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The measurement of a large like-sign dimuon asymmetry AbSL by the D0 experiment at the
Tevatron departs noticeably from Standard Model expectations and it may be interpreted as a
hint of physics beyond the Standard Model contributing to ∆B 6= 0 transitions. In this work we
analyse how the natural suppression of AbSL in the SM can be circumvented by New Physics. We
consider generic Standard Model extensions where the charged current mixing matrix is enlarged
with respect to the usual 3× 3 unitary Cabibbo-Kobayashi-Maskawa matrix, and show how, within
this framework, a significant enhancement over Standard Model expectations for AbSL is easily
reachable through enhancements of the semileptonic asymmetries AdSL and AsSL of both B0

d–B̄0
d and

B0
s–B̄0

s systems. Despite being insufficient to reproduce the D0 measurement, such deviations from
SM expectations may be probed by the LHCb experiment.
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I. INTRODUCTION

Flavour Physics and CP violation provide a magnifi-
cient laboratory to probe our fundamental understanding
of Nature and to test, at unprecedented levels, the Stan-
dard Model (SM) and any of its extensions. The impact
of the B-factories Babar and Belle operating at e+e− ma-
chines, of the D0 and CDF experiments operating at the
Tevatron and lately of the ATLAS, CMS and LHCb ex-
periments at the LHC, is of paramount importance.

Among the plethora of results on CP violating phe-
nomena, the measurement by the D0 collaboration
[1] of the like-sign dimuon asymmetry AbSL has re-
ceived much attention. Schematically, (i) bb̄ pairs are
strongly produced, (ii) they hadronize into Bd or Bs
mesons/antimesons and (iii) they decay weakly. Semilep-
tonic decays are flavour specific and “tag” the nature of
the decaying B depending on the charge of the produced
lepton `: meson for `+ or antimeson for `−. If it were not
for Bq – B̄q oscillations, both decays could not produce
leptons[2] of the same charge. In the presence of Bq – B̄q
oscillations, such like-sign muon double decay channels
occur, and one defines the asymmetry[3]

AbSL =
N++ −N−−

N++ +N−−
, (1)

with N++ (N−−) denoting the number of events with
both B mesons decaying to µ+ (µ−). The values reported
by the D0 collaboration [1] are around “3σ” away from
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Standard Model expectations, and this triggered intense
activity to explore the potential of an ample variety of
models beyond the SM to produce such values. As AbSL
can be expressed in terms of the individual asymmetries
AdSL and AsSL of B0

d–B̄0
d and B0

s–B̄0
s systems [4], it is cus-

tomary to discuss in terms of them. In particular, since it
is a common thought that the B factories have left little
space for New Physics (NP) to contribute new sources
of CP violation in the B0

d–B̄0
d system, the focus[5] has

been on AsSL. New Physics has been invoked to mod-

ify the dispersive mixing amplitude M
(s)
12 and/or the ab-

sorptive one Γ
(s)
12 in specific scenarios, such as supersym-

metric extensions of the SM [6], extra-dimensions [7], Z ′

models [8], left-right models [9], extended scalar sectors
[10], axigluon exchange [11] or additional fermion gener-
ations [12]. New Physics in AbSL has also been explored
through model independent analyses [13] or through NP
modifying highly suppressed (within the SM) additional
contributions [14]. This article is organised as follows. In
section II we review the well known SM prediction for the
semileptonic asymmetries AdSL and AsSL, and the dimuon
asymmetry AbSL. In section III we revisit a model inde-
pendent analysis where New Physics is allowed to modify

the mixing amplitudes M
(q)
12 , and show how the previous

asymmetries can be significantly larger than SM expec-
tations. In section IV we consider NP scenarios where
the mixing matrix is not the usual 3×3 unitary Cabibbo-
Kobayashi-Maskawa, but an enlarged one, and thus study
for the first time how the values that the asymmetries of
interest can span, differ from the SM ones. We also anal-
yse the prospects to, eventually, distinguish if the mixing
matrix is 3 × 3 unitary or not. In the last section we
present our conclusions.
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II. MIXING IN Bd AND Bs MESON SYSTEMS

Under general conditions, the time evolution of the
B0
q–B̄0

q systems, q = d, s, is described by an effective weak
hamiltonian H(q) according to the Schrödinger equation
[15]

i
d

dt

(
Bq(t)
B̄q(t)

)
= H(q)

(
Bq(t)
B̄q(t)

)
. (2)

H(q) has hermitian and anti-hermitian parts M (q) and

−iΓ(q)/2:

H(q) = M (q)− i
2

Γ(q) , M (q) = M (q)† , Γ(q) = Γ(q)† . (3)

In the Standard Model, the dispersive part M
(q)
12 of the

transition amplitude Bq → B̄q is dominated by one loop
box diagrams with virtual t quarks and W bosons[16]

[
M

(q)
12

]
SM

=
G2
FM

2
W

12π2
MBq

f2
Bq
BBq

ηB (VtbV
∗
tq)

2 S0(xt) .

(4)

On the other hand, the absorptive part, Γ
(q)
12 , is dom-

inated by intermediate real (on-shell) u and c quarks.
The corresponding SM short-distance prediction is more
involved [17, 18]: a Heavy Quark Expansion is carried

out, yielding Γ
(q)
12 as an expansion in αs(mb) and Λ/mb.

