕ + VΔ + VSϕ + VSΔ + VϕΔ + VSϕΔ, (35.2)

where each terms are presented in [1]. Since CP invariance has been imposed at the La-
grangian level, all the parameters are assumed to be real. This symmetry can be spontaneously
broken by the complex VEV of the scalar singlet S. To show that this is indeed the case, let us
analyze the scalar potential for S. The tree-level potential then reads

V0 =m2
S
2
S
+ λS4S + 2

�

μ2
S
+ λ′′

S
2
S

�

2
S
cos (2α) + 2λ′

S
4
S
cos (4α) , (35.3)

with 〈S〉 = Seα. Besides the trivial solution S = 0, which leads to V0 = 0, there are other
three possible solutions to the minimization problem with S 6= 0: (i) α = 0,±π , (ii) α± π

2 and

(iii) cos(2α) = −
μ2
S
+ λ′′

S
2
S

4λ′
S
2
S

.

Only the last solution is of interest to us since it leads not only to the spontaneous breaking of
the CP symmetry but also to a non-trivial CP-violating phase in the one-loop diagrams relevant
for leptogenesis, for a review on this subject see [2].
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Table 35.1: Representations of the fields under the A4 × Z4 and SM = SU(2)L × U(1)Y
symmetries.

Field L eR, μR, τR Δ1 Δ2 ϕ S  Ψ
A4 3 1, 1′, 1′′ 1 1 1 1 3 3
Z4  − 1 −1  −1  1
SM (2,−1/2) (1,−1) (3,1) (3,1) (2,1/2) (1,0) (1,0) (1,0)

In order to generate a realistic lepton mixing pattern we shall also impose an A4 discrete
symmetry at high energies. We recall that, in a particular basis, the Clebsch-Gordan decom-
positions of the A4 group are can be made with real coefficients. The spontaneous breaking
of the A4 symmetry is then guaranteed by adding to the theory two extra heavy scalar fields,
 and Ψ, with a suitable VEV alignment. The complete symmetry assignments of the fields
under A4 × Z4 and SU(2)L × U(1)Y are given in Table 35.1.

Below the cut-off scale Λ, the flavour dynamics is encoded in the relevant effective Yukawa
Lagrangian L, which contains the lowest-order terms1 in an expansion in powers of 1/Λ,

L =
yℓ
e

Λ

�

L
�

1
ϕeR +

yℓ
μ

Λ

�

L
�

1′′
ϕμR +

yℓ
τ

Λ

�

L
�

1′
ϕτR

+
y2

Λ
Δ2
�

LTLΨ
�

1
+
1

Λ
Δ1
�

LTL
�

1

�

y1S+ y′1S
∗
�

+H.c. .

(35.4)

As soon as the heavy scalar fields develop VEVs along the required directions, namely,

〈〉 = (r,0,0) , 〈Ψ〉 = (s, s, s) , (35.5)

and the scalar singlet S acquires a complex VEV, 〈S〉 = S eα, the Yukawa matrices become

Ye =







ye 0 0
0 yμ 0
0 0 yτ






, YΔ1 = yΔ1







1 0 0
0 0 1
0 1 0






, YΔ2 =

yΔ2

3







2 −1 −1
−1 2 −1
−1 −1 2






, (35.6)

and

ye,μ,τ =
r

Λ
yℓ
e,μ,τ

, yΔ1 =
S

Λ′
�

y1e
α + y′1e

−α
�

, yΔ2 =
y2

Λ
s. (35.7)

Notice that the Yukawa matrices YΔ1 and YΔ2 exhibit the so-called μ−τ and magic symmetries,
respectively.

1In principle, one could also include the renormalizable 4-dimension term Δ2LTL. This term is however easily
removed by imposing an additional shaping Z4 symmetry.
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Figure 35.1: Neutrino masses m as a function of the high-energy phase β in the exact TBM
case.

35.2 Low-energy phenomenology

In the present framework, neutrinos acquire masses through the well-known type II seesaw
mechanism due to the tree-level exchange of the heavy scalar triplets Δ. The unitary mixing
matrix U is given by

U = e−σ1/2









2p
6

1p
3

0

− 1p
6

1p
3
− 1p

2
− 1p

6
1p
3

1p
2









diag
�

1, eγ1 , eγ2
�

, (35.8)

where

γ1 = (σ1 − β)/2, γ2 = (σ1 − σ2)/2, σ1,2 = arg
�

z2 ± z1eβ
�

. (35.9)

Hereafter we consider the relevant CP-violating phase as being β. Since at this point there is
no Dirac-type CP violation (U13 = 0), the Majorana phases γ1,2 are the only source of CP
violation in the lepton sector.

At 1σ confidence level, the neutrino mass squared differences are [3]

Δm2
21 =

�

7.59+0.20−0.18

�

× 10−5 eV2, Δm2
31 =

�

2.50+0.09−0.16

�h

−2.40+0.09−0.08

i

× 10−3 eV2,

(35.10)

for the normal [inverted] neutrino mass hierarchy. The present model cannot accommodate an
inverted hierarchy for the neutrino mass spectrum. The dependence of neutrino masses on the
high-energy phase β is presented in Fig. 35.1 for the exact TBM case. The light red shaded
area is currently disfavoured by the recent WMAP seven-year cosmological observational
data [4].
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The T2K [5] and MINOS [6] neutrino oscillation data imply for the θ13 mixing angle

sin2 θ13 = 0.013+0.007−0.005

�

+0.015
−0.009

�h

+0.022
−0.012

i

, (35.11)

at 1σ(2σ)[3σ]. Recently, through the observation of electron-antineutrino disappearance,
the Daya Bay Reactor Neutrino Experiment has also measured the non-zero value [7]:

sin2(2θ13) = 0.092± 0.016(stt)± 0.005(syst) , (35.12)

with a significance of 5.2σ. In the light of these results, models that lead to tribimaximal
mixing appear to be disfavored. Here we shall consider small perturbations around the TBM
vacuum-alignment conditions (35.5). We consider two distinct cases (with |ϵ1,2| � 1.):

CASE A - Small perturbations around the flavon VEV 〈〉 = (r,0,0) of the form 〈〉 =
r(1, ϵ1, ϵ2);

Due to the new form of 〈〉, the charged lepton Yukawa matrix is

Yℓ =







ye yτϵ1 yμϵ2
yτϵ2 yμ yeϵ1
yμϵ1 yeϵ2 yτ






, (35.13)

which implies Uℓ 6= 11, where Uℓ is the unitary matrix which rotates the left-handed charged-
lepton fields to the their physical basis. The new lepton mixing matrix U = U†

ℓUTBM yields the
perturbed mixing angles

sin2 θ12 '
1

3
[1− 2(ϵ1 + ϵ2)] , sin2 θ23 '

1

2
(1+ 2ϵ1) , sin2 θ13 '

(ϵ1 − ϵ2)2

2
,

(35.14)
at lowest order in ϵ1,2. Obviously, the rotation of the charged lepton fields does not affect the
neutrino spectrum nor generate a Dirac-type CP-violating phase. Since the flavon fields are
real, the Majorana phases γ1,2 also remain unaltered.

CASE B - Small perturbations around the flavon VEV 〈Ψ〉 = s(1,1,1) of the form 〈Ψ〉 =
s(1,1+ ϵ1,1+ ϵ2);

The Yukawa couplings YΔ2 contributing to the neutrino mass matrix are now given by

YΔ2 =
yΔ2

3







2 −1− ϵ2 −1− ϵ1
−1− ϵ2 2+ 2ϵ1 −1
−1− ϵ1 −1 2+ 2ϵ2






. (35.15)

Consequently, at first order in ϵ1,2, the neutrino mass spectrum get small corrections. Still, as
in the unperturbed case, it can be shown that an inverted neutrino hierarchy is not allowed. In
the present case, the approximate analytic expressions for the mixing angles are

sin2 θ12 '
1

3
+
2

9
(ϵ1+ϵ2), sin2 θ13 '

(ϵ1 − ϵ2)2

72cos2 β
, sin2 θ23 '

1

2
+
1

6
(ϵ1−ϵ2) , (35.16)
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Figure 35.2: Allowed regions in the (ϵ1, ϵ2) plane corresponding to the VEV perturbations of
the flavon field 〈〉 = r(1, ϵ1, ϵ2) in case A (left panel) and 〈Ψ〉 = s(1,1+ϵ1,1+
ϵ2) in case B (right panel). The scatter points were obtained considering the 1σ
(black), 2σ (red) and 3σ (green) neutrino oscillation data.

while for the Dirac-type CP-violating invariant JCP we have

JCP = m
�

U11U22U
∗
12U

∗
21

�

'
ϵ2 − ϵ1
36

tnβ .

We now comment on the possibility of reproducing the recent Daya Bay θ13 value (35.12) in
our framework. In the absence of a 3-neutrino global analysis of the oscillation data including
the Daya Bay results, we take the 1σ values for θ12, θ23 and Δm2

21,31 obtained in [3]. One
can see that the new Daya Bay value for θ13 is not compatible with the remaining mixing
angles for case A. Instead, for case B we get a perfect agreement with all data [1].

35.3 Higgs triplet decays and leptogenesis

The mechanism of leptogenesis can be naturally realized in the present model due to the
presence of the scalar triplets Δ1 and Δ2. In the presence of CP-violating interactions, the
decay of Δ into two leptons generates a nonvanishing leptonic asymmetry for each triplet
component (Δ0


,Δ+


,Δ++


). Assuming M � Mb, the flavoured CP asymmetry given for each

triplet component can be rewritten as

εαβ

= cαβPαβ ε

0

, ε0


=
1

3π

z zb ||2M2

sinβ

z2

t4 + 4 ||4M2



, (35.17)
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where cαβ is 2− δαβ for Δ0

, Δ++


and 1 for Δ+


, and with t1 = 3 and t2 = 2. The matrix P is

given by

P =
(−1)

2









−2(1+ ϵ1 + ϵ2) ϵ1 − ϵ2 ϵ2 − ϵ1
ϵ1 − ϵ2 4

�

ϵ1 + ϵ2 y2μ/y
2
τ

�

1+ ϵ1 + ϵ2

ϵ2 − ϵ1 1+ ϵ1 + ϵ2 −4
�

ϵ1 + ϵ2 y2μ/y
2
τ

�









, (35.18)

for case A, while

P = (−1)




1

2
+ δ2

4z22(ϵ1 + ϵ2)

18M2
2

4
2 + 9

4z22











−2 0 0
0 0 1
0 1 0






, (35.19)

in case B. Obviously, in the TBM limit (ϵ1,2 = 0), there is a unique matrix P. In this case, the
flavour structure of P dictates that the only allowed decay channels of Δ are into the ee and
μτ flavours. Once the VEV perturbations are introduced, new decay channels are opened in
case A with the corresponding CP asymmetries suppressed by O(ϵ) factors.

Maximizing ε0


with respect to the VEV of the decaying scalar triplet , one obtains

ε01,max '
M1

Æ

Δm2
31

12
p
6π2

sinβ, ε02,max '
M2

Æ

Δm2
31

48π2
tnβ . (35.20)

One can see from the above equations that sufficiently large values of the CP asymmetries
can be obtained in the flavoured regime, i.e. M < 1012. Therefore, unlike the type-I seesaw
framework [8–11], imposing to the Lagrangian a discrete symmetry do not necessarily leads to
a vanishing leptonic CP asymmetry in the type II seesaw case [12].

35.4 Conclusion

A simple scenario where spontaneous CP violation, leptonic mixing and thermal leptogenesis
are related was presented. We added a minimal particle content to the SM, namely, two Higgs
triplets Δ1,2 and a complex scalar singlet S. In this framework, a single phase connects low-
and high-energy CP violation.
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36 The quark NNI textures rising from
SU(5)× Z4 symmetry

C. Simões

Abstract In this work we explored the consequences of the SU(5)× Z4 symmetry, where
the quark mass matrices are in the Nearest-Neighbor-Interaction, on the leptonic sector. The
model is based on the minimal SU(5) Grand Unification (GUT) model with three right-handed
neutrinos and two Higgs quintets. Due to the SU(5) symmetry, the charged lepton mass matrix
gets the same NNI form as the quark sector. However, in the context of the type-I seesaw
mechanism, the effective neutrino mass matrix can have six different textures, of which only
two are compatible with the leptonic experimental data.

36.1 Introduction

One of the open questions in particle physics is the explanation of the observed pattern of
fermion masses and their mixings. One way to study this puzzle is for example by playing with
texture zeroes; one example is the Nearest-Neighbour-Interaction (NNI) [1]. It has zeroes on
the (1,1), (1,3), (2,2) and (3,1) elements and together with the hermiticity condition leads to the
well known Fritzsch form [2–4].

It was shown in Ref. [5] that it is possible to obtain the quark mass matrices in the NNI form,
in the context of the two-Higgs doublet model, through the implementation of a Z4 flavour
symmetry.

The goal of this work is to extend the idea developed in Ref. [5] to SU(5) and study the
consequences of such an implementation on the leptonic sector. This work is organised as
follows: in section 36.2 we present the model and discuss how to obtain the quark mass
matrices in the NNI form; in section 36.3 we explore the leptonic sector concerning the viability
of the mass matrices, then we conclude.

36.2 The model

The model is based on the minimal SU(5) [6] with three generations of 10 and 5∗ fermionic
representations as 10 = (Q,c, ec) and 5∗


= (L, dc). In order to generate neutrino masses

we have introduced three right-handed neutrinos, νc1,2,3, singlets of SU(5) that acquire mass
via type-I seesaw mechanism [7–10].
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The Higgs sector is composed by one 24 dimensional representation, , and two quintets H1
and H2. The adjoint Higgs representation  is introduced to break the SU(5) down to the
standard model (SM) gauge group (SU(3)c×SU(2)L×U(1)Y ) through the vacuum expectation

value (VEV), 〈〉 = σdiag(2,2,2,−3,−3) where σ = 
2λ

1+
p
1+4ξ (60η+7)
60η+7 (see Ref. [11]).

The quintets break the SM gauge group down to SU(3)c×U(1)em when the neutral component
of each doublet acquires a VEV v1, v2 such that v2 ≡ |v1|2 + |v2|2 = (246.2GeV)2 and
generate the fermion masses via the Yukawa interactions. Note that at low energy scale one
falls into a two Higgs doublet model.

The most general Yukawa Lagrangian is given by,

−LY =
1

4

�

1


�

j
1010jH1 +

1

4

�

2


�

j
1010jH2

+
p

2
�

1
d

�

j
105∗j H

∗
1 +

p

2
�

2
d

�

j
105∗j H

∗
2

+
�

1
D

�

j
5∗

νc
j
H1 +

�

2
D

�

j
5∗

νc
j
H2 +

1

2
(MR)j ν

c

νc
j
+H.c.

(36.1)

where 1,2


and 1,2d are the up- and down-quark Yukawa matrices, 1,2D and MR are the Dirac
Yukawa and Majorana matrices for neutrinos. The up- and down-quark mass matrices are then
given by M = v1 1 + v2 2 and Md = v∗1 

1
d
+ v∗2 

2
d
.

The NNI form of the quark mass matrices is achieved through the introduction of a Zn discrete
flavour symmetry. Under this Zn symmetry all fields except the adjoint Higgs field are charged.
The two quintets H1, H2 carry charges ϕ1, ϕ2, the fermionic fields 10, 5∗ and νc


carry

charges q, d and n.

In order to have mass matrices with the NNI form one should ensure that the zero entries in
the mass matrices correspond to a non zero Zn charge of the trilinear terms and vice-versa.
Following the method on Ref. [5] and choosing that the (3,3) entry of M does not vanish we
obtain ϕ2 = −2q3, which leads to the following Zn charges,

Q(10) = (3q3 + ϕ1,−q3 − ϕ1, q3), Q(5∗

) = (q3 + 2ϕ1,−3q3,−q3 + ϕ1) . (36.2)

The charge matrix of the up- and down-quark bilinears is then given by,

Q(10 10j) =







6q3 + 2ϕ1 2q3 4q3 + ϕ1
2q3 −2ϕ1 − 2q3 −ϕ1

4q3 + ϕ1 −ϕ1 2q3






, Q(10 5∗j ) =







4q3 + 3ϕ1 ϕ1 2q3 + 2ϕ1
ϕ1 −ϕ1 − 4q3 −2q3

2q3 + 2ϕ1 −2q3 ϕ1






,

(36.3)

from which we conclude that ϕ1 must be different from ϕ2 and that the minimal realization of
Zn that makes the NNI structure possible is Z4 as in Ref. [5].

The up- and down-quark mass matrices in terms of the Yukawa matrices are given as

M = v1







0 0 0
0 0 b
0 b 0






+ v2







0  0
 0 0
0 0 c






, Md = v∗1







0 d 0
′
d

0 0
0 0 cd






+ v∗2







0 0 0
0 0 bd
0 b′d 0






. (36.4)

This being a GUT model some comments on proton decay and unification are in order.
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Me =MT
d

Relation As a consequence of the SU(5) symmetry the charged-lepton mass
matrix is equal to the down-type quark mass matrix transposed which is not compatible with
the down-type quark and charged-lepton masses hierarchies observed at low energy scale.
One possibility to correct this relation is to introduce non-renormalisable higher dimension
operators [12, 13] due to physics at Λ′ scale above the GUT scale. For instance, dimension 5
operators contribute as

∑

n=1,2

p
2

Λ′
(Δn)j H

∗
n
10b


c
b
5∗
jc
, (36.5)

leading to the mass difference, Md −M>e = 5
σ
Λ′ (v

∗
1 Δ1 + v∗2 Δ2) without destroying the NNI

structure once  is trivial under Z4. Another alternative to correct the relation Me = MT
d

is to
substitute the second Higgs quintet by a 45 dimensional Higgs representation [14]. In this case
the mass difference will be given by Md −M>e = 8

2
d

v∗45, where v45 is the VEV of the 45. In
any of those situations the up-quark mass matrix is no longer symmetric, which is the reason
why we have considered arbitrary NNI mass matrices in section 36.3.

Proton Decay The proton decay can occur through the exchange of X and Y heavy gauge
bosons or the exchange of the colour Higgs triplets, T1 and T2 contained in the quintets.

For the proton decay via the exchange of heavy gauge bosons the decay width can be

estimated [15] as  ≈ α2
U

m5
p

M4V
. Using the partial proton lifetime [16] τ(p→ π0e+) > 8.2×1033

years the mass of the heavy gauge bosons is estimated as MV > (4.0−5.1)×1015 GeV for
a unified gauge coupling in the range α−1

U
≈ 25− 40.

Concerning the proton decay via the exchange of the colour Higgs triplets, the dimension 6
operators contributions at tree-level are given by

∑

n=1,2

�

n


�

j

�

n
d

�

k

M2
Tn

�

1

2
(QQj)(QkL) + (c e

c
j
)(c

k
dc

)

�

, (36.6)

that in fact vanish due to the Yukawa matrices form.

Unification We have found unification of the gauge couplings at two-loop level without
considering the threshold effects and performing the splitting between the masses of the 3
and 8. In our computation, we have set the fields X, Y, T1, T2 at GUT scale, Λ, and H1, H2
around electroweak scale. We found a GUT scale around Λ ≈ (1.3− 2.4)× 1014 GeV and
the masses of the 3 and 8 components of  in the range MZ ≤ M3 ≤ 1.8 × 104GeV
and 5.4× 1011GeV ≤ M8 ≤ 1.3× 1014GeV. Unfortunately, the unification scale found is
smaller than what we expect from the computation of the proton decay through the exchange of
the heavy X and Y gauge bosons and the mass splitting between M3 and M8 is unnaturally
large. This discrepancy can be avoid by the introduction of a 24 fermionic representation [17].
In such case the neutrino masses will get contributions also from type-III seesaw mechanism
in addition to the usual type-I.
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parameters NH IH

Δm2
21

�

×10−5 eV2
�

7.62± 0.19
�

�

�Δm2
31

�

�

�

�

×10−3 eV2
�

2.53+0.08−0.10 2.40+0.10−0.07

sin2 θ12 0.320+0.015−0.017

sin2 θ23 0.49+0.08−0.05 0.53+0.05−0.07

sin2 θ13 0.026+0.003−0.004 0.027+0.003−0.004

me(MZ) = 0.486661305± 0.000000056 MeV ,

mμ(MZ) = 102.728989± 0.000013 MeV ,

mτ(MZ) = 1746.28± 0.16 MeV ,

Table 36.1: The three-flavour oscillation parameters with 1 σ errors, from Ref. [18], for normal
hierarchy (NH) and inverted hierarchy (IH) (on the left) and the charged-lepton
mass at MZ scale (on the right) [11].

