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Abstract

We perform a complete one-loop computation of the two-body flavour-changing top
decays t→ ch and t→ cV (V = γ, Z), within the aligned two-Higgs-doublet model.
We evaluate the impact of the model parameters on the associated branching ratios,
taking into account constraints from flavour data and measurements of the Higgs
properties. Assuming that the 125 GeV Higgs corresponds to the lightest CP-even
scalar of the CP-conserving aligned two-Higgs-doublet model, we find that the rates
for such flavour-changing top decays lie below the expected sensitivity of the future
high-luminosity phase of the LHC. Measurements of the Higgs signal strength in
the di-photon channel are found to play an important role in limiting the size of the
t→ ch decay rate when the charged scalar of the model is light.
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1 Introduction

The discovery of a new boson, with a mass close to 125 GeV, by the ATLAS [1] and CMS [2]
collaborations stands as a remarkable success of the Standard Model (SM) of electroweak in-
teractions. The properties of this boson are so far in agreement with those of the SM Higgs,
indicating that the new particle is indeed associated with the mechanism of electroweak sym-
metry breaking (EWSB). A characteristic feature of the SM is the absence of flavour-changing
neutral-current (FCNC) interactions at tree-level. FCNCs are generated through quantum loop
corrections in the SM, but they are strongly suppressed by the Glashow–Iliopoulos–Maiani
(GIM) mechanism [3].

A widely studied enlargement of the electroweak theory consists in adding a second scalar
doublet to the SM field content. The so-called two-Higgs-doublet model (2HDM) represents
a minimal extension of the SM scalar sector that easily accommodates electroweak precision
data and leads to a very rich phenomenology [4]. In the most general version of the 2HDM
unwanted FCNCs appear at tree-level, which represents a major shortcoming of the model. The
hypothesis of natural flavour conservation (NFC) is the usual way out to this issue. By limiting
the number of scalar doublets coupling to a given type of right-handed fermion to be at most
one, the absence of dangerous FCNCs is guaranteed [5, 6]. A more general solution is that of
Yukawa alignment [7]. The aligned two-Higgs-doublet model (A2HDM) assumes that the two
Yukawa matrices coupled to the same type of right-handed fermion are aligned in flavour space,
so that no FCNCs appear at tree level. Explicit models where a Yukawa aligned structure arises
due to an underlying symmetry have been discussed in refs. [8–12]. Interestingly, all different
versions of the 2HDM with NFC are recovered as particular limits of the A2HDM. Constraints
on the A2HDM from flavour and collider data have been analyzed in refs. [13–18] and [19–26],
respectively, extracting relevant bounds on the model parameters.

In this work we study the flavour-changing top-quark decays t→ ch and t→ cV (V = γ, Z),
within the framework of the A2HDM. They arise at the loop level and are strongly suppressed in
the SM, due to the GIM mechanism. A significant enhancement can be achieved in alternative
scenarios of EWSB, making these processes a suitable place to look for new physics beyond
the SM. Early considerations of these effects were done in refs. [27–32]. A concise review of
the flavour-changing top-decay phenomenology can be found in ref. [33]. In the A2HDM these
decays receive additional charged Higgs contributions at the one-loop level which could lift the
decay rates.

Comprehensive analyses of flavour-changing top decays within 2HDMs with NFC have been
done in refs. [29,31,34,35]. However, these rare processes have not been investigated yet within
the more general setting of the A2HDM. Furthermore, since these studies were performed,
considerable experimental progress in our understanding of the EWSB mechanism has been
made, translating into tight constraints on possible extensions of the SM scalar sector.

Searches for flavour-changing top decays have been performed recently by the ATLAS [36,37]
and CMS collaborations [38–40], placing limits on the associated branching ratios. An overview
of the current experimental status can be found in ref. [41]. With the large amount of data
that will be collected in the future LHC runs, it is expected that these bounds will be improved
by at least one order of magnitude [42,43].

Our paper is organized as follows. In section 2 we introduce the A2HDM. Flavour-changing
top decays are discussed in section 3, which presents the results of our calculations. A phe-
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nomenological analysis of these processes is given in section 4, and our conclusions are finally
summarized in section 5. Explicit analytical results for the relevant decay amplitudes are given
in the appendices.

2 Framework

The 2HDM extends the SM scalar sector with an additional complex scalar doublet. In the
Higgs basis, where only one doublet acquires vacuum expectation value, the scalar fields are
parametrized by [21]

Φ1 =

[
G+

1√
2

(v + S1 + iG0)

]
, Φ2 =

[
H+

1√
2

(S2 + iS3)

]
, (2.1)

with v = (
√

2GF )−1/2 ' 246 GeV. Here G0,± correspond to the would-be Goldstone bosons,
giving mass to the gauge vector bosons, while H± is a charged Higgs. The scalar spectrum
also contains three neutral Higgs bosons ϕ0

j(x) = {h(x), H(x), A(x)}, given by ϕ0
j = RjkSk,

where R is an orthogonal matrix obtained after diagonalizing the mass terms in the scalar
potential [21]. In general none of the neutral Higgs bosons are CP eigenstates.