Focusing on the flavour structure, it has in general the
following form

Γ
(q)
12

M
(q)
12

= −

[
Γcc12

M
(q)
12

(VcbV
∗
cq)

2

+ 2
Γuc12

M
(q)
12

(VubV
∗
uqVcbV

∗
cq) +

Γuu12

M
(q)
12

(VubV
∗
uq)

2

]
, (5)

and in particular in the SM the flavour structure is[
Γ

(q)
12

M
(q)
12

]
SM

∝

Γcc12

(VcbV
∗
cq)

2

(VtbV
∗
tq)

2
+ 2Γuc12

VubV
∗
uqVcbV

∗
cq

(VtbV
∗
tq)

2
+ Γuu12

(VubV
∗
uq)

2

(VtbV
∗
tq)

2
.

(6)

It is important to notice that, in terms of the weak inter-
actions, the coefficients Γuu12 , Γuc12 and Γcc12 are dominated
by tree level contributions. We can then rely on eq.(5)
without qualms about New Physics contributions inval-
idating it: only if a given scenario beyond the Standard
Model can give competing contributions to tree level SM
predictions, should we worry and consider a specific anal-
ysis. The coefficients Γab12 are in turn

− Γcc12 = c , −2Γuc12 = 2c− a , −Γuu12 = b+ c− a , (7)

where [18]

a = (10.5± 1.8)× 10−4 ,

b = (0.2± 0.1)× 10−4 ,

c = (−53.3± 12.0)× 10−4 . (8)

It is important to stress that in an expansion in powers
of (mc/mb)

2, only c is present at zero-th order. Then,
unitarity of the CKM mixing matrix, implying the or-
thogonality condition VubV

∗
uq + VcbV

∗
cq + VtbV

∗
tq = 0, can

be used to write[
Γ

(q)
12

M
(q)
12

]
SM

= K(q)

[
c+ a

VubV
∗
uq

VtbV
∗
tq

+ b

(
VubV

∗
uq

VtbV
∗
tq

)2
]
,

(9)
where

K(q) =
12π2

MBq f
2
Bq
BBq G

2
FM

2
W ηB S0(xt)

.

Γ
(q)
12 /M

(q)
12 is accessed through two observables; at leading

order in Γ
(q)
12 /M

(q)
12 powers, one has

− ∆Γq
∆MBq

= Re

(
Γ

(q)
12

M
(q)
12

)
, AqSL = Im

(
Γ

(q)
12

M
(q)
12

)
. (10)

The real part Re
(

Γ
(q)
12 /M

(q)
12

)
controls the width differ-

ence between the eigenstates of H(q). The imaginary

part Im
(

Γ
(q)
12 /M

(q)
12

)
is genuinely CP violating and only

involves mixing amplitudes; as anticipated, it is accessed
through asymmetries in flavour specific, semileptonic de-
cays. The SM expectations for those observables, with
the inputs in table I (appendix A), are[

AdSL
]
SM

= (−4.2± 0.7) · 10−4 ,

[∆Γd]SM = (2.60± 0.25) · 10−3 ps−1 ,

[AsSL]SM = (2.0± 0.3) · 10−5 ,

[∆Γs]SM = (0.090± 0.008) ps−1 . (11)

The following comments are in order:

• both AdSL and AsSL are small, O(10−4) and O(10−5)
respectively, with room for variation at the ±20%
level. This smallness can be traced back to the
(mc/mb)

2 suppression in eq.(9): the leading con-
tribution, proportional to c, is real and does not
contribute to the semileptonic asymmetries; fur-
thermore, since the hierarchy of the CKM matrix
gives∣∣∣∣V ∗udVubV ∗tdVtb

∣∣∣∣ ' 0.40 , arg

(
V ∗udVub
V ∗tdVtb

)
' −1.57 , (12)∣∣∣∣V ∗usVubV ∗tsVtb

∣∣∣∣ ' 0.02 , arg

(
V ∗usVub
V ∗tsVtb

)
' π − 1.18 , (13)

one could expect |AdSL| � |AsSL|.
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• ∆Γd is O(10−3) ps−1 and ∆Γs is O(10−1) ps−1:
while Γd ' Γs ' (1.5 ps)−1, the hierarchy in ∆Γd
and ∆Γs can be anticipated with the leading term
in eq.(9), giving ∆Γs/∆MBs

∼ ∆Γd/∆MBd
.

Underlying this simple SM analysis are two important
assumptions:

(1) M
(q)
12 is dominated by a single weak amplitude (the

one with virtual top quarks),

(2) the CKM matrix is 3× 3 unitary.

Another interesting possibility is to rewrite the flavour
structure of eq.(5), as done in [19], in terms of a priori
measurable quantities, as we now illustrate for q = d.
Since the mass difference[20] between the eigenstates

of H(d) is ∆MBd
= 2|M (d)

12 |, and the “golden” time-
dependent CP asymmetry AJ/ΨKS

in Bd → J/ΨKS is

controlled by arg (M
(d)
12 ), one can use

M
(d)
12 =

∆MBd

2
ei 2β̄ , (14)

with the effective phase β̄ given by AJ/ΨKS
≡ sin(2β̄),

to rewrite

Γ
(d)
12

M
(d)
12

=
2

∆MBd

[
c e−i 2β̄

(
|VcbV ∗cd| − |VubV ∗ud|e−iγ

)2
+ a |VubV ∗ud|e−i(2β̄+γ)

(
|VcbV ∗cd| − |VubV ∗ud|e−iγ

)
+ b |VubV ∗ud|2e−i2(β̄+γ)

]
. (15)

We use the physical rephasing invariant phases [15] γ ≡
arg(−VudV ∗ubVcbV ∗cd) and β ≡ arg(−VcdV ∗cbVtbV ∗td); even
though in the SM β̄ = β, we introduce β̄ for later use
since it is directly related to an observable. Equation
(15) provides a particularly interesting expression[21] for