36.3 Mass matrices

In Ref. [5] we have shown that the quark mass matrices in the NNI form accommodate all
observed up- and down-quark masses and the CKM mixing matrix. As a consequence of
SU(5) symmetry and since the NNI form has zeroes in symmetric positions, the charged
lepton mass matrix, Me, has also NNI form.

Both quark and charged-lepton mass matrices can be written as,

M =







0 A(1− ε) 0
A(1+ ε) 0 B(1− εb)

0 B(1+ εb) C






, (36.7)

where  = , d, e and ε measures the deviation from the Hermiticity; a global measurement
of the asymmetry in the quark, ϵq, and leptonic, ϵℓ, sectors is given by

ϵq ≡
1

2

q

ε2

+ ε2b + ε

d2

+ εd2b and ϵℓ ≡

s

εe2

+ εe2b
2

. (36.8)

For ϵq = ϵe = 0 one recovers the Fritzsch form [2–4].

The fact that the Z4 neutrino charges are free parameters obliges us to scan all charge
combinations and select the viable textures by confronting them with neutrino experimental
data. The effective neutrino mass matrix is given by the type-I seesaw formula [7] mν =
−mDM−1R m>

D
to an excellent approximation (mD � MR). Performing the scan of all Z4

charges for ϕ1, q3 and neutrinos one is able to determine the shape of the effective neutrino
mass matrix. After its analysis one concludes that among the six different possibilities (see
Ref. [11]) only two textures are viable: II and II(12) where II = P>12II(12) P12.

II =







0 ∗ 0
∗ ∗ ∗
0 ∗ ∗






, II(12) =







∗ ∗ ∗
∗ 0 0
∗ 0 ∗






. (36.9)
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In order to confront the predictions from Me and mν with the neutrino oscillation data at MZ

energy scale one needs to diagonalize both Me and mν and compute the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix [19–21]. The leptonic mixing matrix is given by UPMNS =
U>
ℓ
P12Uν where Uℓ and Uν are the diagonalizing matrices of charged-leptons and neutrinos

respectively.

In our numerics we have varied all charged-lepton masses and neutrino mass differences within
their allowed range (see Table 36.1), scanned the mass of the lightest neutrino for different
magnitudes below 2 eV and computed the other two masses through Δm2

j
≡m2


−m2

j
the

mass squared difference, using the actual neutrino oscillation data [18]; the free parameters of
Me and mν were also properly taken into account (see Ref. [11]).

We have considered as additional constraints the effective Majorana mass [22–24] mee ≡
∑3

=1mU∗21 ; the constraint from Tritium β decay [16] m2
νe
≡
∑3

=1 m
2

|U1|2 < (2.3eV)2

at 95% C.L. and constraints on the sum of light neutrino masses from cosmological and
astrophysical data [25] T ≡

∑3
=1m < 0.68eV at 95% C.L..

We got that texture II is compatible just with normal hierarchy (NH) while texture II(12) is
compatible just with inverted hierarchy (IH). For texture II and normal hierarchy we found that

Figure 36.1: Plot of the effective majorana mass, |mee|, as a function of the lightest neutrino
mass m1 for the Textures-II (NH) (left) and m3 for Texture-II(12) (IH) (right).

the lightest neutrino mass varies in the range m1 = [0.0015,0.013] eV while the global
deviation is ϵℓ > 0.005; the effective Majorana mass found was 0.00097eV < |mee| <
0.0021eV.

Concerning texture II(12) where inverted hierarchy applies we found the lightest neutrino mass
to be in the range m3 = [0.005,0.010] eV, the global deviation is ϵℓ > 0.003 and the
|mee| parameter is given by 0.015eV < |mee| < 0.021eV.
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36.4 Conclusion

In this work we showed that it is possible to implement a Z4 flavour symmetry, in the context
of SU(5) with minimal fermionic content plus three right-handed neutrinos and two Higgs
quintets, that leads to quark mass matrices in the NNI form. We have studied the implications
of this SU(5)× Z4 symmetry on the leptonic sector and found that, among the six possible
textures for the effective neutrino mass matrix, only two are phenomenologically viable and it is
possible to distinguish them by the light neutrino mass spectrum hierarchy.
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37 Two Approaches for Flavour Models with
Large θ13

M. Spinrath

Abstract The recent experimental confirmation of a large reactor mixing angle makes a
careful revision of flavour models necessary. Many models are actually ruled out by this
observation and the popular bimaximal and tri-bimaximal mixing patterns are challenged. We
will present here two possible scenarios with a large θ13. First, corrections from the charged
lepton sector might modify the (tri-)bimaximal mixing pattern to generate an effectively large
θ13 which is well motivated in GUT frameworks. Second, (tri-)bimaximal mixing itself might
need to be modified, e.g. by a modified vacuum structure of the family symmetry breaking
flavon fields. We present examples for both possibilities and show implications for the CP
violation in the lepton sector.

37.1 Introduction

In the last year we have seen a tremendous progress in the experimental determination of
the neutrino mixing parameters due to the precise determination of the last missing neutrino
mixing angle θ13 by the Daya Bay [1] and RENO [2] collaborations. A recent global fit [3]
gives sin2 θ13 = 0.026+0.003−0.004 which deviates from zero by more than 6σ. First evidence
for a non-vanishing reactor angle was already announced last year by the T2K collaboration
[4]. This result was in tension with the very popular bimaximal [5–9] and tri-bimaximal mixing
schemes [10–14] which both predict a vanishing θ13. Subsequently many attempts were made
to explain this large value and we will present here two of them. In the first approach [15]
we start with bimaximal or tri-bimaximal mixing in the neutrino sector and correct the wrong
prediction for θ13 with sizeable corrections from the charged lepton sector in the context of an
SU(5) Grand Unified Theory (GUT) and in the second approach [16] we give a model for an
alternative mixing scheme called trimaximal mixing [17–25].

37.2 Possibility I: Charged Lepton Corrections

Charged lepton corrections to mixing schemes like tri-bimaximal mixing are a natural feature in
GUT flavour models. Additionally, in this class of models the Yukawa couplings for different
fermion species are usually related to each other. We focus here on SU(5) GUTs where the
charged lepton masses and down-type quark masses are related. We assume bimaximal or
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{α, β, β′, γ} sinθ13
{−,−1/2,6,6} 0.164± 0.013
{−3/2,−3,−3,−3} 0.164± 0.007
{−18,9/2,9/2,9/2} 0.149± 0.003

Table 37.1: The three combinations of Clebsch–Gordan coefficients taken from [15] which
survive after the recent global fit results from [3].

tri-bimaximal mixing in the neutrino sector and the following structure of the Yukawa matrices
of the charged leptons and down-type quarks

λ̂D[12] =
�

 b′

b c

�

λ̂E[12] =
�

α βb
β′b′ γc

�

, (37.1)

where , b, b′, c are free parameters and α, β, β′, γ are group theoretical Clebsch–Gordan
coefficients. A list of them including non-standard ones from non-renormalisable operators
is given in [26]. We assume a hierarchical Yukawa structure and hence mixing with the third
generation can be neglected and we discuss only the 1-2 block. The reactor mixing angle (for
θν13 = 0 and θν23 = π/4) is then approximately

sinθ13 ≈ sinθe12 sinθ
ν
23 ≈

1
p
2

β′

γ

b′

c
. (37.2)

Given a set of Clebsch–Gordan coefficients we can determine the parameters from the fermion
masses and can predict the reactor neutrino mixing angle. In [15] we have done this for some
well motivated cases and from the cases discussed there only three remain according to the
recent fit results from [3] which are collected in Tab. 37.1.

In this setup it is furthermore possible to constrain the amount of CP violation in the lepton
sector because the physical mixing angles θ12, θ13 and the leptonic Dirac CP phase δ are
related to each other via

Bimaximal: sin2 θ12 ≈
1

2
+ sinθ13 cos δ , (37.3)

Tri-Bimaximal: sin2 θ12 ≈
1

3
+
2
p
2

3
sinθ13 cos δ , (37.4)

for references and details see [15]. The mixing angles are experimentally determined such
that we get a constrain on the phase δ and the Jarlskog invariant JCP, see Fig. 37.1. In the
bimaximal case we need δ to be close to 180◦ (cos δ ≈ −1) to get the right result while in
the tri-bimaximal case δ should be close to 90◦. In other words for the tri-bimaximal case we
expect a large amount of CP violation (a large JCP) while for the bimaximal case it should be
rather small.

37.3 Possibility II: Trimaximal Mixing

The second possibility is based on the framework of sequential dominance [28–32]. The
right-handed neutrino mass matrix MR is set to be diagonal and the columns of the neutrino
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Figure 37.1: The cosine of the Dirac CP phase δ (top) and the rephasing invariant JCP (bottom)
as a function of sinθ13 in the cases of bimaximal (left) and tri-bimaximal (right)
mixing from the neutrino sector. The green, yellow, orange regions correspond
to the 1, 2, 3σ allowed ranges of sin2 θ12. The vertical straight, dashed, dotted
lines show the 1, 2, 3σ allowed ranges of sinθ13. The values of sin2 θ12 and
sinθ13 are from [27] and the plots from [15] (see text for details).
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Yukawa matrix are labelled A, B and C,

Yν = (A,B,C) and MR = diag(MA,MB,MC) . (37.5)

The effective low energy neutrino mass matrix is then given as

Mν =
2AAT

MA
+
2BBT

MB
+
2CCT

MC
, (37.6)

and sequential dominance assumes a hierarchy A2/MA � B2/MB � C2/MC. In a minimal
setup with only two right-handed neutrinos (which corresponds to neglecting terms of the order
of C2/MC) tri-bimaximal mixing is governed, e.g. by A ∝ (0,1,−1) and B ∝ (1,1,1) which
is dubbed constrained sequential dominance [33] (CSD).

If we replace the B column of tri-bimaximal mixing with B ∝ (1,0,2) we get a different mixing
pattern, a special kind of trimaximal mixing [23–25] which was dubbed CSD2 [16] to distinguish
it from the original CSD.

To get this column in the Yukawa matrix we assume an underlying model of flavour with triplet
representations such that the columns are given by the vacuum expectation values of family
symmetry breaking flavon fields. With standard vacuum alignment tools one can get two sets
of flavons with the alignments

〈ϕe1〉 ∝







1
0
0






, 〈ϕe2〉 ∝







0
1
0






, 〈ϕe3〉 ∝







0
0
1






, (37.7)

〈ϕν1〉 ∝







0
1
−1






, 〈ϕν2〉 ∝







1
1
1






, 〈ϕν3〉 ∝







−2
1
1






. (37.8)

The new (1,0,2) alignment can then be derived straightforwardly by the superpotential

W = O1(ϕe2 · ϕ102) +O2(ϕ
ν
3 · ϕ102) , (37.9)

where O1 and O2 are driving fields, singlets under the family symmetry. Solving the F-term
equations of these two fields (FO = 0) enforces ϕ102 to be orthogonal to ϕe2 and ϕν3 and
hence ϕ102 ∝ (1,0,2). For a full A4 model including a choice of additional discrete shaping
symmetries see the original CSD2 paper [16].

The effective low energy neutrino mass matrix in this setup

Mν =m







η 0 2η
0 1 −1
2η −1 1+ 4η






, η = ε eiα , (37.10)

can be described in terms of only three parameters, the neutrino mass scale m, the modulus
ε and the relative phase α. For a full list of relations between these three parameters and the
observables in the neutrino sector see [16]. We only want to highlight here two of them. First
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Figure 37.2: The correlations between θ13 and the other physical mixing parameters in CSD2
for the (1,0,2)T alignment. Regions compatible with the 1σ (3σ) ranges of the
atmospheric and solar neutrino mass squared differences and mixing angles,
taken from [27], are depicted by the red (blue) points. The plots are taken from
[16].
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it is interesting to note that in this setup the reactor mixing angle is related to the ratio of the
neutrino masses

θ13 =

p
2

3

mν
2

mν
3

, (37.11)

which is nevertheless too small (of the order of 6◦ instead of 9◦). This can be lifted in the
context of a GUT embedding where additional corrections from the charged lepton sector are
present. Second the leptonic Dirac CP violation is directly related to the phase difference α

δ = π + α − ε
5

2
sinα . (37.12)

As we can see from Fig. 37.2 certain values for α are preferred which could be accomodated
in the context of CP violation from discrete symmetries [34]. Note also that we can have a
significant deviation from maximal atmospheric mixing in the right direction and we find a
preferred range for the physical Majorana phase, see Fig. 37.2.

37.4 Summary and Conclusions

The confirmation of a non-vanishing, sizeable reactor mixing angle by the Daya Bay [1] and
RENO [2] experiments have ruled out many flavour models and disfavoured the popular
bimaximal and tri-bimaximal mixing patterns in its exact forms. This raises the question in
which direction to go in the future.

We have presented here two possibilities. The first one keeps a bimaximal or tri-bimaximal
mixing pattern in the neutrino sector alone, which is well motivated by symmetries, and then
adds corrections from the charged lepton sector, which are well motivated in GUTs, to get the
right value for θ13 [15]. The second possibility, CSD2, is based on a flavour model leading
to a different mixing pattern, dubbed trimaximal, which gives a sizeable θ13 and a significant
deviation from maximal atmospheric mixing [16].

Although neutrino physics has made a huge progress in the last year there are still many open
questions left. What is the mass hierarchy and mass scale of the neutrinos? Are they Majorana
particles? How large is the amount of CP violation in the lepton sector? How close is θ23 to
maximal? The prospects for answering at least some of this questions in the near future are
good and every answer will again rule out a lot of flavour models. This will focus the attention
on the surviving models which can then be studied in greater details which will hopefully shed
some light on the origin of flavour and CP violation.
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38 Relating neutrino mixing angles to
neutrino masses

M. Tanimoto

Abstract The observation of θ13 suggests us that we should not persist in the paradigm of
the tri-bimaximal mixing. We present the A4 model with 1′ and 1′′ flavons, which predicts
sinθ13 ' 0.15. There is another aspect of the large flavor mixing of neutrions. We show that
our minimal texture describes all known empirical values. The magnitude of θ13 is predicted to
be in the middle of the range of the experimental data.

38.1 Introduction

The flavor symmetry is expected to explain the mass spectrum and the mixing matrix of both
quarks and leptons. Especially, the non-Abelian discrete symmetry [1, 2] has been studied
intensively in the lepton sectors. Actually, the three flavor analyses of the neutrino mixing
[3, 4] have suggested the tri-bimaximal mixing pattern of leptons [5]. This simple mixing is at
first understood based on the non-Abelian finite group A4 [6]−[18]. The tri-bimaximal mixing
gives the vanishing θ13. However, Daya Bay experiment reported non-vanishing θ13 [19], and
then the RENO experiment also presented the same magnitude [20]. Now, we do not need to
persist in the paradigm of the tri-bimaximal mixing. The tri-bimaximal structure is broken.

It should be emphasized that the A4 flavor symmetry does not necessarily give the tri-bimaximal
mixing at the leading order even if the relevant alignments of the vacuum expectation values
(VEVs) are realized. Certainly, the A4 symmetry can give the mass matrix with (1,3) or (1,2)
off diagonal matrices at the leading order if 1′ and 1′′ flavons exist [21]:







0 0 1
0 1 0
1 0 0






for 1′,







0 1 0
1 0 0
0 0 1






for 1′′. (38.1)

The tri-bimaximal mixing is broken at the leading order in such a case [22–24].

As a concrete realization of such a pattern, we discuss an A4 flavor model [25], which is a
modified version of the Altarelli and Feruglio model [9, 10]. We find that θ12 and θ23 are not
so different compared with the tri-bimaximal mixing, but sinθ13 is expected to be around 0.15
if the neutrino mass spectrum is normal hierarchical. Our model is completely consistent with
the data by Daya Bay and RENO experiments.

On the other hand, there is another aspect of large flavor mixing. The neutrino mass ratios
may suggest the large flavor mixing angles. the large mixing angles could be realized in the
specific textures of the neutrino mass matrix. We show a simple texture [26–28].
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38.2 Neutrino mass matrix breaking the tri-bimaximal mixing

Let us discuss the breaking the tri-bimaximal mixing. The neutrino mass matrix which leads to
the tri-bimaximal mixing of flavor is given by

MTBM =
m1 +m3

2







1 0 0
0 1 0
0 0 1






+
m2 −m1

3







1 1 1
1 1 1
1 1 1






+
m1 −m3

2







1 0 0
0 0 1
0 1 0






. (38.2)

Here m1, m2, and m3 are neutrino masses, while the charged lepton mass matrix is diagonal.
Certainly, the A4 symmetry can realize the mass matrix in Eq. (38.2). Additional matrices in
Eq.(38.1) are added at the leading order in the flavor model with the non-Abelian discrete
symmetry. For example, such extra terms appear in the A4 flavor model if 1′ and 1′′ flavons
couple to the A4 triplet neutrinos such as 3× 3× 1′ and 3× 3× 1′′ as discussed later.

It is noticed that the additional two terms in Eq. (38.1) are not independent from each other.
Thus we can consider the neutrino mass matrix, which breaks the tri-bimaximal mixing,

Mν = 







1 0 0
0 1 0
0 0 1






+ b







1 1 1
1 1 1
1 1 1






+ c







1 0 0
0 0 1
0 1 0






+ d







0 0 1
0 1 0
1 0 0






, (38.3)

without loss of generality. Here the parameters , b, c and d are arbitrary in general. The
neutrino masses m1, m2 and m3 are given in terms of these four parameters.

By factoring out the tri-bimaximal mixing matrix Vtri-bi

Vtri-bi =









2p
6

1p
3

0

− 1p
6

1p
3
− 1p

2
− 1p

6
1p
3

1p
2









, (38.4)

the left-handed neutrino mass matrix (38.3) is written as

Mν = Vtri-bi









+ c− d
2 0

p
3
2 d

0 + 3b+ c+ d 0p
3
2 d 0 − c+ d

2









VT
tri-bi . (38.5)

At first, suppose the parameters , b, c, d to be real in order to see the effect of the non-
vanishing d clearly. Then, we have the mass eigenvalues of the left-handed neutrinos as

+
p

c2 + d2 − cd, + 3b+ c+ d, −
p

c2 + d2 − cd. (38.6)

As the charged lepton mass matrix is diagonal, the mixing matrix UMNS is

UMNS = Vtri-bi







cosθ 0 sinθ
0 1 0

− sinθ 0 cosθ






, tn2θ =

p
3d

−2c+ d
. (38.7)
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The relevant mixing matrix elements of UMNS are given as

|Ue2| =
1
p
3
, |Ue3| =

2
p
6
|sinθ| ,

�

�Uμ3
�

� =
�

�

�

�

−
1
p
6
sinθ−

1
p
2
cosθ

�

�

�

�

, (38.8)

which is the trimaximal lepton mixing.

Let us discuss a concrete example of the flavor model with A4, which is modified version of the
model proposed by Altarelli and Feruglio [9, 10]. We introduce an A4 singlet ξ′, which is a 1′

flavon, in addition to ϕ, ϕν, and ξ as shown in Table 1.

(e, μ, τ) ec μc τc h,d ϕ ϕν ξ ξ′

SU(2) 2 1 1 1 2 1 1 1 1
A4 3 1 1′′ 1′ 1 3 3 1 1′

Z3 ω ω2 ω2 ω2 1 1 ω ω ω

Table 38.1: Assignments of SU(2), A4, and Z3 representations, where ω = e
2π
3 .

The relevant Yukawa interaction which respects the flavor symmetry is described by

Lℓ = yeecϕhd/Λ+ yμμcϕhd/Λ+ yττcϕhd/Λ + (yνϕνϕν + y
ν
ξ
ξ+ yν

ξ′
ξ′)hh/Λ2 .