2.1 Scalar sector

The most general scalar potential allowed by the electroweak gauge symmetry can be written
as

V = µ1 Φ†1Φ1 + µ2 Φ†2Φ2 +
[
µ3 Φ†1Φ2 + µ∗3 Φ†2Φ1

]
+ λ1

(
Φ†1Φ1

)2

+ λ2

(
Φ†2Φ2

)2

+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+

[(
λ5 Φ†1Φ2 + λ6 Φ†1Φ1 + λ7 Φ†2Φ2

)(
Φ†1Φ2

)
+ h.c.

]
. (2.2)

Due to the Hermiticity of the scalar potential, all parameters are real with the exception of
µ3, λ5, λ6 and λ7. The minimization conditions impose the relations

µ1 = −λ1 v
2 , µ3 = −1

2
λ6 v

2 . (2.3)

The mass of the charged Higgs is given by

M2
H± = µ2 +

1

2
λ3 v

2 , (2.4)

while those of the neutral scalars have been obtained in ref. [21] to first order in the CP-violating
parameters. In the CP-conserving limit the neutral Higgs bosons are CP eigenstates. The CP-
odd field A corresponds to S3 and the CP-even states are orthogonal combinations of S1 and
S2: (

h
H

)
=

[
cos α̃ sin α̃
− sin α̃ cos α̃

] (
S1

S2

)
. (2.5)
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Here Mh 6MH by convention and the mixing angle α̃ is determined by

sin 2α̃ =
−2λ6v

2

M2
H −M2

h

, cos 2α̃ =
M2

A + 2(λ5 − λ1)v2

M2
H −M2

h

. (2.6)

In the CP-conserving limit the masses of the neutral Higgs bosons are given by

M2
h =

1

2
(Σ−∆) , M2

H =
1

2
(Σ + ∆) , M2

A = M2
H± + v2

(
λ4

2
− λ5

)
, (2.7)

where

Σ = M2
H± +

(
2λ1 +

λ4

2
+ λ5

)
v2 , (2.8)

∆ =

√
[M2

A + 2(λ5 − λ1)v2]
2

+ 4v4λ2
6 . (2.9)

By performing a phase redefinition of the CP-even fields one can restrict the mixing angle to
the range 0 6 α̃ < π. Moreover, the Higgs basis of the CP-conserving 2HDM is defined up to
a global rephasing of the second Higgs doublet Φ2 → −Φ2 [44, 45]. Without loss of generality,
one can then fix the sign of λ6; by convention, we choose λ6 6 0 so that 0 6 α̃ 6 π/2.

2.2 Yukawa sector

In the A2HDM, the interactions of the physical scalar fields with fermions are described by [7]

LY = −
√

2

v
H+
{
ū
[
ςd VMd PR − ςuM †

uV PL
]
d + ςl ν̄Ml PRl

}
− 1

v

∑
ϕ0
i ,f

y
ϕ0
i

f ϕ0
i

[
f̄ Mf PRf

]
+ h.c. , (2.10)

where PL,R = (1 ∓ γ5)/2 are the chirality projectors, Mf=u,d,l represent the diagonal fermion
mass matrices, V is the Cabibbo–Kobayashi–Maskawa (CKM) [46,47] matrix, and

y
ϕ0
i

d,l = Ri1 + (Ri2 + iRi3) ςd,l , y
ϕ0
i

u = Ri1 + (Ri2 − iRi3) ς∗u . (2.11)

The parameters ςf (f = u, d, l) are family-universal complex quantities which introduce new
sources of CP violation beyond the CKM matrix. For particular real values of these parameters,
indicated in table 1, one recovers all different versions of the 2HDM with NFC.

The Yukawa alignment condition is not stable against quantum corrections [7,13,48]. How-
ever, the flavour symmetries of the A2HDM constrain tightly the possible FCNC effects, keeping
them well below present experimental bounds [7, 49–52]. The only FCNC local structures in-
duced at one-loop take the form [13]

LFCNC =
C

4π2v3
(1 + ς∗uςd)

∑
j

ϕ0
j

{
(Rj2 + iRj3)(ςd − ςu)

[
d̄L V

†MuM
†
uVMd dR

]
− (Rj2 − iRj3)(ς∗d − ς∗u)

[
ūL VMdM

†
dV
†MuuR

]}
+ h.c. , (2.12)
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Table 1: Two-Higgs-doublet models with natural flavour conservation.

Model ςd ςu ςl

Type I cot β cot β cot β

Type II − tan β cot β − tan β

Type X (lepton specific) cot β cot β − tan β

Type Y (flipped) − tan β cot β cot β

which vanishes exactly for the 2HDMs with NFC. In general, the size of the induced flavour-
changing interactions is controlled by three powers of quark masses and the GIM mechanism.

The renormalization of the coupling constant C is determined, using dimensional regular-
ization, to be [17]

C = CR(µ) +
1

2

{
2µD−4

D − 4
+ γE − ln(4π)

}
, (2.13)

where γE ' 0.577 is the Euler constant and µ is an arbitrary renormalization mass scale. The
renormalized coupling satisfies

CR(µ) = CR(µ0)− ln(µ/µ0) . (2.14)

Assuming Yukawa alignment to be exact at a given energy scale ΛA, so that CR(ΛA) = 0,
implies that CR(µ) = ln(ΛA/µ).