Γ
(d)
12 /M

(d)
12 . It involves: (i) tree level CKM moduli |Vub|,

|Vud|, |Vcb| and |Vcd|, (ii) the mass difference ∆MBd
, and

(iii) the phases 2β̄, 2β̄+ γ and 2(β̄+ γ). All of them are,
in principle, directly measurable[22] and furthermore, if
New Physics contributes to ∆B = 2 transitions, it can
manifest through non-standard values of the mass differ-
ence ∆MBd

or the mixing phase 2β̄, which are automat-
ically incorporated into eq.(15); the remaining quantities
are, in terms of weak interactions, tree level, hence a pri-
ori safe from potential contributions from New Physics.
Analogous expressions for the B0

s–B̄0
s case can be readily

obtained:

Γ
(s)
12

M
(s)
12

=
2

∆MBs

[
c ei2β̄s

(
|VcbV ∗cs|+ |VubV ∗us|e−iγ

)2
− a |VubV ∗us|ei(2β̄s−γ)

(
|VcbV ∗cs|+ |VubV ∗us|e−iγ

)
+ b |VubV ∗us|2ei 2(β̄s−γ)

]
. (16)

For the B0
s–B̄0

s system, the “golden” decay channel is
Bs → J/ΨΦ and the corresponding time-dependent CP

asymmetry is AJ/ΨΦ ≡ sin β̄s.

The (mc/mb)
2 suppression of AdSL and AsSL within the

SM manifests itself in eq.(15) and in eq.(16) through the
unitarity relations

|VcbV ∗cd| − |VubV ∗ud|e−iγ = |VtbV ∗td|e−iβ and

|VcbV ∗cs|+ |VubV ∗us|e−iγ = −|VtbV ∗ts|e−iβs . (17)

Following the previous discussion of the semileptonic
asymmetries AdSL and AsSL, it is easy to grasp how dra-
matically the dimuon asymmetry observed by D0 [1] can-
not be obtained within the SM. The dimuon asymmetry
AbSL is essentially a weighted combination of AdSL and
AsSL,

AbSL =
AdSL + gAsSL

1 + g
(18)

where

g = f
Γd
Γs

(1− y2
s)−1 − (1 + x2

s)
−1

(1− y2
d)−1 − (1 + x2

d)
−1

,

yq =
∆Γq
2Γq

, xq =
∆MBq

Γq
. (19)

The Bs–Bd fragmentation fraction ratio in the B sample
is f = 0.269 ± 0.015. Numerically g ∼ 1 and thus AdSL
and AsSL have similar weights in eq.(18).
With AsSL ∼ 2 · 10−5, AbSL is dominated by AdSL ∼ −5 ·
10−4 and the SM expectation turns out to be

AbSL = (−2.40± 0.45) · 10−4 . (20)

The values quoted by the D0 collaboration are AbSL =
(−7.87± 1.72± 0.93) · 10−3 and AbSL = (−4.96± 1.53±
0.72) · 10−3 in [1], so the disagreement with SM expec-
tations, as anticipated, is around the 3σ level! It is im-
portant to stress again that the almost O(10−2) scale of
that measured value is twenty times larger than SM ex-
pectations.
On the other hand, the LHCb collaboration has recently
started to measure the semileptonic asymmetry AsSL [4];
additional results concerning AsSL ± AdSL are also ex-
pected [23]. If the D0 measurement is to be interpreted
as a clear signal of New Physics, LHCb results, in partic-
ular AsSL ± AdSL, should necessarily depart from the SM
expectations

AsSL +AdSL = (−4.0± 0.7) · 10−4 ,

AsSL −AdSL = (4.1± 0.7) · 10−4 . (21)

In this section we have analysed the details of the SM
expectations for observables genuinely related to mixing
in neutral Bd and Bs systems, including the “problem-
atic” asymmetry measured at Tevatron. Those are, in
any case, well known results, but analysing them in de-
tail, in particular how the use of 3× 3 unitarity and the

dominance of the top quark contribution in M
(q)
12 are cen-

tral in the SM suppressed expectation, paves the way to
understand the changes to the picture which one encoun-
ters when moving beyond the SM.
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III. NEW PHYSICS WITHIN 3× 3 UNITARITY

In order to move beyond the SM, a general model inde-
pendent analysis of NP in the flavour sector could start by
considering the effective Hamiltonians describing a set of
relevant weak transitions. Model independence would be
achieved by allowing all independent Wilson coefficients
to depart from SM values. This task would not only
be daunting, but would also be very difficult to extract
meaningful information from it, since the NP parameters
controlling the generalized Wilson coefficients would typ-
ically show a high degree of degeneracy (not to mention
the experimental accuracy required to single out any in-
teresting feature in such a scenario). One can consider
simpler, yet interesting alternatives, by focusing on a few
relevant operators that enter multiple observables. In ad-
dition, since the SM flavour picture is essentially correct,
it is legitimate to circumscribe NP deviations to the Wil-
son coefficients of operators that do not arise at tree level
in the SM. An approach that has been rather popular in
recent times [19, 24] focuses on meson mixings. Since the

dispersive amplitudes M
(q)
12 arise at the loop level in the

SM, they are appropriate candidates to be polluted by
New Physics; the effect of having new contributions may
be parameterised in the following manner (with rq, φq,
new, independent parameters):

M
(q)
12 =

[
M

(q)
12

]
SM

r2
q e
−i 2φq . (22)

Deviations from (rq, φd) = (1, 0) describe New Physics
in the mixing of Bq mesons. Equation (22) has several

advantages. Since 2|M (q)
12 | = ∆MBq , one concludes that:

• the prediction for ∆MBq
is directly modified, with

respect to the SM, by rq, but unaffected by φq,

• φq directly modifies, in a common way, the SM pre-
diction for observables where the phase of the (dis-
persive) mixing enters: this is the case, for example,
of the “golden” time-dependent CP asymmetries in
B0
d → J/ΨKS and B0

s → J/ΨΦ; these are insensi-
tive to rd and rs.