(38.9)

The VEVs 〈h,d〉 = ,d, 〈ξ〉 = αξΛ, and 〈ξ′〉 = αξ′Λ and vacuum alignment

〈ϕ〉 = αΛ(1,0,0) , 〈ϕν〉 = ανΛ(1,1,1) (38.10)

lead to the diagonal charged lepton mass matrix and effective neutrino mass matrix,

M = αd







ye 0 0
0 yμ 0
0 0 yτ






, Mν = 







1 0 0
0 1 0
0 0 1






+b







1 1 1
1 1 1
1 1 1






+c







1 0 0
0 0 1
0 1 0






+d







0 0 1
0 1 0
1 0 0






,

(38.11)
where

 =
yν
ϕν
αν2

Λ
, b = −

yν
ϕν
αν2

3Λ
, c =

yν
ξ
αξ2

Λ
, d =

yν
ξ′
αξ′2

Λ
. (38.12)

The non-vanishing d is generated through the coupling ξ′hh. Since there is the relation
 = −3b, we can predict θ13. In the case where the parameters , c, d are real, they are
fixed by the three neutrino masses m1, m2 and m3. We predict θ13 by taking input data at
the 90% confidence level as [3, 4]

Δm2
tm = (2.24− 2.65)× 10

−3 eV2, Δm2
sol = (7.29− 7.92)× 10

−5 eV2,

sin2 θ23 = 0.40− 0.62, sin2 θ12 = 0.29− 0.34. (38.13)

In Figure 1, we show the predicted sinθ13 versus
∑

m, where the normal hierarchy of the
neutrino masses is taken. In the case of m3 �m2,m1, that is

∑

m ' 0.05 eV, sinθ13 is
expected to be around 0.15, which is completely consistent with the experimental data.
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Figure 38.1: sinθ13 versus
∑

m

for the normal mass
hierarchy.

Figure 38.2: sinθ13 versus
∑

m

for the inverted mass
hierarchy.

The magnitude of sin2 θ23 is correlated with the magnitude of sinθ13 as seen in Eq.(38.8).
By putting the data of sinθ13, we have predicted value sin2 θ23 = 0.40 ∼ 0.42.

For the case of the inverted hierarchy of neutrino masses, we also show the predicted value
of sinθ13 versus

∑

m in Figure 2. In the hierarchical limit of m2 ' m1 � m3, we predict
sinθ13 ' 0.2, which is somewhat larger than the experimental data.

38.3 Large θ13 and the neutrino mass ratio

We discuss another aspect of large flavor mixing. Here, we introduce our minimal texture
hypothesis [26–28] and the resulting consequences. Our hypothesis consists of the mass
matrices of the charged leptons, the Dirac neutrinos of the form [29] and the right-handed
Majorana mass matrix

mE =







0 Aℓ 0
Aℓ 0 Bℓ
0 Bℓ Cℓ






, mνD =







0 Aν 0
Aν 0 Bν
0 Bν Cν






, MR = M0, (38.14)

where each entry is complex. We obtain the three light neutrino mass matrix as

mν =mT
νD
M−1
R
mνD. (38.15)

The lepton mixing matrix is given by

U = U†
ℓ
Q Uν, Q =







1 0 0
0 eσ 0
0 0 eτ






, (38.16)

where the expressions of Uℓ and Uν are given in [27], and Q is a reflection of phases contained
in the charged lepton mass matrix and the Dirac mass matrix of neutrinos.

Since the charged lepton masses are known, the number of parameters contained in our
model is six: m1D, m2D, m3D, σ, τ and M0. They are to be determined by empirical neutrino
masses and mixing angles.
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The relevant lepton mixing matrix elements are written approximately,

Ue2 ' −
�m1

m2

�1/4

+

�

me

mμ

�1/2

eσ,

Uμ3 '
�m2

m3

�1/4

eσ −
�mμ

mτ

�1/2

eτ,

Ue3 '
�

me

mμ

�1/2

Uμ3 +
�m2

m3

�1/2�m1

m3

�1/4

, (38.17)

where charged lepton mass is denoted as me, mμ and mτ, and (me/mτ)1/2 is neglected.
Rough characteristics of mixing angles can be seen from these expressions.

For instance, these equations allow us to see the relation between neutrino masses and mixing
angles, roughly as

|Ue2| ≈
�m1

m2

�1/4

, |Uμ3| ≈
�m2

m3

�1/4

, |Ue3| ≈
�m2

m3

�1/2�m1

m3

�1/4

. (38.18)

The relation among the mixing angles are

|Ue3| ≈ |Uμ3|2|Ue2Uμ3| = |Uμ3|3|Ue2|. (38.19)

With |Uμ3| ∼ 1/
p
2 and |Ue2| ∼ 1/

p
3 we see that |Ue3| ∼ 1/(2

p
6) ' 0.2. We emphasize

that only the normal neutrino mass hierarchy is allowed in our model, which allows us to predict
uniquely the effective mass that appear in double beta decay.

We now present the numerical results using the accurate expression of the lepton mixing angles
given in [27]. Figures 3 shows |Ue3| = sinθ13 versus sin2 2θ23. The range of sin2 2θ12 and
sin2 2θ23 are cut at the boundary of the region experimentally allowed at the 90% confidence
level. Our predicted value of sinθ13 falls in the middle of the range of the experimental data.

We also see that the maximum mixing θ23 = π/4 (sin2 2θ23 = 1) is excluded.

Figure 38.3: Predicted sinθ13 versus
sin2 2θ23.

Figure 38.4: Predicted mee versus
sinθ13.

We also predict the effective electron neutrino mass |mee| that appears in neutrinoless double
beta decay. Figures 4 shows the predicted |mee| versus sinθ13, where the allowed effective
mass for double beta decay is |mee| = 3.7− 5.6 meV.
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38.4 Conclusion

The A4 model by Altarelli and Feruglio can be simply modified by introducing 1′ and 1′′ flavons,
and then, it predicts sinθ13 ' 0.15 for the normal hierarchical neutrino masses.

On the other hand, there is another aspect of the large flavor mixing of neutrions. Our minimal
texture describes all known empirical values, without adding any further matrix elements or
extending the assumptions. The magnitude of θ13 falls in the middle of the range of the
experimental data. The matrix only allows the normal hierarchy of the neutrino mass, excluding
either inverse hierarchy or degenerate mass cases. This predicts the effective mass of double
beta decay to lie within the range mee = 3.7− 5.6 meV.
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39 2012 status of neutrino oscillation
parameters: θ13 and beyond.

M. Tórtola

Abstract We present an updated global fit of neutrino oscillations including the most recent
reactor antineutrino disappearance data from Double Chooz, Daya Bay and RENO, together
with the latest MINOS and T2K long-baseline appearance and disappearance results. The
highlights of the updated analysis are, on the one hand, the large value of θ13 implied by
the new reactor data (with θ13 = 0 excluded at more than 10σ) and, on the other hand, the
non-maximal value of θ23 preferred by the new long-baseline results.

39.1 Introduction

Last year there were some indications for a non-zero θ13 mixing angle coming from the
observation of electron neutrino appearance on a muon neutrino beam at the accelerator
oscillation experiments T2K [1] and MINOS [2]. Together with the hints from the solar and
atmospheric neutrino data samples, the global analysis of neutrino oscillation data reported
indications of non-zero θ13 at the level of 3-4σ (see Refs [3, 4] for more details). Along
this year, these hints have been largely confirmed thanks to the first measurements of θ13
reported by the reactor experiments Double Chooz [5], Daya Bay [6] and RENO [7]. These
new generation of reactor experiments look for the disappearance of reactor antineutrinos over
baselines of the order of 1 km with very large statistics and, most importantly, with several
detectors located at different distances from the reactor core, to reduce the systematic errors
relative to the neutrino flux normalization.

Besides the new reactor neutrino data, the global fit presented in this work considers also
the most recent long-baseline neutrino data from the MINOS [8] and T2K [9, 10] experiments
presented at the Neutrino 2012 Conference. The new long-baseline data imply some improve-
ments with respect to the previous MINOS and T2K results in Refs. [1, 2, 11–13]. First, the
new results on νμ → νe appearance searches allow a better determination of the θ13 mixing
angle, although its current determination is fully dominated by the Daya Bay reactor data. And
second, for the first time they show a preference for a non-maximal θ23 in the νμ and ν̄μ
disappearance channels.
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39.2 Global analysis of neutrino oscillation data

39.2.1 Neutrino data samples

Here we will give a brief description of the neutrino data samples considered in our global
fit. For more details see Ref. [14]. For the solar neutrino sector we include the most recent
solar neutrino data from the radiochemical experiments Homestake [15], Gallex/GNO [16]
and SAGE [17], as well as the latest data from Borexino [18], and the three phases of Super-
Kamiokande [19–21] and the Sudbury Neutrino Experiment SNO [22, 23]. For the KamLAND
reactor experiment we consider the most recent results corresponding to a total livetime of
2135 days [24]. In the atmospheric sector we use the atmospheric neutrino analysis done by
the Super-Kamiokande Collaboration [25], and we also include the most recent results from
the MINOS [8] and T2K [9, 10] long-baseline experiments released last June at the Neutrino
2012 Conference, either for the appearance and disappearance channels and for the neutrino
and antineutrino runs in the case of MINOS. Finally, we include in our global analysis the latest
results released by the new generation of reactor experiments. We consider the total event
rate measured by Double Chooz [26, 27] with an exposure of 227.93 live days and the far to
near event ratio observed at the Daya Bay [28] and RENO [7] experiments. The more recent
Daya Bay results presented at the Neutrino 2012 conference with 2.5 times more statistics
than their previous data release allow a very strong rejection for θ13 = 0 that now is excluded
at almost 8σ by Daya Bay alone.

39.2.2 Results

Here we summarize the main results for the neutrino oscillation parameters obtained in our
global neutrino analysis. A more detailed description is given in Ref. [14].

Fig. 39.1 summarizes the results obtained for sin2 θ13 and δ. The upper panels show the Δχ2

profile as a function of sin2 θ13 for normal (left panel) and inverted (right panel) neutrino mass
orderings for the individual reactor data samples, the combination of all long-baseline data
and the global analysis, as indicated. One sees that the current global constraint on θ13 is
largely dominated by the recent Daya Bay results. For both neutrino mass hierarchies we find
that θ13 = 0 is now excluded at 10.2σ. The lower panels of Fig. 39.1 show the contours of
Δχ2 = 1,4,9 in the sin2 θ13 − δ plane from the global fit to the neutrino oscillation data. As
shown in the figure, the sensitivity of the current neutrino data to the CP phase δ is still very
poor. Marginalizing over the CP phase and all the remaining oscillation parameters we get the
following results for the best fit and one-sigma sin2 θ13 errors:

sin2 θ13 = 0.0246+0.0029−0.0028 , (normal hierarchy),
sin2 θ13 = 0.0250+0.0026−0.0027 , (inverted hierarchy).

(39.1)

The global fit results for all the other neutrino oscillation parameters are summarized in Fig. 39.2
and Table 39.1. The inclusion of the new reactor and long-baseline data does not have a
strong impact on the solar neutrino parameter determination, since they are already quite well
determined by solar and KamLAND reactor data. Concerning atmospheric neutrino parameters,
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Figure 39.1: Upper panels: Δχ2 versus sin2 θ13 from the analysis of reactor (magenta/light
lines), long-baseline (dashed blue/dark line) and global neutrino data (solid
blue/dark line). Lower panels: contours of Δχ2 = 1,4,9 in the sin2 θ13 − δ
plane from the global fit to the data. Left (right) panels are for normal (inverted)
neutrino mass ordering.
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parameter best fit 1σ range 3σ range
Δm2

21 [10
−5eV2] 7.62 7.43–7.81 7.12–8.20

|Δm2
31| [10

−3eV2]
2.55
2.43

2.46–2.61
2.37–2.50

2.31–2.74
2.21–2.64

sin2 θ12 0.320 0.303–0.336 0.27–0.37

sin2 θ23
0.613 (0.427)1

0.600
0.400–0.461 & 0.573–0.635

0.569–0.626
0.36–0.68
0.37–0.67

sin2 θ13
0.0246
0.0250

0.0218–0.0275
0.0223–0.0276 0.017–0.033

δ
0.80π

-0.03π 0–2π 0–2π

Table 39.1: Neutrino oscillation parameters summary. For Δm2
31, sin2 θ23, sin2 θ13, and δ

the upper (lower) row corresponds to normal (inverted) neutrino mass hierarchy.
1 Local minimum in the first octant of θ23 with Δχ2 = 0.02 with respect to the global minimum.

the new MINOS disappearance data in Ref. [8] have shifted the best fit value of Δm2
31 to slightly

larger values. The accuracy in the determination of the mass splitting has also been improved
thanks to the new long-baseline data. For the atmospheric angle we found that maximal mixing
θ23 = π/4 is disfavoured at ∼ 90% C.L. Our global fit shows a weak preference for the mixing
angle in the second octant, somewhat steeper for the inverse hierarchy case. The preference
for non-maximal values of θ23 appears as a consequence of the new MINOS results, while the
choice of a particular octant comes from the interplay of long-baseline, reactor and atmospheric
neutrino data. A more detailed discussion about the impact of the new long-baseline data and
the atmospheric neutrino analysis in the determination of the atmospheric mixing angle as well
as a comparison with other recent global analysis can be found in Ref. [14].

39.3 Summary and outlook

In this work we have summarized the current status of the three-neutrino oscillation parameters,
including the most recent reactor antineutrino data reported by Double Chooz, Daya Bay and
RENO as well as the latest MINOS and T2K appearance and disappearance results, as
presented at the Neutrino 2012 conference. From the global fit to neutrino data we found a best
fit value of sin2 θ13 = 0.0246(0.0250) for normal (inverted) neutrino mass hierarchy, with
sin2 θ13 = 0 excluded at 10.2σ. Concerning the atmospheric neutrino sector, we find a best fit
value of the atmospheric mixing angle sin2 θ23 in the second-octant for the two neutrino mass
orderings. This preference, however, is still marginal and first octant values of θ23 are allowed
at the 1σ level. The new official Super-Kamiokande analysis in Ref. [29] with three flavour
effects points to a weak preference for non-maximal θ23 mixing, together with a correlation
between the neutrino mass ordering and the preferred octant for θ23, in qualitative agreement
with our results. Conversely, the analyses of atmospheric neutrino data in Refs. [30, 31] obtain
a preference for mixing angle in the first octant for both mass hierarchies. The origin of this
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discrepancy between the different analyses is not yet clear. The impact of the new reactor
and long-baseline accelerator measurements upon the solar neutrino oscillation parameters is
completely marginal, the results are summarized in Table 39.1. No significant sensitivity to the
CP-violating phase δ or the neutrino mass ordering has been found by the combination of all
current neutrino data.

After the accurate measurements of the neutrino oscillation parameters presented in last
section, it is time now for precision measurements. In particular, a precise determination of
θ13 will be crucial to perform the proposed CP violation searches in neutrino oscillations [32]
and will be very helpful also to determine the neutrino mass hierarchy. In this respect, further
improvement will be obtained after the completion of the Daya Bay detector site along this year
and, in 3 years of operation the Daya Bay uncertainties on sin2 2θ13 will be reduced from 20%
to 4-5% [33]. The installation of the near detector in Double Chooz expected by the end of 2013
will also help understanding the spectral distortions in the reactor neutrino spectrum. Muon-
neutrino disappearance results from the T2K and NOνA long-baseline accelerator experiments
will improve the determination of the atmospheric mass splitting |Δm2

31| at the level of a few
percent [34–36]. The atmospheric mixing angle θ23 is also likely to be measured with improved
precision. Regarding the deviations of θ23 from maximal mixing, a comparative study of the
different atmospheric neutrino analysis together with the combination of future accelerator
and reactor neutrino data may help to clarify the ambiguity between the two octants [37].
Several ideas have been proposed to address the issue of the neutrino mass ordering. One of
them [38] exploits the sensitivity to matter effects at the accelerator experiment NOνA and the
atmospheric neutrino observations at the future India-based Neutrino Observatory (INO) [39].
A combined analysis of the two experiments would allow a 2σ rejection of the wrong mass
hierarchy by 2020. Likewise, the possibility of identifying the neutrino mass hierarchy with
a reactor neutrino experiment at an intermediate baseline (∼ 60 km) has ben discussed in
Refs. [40, 41].

Acknowledgments

M.T. acknowledges financial support from CSIC under the JAE-Doc programme, co-funded by
the European Social Fund. This work was also supported by the Spanish MINECO under grants
FPA2011-22975 and MULTIDARK CSD2009-00064 (Consolider-Ingenio 2010 Programme), by
Prometeo/2009/091 (Generalitat Valenciana).

310



Bibliography

[1] K. Abe et al. (T2K Collaboration), Phys.Rev.Lett. 107, 041801 (2011), arXiv:1106.2822
[hep-ex]

[2] P. Adamson et al. (MINOS Collaboration), Phys.Rev.Lett. 107, 181802 (2011),
arXiv:1108.0015 [hep-ex]

[3] T. Schwetz, M. Tortola, and J. Valle, New J.Phys. 13, 063004 (2011), arXiv:1103.0734
[hep-ph]

[4] T. Schwetz, M. Tortola, and J. Valle, New J.Phys. 13, 109401 (2011), arXiv:1108.1376
[hep-ph]

[5] Y. Abe et al. (DOUBLE-CHOOZ Collaboration), Phys.Rev.Lett. 108, 131801 (2012),
arXiv:1112.6353 [hep-ex]

[6] F. An et al. (DAYA-BAY Collaboration), Phys.Rev.Lett. 108, 171803 (2012),
arXiv:1203.1669 [hep-ex]

[7] J. Ahn et al. (RENO collaboration), Phys.Rev.Lett. 108, 191802 (2012), arXiv:1204.0626
[hep-ex]

[8] R. Nichol talk at Neutrino 2012 conference, Kyoto, June 2012

[9] K. Abe et al. (T2K Collaboration), Phys.Rev. D85, 031103 (2012), arXiv:1201.1386 [hep-
ex]

[10] T. Nakaya talk at Neutrino 2012 conference, Kyoto, June 2012

[11] P. Adamson et al. (MINOS Collaboration), Phys.Rev.Lett. 106, 181801 (2011),
arXiv:1103.0340 [hep-ex]

[12] P. Adamson et al. (MINOS collaboration), Phys.Rev.Lett. 107, 021801 (2011),
arXiv:1104.0344 [hep-ex]

[13] P. Adamson et al. (MINOS Collaboration), Phys.Rev.Lett. 108, 191801 (2012),
arXiv:1202.2772 [hep-ex]

[14] D. Forero, M. Tortola, and J. Valle(2012), arXiv:1205.4018 [hep-ph]

[15] B. Cleveland, T. Daily, J. Davis, Raymond, J. R. Distel, K. Lande, et al., Astrophys.J. 496,
505 (1998)

[16] F. Kaether, W. Hampel, G. Heusser, J. Kiko, and T. Kirsten, Phys.Lett. B685, 47 (2010),
arXiv:1001.2731 [hep-ex]

[17] J. Abdurashitov et al. (SAGE Collaboration), Phys.Rev. C80, 015807 (2009),
arXiv:0901.2200 [nucl-ex]

311

http://dx.doi.org/10.1103/PhysRevLett.107.041801
http://arxiv.org/abs/1106.2822
http://arxiv.org/abs/1106.2822
http://dx.doi.org/10.1103/PhysRevLett.107.181802
http://arxiv.org/abs/1108.0015
http://dx.doi.org/10.1088/1367-2630/13/6/063004
http://arxiv.org/abs/1103.0734
http://arxiv.org/abs/1103.0734
http://dx.doi.org/10.1088/1367-2630/13/10/109401
http://arxiv.org/abs/1108.1376
http://arxiv.org/abs/1108.1376
http://dx.doi.org/10.1103/PhysRevLett.108.131801
http://arxiv.org/abs/1112.6353
http://dx.doi.org/10.1103/PhysRevLett.108.171803
http://arxiv.org/abs/1203.1669
http://dx.doi.org/10.1103/PhysRevLett.108.191802
http://arxiv.org/abs/1204.0626
http://arxiv.org/abs/1204.0626
http://dx.doi.org/10.1103/PhysRevD.85.031103
http://arxiv.org/abs/1201.1386
http://arxiv.org/abs/1201.1386
http://dx.doi.org/10.1103/PhysRevLett.106.181801
http://arxiv.org/abs/1103.0340
http://dx.doi.org/10.1103/PhysRevLett.107.021801
http://arxiv.org/abs/1104.0344
http://dx.doi.org/10.1103/PhysRevLett.108.191801
http://arxiv.org/abs/1202.2772
http://arxiv.org/abs/1205.4018
http://dx.doi.org/10.1086/305343
http://dx.doi.org/10.1016/j.physletb.2010.01.030
http://arxiv.org/abs/1001.2731
http://dx.doi.org/10.1103/PhysRevC.80.015807
http://arxiv.org/abs/0901.2200