3 Flavour-changing top decays

The flavour-changing top decays t → ch and t → cV (V = γ, Z) occur firstly at the one-loop
level in the SM. The decay rate for these processes is not only suppressed by the loop factor,
but receives in addition a strong CKM and GIM suppression [29, 32, 33, 53]. Here we focus on
final states with the charm quark because Br(t → uX)/Br(t → cX) ' |Vub/Vcb|2 ∼ 7 × 10−3

in the SM, as well as in the A2HDM. Fixing the Higgs mass at Mh ' 125 GeV, one obtains
the SM branching ratios: Br(t → ch) ∼ O(10−15), Br(t → cγ) ∼ O(10−14) and Br(t → cZ) ∼
O(10−14). Within the A2HDM these decay rates can be enhanced due to additional charged
Higgs contributions at the loop level. For t→ cϕ0

j decays, the counter-term piece in eq. (2.12)
would also contribute.

In the SM, the dominant decay mode of the top quark is the unsuppressed two-body decay
t→ W+b, with Γ(t→ W+b)/mt ∼ 1%. To compute the relevant branching ratios we take

Br(t→ cX) =
Γ(t→ cX)

Γtot(t)
. (3.1)

To a very good approximation, Γtot(t) ' Γ(t→ W+b) holds also in the A2HDM, except when
MH± < mt−mb; in this case, the additional decay mode t→ H+b must be taken into account.
The partial decay widths for t→ W+b and t→ H+b are calculated at leading order:

Γ(t→ W+b) =
g2 |Vtb|2

64πm3
t

λ1/2(m2
t ,m

2
b ,M

2
W )

[
m2
t +m2

b +
(m2

t −m2
b)

2

M2
W

− 2M2
W

]
, (3.2)

4



Γ(t→ H+b) =
|Vtb|2

16πm3
t v

2
λ1/2(m2

t ,m
2
b ,M

2
H±)

[(
m2
t +m2

b −M2
H±

) (
m2
b |ςd|2 +m2

t |ςu|2
)

− 4m2
bm

2
t Re (ςdς

∗
u)

]
. (3.3)

Here λ(x, y, z) ≡ x2 + y2 + z2 − 2(xy + xz + yz), and g is the SU(2)L gauge coupling constant.
Due to the smallness of md,s and the unitarity of the CKM matrix, the t→ cϕ0

j and t→ cV
decay amplitudes turn out to be very sensitive to the bottom quark mass [33]. The most
adequate choice for the internal quark masses is the running MS quark mass evaluated at a
typical scale O(mt) [33]; we follow this prescription. The external quark masses are taken as
the on-shell pole masses.

In section 3.1 we describe the calculation of the t→ cϕ0
j decay amplitudes. The decays t→

cV (V = γ, Z) are discussed in section 3.2. Explicit analytical results for these processes within
the A2HDM are collected in the appendices. All our results are presented in the Feynman gauge,
corresponding to ξ = 1 in the Rξ gauge. We have however checked the gauge independence
of our results by additionally performing all calculations in the unitary gauge. We have also
checked analytically that our results reproduce the corresponding SM predictions [27, 29,32].

3.1 t → c ϕ0
j decays

The total amplitude for t(pt)→ c(pc)ϕ
0
j(pϕ) decays can be written as Atot = A+ Act. Here A

collects all the contributions arising from one-loop diagrams and can be parametrized as [27,29]

A =
18∑
n=1

An =
18∑
n=1

∑
q=d,s,b

VcqV
∗
tq ū(pc)

[
α(n) PR + β(n) PL

]
u(pt) . (3.4)

Diagrams contributing to this process in the Feynman gauge are shown in figures 1 and 2. The
total loop amplitude is ultraviolet divergent, except in the particular cases of 2HDMs with
NFC where a finite result is obtained. As expected, the divergence gets reabsorbed into the
renormalization of the counter-term coupling C in eq. (2.12). The tree-level contribution of the
counter-term Lagrangian takes the form

Act =
∑
q=d,s,b

VcqV
∗
tq ū(pc)

[
αct PR + βct PL

]
u(pt) , (3.5)

with

αct = − C ig3mt

32π2M3
W

(1 + ς∗uςd)(ςd − ςu)∗(Rj2 − iRj3)m2
q ,

βct = − C ig3mc

32π2M3
W

(1 + ς∗d ςu)(ςd − ςu)(Rj2 + iRj3)m2
q . (3.6)

The partial decay width can be written as

Γ(t→ c ϕ0
j) =

λ1/2(m2
t ,m

2
c ,M

2
ϕ0
j
)

32 πm3
t

[
(|α|2 + |β|2)(m2

c +m2
t −M2

ϕ0
j
) + 2mcmt (α∗β + β∗α)

]
.

(3.7)
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Figure 1: Penguin diagrams contributing to t→ cϕ0
j in the Feynman gauge.
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Figure 2: Self-energy diagrams contributing to t→ cϕ0
j in the Feynman gauge.

Here

α =
∑
q=d,s,b

VcqV
∗
tq

(
18∑
n=1

α(n) + αct

)
, β =

∑
q=d,s,b

VcqV
∗
tq

(
18∑
n=1

β(n) + βct

)
. (3.8)

The contributions to the amplitude from each diagram, encoded in the coefficients α(n) and
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β(n), are collected in appendix B.