This “factorization” of the effects of New Physics is quite
convenient[25].

In the SM, M
(q)
12 is controlled by a single dimension six

∆B = 2 effective operator; in eq.(22), r2
q e
−i 2φq can be in-

terpreted as the factor modifying the corresponding Wil-
son coefficient in the presence of NP. However, notice
that for specific models where rd, rs, φd and φs are not
independent, the situation may be more involved.
The very first question one should address when consid-
ering eq.(22) is whether this kind of modification could
bring something really new to the SM picture presented
in section II. Naively, one would expect an affirmative an-

swer. Nevertheless, since (i) Γ
(d)
12 and Γ

(s)
12 are tree level

dominated and (ii) M
(d)
12 and M

(s)
12 are constrained by

experimental information[26], modifying the picture may

not be so straightforward. First of all, through eq.(22),
the predictions for the most important observables are
modified according to

∆MBd
= r2

d |VtbV ∗td|2
G2
FM

2
W

6π2
MBd

f2
Bd
BBd

ηB S0(xt) ,

(23)

AJ/ΨKS
= sin(2β̄) = sin(2(β − φd)) , (24)

∆MBs
= r2

s |VtbV ∗td|2
G2
FM

2
W

6π2
MBs

f2
Bs
BBs

ηB S0(xt) ,

(25)

AJ/ΨΦ = sin(2β̄s) = sin(2(βs + φs)) , (26)

where we have introduced for convenience the effective
phases β̄ ≡ β − φd and β̄s = βs + φs. Considering equa-
tions (23) to (26), our skepticism takes a precise form:

if the functional form of Γ
(q)
12 does not change, while

M
(q)
12 obey the same experimental constraints, how could

Γ
(q)
12 /M

(q)
12 differ from SM expectations?

Figure 1 displays the individual ∆χ2 profiles of AdSL and
AsSL corresponding to this NP scenario together with
the SM ones (obtained using the same experimental con-
traints, the ones in table I): there is little doubt that the
simple modification in eq.(22) allows for ample deviations
from SM expectations. Consider for example the B0

d–B̄0
d

system. With the following values,

2φd ' 0.20 , β ' 0.47 , γ ' 1.22 , 2(β + γ) ' 3.36 ,
(27)

|V ∗udVub| ' 4.22 · 10−3 , |V ∗cdVcb| ' 9.22 · 10−3 , (28)

one obtains

∆Γd = 3.25 ·10−3 ps−1 and AdSL = −1.92 ·10−3 . (29)

While ∆Γd is rather unchanged, the departure of AdSL
from the value in eq.(11) is quite significant: it is larger
by a factor of five. How such a large enhancement could
be achieved? The main differences between the values
in eqs.(28),(27) and the ones in the SM case, β ' 0.38,
γ ' 1.18, |V ∗udVub| ' 3.46·10−3 and |V ∗cdVcb| ' 9.23·10−3,
are in |Vub| and β. In the SM, 3 × 3 unitarity of the
CKM matrix, nicely illustrated by the usual bd unitarity
triangle, forces |Vub| to be tightly related to β. This is
indeed the cornerstone of the so called tensions in the
bd sector [27]. In this extended scenario, the situation is
changed. While |Vub| is still directly obtained, and it may
call for values larger than in the SM fit, the measurement
of AJ/ΨKS

fixes β̄ instead of β. The new parameter φd
breaks the SM tight relation between AJ/ΨKS

and |Vub|
imposed by 3× 3 unitarity and the dominance of the top

quark contribution in M
(d)
12 . This is sufficient to remove

the (mc/mb)
2 suppression present in the imaginary part

of Γ
(d)
12 /M

(d)
12 . We can read in figure 1(a) how far from

SM expectations could AdSL be pushed: at 95% CL (that
is, up to ∆χ2 = 4), AdSL ∈ [−3.3;−0.8] ·10−3, to be com-
pared with the SM 95% CL range [−0.58;−0.29] · 10−3.
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(a)∆χ2 vs. AdSL. (b)∆χ2 vs. AsSL.

FIG. 1. ∆χ2 profile of the semileptonic asymmetries AdSL and AsSL; the blue line corresponds to the NP scenario – eq.(22) –,
the red dashed line corresponds to the SM case. Notice that for AsSL the SM range is too narrow to be resolved on this scale.

It is important to stress that although the presence of

NP induces a departure in the phase of M
(d)
12 and in |Vub|

with respect to SM values at the 20-30% level, AdSL is
enhanced by a factor 4-5: it is a priori highly sensitive to

the presence of NP in M
(d)
12 precisely because of the nat-

ural suppression present in the SM. The increase in |Vub|
allowed by φd 6= 0 may also enhance AsSL marginally –
through the second, a-dependent, term in eq.(9) –, how-
ever, the main source of potential deviation from SM ex-
pectations is simply φs 6= 0: as illustrated in Fig. 1(b),
AsSL can be lifted from valuesO(10−5) to valuesO(10−3).
One can indeed express [24] the asymmetry AqSL in this
scenario as