[18] G. Bellini et al. (The Borexino Collaboration), Phys.Rev.Lett. 107, 141302 (2011),
arXiv:1104.1816 [hep-ex]

[19] J. Hosaka et al. (Super-Kamiokande Collaboration), Phys.Rev. D73, 112001 (2006),
arXiv:hep-ex/0508053 [hep-ex]

[20] J. Cravens et al. (Super-Kamiokande Collaboration), Phys.Rev. D78, 032002 (2008),
arXiv:0803.4312 [hep-ex]

[21] K. Abe et al. (Super-Kamiokande Collaboration), Phys.Rev. D83, 052010 (2011),
arXiv:1010.0118 [hep-ex]

[22] B. Aharmim et al. (SNO Collaboration), Phys.Rev.Lett. 101, 111301 (2008),
arXiv:0806.0989 [nucl-ex]

[23] B. Aharmim et al. (SNO Collaboration), Phys.Rev. C81, 055504 (2010), arXiv:0910.2984
[nucl-ex]

[24] A. Gando et al. (KamLAND Collaboration), Phys.Rev. D83, 052002 (2011),
arXiv:1009.4771 [hep-ex]

[25] R. Wendell et al. (Super-Kamiokande Collaboration), Phys.Rev. D81, 092004 (2010),
arXiv:1002.3471 [hep-ex]

[26] M. Ishitsuka talk at Neutrino 2012 conference, Kyoto, June 2012

[27] Y. Abe et al. (Double Chooz Collaboration)(2012), arXiv:1207.6632 [hep-ex]

[28] D. Dwyer talk at Neutrino 2012 conference, Kyoto, June 2012

[29] Y. Itow talk at Neutrino 2012 conference, Kyoto, June 2012

[30] G. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, et al., Phys.Rev. D86, 013012
(2012), arXiv:1205.5254 [hep-ph]

[31] T. Schwetz talk at “What’s ν” workshop, Florence, June 2012

[32] A. Bandyopadhyay et al. (ISS Physics Working Group), Rept.Prog.Phys. 72, 106201
(2009), arXiv:0710.4947 [hep-ph]

[33] J. Cao talk at nuTURN2012 - Neutrino at the Turning Point, Gran Sasso, May 2012

[34] K. Abe et al. (T2K Collaboration), Nucl.Instrum.Meth. A659, 106 (2011), arXiv:1106.1238
[physics.ins-det]

[35] D. Ayres et al. (NOvA Collaboration)(2004), arXiv:hep-ex/0503053 [hep-ex]

[36] P. Huber, M. Lindner, M. Rolinec, T. Schwetz, and W. Winter, Phys.Rev. D70, 073014
(2004), arXiv:hep-ph/0403068 [hep-ph]

[37] P. Huber, M. Lindner, T. Schwetz, and W. Winter, JHEP 0911, 044 (2009), arXiv:0907.1896
[hep-ph]

[38] M. Blennow and T. Schwetz, JHEP 1208, 058 (2012), arXiv:1203.3388 [hep-ph]

[39] http://www.imsc.res.in/∼ino/

[40] S. Petcov and M. Piai, Phys.Lett. B533, 94 (2002), arXiv:hep-ph/0112074 [hep-ph]

312

http://dx.doi.org/10.1103/PhysRevLett.107.141302
http://arxiv.org/abs/1104.1816
http://dx.doi.org/10.1103/PhysRevD.73.112001
http://arxiv.org/abs/hep-ex/0508053
http://dx.doi.org/10.1103/PhysRevD.78.032002
http://arxiv.org/abs/0803.4312
http://dx.doi.org/10.1103/PhysRevD.83.052010
http://arxiv.org/abs/1010.0118
http://dx.doi.org/10.1103/PhysRevLett.101.111301
http://arxiv.org/abs/0806.0989
http://dx.doi.org/10.1103/PhysRevC.81.055504
http://arxiv.org/abs/0910.2984
http://arxiv.org/abs/0910.2984
http://dx.doi.org/10.1103/PhysRevD.83.052002
http://arxiv.org/abs/1009.4771
http://dx.doi.org/10.1103/PhysRevD.81.092004
http://arxiv.org/abs/1002.3471
http://arxiv.org/abs/1207.6632
http://dx.doi.org/10.1103/PhysRevD.86.013012
http://arxiv.org/abs/1205.5254
http://dx.doi.org/10.1088/0034-4885/72/10/106201
http://arxiv.org/abs/0710.4947
http://dx.doi.org/10.1016/j.nima.2011.06.067
http://arxiv.org/abs/1106.1238
http://arxiv.org/abs/1106.1238
http://arxiv.org/abs/hep-ex/0503053
http://dx.doi.org/10.1103/PhysRevD.70.073014
http://arxiv.org/abs/hep-ph/0403068
http://dx.doi.org/10.1088/1126-6708/2009/11/044
http://arxiv.org/abs/0907.1896
http://arxiv.org/abs/0907.1896
http://dx.doi.org/10.1007/JHEP08(2012)058
http://arxiv.org/abs/1203.3388
http://dx.doi.org/10.1016/S0370-2693(02)01591-5
http://arxiv.org/abs/hep-ph/0112074


[41] L. Zhan, Y. Wang, J. Cao, and L. Wen, Phys.Rev. D78, 111103 (2008), arXiv:0807.3203
[hep-ex]

313

http://dx.doi.org/10.1103/PhysRevD.78.111103
http://arxiv.org/abs/0807.3203
http://arxiv.org/abs/0807.3203




40 Constraining CP violation in neutral
meson mixing with theory input

M. Freytsis, Z. Ligeti, S. Turczyk

Abstract There has been a lot of recent interest in experimental hints of CP violation in
B0
d,s

mixing. The DØ measurement of the semileptonic CP asymmetry would - with higher
significance - be a clear signal of beyond the standard model physics. We present a relation
[1] for the mixing parameters, which allows clearer interpretation of the data in models in which
new physics enters in M12 and/or 12. This result implies that the central value of the DØ
measurement in B0

d,s
decay is not only in conflict with the standard model, but in a stronger

tension with data on Δs than previously appreciated. After we derive the relation between the
theoretical prediction of |12| and measurements of ΔM, Δ and ASL, we will explain how the
result can help to better constrain Δ or ASL, whichever is less precisely measured.

40.1 Introduction

The DØ measurement of the CP asymmetry in decays of a bb̄ pair to two same-sign muons [2]
hinted towards CP violation in B – B̄ mixing, which would be a clear sign of new physics [3, 4]

AbSL = −[7.87± 1.72 (stat)± 0.93 (syst)]× 10−3 . (40.1)

The time evolution of the flavor eigenstates is determined by


d

dt

�

|B0(t)〉
|B̄0(t)〉

�

=

�

M−


2


�

�

|B0(t)〉
|B̄0(t)〉

�

, (40.2)

where M and  are 2× 2 Hermitian matrices. CPT invariance implies M11 = M22 as well as
11 = 22. The physical eigenstates, in the notation customary to B physics, are given by

|BH,L〉 = p |B0〉 ∓ q |B̄0〉 , (40.3)

where we chose |p|2+ |q|2 = 1. CP violation in mixing occurs if the mass and CP eigenstates
do not coincide, δ ≡ 〈BH|BL〉 = (|p|2 − |q|2)/(|p|2 + |q|2) 6= 0. The solution for the mixing
parameters satisfies the relation q2/p2 = (2M∗

12 − 
∗
12)/(2M12 − 12). In the small δ limit,

ASL ≈ 2δ is a very good approximation on the Bd/s-systems. In the |12/M12| � 1 limit, which
applies model independently for the B0

d,s
systems,

Δm ≈ 2 |M12| , Δ ≈ 2 |12| cos[arg(−12/M12)] , ASL ≈ Im (12/M12) . (40.4)
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In this limit q/p is a pure phase to a good approximation, determined by M12, which has good
a sensitivity to NP.

The width difference, defined as Δs ≡ L − H, has been obtained with a reasonable
uncertainty in the Bs system, and has not been observed for the Bd meson yet

Δs = (0.068± 0.027)ps−1 , CDF [5] , Δs = (0.163+0.065−0.064)ps−1 , DØ [6]

Δs = (0.116± 0.019)ps−1 , LHCb [7] . (40.5)

For our numerical analysis, we use the most precise single measurement from LHCb in the
lack of a world average. For Δms we take the average of the CDF [8] and LHCb [9, 10]
measurements and Δmd from HFAG [11]

Δms ≡mH −mL = (17.719± 0.043)ps−1 , Δmd = (0.507± 0.004)ps−1 . (40.6)

The measurement in Eq. (40.1) is a linear combination of the two individual asymmetries, as
both B0

d
and B0

s
are produced at the Tevatron

AbSL = (0.594± 0.022)A
d
SL + (0.406± 0.022)A

s
SL . (40.7)

The individual asymmetries have been measured at the e+e− B factories [11] and at DØ [12]
and are compatible with the Standard Model (SM) prediction[13] AdSL = −(0.5± 5.6)× 10

−3

and AsSL = −(1.7± 9.2)× 10
−3.

One naturally should ask, if there are any non-trivial constraints on the mixing parameters,
besides the requirement of having positive mass and width eigenvalues for the physical
states.

40.2 Theoretical Constraints on the Mixing Parameters

The unitarity bound [14, 15] is a requirement on the mixing parameters, which constrains the
eigenvalues of  to be positive independent of the physical eigenvalues, or equivalently

δ2 <
HL

(mH −mL)2 + (H + L)2/4
=
1− y2

1+ 2
. (40.8)

Here we define, using  = (H + L)/2, the quantities  = (mH −mL)/ and y = (L −
H)/(2).  is positive by definition, while y ∈ (−1, +1). To derive this bound on a mathe-
matical basis, we define the complex quantities

 =
p

2πρ 〈ƒ|H|B〉 , ̄ =
p

2πρ 〈ƒ|H|B̄〉 , (40.9)

with ρ denoting the phase space density for final state ƒ. If we treat  and ̄ as vectors in
a complex N-dimensional vector space, then taking the standard inner product on complex
vector spaces, and using the optical theorem [14], amounts to the relations

∗

 = 11 , ̄∗


̄ = 22 , ̄∗


 = 12 , (40.10)
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where CPT fixes 11 = 22 = . Applying the Cauchy-Schwarz inequality to the vectors 
and ̄ implies [14]

|12| ≤ 11 . (40.11)

This is equivalent to the statement that the eigenvalues of the  matrix must be positive in
addition to the physical width H,L > 0.

To see that this is also equivalent to the unitarity bound of Eq. (40.8), we use Eq. (40.3) to
define H and L analogously to the physical states, and proceed with similar steps as above.
The unitarity bound in Eq. (40.8) then arises from using these expressions for 11 and 12 in
Eq. (40.11).

40.2.1 Deriving a Relation using Theoretical Input

In the kaon system, for which this bound was originally derived, the assumption in Eq. (40.11)
was a necessity due to the dominance of long-distance physics in the result. For Bd,s mesons,
the large mass scale mb � ΛQCD allows 11 and 12 to be calculated in an operator product
expansion, and at leading order |12/11| = O[(ΛQCD/mb)3 (16π2)]. We extend the preced-
ing derivation with assuming additional theoretical knowledge in Eq. (40.11), and define

y12 = |12|
�

 . (40.12)

Thus we obtain as the solution an exact relation instead of the inequality

δ2 =
y212 − y

2

y212 + 
2
=
|12|2 − (Δ)2/4
|12|2 + (Δm)2

. (40.13)

This equation also follows from the solution of the eigenvalue problem, and was previously
derived in Ref. [16] with the resulting bound on δ noted. It also appears in related forms in
Refs. [17, 18] and follows from Eqs. (9) and (12) in [19].

For fixed  and y, δ2 is monotonic in y12, so an upper bound on y12 gives an upper bound on
|δ| and with the requirement y12 ≤ 1 the usual unitarity bound in Eq. (40.8) is recovered.

A better understanding of the physical situation can be gained, by obtaining Eq. (40.13) from a
scaling argument: As δ only depends on mixing parameters, it is independent of the value of .
One can then scale  by y12, which cannot affect δ but changes → /y12 and y→ y/y12.
The exact relation Eq. (40.13) follows then from this argument and Eq. (40.8). The derivation
above makes the physical origin of this relation clear and also holds in the CPT violating case
for |δ|2, as δ can become complex in this case.

Even if a precise calculation of 12 is not possible or one assigns a very conservative un-
certainty to it, an upper bound on y12 implies an upper bound on |δ|, which is stronger than
Eq. (40.8). For small values of y12, as in the Bd system, this bound can be much stronger.
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40.2.2 Application to Recent Data

We will now compare the absolute value of the semi-leptonic asymmetry with other mixing
parameters using the result implied by the relation above. First we will apply the relation to
the two same-sign muon result from DØ and then to the individual asymmetries. We can only
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Figure 40.1: Upper bounds on AbSL as a function of Δs, setting Δd = 0, description is in text.

compare the absolute value of AbSL measured by DØ with the result implied by the relation
above, since Eq. (40.13) only bounds |δ|. Thus the bound on AbSL is not sensitive to possible
cancellations between AdSL and AsSL. Denoting this upper bound by δd,smax and using the weight
factors from Eq. (40.7), |AbSL| ≤ (1.188± 0.044) δ

d
max + (0.812± 0.044) δ

s
max.

As Δmd,s are precisely known, we plot the bound as a function of the width differences Δd,s.
Because Δd has not been measured yet, we set this to zero as the most conservative
choice. If LHCb measures the difference AsSL − A

d
SL [20], then the above bound with modified

coefficients apply for that measurement as well.

In Fig. 40.1, the darker shaded region shows the upper bound on |AbSL| using the 1σ ranges

for |d,s12 | in the SM [13], and the lighter shaded region includes both 2σ regions, with

2|s12| = (0.087± 0.021)ps−1 and 2|d12| = (2.74± 0.51)× 10
−3 ps−1 . (40.14)

The dashed [dotted] curve shows the impact of using the 2σ region for d12 [s12]. The vertical
boundaries of the shaded regions arise because |Δs| > 2 |s12| is unphysical. A tension
between the AbSL measurement and the bound is visible, independent of the discrepancy
between the DØ result and the global fit to the latest available experimental data [21].

Of course, independent of the DØ measurement of AbSL, we can also compare the bound
implied by our relation to the individual best bounds on the semi-leptonic asymmetries. To this
end, in Fig. 40.2 we plot AdSL vs. Δd (and similarly for Bs) allowed by Eq. (40.13) and the 1σ
and 2σ ranges of the SM calculation of |12| [13]. Here, there have been no discrepancies
claimed between the theory predictions and measurements, but our relation allows us to place
a bound tighter than the current experimental constraints which is more robust than the purely
theoretical SM calculation as outlined above. A non-zero observation of Δd will strengthen
the upper bound on AdSL obtained with the relation (40.13).
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same for AsSL − Δs; the straight lines show the 1σ range of the LHCb result for
Δs.

40.2.3 No-Go theorem

In a future publication [22] we will show, that besides the trivial conditions on the physical
mixing parameters, algebraical relations and the unitarity bound no other consistency relations
from physical considerations can appear. The no-go theorem does not apply for the relation
presented in this talk, because we additionally assume knowledge about a parameter of
the underlying Hamiltonian. We now sketch a physical understanding for the proof of this
theorem.

From Eqs. (40.10) and (40.11) it is obvious that the unitarity bound is exactly satured, if the
two vectors of B0 and B̄0, equivalently BL and BH, are aligned: 〈ƒ |T|BH〉 ∝ 〈ƒ |T|BL〉.

Without loss of generality we can start with an arbitrary, generic decaying two-state system
in the Wigner-Weisskopf approximation, i.e. no strong interactions obscure the situation. We
therefore choose an orthogonal, non CP violating system, which obeys the above required
alignment of states as a starting point, which has δ ≡ 0.

By adding arbitrary new UV physics, which does not necessarily need to be compatible with
data, we can change M12 independently of 12, introducing a non-vanishing δ. We can then
vary M12, however have to keep the mass and width of the physical states positive.

We can always saturate the unitarity bound, leaving no room for stronger constraints than the
unitarity bound in any parameter space. In other words by relaxing the constraint of having no
CP violation Arg M12 = Arg 12, this gets replaced by a new constraint, the unitarity bound.
Thus the total number of relations is conserved and without assuming knowledge no further
bound or relation can be obtained.

40.3 Discussion

We derived not an absolute bound in the fashion of the unitarity bound but a relation between
calculable and measured quantities. It is thus worth clarifying the relationship of our result to
the stated 3.9σ disagreement of AbSL with the SM reported in [2].
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The SM prediction of ASL uses the calculation of 12, and |12| also enters our bound; the
discrepancies are thus correlated. Although the calculation of |12| and Im(12) both rely
on the same operator product expansion and perturbation theory, the existence of large
cancellations in m(12) may lead one to think that the uncertainties could be larger in its SM
calculation than what is tractable in the behavior of its next-to-leading order calculation [23, 24].
The sensitivity of 12 to new physics is generally weaker than that of M12 (see [25, 26] for other
options). Thus, it is interesting to determine δ from Eq. (40.13), besides its direct calculation.

The relation (40.13) is a monotonic function in y12 and thus an upper bound on this theory
prediction implies an upper bound on |δ|. Therefore this relation is much stronger for small
values of y12, as is e.g. present in the Bd system. A non-zero observation of the width
difference does improve the upper bound as well.

Now we are in the position to present numerical upper bounds for the individual asymmetries.
We use Δs from LHCb in Eq. (40.5) and neglect Δd and find the 2σ bounds

|AdSL| < 7.4× 10
−3, |AsSL| < 4.2× 10

−3 . (40.15)

While this bound on AsSL may seem to disagree with Fig. 40.2, note that in the plot the
uncertainties of s12 and Δs are not combined. Propagating the uncertainties, |s12|

2 −
(Δs)2/4 < 0 and thus δ2 is negative at the 1σ level, which is an unphysical result. Hence
we compute the 2σ bounds in Eq. (40.15).

The bound on AsSL is better than the bounds of the measurements in section 1 by more than a
factor of 3, while that for AdSL is comparable. However, in the case of Bd this is driven primarily
by the uncertainty in the lifetime difference. If a non-zero value of Δd were observed, a better
bound could be derived. It is worth emphasizing that this implication goes in both directions,
given that an observation of AdSL 6= 0 may happen before that of Δd 6= 0. Due to Eq. (40.13),
as soon as one of the two is measured to be nonzero, the other is constrained to be significantly
smaller at worst and given a definite prediction at best.
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41 Enhancing lepton flavor violation with the
Z-penguin

A. Vicente

Abstract We show that Z-penguin diagrams can give an enhancement for  → 3j decays
and μ− e conversion in nuclei in many extensions of the Minimal Supersymmetric Standard
Model (MSSM). We demonstrate this effect in two models, namely, the supersymmetric inverse
seesaw and R-parity violating supersymmetry. The non-decoupling behavior of the Z-penguins
is also briefly discussed.

41.1 Introduction

Flavor violation in the neutral lepton sector has been firmly established by neutrino oscillation
experiments. In contrast, in what concerns to the charged lepton sector, no evidence has been
found so far, and only upper limits are known. This is the case of observables such as μ→ eγ,
μ→ 3e and μ− e conversion in nuclei [1–3].

In the case of supersymmetry (SUSY), one expects potentially large LFV effects. Regarding
 → 3j decays, in the Minimal Supersymmetric Standard Model (MSSM) it has been shown
[4, 5] that the photonic penguin diagram gives the dominant contribution in large regions of
parameter space. In fact, the so-called dipole dominance has been part of the common lore
regarding LFV in SUSY theories. In this case the 3-body decays  → 3j have rates roughly a
factor α maller than those of the 2-body channel  → jγ. Thus, usually it is concluded that the
decays  → jγ are more constraining than the decays  → 3j.

However, it has recently been noticed [6] that this expectation does not hold in extended
models where new couplings are present or where the particle content is larger than that of
the MSSM. In such scenarios, the Z-penguin contributions provide the dominant contributions
to LFV processes such as the 3-body decays  → 3j and μ− e conversion in nuclei. In the
following, we will review the physics behind the Z-penguin enhancement and present two
examples where this fact has been demonstrated numerically: (i) trilinear R-parity violating
SUSY [7], and (ii) the supersymmetric inverse seesaw [8].