3.2 t → cV (V = γ, Z) decays

The decays t(pt) → c(pc)V (pV ) can only proceed at the loop level (there are no tree-level
counter-terms in this case). The decay amplitude can be parametrized as [29]

A =
14∑
n=1

Aµn ε
∗
µ(pV ) =

14∑
n=1

∑
q=d,s,b

VcqV
∗
tq ū(pc)

{[
a

(n)
1 pµV + a

(n)
2 pµt + a

(n)
3 γµ

]
PL

+
[
b

(n)
1 pµV + b

(n)
2 pµt + b

(n)
3 γµ

]
PR

}
u(pt) ε

∗
µ(pV ) , (3.9)

where εµ is the polarization vector of the gauge boson V . The one-loop diagrams contributing
to this process in the Feynman gauge are shown in figures 3 and 4. The total amplitude is of
course ultraviolet finite.
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t
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V

c

W
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W
+

t

Figure 3: Penguin diagrams contributing to t→ cV (V = γ, Z) in the Feynman gauge.

The partial decay widths for t→ c V (V = γ, Z) decays are given, in the limit mc = 0, by

Γ(t→ cγ) = − mt

32 π

{
m2
t

[
|a2|2 + |b2|2

]
− 2

[
|a3|2 + |b3|2

]
+m2

t Re(a∗1a2) +m2
t Re(b∗1b2)

+ 2mt Re
[
a∗3(b1 + b2)

]
+ 2mt Re

[
b∗3(a1 + a2)

]}
, (3.10)

and

Γ(t→ cZ) =
(m2

t −M2
Z)2

128πm3
t M

2
Z

{
(m2

t −M2
Z)2
[
|a2|2 + |b2|2

]
+ 4 (m2

t + 2M2
Z)
[
|a3|2 + |b3|2

]
+ 4mt (m2

t −M2
Z)
[
Re(a2b

∗
3) + Re(a3b

∗
2)
]}

. (3.11)
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Figure 4: Self-energy diagrams contributing to t→ cV (V = γ, Z) in the Feynman gauge.

Here we have defined

ai =
∑
q=d,s,b

VcqV
∗
tq

(
14∑
n=1

a
(n)
i

)
, bi =

∑
q=d,s,b

VcqV
∗
tq

(
14∑
n=1

b
(n)
i

)
, (3.12)

with i = 1, 2, 3. For the numerical analysis we always keep finite charm mass effects into
account. The contributions to the amplitude from each diagram, encoded in the coefficients
a

(n)
i and b

(n)
i , are collected in appendix C.

4 Discussion

Relevant inputs for the evaluation of the flavour-changing top decay rates are listed in table 2.
We assume that the combined measurement of the top-quark mass by the Tevatron and the
LHC corresponds to the pole mass, but we increase its systematic error by 1 GeV to account
for the intrinsic ambiguity in the top-quark mass definition. The bottom- and charm-quark
masses quoted in the table are MS running masses at the quark-mass scale, i.e., mq(mq), while
the light-quark ones are MS running masses renormalized at a scale of 2 GeV. To fix the
needed entries of the CKM matrix we use inputs with a minimal sensitivity to new physics
contributions. Our SM predictions for the processes considered are presented in table 3.

The ATLAS and CMS collaborations have searched for flavour-changing decays of the top
quark. The ATLAS collaboration sets the bound Br(t → qZ) < 0.73% at the 95% confidence
level (CL), with 2.1 fb−1 of data at

√
s = 7 TeV [36], where the q in the final state denotes

a sum over q = u, c. The CMS collaboration has set a better limit, Br(t → qZ) < 0.05%,
with 24.7 fb−1 of data at

√
s = 7 & 8 TeV [38]. The strongest current bound on t → cγ decay

has been obtained by the CMS collaboration, Br(t → cγ) < 0.182%, using 19.1 fb−1 of data
at
√
s = 8 TeV [39].1 The ATLAS collaboration sets the limit Br(t → qh) < 0.79%, with

1The CMS limit quoted here on Br(t → cγ) is actually derived from a search for the anomalous single top
quark production in association with a photon in proton-proton collisions, following an effective Lagrangian
approach with the assumption of vanishing contributions from both tqg and tuγ interactions [39].
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Table 2: Relevant inputs for the evaluation of the decay rates.

Input Value Comment Input Value Comment

GF 1.1663787(6)× 10−5 GeV−2 Ref. [54] Mh 125.14(24) GeV Refs. [60, 61]

MW 80.385(15) GeV Ref. [54] mt 173.34(1.76) GeV Refs. [62–64]

MZ 91.1876(21) GeV Ref. [54] mb 4.18(3) GeV Ref. [54]

γCKM (73.2+6.3
−7.0)◦ Ref. [55] mc 1.275(25) GeV Ref. [54]

|Vus| 0.2247(7) Ref. [56] ms 93.8(2.4)× 10−3 GeV Ref. [56]

|Vub| 3.42(15)× 10−3 Ref. [56] md 4.68(16)× 10−3 GeV Ref. [56]

|Vcb| 42.21(78)× 10−3 Refs. [57–59] αs(MZ) 0.1185(6) Ref. [54]

Table 3: SM predictions for flavour-changing top decays.