Γ
(q)
12

M
(q)
12

=
ei2φq

r2
q

[
Γ

(q)
12

M
(q)
12

]
SM

⇒

AqSL =
cos(2φq)

r2
q

[AqSL]SM −
sin(2φq)

r2
q

[
∆Γq
∆Mq

]
SM

, (30)

from which we can expect enhancements up to the 10−3

level in both B0
d–B̄0

d and B0
s–B̄0

s systems for phases φq ∼
0.1.
It is also interesting to represent the two dimensional
∆χ2 profiles of AqSL vs. φq: in figures 2(a) and 2(b) we
plot[28] AdSL vs. 2φd and AsSL vs. 2φs, respectively.
Figure 2(a) shows how the AdSL departure from SM ex-
pectations relies on 2φd 6= 0. How 2φs 6= 0 can produce
O(10−3) values for AsSL is clearly reflected in fig. 2(b).
The previous analysis provides a clear picture of the devi-
ations from SM expectations for the individual asymme-
tries AdSL and AsSL. Turning to the D0 asymmetry AbSL,
figure 3 shows the corresponding ∆χ2 profile. Within
3σ it may reach values of −2.5 · 10−3; this means an en-
hancement of almost an order magnitude with respect to
the SM expectation in eq.(18). However, even if this en-
hancement softens the disagreement with the experimen-
tal value of AbSL, that central value is out of the ranges
that this New Physics scenario can accommodate. For
completeness we display in figure 4 the ∆χ2 profiles for

the combinations AsSL ± AdSL, of interest for the LHCb
experiment. The potential enhancement with respect to
SM expectations in eq.(21) is, once again, noticeable:

AsSL +AdSL = (−1.0± 0.6) · 10−3 ,

AsSL −AdSL = (1.0± 0.7) · 10−3 .

It should be stressed that deviating from SM expecta-
tions in AdSL and in AsSL is intimately related to NP
effects in other observables. For AdSL, large values are
associated to “tensions” in bd that manifest, for exam-
ple, through larger than standard values of |Vub|. This is
illustrated through the correlated ∆χ2 profiles of AdSL vs.
|Vub| shown in figure 5(a). On the other hand, for AsSL,
large values of AsSL are associated to large values of the
CP asymmetry AJ/ΨΦ, as figure 5(b) confirms (and could
be anticipated from fig. 2(b)). The dimuon asymmetry
AbSL is sensitive to both correlations, as figures 5(c) and
5(d) illustrate.

Along this section we have analysed in detail how the

introduction of New Physics in the mixings M
(q)
12 allows

for significant deviations from SM expectations in the
semileptonic asymmetries AqSL. The key point at the
origin of those deviations is the effect of the phases φq:
(1) within the SM, 3 × 3 unitarity and the top quark

dominance of M
(q)
12 together, enforce a natural suppres-

sion of AdSL and AsSL; (2) the presence of φq 6= 0 mis-
aligns the phases of the would-be leading contribution to

Γ
(q)
12 (the one not suppressed by mc/mb) and M

(q)
12 ; (3a)

in the B0
s–B̄0

s system, since [AJ/ΨΦ]SM ∼ O(10−2), but
the experimental sensitivity has just started to explore
that ground, there is still ample room for φs 6= 0, and
thus AsSL ∼ O(10−3) can be achieved; (3b) in the B0

d–
B̄0
d system, AJ/ΨKS

' 0.68 has been measured to a few
percent precision; in addition, unitarity imposes a close
relation between |Vub| and β that is transmitted, within
the SM, to AJ/ΨKS

. Having φd 6= 0 requires, necessarily,
that both |Vub| and β deviate from their SM values while
AJ/ΨKS

remains unchanged. The presence of “tensions”
between the |Vub| and the AJ/ΨKS

measurements favors,
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(a)AdSL vs. 2φd. (b)AsSL vs. 2φs.

FIG. 2. ∆χ2 profiles of AqSL vs. 2φq; 68%, 95% and 99% CL regions are shown.

in this simple NP scenario, φd 6= 0, thus evading the SM
suppression and obtaining a significant enhancement of

AdSL. New Physics at the 20-30% level in M
(d)
12 does not

give a 20-30% modification in AdSL, it gives a much larger
effect, contrary to what one can naively expect [12]. It
should be stressed that, despite the significant increase
with respect to the SM, the values that can be reached
for AdSL and AsSL are too small to reproduce the D0 value
of the AbSL asymmetry.
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FIG. 3. ∆χ2 profile of AbSL; the blue line corresponds to the NP scenario, the red dashed line corresponds to the SM case. The
last D0 measurements gives AbSL = (−4.96± 1.69) · 10−3 [1].

(a)∆χ2 vs. AsSL +AdSL. (b)∆χ2 vs. AsSL −A
d
SL.

FIG. 4. ∆χ2 profile of the combinations of semileptonic asymmetries AsSL ±AdSL; the blue lines correspond to the NP scenario
– eq.(22) –, the red dashed lines correspond to the SM case.
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(a)AdSL vs. |Vub|. (b)AsSL vs. AJ/ΨΦ.

(c)AbSL vs. |Vub|. (d)AbSL vs. AJ/ΨΦ.