41.2 Enhancing LFV with the Z-penguin

In order to understand the rôle of the Z-boson contributions in the MSSM we begin with some
simple mass scaling considerations: consider the chargino-sneutrino 1-loop diagrams leading
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to  → 3j. The photon and Z-boson contributions can be written as

A(c)L,R


=
1

16π2m2
ν̃

OL,R
A
s(2) and FX =

1

16π2g2 sin2 θWm2
Z

OL,R
FX
t(2) , (41.1)

respectively. Here X = {LL, LR,RL, RR}, OL,R
y

denote combinations of rotation matrices

and coupling constants and s(2) and t(2) represent loop functions which depend on
2 = m2

χ̃−
/m2

ν̃
(for exact definitions see [5]). The only mass scale involved in the A form

factors is mSUSY (the photon being massless), whereas the mass scale in the FX form factors is
set by the Z-boson mass, mZ. This implies the scalings A ∼m−2

SUSY
and F ∼m−2

Z
. Assuming

that all loop functions, mixing matrices and coupling constants are of the same order, one
can estimate F/A ∼ 500 for the arbitrary value mSUSY = 300 GeV. Therefore, from these
considerations one concludes that, in principle, Z-boson contributions should dominate.

However, a subtle cancellation between the different diagrams contributing to the leading
Z-contribution [6] imply that, in the MSSM, the photon penguin is found to be dominant[4, 5].
The dominant contribution to  → 3j comes from diagrams where the leptons in the external
legs are left-handed (other cases are suppressed by the Yukawa couplings of the charged
leptons). This is given by the form factor FLL ∝ FL, where FL is the Z −  − j 1-loop effective
vertex, with  6= j. FL receives contributions from many different 1-loop diagrams. However, let
us focus on the chargino-sneutrino contribution, typically the dominant one. Expanding in the
chargino mixing angle, θχ̃± , one can write

FL = F
(0)
L +

1

2
θ2
χ̃±
F
(2)
L + . . . . (41.2)

Notice that there is no term in the expansion involving H̃± at the leading order, nor at the 1st
order, since there is no H̃± − ν̃L − L coupling. For this reason, only the wino contributes at the
zeroth order in θχ̃± . F(0)L can be written as

�

F
(0)
L

�

j
≡ F

(0)
L = − 1

16π2

�

Mj
wave +M

j
p1 +M

j
p2

�

,

where the three addends come from different types of diagrams: wave function diagrams
(Mwave) and penguins with the Z-boson attached to the chargino line (Mp1) or to the sneutrino
line (Mp2). The sum exactly vanishes, as can be verified by grouping the different terms as

F
(0)
L =

g2

32π2

�

gcWZ
∗
V

Z
j
V X


1 + g

′sWZ
∗
V

Z
j
V X


2

�

(41.3)

with X1 and X2 different combinations of loop functions, in principle dependent on the ratio  =
mχ̃− /mν̃, see [6] for exact definitions. Moreover, ZV is a 3×3 unitary matrix that diagonalizes
the mass matrix of the sneutrinos. We also use the notation cW = cosθW and sW = sinθW.
Using the exact expressions for the loop functions [5], one finds that the masses cancel out
in X1 and X2 and these combinations become independent of  =mχ̃− /mν̃: X1 = X1 = −

3
4

and X2 = X2 = −14 , ∀. Therefore, one is left with F
(0)
L ∝

∑

 Z
∗
V

Z
j
V =

�

Z†VZV
�j

, which
vanishes for  6= j due to unitarity of the ZV matrix. In conclusion, the first non-vanishing term in
the expansion appears at 2nd order in the chargino mixing angle, which naturally suppresses
the Z-mediated contributions. This is the reason why the photon contributions turn out to be
dominant in the MSSM.
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Coupling  → jγ  → 3j τ→ P/μ− e Z0 → j
|λ123λ133| 1.8× 101 1.2× 10−2 2.8× 10−2 1.4× 101
|λ123λ233| 1.3× 101 1.4× 10−2 2.4× 10−2 4.× 101
|λ132λ232| 2.4× 10−1 3.5× 10−5 8.4× 10−6 1.7× 101
|λ133λ233| 1.7× 10−3 3.5× 10−5 8.4× 10−6 1.7× 101
|λ231λ232| 9.5× 10−4 2.5× 10−5 5.7× 10−6 2.3× 101
|λ′122λ

′
222| 4.5× 10−4 3.9× 10−5 9.3× 10−6 7.5× 10−1

|λ′123λ
′
223| 4.6× 10−4 3.9× 10−5 9.3× 10−6 7.5× 10−1

|λ′132λ
′
232| 4.9× 10−4 4.1× 10−5 9.8× 10−6 1.4

|λ′133λ
′
233| 4.9× 10−4 4.1× 10−5 9.8× 10−6 1.4

|λ′133λ
′
333| 1.3× 10−1 1.6× 10−2 2.8× 10−2 3.3

|λ′233λ
′
333| 1.5× 10−1 1.4× 10−2 3.3× 10−2 3.6

Table 41.1: Limits for the benchmark point 10.4.1 of Ref. [13] (m0 = 750 GeV, M1/2 = 350
GeV, tnβ = 10, A0 = 0, μ > 0) on different combinations of LLE and LQD
operators derived from experimental limits on LFV observables.

However, there are many cases where the cancellation of the zeroth order term in the expansion
no longer holds [6]. For instance, the introduction of new interactions for the leptons modifies
the previous conclusion and enhances FL by a huge factor. Furthermore, although the previous
discussion has been focused on  → 3j, the same enhancement in the Z −  − j effective
vertex also affects other observables which are mediated by Z-boson exchange. This is the
case for μ− e conversion in nuclei [9] and τ→ P, where P is a pseudoscalar meson [10].

41.3 Beyond the MSSM

We turn now to particular examples of models where the cancellation in the Z-boson zeroth
order contribution does not hold.

41.3.1 Trilinear R-parity violation

The impact of the Z penguins in the MSSM extended with trilinear R-parity violation (RPV) was
considered in [7]. The superpotential of the model includes the lepton number violating terms
[11]

WRPV =
1

2
λjk bL bLj bE

c
k
+
1

2
λ
′

jk
bL bQj

bDc
k
. (41.4)

Bounds for these trilinear couplings have been set so far not only by using lepton flavor violating
decays, but also μ− e conversion in nuclei or cosmological observations. This lead to limits
on individual couplings or specific products of couplings [12]. However, the Z-penguins were
not considered in most of the studies. In contrast, the computations in Ref. [7] include all
contributions: photonic and Z-penguins as well as Higgs penguins and box diagrams.
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As explained in section 41.2, the relative importance of the Z-penguin contributions increases
for large supersymmetric masses. Therefore, one does not expect a great improvement in
the bounds by including Z-mediated observables when SUSY is light [7]. In contrast, when
supersymmetric particles are heavy one expects LFV to be clearly dominated by Z-boson
exchange. This is due to the fact that photonic penguins scale as m−4

SUSY
[6], whereas Z-

penguins are much less sensitive to the SUSY scale. In order to show this explicitly, we have
considered the Constrained Minimal Supersymmetric Standard Model (CMSSM) benchmark
point 10.4.1 of Ref. [13], defined by the set of parameters m0 = 750 GeV, M1/2 = 350 GeV,
tnβ = 10, A0 = 0 and μ > 0. This parameter point is perfectly valid regarding bounds from
direct SUSY searches at the LHC. After the calculation of the resulting MSSM spectra, we
switched on the different combinations of the RPV couplings which can open flavor violating
transitions and calculated the different observables.

Our results confirm the theoretical expectation, see table 41.1. In this case the enhancement
given by the Z-penguins leads to a scenario where the most stringent bounds are obtained
from Z-mediated observables. In particular, μ− e conversion in nuclei turns out to be very
constraining, with bounds derived from this observable orders of magnitude better than those
obtained from μ → eγ. Similarly,  → 3j gets also large enhancements, and is only a bit
less constraining than μ− e conversion in nuclei. The main reason for this is the very good
experimental limit for μ− e conversion in gold.

In conclusion, we have shown that the Z-penguins dominate in most parts of parameter
space, and especially for heavy SUSY spectra, the amplitudes for  → 3j, τ→ P and μ− e
conversion in nuclei. Therefore, the limits on combinations of λ and λ′ couplings given by
these observables can be improved by several orders of magnitude with respect to the bounds
already present in the literature.

41.3.2 Inverse Seesaw

In the supersymmetric inverse seesaw [14] three pairs of singlet superfields, bνc


and bX
( = 1,2,3) with lepton numbers assigned to be −1 and +1, respectively, are added to the
superfield content. The superpotential can be written as

WISS =WMSSM + Y jν bν
c

bLj bH +MRj bν

c

bXj +

1

2
μXj bX bXj , (41.5)

where , j = 1,2,3 are generation indices.

The active neutrinos mix with the singlets through the Dirac mass term mD =
1p
2
Yν.

Assuming mD, μX � MR, the diagonalization of the full 9×9 mass matrix leads to an effective

Majorana mass matrix for the light neutrinos, mν = mT
D
MT
R

−1
μXM−1R mD =

2


2 Y
T
ν
M−1Yν,

where, in analogy to a type-I seesaw, we define M−1 = MT
R

−1
μXM−1R as an effective right-

handed neutrino mass matrix1. The smallness of the light neutrino masses is controlled by
the size of μX. Hence the lepton number conserving mass parameters mD and MR can easily

1In our numerical analysis we always consider scenarios where M = diag(M̂, M̂, M̂). Therefore, for the sake of
brevity, we use the simple notation M both for the matrix and its eigenvalues.
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Figure 41.1: Br(μ→ eγ) (left) and μ− e conversion rate in 197
79 Au (right), as a function of M

and (Y†
ν
Yν)12. The horizontal dashed lines represent the current experimental

bounds.

accommodate large Yukawa couplings and a right-handed neutrino mass scale around the
TeV. These features lead to a very rich LFV phenomenology [15–19].

Although in principle the SUSY inverse seesaw allows for Yν ∼ O(1), LFV sets very important
constraints on the (off-diagonal) Yukawa couplings [8]. This is demonstrated in figure 41.1,
where we show our numerical results for two LFV observables, Br(μ→ eγ) (left) and μ− e
conversion rate in 197

79 Au (right), as a function of M and (Y†
ν
Yν)12. A degenerate right-handed

neutrino spectrum has been assumed at mSUSY , with MR = M̂R 1 and μX = μ̂X 1, where 1 is
the 3× 3 identity matrix. Three different values of M̂R are shown in figure 41.1: M̂R = 100
GeV (blue), M̂R = 1 TeV (red) and M̂R = 10 TeV (black). Moreover, CMSSM-like boundary
conditions have been assumed at the grand unification (GUT) scale. We set A0 = −300 GeV,
tnβ = 10, sign(μ) = + and we randomly vary m0 and M1/2 in the range [0,3 TeV].

Let us first concentrate on Br(μ→ eγ). For low M̂R, this observable has very little dependence
on m0 and M1/2, whereas for large M̂R, one can find very large variations due to the different
values of the SUSY masses. The non-SUSY contributions become relevant only for M̂R < 1
TeV and, in fact, for M̂R = 100 GeV they totally dominate, so that all dependence on m0,
M1/2 and on the rest of CMSSM parameters disappears [15]. In contrast, for large M̂R, SUSY
contributions dominate, and the usual m−4

SUSY
dependence is found.

In what concerns μ− e conversion in gold, the behavior is quite different. Note that there is a
sharp correlation with M, hardly distorted by the changes in m0 and M1/2. For the red and
black dots (associated to M̂R ≥ 1 TeV), this is a consequence of Z-boson dominance, that
shows very little dependence on mSUSY . It is remarkable that, apart from the case M̂R = 100
GeV, the limits on (Y†

ν
Yν)12 (or M) obtained from μ−e conversion in nuclei are more stringent

than those obtained from μ→ eγ.

Finally, we emphasize one crucial aspect of the Z-penguins. As observed in the numerical
results, Z-mediated processes exhibit a non-decoupling behavior and large supersymmetric
masses do not suppress the charged lepton flavor violating signatures induced by Z-boson
exchange. One can confirm this result by analytical computation of the 1-loop Z −  − j
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effective vertex, FL, with  6= j. In case of the supersymmetric inverse seesaw one finds [8]

FL ' F
(0)
L =

g

8cW

�

Y†
ν
Yν
�

j

�

c2
W
−
1

2

�

. (41.6)

This result does not contain any dependence on supersymmetric parameters, thus providing
an analytical cross-check of the non-decoupling behavior found in the numerical results.

41.4 Conclusion

It has been shown that the Z-penguin can give the dominant contribution to lepton flavor violat-
ing processes in many models. As numerical examples, this has been explicitly demonstrated
in supersymmetry with trilinear R-parity violation and the supersymmetric inverse seesaw.
Finally, the non-decoupling behavior of the Z-penguins has been briefly discussed.
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42 New Physics constraints from optimized
observables in B→ K∗μ+μ− at large
recoil

S. Descotes-Genon, J. Matias, J. Virto

Abstract B→ K∗μ+μ− angular observables have become a key ingredient in global model-
independent analyses of b→ s transitions. However, as experimental precision improves, the
use of theoretically clean quantities becomes a crucial issue. Global analyses that use clean
observables integrated in small bins are already a reality, opening up a new chapter in our
quest for New Physics.

42.1 Status of b→ s ℓ+ℓ− decays

During the last few years, intensive theoretical work and impressive experimental results –and
even more impressive prospects– have pushed our understanding on b→ s ℓ+ℓ− decays far
beyond expectations. Among the large set of inclusive and exclusive b→ s ℓ+ℓ− modes, a
considerable attention has been put into B→ K(∗)μ+μ−, where experimental analyses are
based on O(102) events in the case of the B-factories and CDF [1–3] and O(103) events at
LHCb [4]. Also, recent bounds on the Bs → μ+μ− branching ratio [5] are very close to the SM
prediction, taking into account the correction from the Bs width difference to branching ratio
measurements at LHCb [6, 7]. These modes are very sensitive to New Physics contributing to
right-handed currents (since transverse asymmetries in B→ K(∗)μ+μ− measure indirectly the
polarization of the virtual photon) and to scalar and pseudo-scalar operators (specially in the
case of Bs → μ+μ−).

The theoretical description of b→ s ℓ+ℓ− decays within and beyond the SM is given by the
ΔB = −ΔS = 1 effective Hamiltonian Heff =

∑

 CO [8, 9]. In the SM the relevant operators
are the electromagnetic dipole and semileptonic operators O7, O9 and O10. The 4-quark
current-current O,c

1,2 and QCD-penguin O3,4,5,6 operators and the chromo-magnetic dipole
operator O8 are involved at higher orders in perturbation theory. Beyond the SM, non-standard
operators become important, such as the chirality-flipped operators O′7,9,10, scalar OS(′) ,
pseudo-scalar OP(′) and tensor OT,T5 operators.

The theoretical description of the B → K∗μ+μ− decay becomes uncontrollable when the
invariant dilepton mass q2 approaches the threshold of qq̄ resonance production. This
happens predominantly in the vicinity of the ψ and ψ′ cc̄ states, around q2 ∼ 8− 15 GeV2.
The theoretical methods used to describe the regions below (low-q2) and above (large-q2) the
vetoed range are different. The effect of a finite width of the K∗ including two scalar resonances
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has been addressed in Ref. [10], pointing to a non-negligible impact in some observables at
low-q2. However, an experimental fit to certain folded angular distributions can decouple these
effects [11].

At large recoil, the transversity amplitudes are computed in QCD factorization in the large
energy limit of the K∗ [12, 13]. In this limit, symmetry relations between the seven heavy-
to-light form factors allow one to express the amplitudes in terms of two soft form factors
ξ‖,⊥, distribution amplitudes and calculable hard kernels up to O(αs,ΛQCD/mb) [14] (see
also [15]). Soft gluon contributions at the tail of cc̄ resonances in the low-q2 region have
been computed in Ref. [16]. Corrections of order O(ΛQCD/mb) are unknown, and include
symmetry-breaking contributions to form factor relations and non-factorizable contributions
from distribution amplitudes.

Currently, the main uncertainties in the prediction of angular observables in B → K∗μ+μ−

are due to unknown O(ΛQCD/mb) corrections and hadronic uncertainties in form factor com-
putations from light-cone sum rules [16, 17]. The efforts to reduce these uncertainties in
phenomenological applications have led to the identification of clean or optimized observables,
defined as ratios where most of the dependence on form factors cancels. A complete list of
such observables is given by A(2,3,4,5)T [18], A(re,im)T [19], P1,2,3, P(′)4,5,6, M1,2 and S1,2 [20, 21]

at low-q2 and H
(2,3,4,5)
T [22] at high-q2. Experimental analyses have focused on the mea-

surements of the branching ratio BR, the forward-backward asymmetry AFB, the longitudinal
polarization fraction FL, Am and S3 (see [23]), always integrated in a series of q2 bins. CDF
has measured directly the optimized observable A(2)T ≡ P1 [3], while the observables P1,2,3
can be obtained indirectly from the LHCb results (see Ref. [21] and Table 42.1).

A wealth of model-independent combined analyses of b→ sγ and b→ sℓ+ℓ− decays have
appeared recently in the literature [21, 24–28]. The differences include the statistical treatment,
the set of observables included in the analysis, and the NP scenarios considered. All in all, the
data is compatible with the SM, as well as with the flipped-sign point C7,9,10 = −CSM

7,9,10. For
a more thorough status review of b→ s ℓ+ℓ− see Refs. [29, 30].

42.2 Clean observables in B→ K∗μ+μ− at large recoil

Based on the symmetries of the angular distribution discussed in Ref. [31], the minimum
number of observables needed to describe the full B→ K∗μ+μ− angular distribution can be
inferred, which varies depending on whether mass and/or scalar effects are considered. A
basis of angular observables can then be identified, with the property of containing a minimum
number of observables from which any other observable can be obtained. The basis is
not unique, but there is a subset of bases with a quality feature: they contain a maximum
number of clean observables. One such bases has been constructed and studied in detail in
Refs. [20, 21]:

O =
n d

dq2
, AFB, P1, P2, P3, P

′
4, P

′
5, P

′
6,M1,M2, S1, S2

o

. (42.1)
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Observable Experiment SM prediction
〈P1〉[2,4.3] −0.19± 0.58 −0.051± 0.050
〈P1〉[4.3,8.68] 0.42± 0.31 −0.117± 0.059
〈P1〉[1,6] 0.29± 0.47 −0.055± 0.051
〈P2〉[2,4.3] 0.51± 0.27 0.232± 0.069
〈P2〉[4.3,8.68] −0.25± 0.08 −0.405± 0.064
〈P2〉[1,6] 0.35± 0.14 0.084± 0.066
〈P3〉[2,4.3] 0.08± 0.35 −0.004± 0.024
〈P3〉[4.3,8.68] −0.05± 0.16 −0.001± 0.027
〈P3〉[1,6] −0.21± 0.21 −0.003± 0.024

Table 42.1: Experimental values for the clean observables P1, P2 and P3 within different q2-
bins, extracted from the measurements of S3, Aim, AFB and FL, and their SM
predictions.

All but d/dq2 and AFB are clean observables, whereas1 S vanish in the absence of con-
tributions from scalar operators, and M go to zero in the limit of zero lepton masses. While
the observables M2 and S1,2 are very much constrained by the Bs → μ+μ− branching ratio,
the rest shows a good sensitivity to New Physics, especially P1,2, P′4,5 [20, 21]. From the
latest LHCb measurements of B→ K∗μ+μ− [4], experimental results can be derived for P1,2,3
integrated in the bins [2,4.3], [4.3,8.68] and [1,6] GeV2. The experimental numbers
together with the theoretical predictions are displayed in Table 42.1.

The suppressed dependence on hadronic uncertainties of the clean observables P compared
to other observables can be checked directly. In the upper plots in Fig. 42.1, we show the
SM predictions for P1 and FL, including all uncertainties, with the form factors taken from
Ref. [17] (yellow) and from Ref. [16] (red) –this last reference is more conservative in the
error treatment–. The conclusion is that, while P1 is basically insensitive to this choice, the
theoretical error in FL can vary by more than a factor of 2, with uncertainties up to a 30%. In the
lower plots in Fig. 42.1, a similar comparison is performed between P1 and the corresponding
observable S3 of Ref. [23]. In this case the yellow boxes are the SM predictions, the blue curve
is a NP benchmark point consistent with all other data (benchmark point ‘b2’ in [21]), with
the green band corresponding to the total uncertainty taken the form factors in [17] and the
gray band for the form factors in [16]. While the observable S3 is protected from form factor
uncertainties near the SM point, we can see that this is no longer true around other allowed
regions in the parameter space. While this benchmark point is clearly discernible from the SM
measuring P1 with a 20% error, a measurement of S3 will hardly bring a definite conclusion.
These examples demonstrate the importance of focusing on clean observables.