Observable SM prediction

Br(t→ cγ) (4.31± 0.24)× 10−14

Br(t→ cZ) (1.03± 0.06)× 10−14

Br(t→ ch) (3.00± 0.17)× 10−15

25 fb−1 of data at
√
s = 7 & 8 TeV [37]. A slightly stronger limit, Br(t → qh) < 0.56%, has

been obtained by the CMS collaboration, using 19.5 fb−1 of data at
√
s = 8 TeV [40]. Future

prospects for these processes at the high luminosity LHC have been discussed in refs. [42, 43].
One expects to improve the limits to the 10−5 level for Br(t → cV ) (V = γ, Z), while for
Br(t→ ch) it would be possible to reach the 10−4 − 10−5 level.

For the phenomenological discussion we shall focus on the CP-conserving A2HDM, which
contains 12 free real parameters: µ2, λk (k = 1, . . . , 7), the three alignment constants ςf
(f = u, d, l) and the counter-term coupling CR(µ). Physical amplitudes are independent of
the renormalization scale µ, due to eq. (2.14); in the following, we choose µ = MW . Some
of the parameters of the scalar potential can be traded by the physical scalar masses and the
mixing angle α̃. The following relations

λ1 =
1

2v2

[
M2

h cos2 α̃ +M2
H sin2 α̃

]
, λ4 =

1

v2

[
M2

h sin2 α̃ +M2
H cos2 α̃ +M2

A − 2M2
H±

]
,

λ5 =
1

2v2

[
M2

h sin2 α̃ +M2
H cos2 α̃−M2

A

]
, λ6 = − 1

v2
(M2

H −M2
h) cos α̃ sin α̃ , (4.1)

together with eq. (2.4), allow us to work with a set of parameters more closely related to
physical quantities:

Scalar sector: Mh,MH ,MA,MH± , cos α̃, λ2, λ3, λ7 ,

Yukawa sector: ςu, ςd, ςl, CR(MW ) . (4.2)

Not all the parameters are relevant for the processes we are concerned about. The decays
t → c ϕ0

j are only sensitive to {Mϕ0
j
, MH± , cos α̃, λ3, λ7, ςu, ςd, CR(MW )}. The transition
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amplitude does not depend on the other neutral scalar masses Mϕ0
i

(i 6= j), as can be seen
explicitly from eq. (B.2). There is also no dependence on the coupling λ2; the associated term
in the scalar potential (Φ†2Φ2)2 does not generate the needed cubic vertices H+H−ϕ0

j because
Φ2 has no vacuum expectation value (see eq. (2.1)). The decays t → cV (V = γ, Z), on the
other hand, depend only on MH± and the alignment parameters ςu,d. All the relevant cubic
vertices are fixed in this case by the gauge symmetry and do not depend on free parameters of
the scalar potential.

We assume in the following that the 125 GeV Higgs boson corresponds to the lightest CP-
even state h; i.e., we fix Mh ' 125 GeV. The LHC data imply that it couples to the massive
gauge vector bosons with a SM-like strength so that cos α̃ ' 1. We are interested in how
large the enhancements of the flavour-changing top decay rates can be, compared with the
SM predictions, focusing on the 125 GeV Higgs boson in the case of t → c ϕ0

j transitions. To
address this question, we analyze the parameter space of the A2HDM, subject to the following
assumptions and constraints:

• The LHC and Tevatron Higgs data imply that cos α̃ > 0.9 (68% CL) and |yhf | ∼ 1
(f = u, d, l) [21, 25]. We work in the limit cos α̃ = 1 so that no constraints on the
alignment parameters are obtained from the 125 GeV Higgs data [21,25].

• We take into account constraints in the ςu − ςd plane derived from the measurement of
Br(B̄ → Xsγ) [13, 14].

• We restrict the alignment parameter |ςu| ≤ 2, in order to satisfy the constraints from
Z → b̄b decay and B0

s,d− B̄0
s,d mixings [13]. The parameters ςd,l are much less constrained

phenomenologically; we take |ςd,`| ≤ 50 as in ref. [14].

• The four LEP collaborations, ALEPH, DELPHI, L3 and OPAL, have searched for pair-
produced charged Higgs bosons in the framework of 2HDMs, excluding MH± . 80 GeV
(95% CL) under the assumption that H± decays dominantly into fermions [65].

• Searches for a light charged Higgs via the decay t→ H+b performed by the ATLAS [66,67]
and CMS [68, 69] collaborations, together with the limits on a charged Higgs from the
Tevatron [70], are taken into account. These direct searches give an upper bound on the
Yukawa combination |ςuςd|, which, although being weaker than the one from Br(B̄ →
Xsγ), basically exclude one of the two possible strips allowed by the latter [25].

• We consider the perturbativity bound on the quartic scalar couplings |λ3,7| ≤ 4π [21].
Additionally, the loop-induced decay h→ γγ is sensitive to λ3 and λ7 through the charged
Higgs contribution to this process [21,25]. We take into account the latest measurements
of the Higgs signal strengths in the h→ γγ channel by ATLAS [71] and CMS [61].