FIG. 5. ∆χ2 68%, 95% and 99% CL regions. Blue regions correspond to the NP scenario, red regions correspond to the SM
case. Notice that with the scales in fig. 5(b), the SM region is barely a point.
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IV. NEW PHYSICS BEYOND 3× 3 UNITARITY

The model independent parameterizations in eq.(22)
do not exhaust the NP scenarios that could give rise to an
enhancement of the mixing asymmetries AdSL and AsSL.
One can consider scenarios in which the CKM matrix is
no longer 3 × 3 unitary and it is, on the contrary, part
of a larger unitary matrix. If the CKM matrix is part of
a larger unitary matrix, there are, necessarily, additional
fields beyond the standard three chiral ones; since they
may couple to known quarks and weak bosons, they can

give new contributions to M
(q)
12 , controlled by the matrix

elements beyond the 3 × 3 usual CKM matrix. If, for
instance,

VubV
∗
uq + VcbV

∗
cq + VtbV

∗
tq ≡ −Nbq 6= 0 , (31)

one should consider modified M
(q)
12 expressions with the

following structure [29]:

M
(q)
12 =

G2
FM

2
W

12π2
MBq

f2
Bq
BBq

ηB(
(VtbV

∗
tq)

2S0(xt) + (VtbV
∗
tq)Nbq C1 +N2

bq C2

)
. (32)

C1 and C2, both real, are the model dependent parame-
ters that control the terms linear and quadratic (respec-
tively) in the deviation Nbq of the mixing matrix with re-
spect to 3×3 unitarity. We consider C1 and C2 common

to both M
(d)
12 and M

(s)
12 , and real, confining all the new

flavour dependence and CP violation to the mixings Nbq.
Examples of such scenarios are models where the fermion
content is extended through additional chiral or vector-
like quarks [29, 30]. Equations (31) and (32) provide
indeed the ingredients, analysed in the previous section,
that could induce deviations from SM expectations both
in AdSL and in AsSL [12]. Notice that we include new terms

in M
(q)
12 , not in Γ

(q)
12 . To include new terms in Γ

(q)
12 one

should expand the present analysis since those eventual
new contributions would be model dependent and con-
strained by additional information concerning ∆B 6= 0
processes, as done, e.g. in [31]. Since the simplest real-
ization of this extended scenario is to consider the CKM
matrix to be embedded in a 4× 4 unitary matrix, we re-
strict our analyses of the next subsections to such a case.
Then, eq.(31) gives

λubq + λcbq + λtbq = −λ4
bq , q = d, s , (33)

where U is 4 × 4 unitary, Uij = Vij for i, j ≤ 3 and

λabq ≡ VabV ∗aq. The B0
q–B̄0

q mixing amplitude M
(q)
12 is

M
(q)
12 =

G2
FM

2
W

12π2
mBq

f2
Bq
BBq

ηB

×
(
(λtbq)

2S0(xt) + 2(λtbqλ
4
bq)C1 + (λ4

bq)
2C2

)
. (34)

Then, instead of eq.(9), we have

Γ
(q)
12

M
(q)
12

= K(q)S0(xt)[
c (λubq + λcbq)

2 − a λubq(λubq + λcbq) + b (λubq)
2

(λtbq)
2S0(xt) + 2(λtbqλ

4
bq)C1 + (λ4

bq)
2C2

]
, (35)

and unitarity – eq.(33) – allows to write the first term as

c
(λtbq + λ4

bq)
2

(λtbq)
2S0(xt) + 2(λtbqλ

4
bq)C1 + (λ4

bq)
2C2

, (36)

which is not, in general, real. In this kind of New Physics
scenario, the SM suppression of AqSL is naturally re-
moved: the two ingredients which align the phase of this

would-be-leading term with that of M
(q)
12 , namely 3 × 3

unitarity and M
(q)
12 dominated by the top quark contri-

bution, are absent. In order to illustrate how deviations
of 3 × 3 unitarity provide the ingredients that may en-
hance the semileptonic asymmetries, figures 9 and 10 in
appendix B show the modifications brought by this sce-
nario with respect to the previous 3× 3 unitary one and
with respect to the SM. The analysis of section III is
rather simple and general, because of the complete para-
metric freedom and independence accorded to rd, rs, φd
and φs. The present scenario with a 4×4 unitary mixing
is somehow different: beside C1 and C2, all the avail-
able freedom is the freedom that 4× 4 unitarity provides
to have bd and bs quadrangles instead of triangles. For
specific models, C1 and C2 will have well defined func-
tional forms (involving new fermion masses, for exam-
ple): to maintain full generality, C1 and C2 are allowed
to vary freely within reasonable ranges, in particular we
consider[32] C1 ∈ [−10; 10] and C2 ∈ [−103; 103].
The previous prospects translate into results for the rele-
vant observables: figure 6 shows the ∆χ2 profiles of AdSL
and AsSL, together with the ones corresponding to the NP
scenario of section III and the SM ones for easy compar-
ison. The values that the semileptonic asymmetries may
reach are similar to the ones that can be obtained in the
3×3 unitary scenario with NP in M

(q)
12 . With the results

for the single AdSL and AsSL asymmetries, one can expect
the dimuon asymmetry AbSL to span a range similar to
the one in fig. 3: figure 6(c) shows the ∆χ2 profile of
AbSL for the 4× 4 unitary case, together with the ones in
fig. 3 for comparison. As in the 3 × 3 unitary case with

NP in M
(q)
12 , the value of AbSL is enhanced, thus reducing

the discrepancy with the D0 result, but the enhancement
is insufficient to reproduce the measurement.

This confirms the basic picture that underlies devia-
tions from SM expectations and establishes deviations
from 3× 3 unitarity as a framework that accommodates
them naturally: in the bd sector, AdSL values at the 10−3

level can be reached when the tight connection between
|Vub| and AJ/ΨKS

present in the SM is relaxed; in the bs

sector, AsSL values at the 10−3 level can be reached when
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(a)∆χ2 vs. AdSL. (b)∆χ2 vs. AsSL.

(c)∆χ2 vs. AbSL.