1The scalar observables S1,2 here should not be confused with the observables in Ref. [23].
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Figure 42.1: Comparison between the observables P1, FL and S3 concerning their dependence
on hadronic uncertainties. See the text for details.

Figure 42.2: Left: 68.3% and 95.5% C.L. constraints on C7, C′7 from BR(B → Xsγ), SK∗γ,
A(B → K∗γ), BR(B → Xsμ+μ−), 〈AFB〉[1,6] and 〈FL〉[1,6]. Right: 68.3% and
95.5% C.L. constraints on C7, C′7 from 〈P2〉[2,4.3] and 〈P2〉[4.3,8.68]. The notation
is C7 = CSM7 + δC7, and similarly for C′7.
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Figure 42.3: Future scenario for constraints from P observables.

42.3 Model-Independent constraints

A combined model-independent analysis including constraints from BR(B → Xsγ), SK∗γ,
A(B→ K∗γ), BR(B→ Xsμ+μ−), together with binned observables in B→ K∗μ+μ− at low-
q2 has been presented in Ref. [21]. B→ K∗μ+μ− observables include the forward-backward
asymmetry, FL, and P1,2,3.

In Fig. 42.2 (left) we show the 68.3% and 95.5% C.L. combined constraints on C7, C′7 from
BR(B→ Xsγ), SK∗γ, A(B→ K∗γ), BR(B→ Xsμ+μ−), 〈AFB〉[1,6] and 〈FL〉[1,6]. In the right
plot of the same figure, the constraints from 〈P2〉[2,4.3] and 〈P2〉[4.3,8.68] are shown. While
the experimental numbers for 〈P2〉bin must be still improved considerably (the values used do
not include correlations), the constraints from 〈P2〉bin are already interesting in comparison
with the combined constraints from the other observables. Both bins point towards negative
δC7. This result is not affected by form factor uncertainties.

To finish, we comment on the prospects for constraints in the C7 − C′7 plane from 〈P〉bin
observables. We consider the situation in which 〈P1〉[2,4.3], 〈P2〉[2,4.3], 〈P′4〉[2,4.3] and
〈P′5〉[2,4.3] are measured, with central values equal to their SM predictions and experimental
uncertainties of σep = 0.10 (note that this experimental precision is feasible soon). In
Fig. 42.3 we show the 68.3% and 95.5% C.L. combined constraints on C7, C′7 from these
observables. Comparing this plot with Fig. 42.2 we can see that the observables 〈P〉 will play
a very important role in the future.
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43 Semileptonic B→ K (∗)ℓ+ℓ− decays at
large hadronic recoil

Y.-M. Wang

Abstract I report the QCD calculation of hadronic amplitudes responsible for the FCNC
decays B → K(∗)ℓ+ℓ− at large hadronic recoil, emphasizing on the non-form-factor type
contributions. The factorization properties of various non-local matrix elements are presented.
Finally, I discuss the access to the hadronic decay amplitude at time-like q2 with the hadronic
dispersion relation and report the first calculation of isospin asymmetry for B→ Kℓ+ℓ− decay.

43.1 Introduction

Exclusive semi-leptonic B→ K(∗)+− decays are of a great importance for the precision test
of the Standard Model as well as for the search for new physics [1–4]. The leading contributions
to the transition amplitudes of these FCNC processes can be reduced to the heavy-to-light
B → K(∗) form factors. On the one hand, the lattice QCD simulation and QCD sum rules
allow the calculations of these form factors in the large and small q2 regions respectively, with
growing accuracy. On the other hand, different factorization theorems have been constructed
for the heavy-to-light form factors at large recoil, in the frameworks of both collinear factorization
[5, 6] and kT factorization [7, 8]. One major issue for the factorization approaches is how to
implement the power corrections which come from many different sources, e.g., the power
suppressed configurations of hadronic states and the effective operators of higher powers.

The hadronic form factors are, however, not sufficient to describe the strong interaction
dynamics involved in the decay amplitude of the FCNC processes B→ K(∗)+−

A(B→ K(∗)ℓ+ℓ−) = −〈K(∗)ℓ+ℓ− | Heƒ ƒ | B〉 . (43.1)

The non-local effects from the electromagnetic correction to the four-quark operators do not
necessarily factorized into the convolution of Wilson coefficients and hadronic form factors.
The factorizations of hard spectator scattering amplitudes have been achieved by separating
the nonperturbative dynamics parameterized by the hadronic distribution amplitudes from the
short-distance dynamics calculable in the perturbative theory. Moreover, the hadronic matrix
elements describing the soft gluon radiation contributions cannot be computed in the QCD
factorization and some non-perturbative approach in QCD, e.g., light-cone sum rules (LCSR),
is in demand. Conceptually, the non-local effects in B→ K(∗)+− decays are only accessible
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Figure 43.1: Factorizable and nonfactorizable quark-loop contributions to B → K∗)ℓ+ℓ−

amplitudes.

in QCD at space-like q2 due to the breakdown of operator product expansion (OPE) for the
quark loops and the emergence of end-point singularity in weak annihilation contribution. Our
strategy of computing the physical amplitudes of B → K(∗)+− is to construct the relevant
hadronic dispersion relations, inspired from the fact that the hadronic matrix elements are
analytical functions of q2.

The layout of this talk is as follows: I explain the calculations of hadronic amplitudes for
B→ K(∗)+− at space-like q2 in section 2, focusing on the factorization properties of hard
contributions and the light-cone OPE for soft gluon radiation from the charm loop. In Section 3,
I discuss the hadronic amplitudes at time-like q2 and, in particular, the modeling of continuum
integrals for the background contributions. The isospin asymmetry for B→ Kℓ+ℓ− decay is
also presented here. Section 4 is reserved for the concluding discussion and outlook.

43.2 Hadronic B→ K (∗)ℓ+ℓ− amplitudes in space-like q2 region

In addition to the leading contributions from the semileptonic and electromagnetic penguin
operators, the non-local effects due to electromagnetic corrections are represented by the
figures 43.1-43.3, grouped in terms of the topologies of the diagrams. Below, I will summarize
the calculations of these diagrams in space-like q2 region one by one, with particular attention
to the limitations of the current theoretical tools.

The first class of diagrams, generated by the four-quark operators, are of emission topology
as displayed in figure 43.1. The amplitudes of the first three diagrams can be still factorized
as the convolution of B → K(∗) form factors and short distance coefficient functions, with
the assumption of parton-hadron duality. As discussed in [9], the factorizable charm-loop
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amplitude develops an imaginary part for q2 ≥ 4m2
c
, which indicates that the charm-quark

pair gradually evolve into the charmonium resonances and the applicability of OPE does not
hold anymore. The situation becomes even worse for the amplitudes of light-quark loops,
where the appearance of light vector meson resonances (for instance, ρ, ω and ϕ) implies
the breakdown of OPE starting from very low q2. Phenomenologically, the contributions from
the light-quark loops are suppressed, either by the Wilson coefficients of penguin operators
or by the CKM matrix elements of |VbV∗s|. This can be also understood from the fact that
the background effect generated by the light vector mesons is negligible compared to that
from the charmonium resonances. Another remark concerning the factorizable charm loop is
that the resulting amplitude is suppressed by the color factor and both power correction and
perturbative correction could be sizeable. In fact, the large branching ratios of color suppressed
tree channels B→ J/ψK(∗) remain an unresolved puzzle in heavy flavor physics for more than
two decades. I also mention by passing that the strong phase originated from the form-factor
type correction to the quark loop is tiny and this could justify the OPE calculation of two-loop
b→ sℓ+ℓ− transition form factors.

The soft gluon radiation from the charm-quark loop has been computed in [9] with OPE
controlled dispersion relation. I will briefly review the calculation of such effect here. One can
firstly isolate the time-ordered product of two charm quark currents and then derive the revelent
effective non-local operator eOμ(q) in terms of light-cone OPE. It needs to be pointed out that
the local OPE fails for the calculation of soft gluon radiation contribution, as the expansion
parameter q ·k/(4m2

c
−q2) (k being the four-momentum of soft gluon) is not small numerically.

Compared to the leading-order factorizable charm-loop, the amplitude of soft non-factorizable
charm-loop is suppressed by one power of Λ2

QCD
/(4m2

c
− q2), however, it is enhanced by a

color factor 2C1(μ)/(C1(μ)/3+ C2(μ)). Following a similar argument, each extra soft gluon
radiation from the charm-loop will bring about an additional suppression factor Λ2

QCD
/(4m2

c
−

q2) with respect to the leading one-gluon term. To estimate the hadronic matrix elements of
the above-mentioned effective non-local operator eOμ(q), we construct the vacuum-to-B-meson
correlation function with the time-ordered product of a local current interpolating the K(∗) state
and the effective transition operator. Matching the QCD and hadronic representations of one
and the same correlator and performing the Borel transformation, one can derive a sum rule for
the hadronic matrix element 〈K(∗)(p)| eOμ(q)|B(p+ q), where the non-perturbative dynamics
is parameterized by the three-particle distribution amplitudes of B-meson in HQET. For the
phenomenological convenience, one can absorb the charm-loop effect into the effective Wilson
coefficient Ceƒ ƒ9 in a q2- and process- dependent way. Numerically, the nonfactorizable charm-
loop amplitude in B → Kℓ+ℓ− at q2 � 4m2

c
amounts to several percent of the factorizable

one, with a different sign. However, the soft gluon radiation effect is more pronounced in
B→ K∗ℓ+ℓ− at small q2, for a transverse polarized K∗ meson.

The spectator scattering diagrams generated by the four-quark operators can be decomposed
into two different subgroups, depending on whether the virtual photon is radiated from the
external quark lines or from the internal quark loop. For the photon radiation from the external
legs, it is obvious that the leading power contribution is given by a single diagram with the
photon emission from the spectator quark of B-meson. The amplitude of this diagram develops
an end-point divergence in the soft q2 limit, as firstly observed in [3], and such effect also
contributes to the isospin symmetry breaking of B → K(∗)ℓ+ℓ− decays. For the photon
emission from the quark loop, the leading contribution to the quark loop amplitude can be
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Figure 43.2: Weak annihilation contribution to B→ K(∗)ℓ+ℓ− amplitude.

extracted by setting the gluon momentum flowing into the loop as the momentum of the
spectator quark in the K(∗) meson. The momentum of spectator quark in the B-meson only
show up in the propagator of hard-collinear gluon. Hence, the soft dynamics inside B-meson
decouples from the dynamics of quark loop at the scales q2 ≥ mbΛQCD and m2

b
. This

observation is essential to justify the factorization theorem shown in Eq. (15) of [3]. It is also
true that one can also further factorize the dynamics at the scale m2

b
from that of the scale

q2. The factorization formula for the contribution of these four-point diagrams can be also
confirmed by an analysis based upon the B-meson LCSR in soft-collinear effective theory.
Numerical analysis shows that these two diagrams generate sizeable strong phase even in
the space-like q2 region. In the hadronic level, this can be understood from the initial state
re-scattering effect of B→ D(∗)D(∗)

s
and D(∗)D(∗)

s
→ γ∗K(∗). In other words, the analytical

structure of hadronic dispersion relation for the non-local contribution to the decay amplitude
A(B → K(∗)ℓ+ℓ−) in the variable q2 is considerably complicated at O(αs) order, since the
residuals of charmonium resonance contributions as well as the hadronic spectral density could
be expressed as dispersion integrals in the variable p2

B
and the double dispersion relations of

non-local matrix elements would be probably needed.

The second class of diagrams are of annihilation topology as presented in figure 43.2. The
leading-order weak annihilation amplitude was computed in the framework of QCD factorization.
As discussed in [3], such effect does not vanish in the leading power in the heavy quark limit
for the final state being a kaon or a longitudinal polarized K∗ meson. Another comment
concerning the weak annihilation effect is that the leading contribution is from the diagram with
photon radiation from the spectator quark of B-meson, however, only the sum of four diagrams
respects the Ward identity as a consequence of charge conservation in the weak interaction.
Weak annihilation contribution is numerically insignificant due to the suppression of either the
Wilson coefficient or the CKM matrix element. From the phenomenological aspect, it is safe to
drop out the perturbative correction to the weak annihilation displayed in the right planar of
figure 43.2. The calculation of these diagrams is, however, important to the understanding of
renormalization property of B-meson distribution amplitudes in HQET [10–13]. Moreover, it is
also interesting to investigate the weak annihilation contribution within the B-meson LCSR and
examine the factorization formulae in the heavy quark limit.

The third class of diagrams are generated by the colormagnetic operator O8 as shown in figure
43.3. Similar to the weak annihilation diagrams, the spectator scattering amplitude contributed
from the operator O8 also produces end point singularity for q2 ∼ Λ2

QCD
. The soft gluon

radiation from the vertex of O8 is calculated in the LCSR approach with B-meson distribution

342



B̄ B̄ B̄

Figure 43.3: Color-magnetic penguin operator O8 contribution to B→ K∗)ℓ+ℓ− amplitude.

amplitudes. However, such effect is suppressed by both one power of Λ2
QCD

/m2
b

and the small
Wilson coefficient O8 and hence it is irrelevant numerically. The factorizable contribution from
the operator O8 was firstly computed in [14] in expanded form and in [3] in compact form.

43.3 Hadronic B→ K (∗)ℓ+ℓ− amplitudes in time-like q2 region

Following the discussion in previous sections, a conservative way to compute the B →
K(∗)ℓ+ℓ− amplitudes is to employ local/light-cone OPE and QCD factorization theorem (also
with implicit use of parton-hadron duality ) in the space-like q2 region. The next question is,
how can one access the hadronic amplitudes at time-like q2? The strategy discussed in this
talk, following [9], is to construct the relevant hadronic dispersion relations for the non-local
contributions, using the fact that the hadronic matrix element is an analytical function of q2. For
the convenience of exploring the isospin asymmetry in B→ K(∗)ℓ+ℓ− decays, one can isolate
the contributions of  and d flavors involved in the electromagnetic current of the non-local
matrix element, from that of b, c and s flavors, and write down separate dispersion relation for
each term. For the amplitude contributed from  and d quarks, the corresponding dispersion
relation reads [15]

H(BK)d (q
2) = H(BK)d (q

2
0) + (q

2 − q20)
h
∑

h=ρ,ω

κhƒh|ABhK |eφh

(m2
h − q20)(m

2
h − q2 − mhtoth )

+
∫ ∞

sh0

ds
ρ(s)

(s− q20)(s− q
2 − ε)

i

, (43.2)

where one substraction for the amplitude has been performed at q20 = −1GeV
2, κρ = 1/

p
2,

κω = 1/(3
p
2). One can write down the hadronic dispersion relation for the contribution

from b, c and s quarks in a similar manner. The decay constant ƒh and the hadronic B
decay amplitude |ABhK | can be extracted from the experimental data. However, the continuum
integral accumulating the contribution from excited states and continuum cannot be constrained
from the experimental side, due to the absence of the measurements of three body decays
B → Kππ, B → KKK̄ and B → KDD̄. Therefore, one has to parameterize the continuum
integral in a model-dependent way. It is extremely difficult to avoid the model dependence here,
if it is possible conceptually. The unknown parameters involved in the model of continuum
integral can be determined by matching the hadronic dispersion relation to the calculated
hadronic amplitude at space-like q2 from QCD. Numerical analysis indicates that different
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parameterizations of the continuum integral does not bring about distinct discrepancy for the
physical observables of B→ Kℓ+ℓ−.

The predicted isospin asymmetry of B → Kℓ+ℓ− below charmonium threshold has been
collected in Table 43.1, where the measurements from BaBar, Belle and LHCb collaborations
are also presented for a comparison. The central values of experimental data on the isospin
asymmetry reveal large derivation from zero, however, all of these measurements suffer from
significant uncertainties. Albeit with the tiny isospin asymmetry of B→ Kℓ+ℓ− from theoretical
side, no conclusive statement about the emergence of new physics in exclusive FCNC transition
can be made at present, without an enormous improvement of the accuracy of the experimental
measurements.

Table 43.1: Isospin asymmetry (B→ Kℓ+ℓ−) integrated over 1.0 < q2 < 6.0 GeV2. Taken
from [15].

Belle [16] BaBar [17] LHCb [18] this work

−0.41+0.25−0.20 ± 0.07 −0.41± 0.25± 0.01 −0.35+0.23−0.27 −0.01+0.02−0.00

43.4 Summary and outlook

I summarize the current status of QCD computations of the B→ K(∗)ℓ+ℓ− amplitudes at large
hadronic recoil 1. Detailed discussion on the non-local effects due to electro-magnetic correc-
tion to the four-quark operators and color-magnetic operator is presented in the framework of
OPE and factorization theorem. The strategy to access the hadronic amplitude at time-like
q2 using the hadronic dispersion relation is also reviewed. Phenomenological aspects of the
B→ K(∗)ℓ+ℓ− decays are not the focus of this talk, only the isospin asymmetry of B→ Kℓ+ℓ−

decay is briefly discussed. One can apply the similar procedure to the calculation of FCNC
transition of Λb baryon in the Standard Model [20] and beyond [21]. Lastly, I emphasize again
that understanding the power correction and perturbative correction is essential to search for
the new physics in heavy flavor physics.

Acknowledgments
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1Extensive studies of B→ K(∗)ℓ+ℓ− decay at low hadronic recoil have been available in the literature [19], based
upon the local OPE in the HQET limit, with different treatment of the charm-quark field.
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44 New Classically-Stable, Closed Timelike
Curves (CTCs)

C.M. Ho, T. Weiler

Abstract A new class of closed timelike curves (CTCs) using a compactified extra dimension
are constructed. Non-physical requirements that plague previously conjectured CTCs do not
apply here. Our CTCs are physical, and classically stable, in that: (i) no matter distributions
of infinite extent are required; (ii) there is no need of negative energy densities – in fact, no
need of matter distributions at all (all energy conditions – null, weak, strong and dominant –
are satisfied); and (iii) the energy of a time-traveling particle is conserved. An example of a
particle which may time-travel is the “fourth-flavored" neutrino, the “sterile" neutrino.

44.1 Introduction

It is well known that closed timelike curves (CTCs) are allowed solutions of general relativity,
and so time travel is theoretically possible. For decades, many proposals for CTCs have been
discussed in the literature. These include van Stockum’s rotating cylinder [1] (extended later
by Tipler [2]), Gödel’s rotating universe [3], Wheeler’s spacetime foam [4], the region between
the two horizons of the Kerr and Kerr-Newman rotating black holes [5], Morris, Thorne and
Yurtsever’s traversable wormholes [6], Gott’s pair of spinning cosmic strings [7], Alcubierre’s
warp drive [8], Ori’s vacuum torus [9] and a few more recent proposals [10]. All of these CTCs
are constructed in our 4D (“brane") universe. An excellent overview is available in [11].

The success of large [12] and warped [13] extra dimensions has led many people to think of
gravitons or gauge singlets taking “shortcuts" through the extra dimensions (“bulk") [14–18].
For instance, a graviton or gauge-singlet “sterile" neutrino may take a “shortcut" from one point
on the brane through the bulk and back to the brane at a different point, with a shorter transit
time than that for a photon traveling along a brane geodesic between the same two points . But
note that, although a “shortcut" allows for superluminal communication, it nevertheless obeys
time-ordering and so does not constitute a CTC – a shorter time-of-flight is not the same as
time evolving backwards. However, using the idea of asymmetrically warped extra dimensions
[19], it has been shown how paths can be constructed to form CTCs [20]. These constructed
paths are not solutions of geodesic equations, and so would not be the paths traversed by
physical particles. Also, the paths constructed in [20] require some negative-energy matter
distribution in the bulk for their stabilization.