In the limit cos α̃ = 1, the decay rate for t → ch does not depend on CR(MW ) and λ7.
Explicit expressions for all the relevant cubic Higgs couplings are provided in appendix B. In
particular, for cos α̃ = 1 we have λhH+H− = λ3. The measured Higgs signal strengths by ATLAS
and CMS in the di-photon channel are then only sensitive to λ3 and MH± . Since in this case
the Higgs production cross-section is the same as in the SM, one can write the Higgs signal
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strength in the di-photon channel as [21, 25]:

µhγγ =
σ(pp→ h)× Br(h→ 2γ)

σ(pp→ h)SM × Br(h→ 2γ)SM

'
(
1− 0.15Ch

H±

)2
, (4.3)

where Ch
H± encodes the charged Higgs contribution to h→ 2γ and is given by

Ch
H± =

v2

2M2
H±

λhH+H− A(xH±) . (4.4)

Here

A(x) = −x− x2

4
f(x) , f(x) = −4 arcsin2(1/

√
x) , (4.5)

with xH± = 4M2
H±/M2

h . We require that the Higgs signal strength in eq. (4.3) lies within the 2σ
range of the experimental measurements. The latest results by ATLAS [71]: µhγγ = 1.17+0.28

−0.26,
and by CMS [61]: µhγγ = 1.12± 0.24, are consistent with the SM.

Performing a scan over {ςu, ςd, ςl, λ3}, subject to the restrictions specified above, while
fixing the charged Higgs mass to benchmark values, we obtain the upper bounds on Br(t→ cV )
(V = γ, Z) and Br(t → ch) shown in table 4. In the window 90 GeV < MH± < 150 GeV the
alignment parameter ςd is constrained to be small by the direct charged Higgs searches at the
LHC via top decays, |ςd| . 10, implying a very strong suppression on the decay rates. For
MH± < 90 GeV a weaker bound on |ςd| is obtained by a combination of LHC and Tevatron
limits, |ςd| . 25. For MH± > 150 GeV the largest decay rates for these processes are obtained
for |ςu| < 1 and |ςd| ' 50. The upper bounds obtained for Br(t→ cV ) put these processes well
beyond the reach of the high luminosity LHC, within the A2HDM [43]. Similar conclusions
were obtained in refs. [34, 35] within the framework of 2HDMs with NFC.

The decay rate for t→ ch can receive on the other hand much larger enhancements, due to
the intermediate charged Higgs contribution involving the cubic Higgs coupling λhH+H− . The
maximum values for Br(t→ ch) are obtained when the cubic scalar coupling λhH+H− saturates
either the h → 2γ limits or the perturbativity bound. Diagram 3 in figure 1 dominates the
corresponding decay amplitude in this case. The contribution from this diagram to the decay
amplitude is proportional to ςuςdλ

h
H+H− and ς2

dλ
h
H+H− , see table 5. While the product ςuςd is

constrained to be small in magnitude by Br(B̄ → Xsγ), the term proportional to ς2
d becomes

greatly enhanced for large |ςd| values. Such large values of |ςd| can be obtained outside the
window 90 GeV < MH± < 160 GeV since the limits from direct charged Higgs searches via top
decays at the LHC are avoided.

Analyses of t → ch decay within the type II 2HDM, prior to the Higgs discovery, have
found that a light charged Higgs can enhance considerably the associated decay rate in this
model, for large values of tan β and the cubic Higgs coupling λhH+H− , and even reach the level
of expected sensitivity at the high luminosity LHC: Br(t→ ch) ∼ 10−5 [34,35]. Such behavior
is compatible with our findings, given that in the limit ςd = −ς−1

u = − tan β we recover the
Yukawa couplings of the type II 2HDM. However, we find that current measurements of the
125 GeV Higgs properties play an important role when evaluating possible enhancements of
Br(t→ ch). In particular, measurements of the Higgs signal strengths in the di-photon channel
restrict the allowed size of the cubic Higgs coupling λhH+H− for a light charged Higgs. This in
turn implies that the allowed enhancements of Br(t → ch) cannot be as large as previously
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Table 4: Upper bounds for Br(t→ cV ) (V = γ, Z) and Br(t→ ch) in the CP-conserving A2HDM.

MH± [GeV] Br(t→ cγ) Br(t→ cZ) Br(t→ ch)

100 . 2× 10−12 . 2× 10−13 . 6× 10−9

200 . 10−10 . 3× 10−11 . 3× 10−8

300 . 10−11 . 5× 10−12 . 2× 10−8

400 . 2× 10−12 . 2× 10−12 . 5× 10−9

500 . 10−12 . 10−12 . 2× 10−9

Exp. limit < 1.8× 10−3 [39] < 5× 10−4 [38] < 5.6× 10−3 [40]

speculated. Taking into account the measurements of the 125 GeV Higgs properties, searches
for a light charged Higgs via top decays, and the flavour constraints specified earlier, we find
that the decay rate for t → ch lies beyond the reach of the high luminosity LHC in 2HDMs
without tree-level FCNCs. Under the constraints considered the largest decay rate is obtained
for MH± being slightly below 90 GeV, Br(t→ ch) . 2× 10−7.