FIG. 6. ∆χ2 profiles of semileptonic asymmetries AqSL; the blue lines correspond to the 4× 4 unitary NP scenario – eqs. (33)
and (34) –, the red dotted lines correspond to the 3× 3 unitary NP scenario of section III, the red dashed lines correspond to
the SM case. The last D0 measurement gives AbSL = (−4.96± 1.69) · 10−3 [1].
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(a)AdSL vs. |Vub|. (b)AsSL vs. AJ/ΨΦ.

(c)AbSL vs. |Vub|. (d)AbSL vs. AJ/ΨΦ.

FIG. 7. ∆χ2 68%, 95% and 99% CL regions. Blue regions correspond to the 4× 4 unitary NP scenario, red regions correspond
to the SM case.

AJ/ΨΦ deviates from the SM expectation AJ/ΨΦ ' 0.04.
Both ingredients are present in this NP scenario with the
CKM matrix part of a larger 4×4 unitary matrix, as fig-
ures 7(a) and 7(b) illustrate. This behaviour is inherited
by AbSL: deviations in AbSL from SM expectations are

correlated, as in the 3× 3 unitary case with NP in M
(q)
12 ,

with deviations in |Vub| and AJ/ΨΦ, as figures 7(c) and
7(d) illustrate.
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Deviations from 3× 3 unitarity
In sections III and IV we have explored two NP avenues
that induce deviations in AdSL and AsSL. The experimen-
tal contraints entering both analyses are: (i) tree level
measurements of the mixing matrix – moduli |Vij | of the
first two rows and the phase γ –, (ii) measurements of
B0
d–B̄0

d and B0
s–B̄0

s mixings – ∆MBd
, ∆MBs

and the ef-
fective phases 2β̄ (through AJ/ΨKS

) and 2β̄s (through
AJ/ΨΦ) –. An important question one can ask is the fol-
lowing: with those ingredients, to what extent could we
distinguish the two NP scenarios? That is, could we un-
cover eventual deviations from 3× 3 unitarity if they are
indeed originating some discrepancy with respect to SM
expectations?
In figures 9(a), 9(c) and 9(e), the tree level measurements
“fix” the |VudV ∗ub| and |VcdV ∗cb| sides, together with their
relative orientation given by γ. Then ∆MBd

and AJ/ΨKS

“fix” the mixing in figures 9(b), 9(d) and 9(f). If there
is some NP hint it will manifest through an incompati-
bility among related quantities, for example among the
value of |VtdV ∗tb| (controlling ∆MBd

) and γ, or among
the value of |VcdV ∗cb| and α = π − γ − β, or among the
value of |VudV ∗ub| and β (this incompatibility is none other
than the “bd tension”). While this may seem straightfor-
ward, as soon as one concedes that only SM tree level
dominated quantities are “safe” (not polluted by even-
tual NP contributions), none of these is useful: for the
first, ∆MBd

arises at one loop in the SM, invalidating the
indirect obtention of |VtdV ∗tb| from it[33]; for the second
and third, the phases that are in fact measured are not β
and α but the effective β̄ and ᾱ = π − γ − β̄, which may

deviate from β, α through new contributions to M
(d)
12 .

One can establish a tension with respect to the SM expec-
tations, but this mismatch involves both the structure of

the mixing matrix (the unitarity triangle) and the M
(d)
12

prediction: as soon as NP introduces new parameters
that break the SM connection between both, the minimal
set of observables that we are considering cannot indicate
whether we have deviations from 3 × 3 unitarity or not
[34]. The previous discussion concerns the bd sector, but
the situation in the bs sector is not conceptually differ-
ent. This does not mean that unitarity deviations cannot
be established, it only means that the rather restricted
set of observables that we are considering for this general
analysis is not sufficient for that task, and the following
roads have to be explored.

1. As soon as a specific model that incorporates mix-
ings beyond the 3 × 3 unitary case is considered,
a specific pattern of deviations with respect to
SM expectations in flavour changing processes like
Bd → Xsγ, Bd → Xs`

+`−, Bd,s → µ+µ− – and
others outside B mesons systems like KL → µ+µ−,
K → πνν̄ or K0–K̄0 and D0–D̄0 oscillations – will
emerge, and use made of a much larger set of ex-
perimental measurements.

2. On the other hand, deviations from 3× 3 unitarity
may be directly probed through

(a) |Vtb| 6= 1 at the percent level – which would be
within the sensitivity of the LHC experiments
[35–37] –,

(b) |Vud|2 + |Vus|2 + |Vub|2 6= 1, and

(c) |Vcd|2 + |Vcs|2 + |Vcb|2 6= 1.

The first possibility, followed for example in [12], is com-
pletely model specific and thus of no use for the the
present model independent approach. For the second
possibility, we can directly explore to which extent all
three signals of deviation from 3× 3 unitarity may arise.
This is illustrated in figure 8. In figure 8(a) one can ac-
tually observe that |Vtb| can depart from the 1−O(10−4)
ballpark that 3×3 unitarity imposes, and do so at a level
which the LHC experiments can probe. In figures 8(b)
and 8(c) the deviation from 3×3 unitarity in the first (u)
and second (c) rows of the mixing matrix are displayed:
in both cases deviations from 3 × 3 unitarity at a level
to be explored in the near future are allowed within our
framework.

(a)∆χ2 vs. |Vtb|.

(b)∆χ2 vs. 1− |Vud|
2 − |Vus|2 − |Vub|

2.

(c)∆χ2 vs. 1− |Vcd|
2 − |Vcs|2 − |Vcb|

2.