The purpose of this article is to highlight the very recent proposal of Ho and Weiler [21] for
CTCs which are solutions to the geodesic equations of a certain class of 5D metric with a
compactified extra dimension. These new CTCs have no classical pathologies.
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44.2 The 5D Metric

As inspired by the idea of large extra dimensions [12] and guided by analogy with Gödel’s
rotating universe [3] and the CTCs therein, we are led to consider a metric off-diagonal in
compactified extra dimension (, with size L) and time t. The periodic boundary condition
requires the point +L to be identified with . With simplicity in mind, we consider the following
time-independent (“stationary”) metric:

dτ2 = ηjddj + dt2 + 2g()dt d− h()d2 , (44.1)

where , j = 1, 2, 3, and ηj is the spatial part of the Minkowski metric. The 4D metric
induced from this 5D metric is completely Minkowskian. The determinant of our metric is
Det[gμν] = g2 + h. The spacelike nature of the  coordinate requires Det > 0 for the
entire 5D metric, which in turn requires that g2 + h > 0 for all . It is desirable to maintain
a Minkowski metric as the brane is approached; thus, we set Det( = 0) = g20 + h0 = +1,
where g0 ≡ g(0), etc. We will also assume, for definiteness, that h0 ≥ 0, which implies that
|g0| ≤ 1.

The metric tensor must reflect the S1 topology of the compactified extra dimension. Thus, g()
and h() must be periodic functions of  with period L. We expand g() in terms of Fourier
modes:

g() = g0 + A−
∞
∑

n=1

¨

n cos

�

2π n

L

�

+ bn sin

�

2π n

L

�«

, (44.2)

where g0 = g(0) and A ≡
∑∞

n=1 n are constants. A similar expression can be written down
for h(), but it will not be needed. For use later in this report, we note here that the value of
g() averaged over the compact dimension is g = g0 + A.

The next task is to obtain the geodesic equations of motion and solve for their solutions. Since
the metric (44.1) is completely Minkowskian on the brane, the geodesic equations of motion
along the brane are just ~̈r = 0, where the over-dot denotes differentiation with respect to the
proper time, τ. Solutions to these geodesic equations are simply ~̇r = ~̇r0, or ~r = ~r0 τ.

The geodesic equations for t and  are more interesting. Due to the time-independence of the
metric, there exists a timelike Killing vector; the corresponding conserved quantity is

ṫ + g() ̇ = γ0 + g0 ̇0 , (44.3)

where we have evaluated the right-handed side at its initial (τ = 0) value. Given this conserved
quantity, it is almost evident that time will run backwards (ṫ < 0), provided that the condition
g() ̇ > γ0 + ̇0 g0 is consistent with the geodesic equation for .

The geodesic equation for  is

2 (g ẗ − h ̈)− h′ ̇2 = 0 ; (44.4)

we use the superscript “prime" to denote differentiation with respect to . We can eliminate
ẗ and ̈ from Eq. (44.4). First, we take the dot-derivative of Eq. (44.3). Then we rewrite
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Eqs. (44.3) and (44.4) as

ẗ(τ) =
1

2

−2g′h+ gh′

g2 + h
̇2 , (44.5)

̈(τ) = −
1

2

2gg′ + h′

g2 + h
̇2 = −

1

2
ln′(g2 + h) ̇2 . (44.6)

Inspection of these two geodesic equations suggests that it prove fruitful to fix the determinant
to be

Det() = g2() + h() = 1 , ∀  . (44.7)

For simplicity, we do so. Once the metric function g() is given by the Fourier series of
Eq. (44.2), then the second metric function h() = 1 − g2() is automatically determined.
Substituting Eq. (44.7) into Eq. (44.6) immediately leads to

̇(τ) = ̇0 , nd (τ) = ̇0 τ , (mod L ) . (44.8)

Integrating Eq. (44.3) yields t(τ) = (γ0 + g0 ̇0)τ −
∫ (τ)

d g(), which we rewrite, using
Eq. (44.8), in a form more useful for later discussions:

t() =

�

g0 +
1

β0

�

−
∫ 

0
dg() . (44.9)

Here we have introduced the symbol β0 =
̇0
γ0
=
�

d
dt

�

0
for the initial velocity of the particle

along -direction, as measured by a stationary observer on the brane. Analogous to those
historical CTCs arising from metrics describing rotation, we will call a particle “co-rotating” if
β0 > 0, and “counter-rotating” if β0 < 0.

44.3 Closed Timelike Curves

Closed timelike curves, by definition, are geodesics that return a particle to the same space
coordinates from which it left, but with a negative time so that its arrival equates to or precedes
its departure. Due to the periodic boundary condition from the compactified extra dimension, a
particle created on the brane but propagating into the bulk will necessarily come back to the
brane. So the “closed” condition for a CTC is satisfied automatically by a compactified metric.
We note that the motion along the brane is trivially ~̇r = constant. When this is added to the
geodesic solution for (τ), it leads to a helical particle motion which periodically intersects the
brane.

To ascertain whether the travel time can be negative (the “timelike” condition for a CTC),
we must solve the geodesic equation for time, Eq. (44.9). With the general g() given by
Eq. (44.2), we perform the integration in Eq. (44.9) to obtain

t() =

�

1

β0
− A

�

+

�

L

2π

� ∞
∑

n=1

�

1

n

�¨

n sin

�

2π n

L

�

+ bn

�

1− cos
�

2π n

L

��«

.(44.10)
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Due to the periodic boundary condition, the particle returns to the brane at  = ±NL, N =
1,2, . . . , after traversing N times around the extra dimension (with ± signs for co-rotating and
counter-rotating particles, respectively). At the Nth return, the time measured by a stationary
clock on the brane, given by Eq. (44.10), is

tN ≡ t( = ±NL) = ±
�

1

β0
− A

�

NL . (44.11)

Interestingly, tN depends on the Fourier modes only through A =
∑

n=1 n, and is completely
independent of the bn. Thus, the potential for a CTC arises only from the cosine modes1.

To have a viable CTC, we require tN < 0, which is satisfied for a co-rotating (β0 > 0) particle
only if

A >
1

β0
. (44.12)

For a counter-rotating (β0 < 0) particle, tN < 0 is satisfied only if

A, β0 < 0 nd |A| >
�

�

�

�

1

β0

�

�

�

�

. (44.13)

Thus, a viable CTC requires sign(A) to be the same as sign(β0) in either case of co-rotating or
counter-rotating particles. Once Nature chooses the constant A with a definite sign, these CTC
conditions for co-rotating and counter-rotating particles are not compatible. For definiteness,
we will assume that A > 1

β0
is satisfied for some β0, so that only the co-rotating particles can

traverse the CTC backwards in time. We note that the conditions (44.12) and (44.13) can be
satisfied even if |β0| < 1. This means that Nature does not need superluminal speeds to
realize CTCs.

The parameter conditions for a CTC are the following: from Eq. (44.12) we have A ≥ 1;
from the form of our metric as the brane ( = 0) is approached, we have |g0| ≤ 1. It turns
out [21] that periodicity of the particle’s quantum mechanical wave function around the compact
dimension requires a generalization of the latter condition to |g| = |g0 + A| ≤ 1. Thus the
parameter regions allowing a CTC are two, given in Fig. 1. the important feature is that these
CTC-admitting regions are nonzero!

!2 !1 0 1 2
!1.0

!0.5

0.0

0.5

1.0

A

g 0

Figure 44.1: The two regions ion the g0-A plane for which CTCs are possible.

1In fact, we can show that a single mode from the set {n} is sufficient to admit a CTC.
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44.4 Comparison of 5D CTC and 4D Spinning String

Our class of 5D metrics admitting CTCs resembles in some ways the well-studied metric for a
4D spinning cosmic string [22, 23]:

dτ2spinning
string

= (dt + 4G Jdθ)2 − dr2 − (1− 4Gm)2 r2 dθ2 − dz2 , (44.14)

where G is Newton’s constant, J is the angular momentum, and m is the mass per unit length
of the cosmic string. In three spacetime dimensions, the Weyl tensor vanishes, and so any
region without a gravitational source must be flat. Consequently, in the region outside the
spinning string, the local Minkowski coordinates may be extended to cover the entire region:
t̃ = t + 4G Jθ and φ = (1 − 4Gm)θ such that the metric becomes Minkowskian, with
the conformal factor being unity. Similar to θ, φ is periodic, subject to the identification
φ ∼ φ + 2π − 8πGm, and the wedge Δφ = 8πGm is removed from the plane, leaving
behind a cone. While these coordinate transformations apparently lead to simplicity, in fact t̃ is
a pathological coordinate, a linear combination of a non-compact variable t and a compact
variable θ. For a fixed θ (or φ), t̃ is a smooth and continuous variable. But for a fixed t,
one needs the identification t̃ ∼ t̃ + 8πG J to avoid a “jump” in the new variable. A a result,
the singularity at gθθ = 0, which occurs at r = 4GJ/(1− 4Gm), is in effect encoded in the
pathological coordinate t̃ [22].

In the (t, )-plane, our metric has the form dτ2 = (dt + g()d )2 − d2. where we have
used the simplifying condition in Eq. (44.7). This appears similar to the 4D spinning-string
metric. Analogously, we can define a new exact differential dt̄ ≡ dt+g()d to put our metric
into the diagonal “Minkowskian” form: dτ2 = ηj ddj+dt̄2−d2. This nontrivial coordinate

transformation defines a new time variable t̄ = t +
∫ (t)
0 d g() which is measured in the

frame that “co-rotates" with the circle S1. Since the equivalent metric is locally Minkowskian
everywhere, the entire 5D spacetime is flat. This is consistent with the theorem which states
that any two-dimensional (pseudo) Riemannian metric, whether in a source-free region or not,
is conformal to a Minkowski metric. However, similar to the case of the spinning string, the
topology of our 5D spacetime is non-trivial. The new time variable t̄ is ill-defined globally, a
pathological combination of a non-compact t coordinate and a compact  coordinate.

We remark that the time measured by an observer (or experiment) on our brane should just
be given by t. The reason is that the constraint equation that reduces the 5D metric to the
induced 4D metric is simply (μ) = 0, and taking the differential gives d = 0. When the
latter result is substituted into the 5D metric in Eq. (44.1), the standard 4D Minkowski metric
with timed t is induced.

Indeed, the metric for the 4D spinning string leads to CTCs [22]. However, this metric has
been criticized in that the definition of spin becomes singular at the string’s center. There
is no analogous problem in our compactified 5D metric (Eq. (44.1)), because the “center” of
the periodic -space is not part of the spacetime. An improved CTC, making use of a pair
of infinitely-long cosmic strings with a relative velocity, was proposed by [7]. In his scheme,
spin angular-momentum is replaced by orbital angular-momentum of a two-string system. He
showed that there exists a ‘figure-eight” CTC geodesic encircling the strings and crossing
between them. However, the non-trivial topology in Gott’s spacetime results in non-linear
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energy-momentum addition rules. While each of the spinning cosmic strings carries a timelike
energy-momentum vector, the two-string center-of-mass energy-momentum vector turns out
to be spacelike, leading to violations of null, strong and dominant energy conditions [24–27].
Another vulnerability of Gott’s CTC is the increasing energy of the particle traversing the
CTC [27]. Since the particle can traverse the CTC infinitely many times, it can be infinitely
blue-shifted, all while keeping the time elapsed negative [26, 28]. This implies that the total
energy of the pair of the cosmic strings would have been infinitely dissipated even before the
particle enters the CTC for the first time. This simply means that the CTC cannot form in the
first place.

We may contrast the string CTCs, Gott or no Gott, with the results of our metric. it is easily
verified that all the components of the 5D curvature tensor RABCD and Ricci tensor RAB derived
from the metric of Eq. (44.1) are identically zero. Thus, by the Einstein field equation, the
energy-momentum tensor TAB is also vanishing, and so our 5D spacetime automatically
satisfies all of the standard null, weak, string and dominant energy conditions. In addition,
particles traversing the compactified 5D CTCs conserve energy. The contravariant momentum
is defined as pA ≡ m (ṫ, ~̇r, ̇), for a particle with mass m. Correspondingly, the covariant
five-momentum is given by

pA = GAB p
B =m

�

ṫ + g ̇, − ~̇r, g ṫ − h ̇
�

. (44.15)

From Eq. (44.3), it is clear that the quantity p0 =m (ṫ + g ̇) is covariantly conserved along
the geodesic on and off the brane, a result traceable to the time-independence of the metric
GAB. We can therefore identify this conserved quantity as the energy E of the time-traveling
particle.

44.5 Discussions and Conclusions

We have constructed a new class of CTCs that are physical and classically stable. Since it is
the compactified extra dimension that enables the CTCs, only the Kaluza-Klein (KK) particle
modes can traverse through these CTCs and go backwards in time. In the framework of large
extra dimensions [12] where Standard Model particles are confined to our familiar 4D brane,
we may still anticipate that the KK modes of gauge singlets (gravitons, sterile neutrinos, higgs
singlets, etc.) propagate through these CTCs, provided that our specific metric in Eq. (44.1) is
realized by Nature.

Finally we mention that our derivation has been purely classical. Whether or not our results
survive in a quantum mechanical picture is a story yet to be written.
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45 Squark flavor mixing and CP violation of
neutral B mesons at LHCb

K. Yamamoto

Abstract We study the contribution of the squark flavor mixing from the LR(RL) component
of the squark mass matrices to the direct CP violation of the b → sγ decay and the CP
asymmetry of Bd → K∗γ decay and the non-leptonic decays of B mesons. The magnitude
of the LR(RL) component is constrained by the branching ratio and the direct CP violation of
b→ sγ. We predict the time dependent CP asymmetries of the B decays.

45.1 Introduction

Recently LHCb has reported new data of the CP asymmetries of Bs mesons. They measured
the time dependent CP asymmetry Sƒ of Bs → J/ψϕ and Bs → J/ψƒ0(980) decays [1]. The CP
violation in the K and Bd meson decays has been successfully explained within the framework
of the standard model (SM), so called Kobayashi-Maskawa (KM) model [2]. However, there are
a possibility of new sources of the CP violation if the SM is extended to the supersymmetric
(SUSY) models. Therefore, we expect the SUSY contribution to the CP violation in the B
meson decays.

The typical contribution of SUSY is the gluino-squark mediated flavor changing process [3]-[12].
We predict the time dependent CP asymmetries of B0

d
→ ϕKS and B0

d
→ η′K0 decays which

are deviated from the SM predictions in the framework of the SUSY. In this regard we consider
constraints from the branching ratio and the direct CP violation of b→ sγ.

In that framework of the SUSY, the asymmetries of B0
d
→ ϕKS and B0

d
→ η′K0 are deviated

from the SM predictions [13, 14]. Then, these contributions of the new physics are correlated
with the direct CP violation of the b → sγ decay. In this work, we present the numerical
analyses in the case that LR and RL components of squark mass matrices dominate the
penguin decays.

45.2 CP violation in B meson decays

Let us discuss the effect of the new physics in the non-leptonic decays of B mesons. The
contribution of new physics to the dispersive part Mq

12(q = d, s) is parameterized as

M
q
12 = M

q,SM
12 +Mq,SUSY

12 = Mq,SM
12 (1+ hqe2σq) , (q = d, s) (45.1)
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where Mq,SUSY
12 is the SUSY contribution, and Mq,SM

12 is the SM contribution [15].

The time dependent CP asymmetry Sƒ decaying into the final state ƒ is defined as [16]

Sƒ =
2Imλƒ

|λƒ |2 + 1
, λƒ =

q

p
ρ̄ ,

q

p
=

√

√

√

√

M
q∗
12 −


2

q∗
12

M
q
12 −


2

q
12

, ρ̄ ≡
Ā(B̄0

q
→ ƒ )

A(B0
q
→ ƒ )

. (45.2)

In the decay of B0
d
→ J/ψKS, the new physics parameters hd and σd appear in

λJ/ψKS = −e−ϕd , ϕd = 2βd + arg(1+ hde2σd), (45.3)

by putting |ρ̄| = 1 and q/p '
Æ

M
q∗
12 /M

q
12, where the phase βd is given in the SM.

The CKMfitter provided the allowed region of hd and σd, where the central values are hd '
0.3, σd ' 1.8 rd[17, 18].

In the decay of B0
s
→ J/ψϕ, we have

λJ/ψϕ = e−ϕs , ϕs = −2βs + arg(1+ hse2σs), (45.4)

where βs is given in the SM. Recently the LHCb has presented the observed CP-violating
phase ϕs in B̄0

s
→ J/ψπ+π− decay [1]. This result leads to ϕs = −0.019+0.173+0.04−0.174−0.03 rad,

which is consistent with the SM prediction ϕJ/ψϕ,SM
s

= −2βs = −0.0363±0.0017 rad [17].

Taking account of these data, the CKMfitter has presented the allowed values of hs and σs
[17, 18]. We take the central values hs ' 0.1, σs ' 0.9 − 2.2 rad as a typical parameter
set.

Since the B0
d
→ J/ψKS process occurs at the tree level in SM, the CP-violating asymmetry

originates from Md
12. Although the B0

d
→ ϕKS and B0

d
→ η′K0 decays are penguin dominant

ones, their asymmetries also come from Md
12. Then, asymmetries of B0

d
→ J/ψKS, B0

d
→ ϕKS

and B0
d
→ η′K0 are expected to be same magnitude in SM.

On the other hand, if the squark flavor mixing contributes to the decay at the one-loop level, its
magnitude could be comparable to the SM penguin one in B0

d
→ ϕKS and B0

d
→ η′K0, but it is

tiny in B0
d
→ J/ψKS. Endo, Mishima and Yamaguchi proposed the possibility to find the SUSY

contribution in these asymmetries [20].

The new physics contribute to the b → sγ process. The observed b → sγ branching
ratio (BR) is (3.60 ± 0.23) × 10−4 [19], on the other hand the SM prediction is given as
(3.15±0.23)×10−4 at O(α2

s
) [21, 22]. Therefore, the contribution of the new physics should

be suppressed compared with the experimental data. The new physics is also constrained by
the direct CP violation

A
b→sγ
CP ≡

(B̄→ Xsγ)− (B→ Xs̄γ)

(B̄→ Xsγ) + (B→ Xs̄γ)
. (45.5)

Since the SM prediction Ab→sγCP ' 0.005 is tiny [23], the new physics may appear in this CP

asymmetry. The present data A
b→sγ
CP = −0.008 ± 0.029 [19] has large error bar, so the

constraint of the new physics is not so severe. However improved data will provide the crucial
test for the new physics. We also discuss the time dependent CP asymmetry of Bd → K∗γ.
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45.3 Squark flavor mixing in B meson decays

Let us consider the flavor structure of squarks in order to estimate the CP-violating asymmetries
of B meson decays. We take the most popular anzatz, a degenerate SUSY breaking mass
spectrum for down-type squarks. Then, in the super-CKM basis, we can parametrize the soft
scalar masses squared M2

d̃LL
, M2

d̃RR
, M2

d̃LR
, and M2

d̃RL
for the down-type squarks. For example,

M2
d̃LR
= (M2

d̃RL
)† =m2

q̃







(δLR
d
)11 (δLR

d
)12 (δLR

d
)13

(δLR
d
)21 (δLR

d
)22 (δLR

d
)23

(δLR
d
)31 (δLR

d
)32 (δLR

d
)33






, (45.6)

where mq̃ is the average squark mass, and (δLR
d
)j and (δRL

d
)j are called as the mass insertion

(MI) parameters. The MI parameters are supposed to be much smaller than 1.

The SUSY contribution by the gluino-squark box diagram to the dispersive part of the effective
Hamiltonian for the Bq-B̄q mixing is written as [13, 24, 25]

M
q,SUSY
12 = Aq1

h

A2
n

(δLL
d
)2
j
+ (δRR

d
)2
j

o

+ Aq3(δ
LL
d
)j(δRRd )j

+ Aq4
n

(δLR
d
)2
j
+ (δRL

d
)2
j

o

+ Aq5(δ
LR
d
)j(δRLd )j

i

, (45.7)

where Aq is a function of  =m2
g̃
/m2

q̃
.

The squark flavor mixing can be tested in the CP-violating asymmetries of B meson. Let us
present our framework. The effective Hamiltonian for ΔB = 1 process is defined as

Heƒ ƒ =
4GF
p
2





∑

q′=,c

Vq′bV
∗
q′s

∑

=1,2

CO
(q′)
 − VtbV∗ts

∑

=3−6,7γ,8G

�

CO + eC eO

�



 , (45.8)

where O’s are the local operators [13]. The Wilson coefficient C includes both SM contribution
and gluino one, such as C = CSM


+ Cg̃ , where CSM


and Cg̃7γ and Cg̃8G are given in Ref. [26,

27].