It is necessary to discuss the robustness of the previous statement. If small deviations
from the limit cos α̃ = 1 are considered, the LHC Higgs data gives rise to strong bounds on
the magnitude of the alignment parameters. Since |yhf | = | cos α̃ + ςf sin α̃| (f = u, d, l) is
constrained to be close to one, one obtains |ςf | . O(1) when cos α̃ < 1 [21, 25]. This implies
in particular that |ςd| should be small and large enhancements of Br(t→ ch) are not possible.
Allowing for CP violation would not led to any significant enhancement either, given the strong
constraints on CP-violating couplings derived from electric dipole moment experiments [16].

We turn now to discuss the role of the direct counter-term contribution to t → ch decay,
which is not present in 2HDMs with NFC. In the limit cos α̃ = 1 this contribution vanishes
because of the orthogonality of R. The LHC data imply that cos α̃ is very close to one so that
the counter-term contribution to the flavour-changing t → ch decay will be suppressed by a
small factor sin α̃ at the amplitude level. Furthermore, the characteristic flavour structure of
the A2HDM counter-term (2.12) implies a strong suppression of its effects, due to the explicit
powers of quark masses and the unitarity of the quark mixing matrix [7]. Neglecting the loop
contribution (at µ = MW ),

Br(t→ ch)tree ≈
α2 π2 |Vcb|2m4

b

2 sin4 θW M4
W

(1−M2
h/m

2
t )

2

(1−M2
W/m

2
t )

2 (1 + 2M2
W/m

2
t )

sin2 α̃ |Ed|2

≈ 2× 10−11 sin2 α̃ |Ed|2 , (4.6)

where

Ed =
1

4π2
CR(MW ) (1 + ςuςd) (ςd − ςu) . (4.7)

The size of Ed is constrained experimentally by the measured amount of mixing between the neu-
tral B0

s meson and its antiparticle, which receives also contributions from the Lagrangian (2.12),
mediated by the three neutral scalars ϕ0

i = {h,H,A}. One finds that this process allows for
|Ed| ∼ O(1), even when the masses of the neutral scalars are of O(100 GeV) [49], but this is
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far too small to generate any observable signal in t→ ch.2

It is important to analyze also the impact of the perturbativity bound on the results ob-
tained. A different upper limit on the relevant cubic coupling |λhH+H−| has been considered in
ref. [21]. The charged Higgs gives the following finite correction to the hH+H− vertex, at the
one-loop level:

(λhH+H−)eff = λhH+H−

[
1 +

v2(λhH+H−)2

16π2M2
H±
Z
(
M2

h

M2
H±

)]
≡ λhH+H− (1 + ∆) , (4.8)

where

Z(X) =

∫ 1

0

dy

∫ 1−y

0

dz
[
(y + z)2 +X (1− y − z − yz)

]−1
. (4.9)

Large values of |λhH+H−| could make this loop correction comparable to the leading-order result,
which would cast doubts on the perturbative expansion. We therefore allow this correction to
be at most 50% (∆ 6 0.5). In figure 5 we show the region allowed at 2σ by the measurement of
the Higgs signal strengths in the di-photon channel, together with the bounds extracted with
the perturbativity limits |λ3| 6 4π and ∆ 6 0.5.

Figure 5: Allowed region by measurements of the Higgs signal strengths in the di-photon channel
(blue-meshed) together with the perturbativity limits |λ3| 6 4π (light gray) or ∆ 6 0.5 (dark gray). See
text for details.

The constraints from h → γγ give rise to a large allowed region, centered around λ3 = 0,
whose width increases for higher values of MH± . In this area the h → γγ decay amplitude is
dominated by the W -boson and top-quark loop contributions, as in the SM; the charged Higgs
contribution remains subdominant. For light charged Higgs masses a small disjoint allowed
region appears with λ3 & 6. In this small area the charged Higgs contribution dominates over
the W -boson and top-quark loops and flips the sign of the amplitude, (1 − 0.15Ch

H±) ∼ −1,
giving a SM-like Higgs signal strength (see eq. (4.3)). In principle there is no reason to expect
such an accidental tuning of the charged Higgs contribution to occur. This separate small

2 Assuming Yukawa alignment to hold at the high-energy scale ΛA, we have CR(MW ) = ln(ΛA/MW ).
Therefore, CR(MW )/(4π2) . 1 for ΛA . 1019 GeV.
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region is therefore not to be seen as very realistic. It is possible to argue that such region
brings problems to the perturbative expansion. The perturbativity limit ∆ 6 0.5, being more
stringent for light charged Higgs masses, excludes this small region. For a light charged Higgs
the maximum values of Br(t → ch) are obtained precisely in this separate region, where the
value for |λhH+H−| reaches its maximum allowed value. The limits on Br(t→ ch) would therefore
be even stronger for a light charged Higgs if the perturbativity limit ∆ 6 0.5 is taken into
account. Once this perturbativity limit is considered, we get the limit Br(t→ ch) . 6× 10−8.

Recent works have studied the possibility to look for flavour-changing top-quark anomalous
interactions via production processes. In ref. [72] a fully gauge-invariant effective-field-theory
approach was adopted for parametrizing the top-quark FCNC interactions, while in ref. [73]
it was assumed that the Higgs boson posses tree-level flavour-changing couplings with the top
quark. It was pointed out in these works that these top-quark flavour-changing effects can
often be probed with better sensitivities in production processes than via the top-quark decays.
Whether this is also the case within the A2HDM with a light charged scalar deserves a detailed
analysis but lies beyond the scope of the present work.