FIG. 8. ∆χ2 profiles of the deviations from 3× 3 unitarity in
|Vtb| and in the first and second rows of the mixing matrix.
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V. CONCLUSIONS

Within the SM, the CP-violating asymmetries AdSL
and AsSL in the neutral B0

d–B̄0
d and B0

s–B̄0
s mixings are

expected to be naturally small.
The D0 collaboration has measured the like-sign dimuon
asymmetry AbSL – which is a combination of the AdSL
and AsSL asymmetries – and obtained a large value,
marginally compatible (at around the 3σ level) with the
SM expectations. Since this fact might hint to New
Physics, we have considered two different NP scenarios.
In the well known first scenario the CKM mixing matrix
remains 3× 3 unitary and NP enters B0

d–B̄0
d and B0

s–B̄0
s

mixings in a simple parametric manner. In the second
scenario, which we analyse for the first time in detail,
deviations from 3× 3 unitarity in the mixing matrix are
allowed, and they are related to new contributions to B
meson mixings. In both scenarios AdSL and AsSL can be
sizably enhanced with respect to SM expectations. In
the case of AdSL, non-standard values are related to the
tension between |Vub| and AJ/ΨKS

: NP alleviates that

tension and, modifying M
(d)
12 at the 20 − 30% level, can

increase AdSL fivefold. The case of AsSL is different: as
NP crucially changes the relation between the phase βs
and AJ/ΨΦ, AsSL is allowed to reach values almost two
orders of magnitude larger than the SM expectation. In
AsSL too, deviations from SM expectations are related to
other NP effects: AJ/ΨΦ in this case. When both AdSL
and AsSL are enhanced, AbSL may reach values at the 10−3

to 2 ·10−3 level. Nevertheless, obtaining a prediction five
times larger than in the SM is not enough to reproduce
the D0 measurement of AbSL. Meanwhile, experimental
results from the LHCb experiment are eagerly awaited
to put some light on the issue. The SM predictions for
AdSL and AsSL are really tight: a measurement that sees
an increase in one or both will point, undoubtedly, to NP
and new sources of CP violation.
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Appendix A: Input

Table I summarizes the experimental input [1, 4, 38–
48] used for the different calculations; measurements are
interpreted as gaussians with the quoted values for the
central value and the uncertainty. The ∆χ2 profiles and
regions have been computed through adapted Markov
Chain MonteCarlo techniques that allow for an efficient
exploration of the different parameter spaces. For the ad-
ditional theoretical input from lattice QCD, fBs

√
BBs

=

266 ± 18 MeV and ξ ≡ fBs

√
BBs

fBd

√
BBd

= 1.268 ± 0.063 have

been used [49]; although the results presented correspond
to modelling the theoretical uncertainties in a gaussian
manner, it has been checked that modelling them with
uniform uncertainties restricted to 1σ or 2σ ranges pro-
duces no change.

Appendix B: Unitarity and mixings

Figures 9(a) and 9(b) show the unitarity triangle bd (in

the complex plane) and ∆MBd
ei2β̄ (that is M

(d)
12 ) for the

SM case. The “bd tension” is, schematically, the coin-
cidence of an experimental value of |Vub| which pushes
towards larger values than the represented (illustrative)
case, with an experimental value of AJ/ΨKS

= sin(2β̄)
which pulls in the opposite direction. In figures 9(c) and
9(d), we illustrate the analysis of section III: the pres-
ence of NP alleviates the tension allowing for larger |Vub|
values, which trigger the sizable deviations in AdSL, from
SM expectations, which we are interested in. Figures 9(e)
and 9(f) illustrate the non 3×3 unitary scenario. In par-
ticular, figure 9(e) displays the unitarity quadrangle bd
corresponding to the enlarged 4 × 4 unitary mixing ma-
trix. One can easily see how the presence of the fourth
side, i.e. deviation from 3 × 3 unitarity, permits larger
|Vub| values. Figure 9(f) shows how the corresponding
mixing gives adequate values for ∆MBd

and AJ/ΨKS
. For

the bs case, fig. 10 illustrates the situation (we omit M
(s)
12

for conciseness): fig. 10(a) is just the SM squashed uni-
tarity triangle bs; it does not change much (as analysed

in section III) upon inclusion of NP in M
(q)
12 , as fig. 10(b)

shows: the relevant contribution in that case is directly
provided by NP through φs. Finally, fig. 10(c) shows
how the departure from 3 × 3 unitarity may induce sig-
nificant departures in the value of the phase βs entering

M
(s)
12 , as required to depart from SM values of AsSL (and

AJ/ΨΦ).
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|Vud| 0.97425± 0.00022 |Vus| 0.2252± 0.0009 |Vub| 0.00375± 0.00040

|Vcd| 0.230± 0.011 |Vcs| 1.023± 0.036 |Vcb| 0.041± 0.001

Rt 0.90± 0.05

γ (68± 8)◦ AJ/ΨKS
0.68± 0.02 AJ/ΨΦ 0.01± 0.07

sin(2ᾱ) 0.00± 0.14 sin(2β̄ + γ) 0.95± 0.40

∆MBd (0.507± 0.004) ps−1 ∆Γd (−0.011± 0.014) ps−1 AdSL (3± 23)× 10−4

∆MBs (17.768± 0.024) ps−1 ∆Γs (0.091± 0.008) ps−1 AsSL (−32± 52)× 10−4

AbSL [1] (−4.96± 1.69)× 10−3

TABLE I. Experimental input (N.B. Rt ≡ |Vtb|2/(|Vtd|2 + |Vts|2 + |Vtb|2).
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|
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V ∗
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|
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V ∗
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|
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(a)bd unitarity triangle in the SM.
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V ∗
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V ∗
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FIG. 9. bd unitarity and M
(d)
12 in the SM and beyond.
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12 in the SM and beyond.
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