The CP-violating asymmetries Sƒ in Eq. (45.2) are calculated by using λƒ , which is given for
B0
d
→ ϕKS and B0

d
→ η′K0 as follows:

λϕKS, η′K0 = −e
−ϕd

∑

=3−6,7γ,8G

�

CSM

〈O〉+ C

g̃
 〈O〉+ eC

g̃
 〈 eO〉

�

∑

=3−6,7γ,8G

�

CSM∗

〈O〉+ C

g̃∗
 〈O〉+ eC

g̃∗
 〈 eO〉

� . (45.9)

It is noticed that 〈ϕKS|O|B0d〉 = 〈ϕKS|
eO|B0d〉 and 〈η′K0|O|B0d〉 = −〈η

′K0| eO|B0d〉 because
of the parity of the final state. We estimate each hadronic matrix elements by using the
factorization relations in Ref. [28].

The b → sγ decay is a typical process to investigate the new physics. We can discuss the
direct CP violation Ab→sγCP in the b→ sγ decay, which is given as [23]:

357



A
b→sγ
CP =

αs(mb)

|C7γ|2
h40

81
Im[C2C∗7γ]−

8z

9
[(z) + b(z, δ)]Im

h

 

1+
V∗
s
Vb

V∗
ts
Vtb

!

C2C
∗
7γ

i

−
4

9
Im[C8GC∗7γ] +

8z

27
b(z, δ)Im

h

 

1+
V∗
s
Vb

V∗
ts
Vtb

!

C2C
∗
8G

ii

,

where (z) and b(z, δ) are explicity given in [23].

We also discuss the time dependent CP asymmetry SK∗γ of Bd → K∗γ decay, which is given
as [27]

SK∗γ =
2m(e2ϕ1 C̃7γ(mb)/C7γ(mb))

|C̃7γ(mb)/C7γ(mb)|2 + 1
. (45.10)

Let us set up the framework of our calculations. Suppose that μ tnβ is at most O(1)TeV.
Then, magnitudes of (δLL

d
)23 and (δRR

d
)23 are constrained by Ms

12 as seen in Eq.(45.7).
Taking account of hs = 0.1 , we obtain |(δLL

d
)23| ' |(δRRd )23| ' 0.02 in our previous work

[13]. Then, these contributions to C
g̃
7γ and C

g̃
8G are minor. On the other hand, (δLR

d
)23

and (δRL
d
)23 are severely constrained by Ceff

7γ and Ceff
8G independent of μ tnβ. We show

the constraint for (δLR
d
)23 and (δRL

d
)23 in our following calculations. In our convenience, we

suppose |(δLR
d
)23| = |(δRLd )23|. Then, we can parametrize the MI parameters as follows:

(δLR
d
)23 = |(δLRd )23|e

2θLR23 , (δRL
d
)23 = |(δLRd )23|e

2θRL23 . (45.11)

45.4 Numerical results

We show the numerical analyses of the CP violation in the B mesons. In our following
numerical calculations, we fix the squark mass and the gluino mass as mq̃ = 1000 GeV and
mg̃ = 1500 GeV, which are consistent with recent lower bound of these masses at LHC
[29].

At first, we discuss the b → sγ decay. The observed b → sγ branching ratio is (3.60 ±
0.23)× 10−4 [19], on the other hand the SM prediction is given as (3.15± 0.23)× 10−4
at O(α2

s
) [21, 22]. The branching ratio gives the constraint for the magnitude of (δLR

d
)23. The

direct CP violation of the b→ sγ is also useful to constraint (δLR
d
)23.

We show the |(δLR
d
)23| dependence of the branching ratio taking accont of the constraint of

A
b→sγ
CP in Figure 1, where the upper and lower bounds of the experimental data with 90%

C.L. are denoted red lines. As the magnitude of (δLR
d
)23 increases, the predicted region of

the branching ratio splits into the larger region and smaller one. The excluded region around
BR = 3×10−4 is due to the constraint of Ab→sγCP . Then, the predicted branching ratio becomes
inconsistent with the experimental data at |(δLR

d
)23| ≥ 5.5× 10−3.
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Figure 45.1: The predicted branching ratio
of b→ sγ versus |(δLR

d
)23|.

Figure 45.2: The allowed region of θLR23 −
|(δLR

d
)23| plane.

In Figure 2, we plot the allowed region of the θLR23− |(δ
LR
d
)23| plane by putting the experimental

data at 90% C.L. of the branching ratio and the direct CP violation Ab→sγCP . The |(δLR
d
)23| is

cut at 5.5× 10−3, where θLR23 is tuned around π/2. Around π/4 and 3π/4, Ab→sγCP give the
severe constraint. This CP-violating phase also contributes on the CP-violating asymmetry of
the non-leptonic decays of B0

d
and B0

s
mesons.

In addition to the direct CP violation of b→ sγ, we predicted the time dependent CP asymmetry
SK∗γ of Bd → K∗γ decay in Figure 3. The experimental upper and lower bounds with 90%
C.L. are denoted by the red lines and the case of 1σ is denoted by the pink lines. We find that
the constraint from SK∗γ is not severe at present.

Let us discuss Sƒ , which is the measure of the CP-violating asymmetry, for B0
d
→ J/ψKS, ϕKS

and η′K0. As discussed in Section 2, these Sƒ ’s are predicted to be same ones in the SM. On
the other hand, if the squark flavor mixing contributes to the decay process at the one-loop
level, these asymmetries are different from among as seen in Eq.(45.9). We present the
predicted region of the Sη′K0-SϕKS plane in Figure 4, the black line denotes the SM prediction
SJ/ψKS = SϕKS = Sη′K , where the observed value SJ/ψKS = 0.671 ± 0.023 is put. The
experimental data is denoted by red lines at 90% C.L. and we fix |(δLR

d
)23| = 10−4(orange)

and 10−3(blue) for typical values. The reduction of the experimental error of Ab→sγCP will give
us severe predictions for SϕKS and Sη′K0 .

45.5 Conclusion

We have discussed the contribution of the squark flavor mixing from (δLR
d
)23 and (δRL

d
)23 on

the direct CP violation of the b→ sγ decay and the CP-violating asymmetry in the non-leptonic
decays of B0

d
meson. The magnitude of the |(δLR

d
)23| is constrained by the branching ratio of

b→ sγ with the constraint of Ab→sγCP . The predicted branching ratio becomes inconsistent with
the experimental data at |(δLR

d
)23| ≥ 5.5×10−3. We have obtained the allowed region on the

θLR23-|(δLR
d
)23| plane.
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Figure 45.3: The allowed region of SK∗γ -
|(δLR

d
)23|plane.

Figure 45.4: The predicted region of Sη′K0 -
SϕKS plane.

Based on this result, we have predicted Sƒ of the B0
d

and B0
s

decays. These CP-violating
asymmetries could deviate from the SM predictions.

In the near future, the precise data of the direct CP violation and CP-violating asymmetries in
the non-leptonic decays of B0

d
and B0

s
mesons give us the crucial test for our framework of the

squark flavor mixing.
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46 RG effects on the CEDM RG effects on the
CEDM via CP violating four-Fermi
operators

M. J. S. Yang

Abstract In this study, the renormalization-group equations for the (flavor-conserving) CP-
violating interaction are derived up to the dimension six, including all the four-quark operators,
at one-loop level. We apply them to the models with the neutral scalar boson that have
CP-violating Yukawa interactions with quarks, and discuss the neutron electric dipole moment
in this models.

46.1 Introduction

The electric dipole moment (EDM) for neutrons is sensitive to CP violation in physics beyond the
standard model (SM). This is because, while the CP phase in the Cabibbo-Kobayashi-Maskawa
(CKM) matrix is O(1), the CKM contribution to the neutron EDM is too much suppressed [1]
to be observed in near future. (The recent evaluation of the CKM contribution to the neutron
EDM is given in Refs. [2].)

The (flavor-conserving) CP-violating effective operators at parton level up to the dimension six
are the QCD theta term, the EDMs and the chromoelectric dipole moments (CEDMs) of quarks,
the Weinberg’s three-gluon operator [3] and the four-quark operators. In the evaluation of the
neutron EDM, the CP-violating four-quark operators tend to be ignored since the four-light
quark operators suffer from chiral suppression in many models. However, the four-quark
operators including heavier ones, such as bottom/top quarks, may give sizable contributions to
the neutron EDM. The EDMs, CEDMs, and the three-gluon operator are radiatively generated
from the four-quark operators by integrating out heavy quarks.

In the multi-Higgs models, the Barr-Zee diagrams are known to give the sizable contribution
to the neutron EDM [4]. In the Barr-Zee diagrams, the heavy-quark loops are connected to
light-quark external lines by the neutral scalar boson exchange so that the CEDMs for light
quarks are generated at two-loop level at O(αs). However, it is unclear which renormalization
scale should be chosen for αs.

In this study, in order to answer those questions, we derive the renormalization-group equations
(RGEs) for the Wilson coefficients for the CP-violating effective operators up to the dimension
six at one-loop level, including operator mixing [5]. The RGEs for the EDMs and CEDMs for
quarks and the three-gluon operator have been derived in Ref. [6–8]. The next-leading order
corrections to them are also partially included [9]. We include the four-quark operators in the
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calculation at the leading order. Using the derived RGEs, we evaluate the EDMs, and CEDMs
for light quarks and the three-gluon operators induced by the neutral scalar boson exchange
including the QCD correction.

This proceeding is organized as follows. In next section, we review the neutron EDM evaluation
from the parton-level effective Lagrangian at the hadron scale. In Section 3, we derive RGEs
for the Wilson coefficients for the CP-violating effective operators up to the dimension six at
one-loop level. In Section 4, we show the effect of the running αs on the evaluation of the
Wilson coefficients, assuming the neutral scalar boson exchange induces the CP-violating
effective operators. Section 5 is devoted to conclusion.

46.2 Neutron EDMs

First, we review about evaluations of the neutron EDM from the low-energy effective Lagrangian
at parton level. The CP-violating interaction at parton level around the hadron scale (μ

H
=

1 GeV) is given by,

LCPV = θ
αs

8π
GA
μν
eGAμν −



2

∑

q=,d,s

dq q Fμνσ
μν γ5q

−


2

∑

q=,d,s

d̃q qgs G
A
μν
σμνTA γ5q+

1

3
ƒABCG

A
μν
G̃BνλG

Cμ
λ . (46.1)

Here, Fμν and GA
μν
(A = 1–8) are the electromagnetic and gluon field strength tensors, gs is

the strong coupling constant (αs = g2s /4π) , and G̃A
μν
≡ 1

2εμνρσG
Aρσ with σμν = 

2[γ
μ, γν]

and ε0123 = +1. The matrix TA denotes the generators in the SU(3)C algebra, and ƒABC is
the structure constant. The first, second, third and forth terms in Eq. (46.1) are called the QCD
θ term, the EDM and the CEDM for quarks, and the three-gluon operator, respectively. In
Eq. (46.1), we ignore the CP-violating four-quark operators, since their coefficients are often
proportional to the light quark masses in typical models, as mentioned in Introduction.

The neutron EDM is evaluated from various methods. The evaluation in term of the QCD sum
rules is more systematic than the others, at least for the contributions from the QCD theta term,
and the quark EDMs and CEDMs to the neutron EDM [10–13]. The recent evaluation of the
neutron EDM with the QCD sum rules is given by [14]

dn ' 2.9× 10−17θ̄ [e cm] + 0.32dd − 0.08d + e(+0.12d̃d − 0.12d̃ − 0.006d̃s) .
(46.2)

In the evaluation, the recent QCD lattice result is used for the low-energy constant λn, which
is defined by 〈0|ηn()|N( ~p, s)〉 = λnn( ~p, s) with ηn() the neutron-interpolating field. If a
value of λn evaluated with the QCD sum rules is used, the neutron EDM is enhanced by about
five times compared with Eq. (46.2).

The contribution from the three-gluon operator might be comparable to the quark EDMs and
CEDMs. The quark EDMs and CEDMs are proportional to the quark masses, while the
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three-gluon operator does not need to suffer from chirality suppression. However, the size of
the contribution from the three-gluon operator depends on the methods of the evaluation. In
Ref. [15] the authors compare the several evaluations and propose

dn() ∼(10− 30)MeV× e . (46.3)

46.3 Operator Bases and Anomalous Dimension Matrix

We would like to introduce heavy quarks in the low-energy effective theory and evaluate their
contributions to the neutron EDM. In this section, we show the one-loop RGEs for the Wilson
coefficients for the CP-violating effective operators up to the dimension six, including heavy
quarks.

First, we define the operator bases for the RGE analysis. The flavor-conserving effective
operators for the CP violation in QCD are given up to the dimension six as

LCPV =
∑

=1,2,4,5

∑

q

C
q
 (μ)O

q
 (μ) + C3(μ)O3(μ)

+
∑

=1,2

∑

q′ 6=q

eC
q′q
 (μ) eO

q′q
 (μ) +

1

2

∑

=3,4

∑

q′ 6=q

eC
q′q
 (μ) eO

q′q
 (μ) , (46.4)

where the sum of q runs not only light quarks but also heavy ones, and we ignore the QCD
theta term since it is irrelevant to our discussion here. The effective operators are defined as

Oq
1 =−



2
mqq̄ eQq(F · σ)γ5q , Oq

2 = −


2
mqqgs(G · σ)γ5q ,

O3 =−
1

6
gsƒ

ABCεμνρσGA
μλ
GB λ

ν
GC
ρσ
, (46.5)

and

Oq
4 = qαqαqβ γ5qβ , Oq

5 = qασμνqαqβ σμνγ5qβ ,
eOq′q
1 = q′

α
q′
α
qβ γ5qβ , eOq′q

2 = q′
α
q′
β
qβ γ5qα ,

eOq′q
3 = q′

α
σμνq′

α
qβ σμνγ5qβ , eOq′q

4 = q′
α
σμνq′

β
qβ σμνγ5qα .

Here, mq are masses for quark q. In Eq. (46.6) we explicitly show the color indices, α and β. A
factor of 1/2 appears in front of the fourth term of Eq. (46.4), since the term is symmetric under
the exchange of q′ and q. The Wilson coefficients in Eq. (46.4) are related to the parameters
in Eq. (46.1) as

dq =mq eQq C
q
1(μH) , d̃q = mq C

q
2(μH) ,  = −

1

2
gs C3(μH) . (46.6)

The RGEs for the Wilson coefficients of these operators and the anomalous dimension matrix
are given as follows,

μ
∂

∂μ
C = C,  =









αs
4πγs 0 0
1

(4π)2γsƒ
αs
4πγƒ 0

1
(4π)2γ

′
sƒ

0 αs
4πγ

′
ƒ









. (46.7)
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Here, the Wilson coefficients are written in a column vector as

C = (Cq1, C
q
2, C3, C

q
4, C

q
5,
eC
q′q
1 , eC

q′q
2 , eC

qq′

1 , eC
qq′

2 , eC
q′q
3 , eC

q′q
4 ). (46.8)

and the explicit forms of the components in the matrix are in the Ref. [5].

46.4 Neutral Scalar Boson Exchange

In multi-Higgs models, a color-singlet neutral scalar boson ϕ may have the CP-violating Yukawa
coupling with quarks. If the Yukawa interaction violates the CP invariance, the CP-violating
four-quark operators are induced at tree level, after integrating the neutral scalar boson out,
as

C
q
4 =

p

2GF

m2
q

m2
ϕ

ƒ
q
S ƒ

q
P ,

eC
q′q
1 =

p

2GF

mqmq′

m2
ϕ

ƒ
q
S ƒ

q′

P , eC
qq′

1 =
p

2GF

mqmq′

m2
ϕ

ƒ
q′

S ƒ
q
P , (46.9)

where we assume that ϕ is heavier than heavy quarks (mϕ �mq,mq′). Here, ƒqS and ƒqP are
the CP-even and odd Yukawa coupling constants, respectively, defined as

Lϕ = 21/4G1/2F
mqqα(ƒ

q
S +  ƒ

q
P γ5)qαϕ, (46.10)

where ϕ is a (CP even) real scalar field, and GF is the Fermi constant. We parametrize the
Yukawa coupling constants as they are proportional to the quark masses. For the SM Higgs
boson, the Yukawa coupling constants are of ƒqS = 1 and ƒqP = 0.

It is known that, in these models, the EDMs and CEDMs for light quarks are generated by the
Barr-Zee diagrams at two-loop level, and the three-gluon operator is also induced by the heavy-
quark loops at two-loop level. Here, we compare values of the EDM and CEDM operators for
down quark and the three-gluon operators including and not including the renormalization group
evolution of the strong coupling constant. We assume that the Yukawa coupling constants for
down and bottom quarks with ϕ are nonzero in Eq. (46.10) and then

eCbd1 (mϕ) 6= 0, Cb4(mϕ) 6= 0 , Cb1(mϕ) = Cb2(mϕ) = −
3

16π2
Cb4(mϕ) . (46.11)

The last assumption comes from the matching condition between the explicit one-loop calcula-
tion and the result of one-loop RGEs. This initial condition is interpreted as the short-distance
contribution in which the loop momentum is around mϕ.

In Fig. 1 the CEDM for down quark, d̃d, (a) and the coefficient of the three-gluon operators, ,
(b) at the hadron scale (μ = μ

H
= 1 GeV) are shown as functions of m

ϕ
with ƒd

S
= ƒd

P
= 1 and

ƒb
S
= ƒb

P
= 1. Here, we ignore the contributions from the top quark, and other short-distance

effects. If the scalar mass m
ϕ

is larger than the top quark mass (m
ϕ
> mt), the RGEs

are solved using β0 with nƒ = 6, or if not, with nƒ = 5. When bottom quark is integrated
out, the Wilson coefficient of Weinberg operator emerges. Then the RGEs are solved using
β0 with nƒ = 4 to the scale μ = mc, and with nƒ = 3 to the scale μ = 1 GeV. We use
md(μH) = 9 MeV, mc(mc) = 1.27 GeV, mb(mb) = 4.25 GeV, mt(mt) = 172.9 GeV,

366



(a) (b)

Figure 46.1: (a) CEDM for down quark, d̃d, and (b) coefficient of three-gluon operator, , at
hadron scale as functions of m

ϕ
.

and αs(mZ
) = 0.12. For the coefficient , we multiply 10 MeV in the figure, which is a

factor in Eq. (46.3), so that one may estimate the contribution to the neutron EDM. It is from
Eqs. (46.2,46.3) found that the three-gluon operator might be comparable to the CEDM when
ƒd
S/P
∼ ƒb

S/P
.

In Fig. 2 the ratios of the CEDM for down quark (a) and the three-gluon operator (b) at μ =mb

between including the running effect of αs and not including it (using the constant coupling
αs = αs(mZ

)), are shown as functions of m
ϕ
. It is found that the running coupling αs(μ)

changes the CEDM by about 20% while the three-gluon operator is changed by at most 10
%. This results come from inclusions of the four-quark operators to the RGEs for the Wilson
coefficients.

46.5 Conclusion

In this study, we have derived the renormalization-group equations for the CP-violating interac-
tion including the quark EDMs and CEDMs and the Weinberg’s three-gluon operator as well as
all the flavor-conserving four fermion operators.

Assuming the CP-violating Yukawa interactions for the neutral scalar bosons, it is known that
the CEDMs for light quarks are generated from the diagrams with heavy-quark loops, called
as the Barr-Zee diagrams. We show that when the neutral scalar boson is much heavier
than heavy quarks, the Barr-Zee diagrams are systematically evaluated with the RGEs of
the CP-violating interaction. We also show that the running effect of the strong coupling
constant gives corrections to the contribution with more than 20 % compared with assuming
the constant coupling. The uncertainties in the calculation of the neutron EDM have been

367



(a) (b)

Figure 46.2: (a) : Ratio of the CEDM for down quark, d̃d, at μ =mb between including and not
including running of the strong coupling constant, as a function of m

ϕ
. (b) The

same ratio for coefficient of three-gluon operator, .

estimated in the literature [16]. It gives about 50 % error for the QCD sum rule, while 40 % error
for the low-energy constant evaluated from the lattice QCD calculation. Therefore, hadronic
uncertainties would overcome the QCD corrections from the renormalization group evolution at
this moment. We hope that the lattice QCD simulation will improve and reduce uncertainties
significantly [17–21].
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