5 Conclusions

We have performed a complete one-loop calculation of flavour-changing top decays (t → cγ,
t → cZ, t → cϕ0

j), within the A2HDM. Here ϕ0
j = {h,H,A} represents any of the neutral

scalar mass eigenstates. Our results agree with the available SM results in the literature when
the corresponding limit is taken [27, 29]. We have also checked the gauge independence of our
results by carrying out the calculation in the Feynman and unitary gauges. Explicit analytical
expressions in the Feynman gauge are provided in appendices B and C. The results are presented
in the limit mc = 0, in order to avoid lengthy expressions; however, in our numerical analyses
we have always used the exact expressions.

The SM predictions for these transitions are given in table 3. They are orders of magnitude
too small to be accessible even at the high-luminosity phase of the LHC. We have investigated
whether significant enhancements of the branching ratios could be possible within the A2HDM.
Assuming that the 125 GeV Higgs-like boson corresponds to the lightest CP-even state h of the
CP-conserving A2HDM, we have discussed the impact of the relevant model parameters on the
decay rates. We have taken into account the constraints from flavour experiments as well as
the measurements of the Higgs-boson properties at the LHC. Upper bounds obtained for these
rare top decays within the A2HDM are listed in table 4 for benchmark values of the charged
Higgs mass.

While sizeable enhancements are indeed possible, compared with the SM predictions, we
find that the decay rates for t → cV (V = γ, Z) remain well below the expected sensitivity
levels at the high luminosity LHC, across all of the parameter space considered. As long as the
charged Higgs is relatively light, the decay rate for t→ ch receives much larger enhancements
for large values of ςd and the cubic Higgs coupling λhH+H− . The LHC measurements of the Higgs
signal strengths in the di-photon channel are found to play a very important role in estimating
the maximum allowed values for Br(t → ch). The charged Higgs also contributes at the loop
level to the decay h→ γγ and, for a light charged Higgs, a large cubic coupling λhH+H− would
led to large deviations of the Higgs signal strengths in the di-photon channel. We find that
Br(t → ch) lies also beyond the reach of the high luminosity LHC, once the constraints from
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the Higgs data are taken into account.
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A Loop functions

Dimensional regularization is used in our calculations. The scalar loop functions appearing are
given by [74]

A0(M1) =

∫
dDk̃

1

k2 −M2
1

,

B0(l,M1,M2) =

∫
dDk̃

1

(k2 −M2
1 )[(k + l)2 −M2

2 ]
,

C0(l, s,M1,M2,M3) =

∫
dDk̃

1

(k2 −M2
1 )[(k + l)2 −M2

2 ][(k + l + s)2 −M2
3 ]
. (A.1)

Here

dDk̃ = µ3ε/2 dDk

(2π)D
, (A.2)

is the integration measure with ε = 4 − D, and gµε/2 is the SU(2)L gauge coupling constant
in D dimensions. Vector and tensor integrals are reduced to the scalar loop integrals via the
Passarino–Veltman method [75]. Following the notation of refs. [27, 76], we have

B1 =
1

2l2
[
A0(M1)− A0(M2)− s1B0

]
,

C̃0 = B0(s,M2,M3) +M2
1C0 , (A.3)

where s1 = l2 +M2
1 −M2

2 . The other relevant loop functions are given by(
C11

C12

)
= Y

[
B0(l + s,M1,M3)−B0(s,M2,M3)− s1C0

B0(l,M1,M2)−B0(l + s,M1,M3)− s2C0

]
,

(
C21

C23

)
= Y

[
B1(l + s,M1,M3) +B0(s,M2,M3)− s1C11 − 2C24

B1(l,M1,M2)−B1(l + s,M1,M3)− s2C11

]
, (A.4)
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and

C22 =
1

2
[
l2s2 − (l · s)2

] {−l · s[B1(l + s,M1,M3)−B1(s,M2,M3)− s1C12

]
+ l2

[
−B1(l + s,M1,M3)− s2C12 − 2C24

]}
,

C24 =
1

2(D − 2)

[
B0(s,M2,M3) + 2M2

1C0 + s1C11 + s2C12

]
. (A.5)

Here we have defined s2 = s2 + 2l · s+M2
2 −M2

3 and

Y =
1

2
[
l2s2 − (l · s)2

] [ s2 −l · s
−l · s l2

]
. (A.6)

B Decay amplitude for t → c ϕ0
j

We parametrize the one-loop contribution to the t → c ϕ0
j decay amplitude as indicated in

eq. (3.4). In table 5 we give the analytical expressions for the coefficients α(n) and β(n), obtained
from the 18 Feynman diagrams in figures 1 and 2. For simplicity, we only give the results in
the limit mc = 0, although we have used the exact expressions, including finite charm masses,
in our numerical results. In this limit, all coefficients β(n) = 0 (n = 1, . . . , 18), while α(n) = 0
for n = 15, 16, 17, 18.

We have defined the combination

γ
ϕ0
j

d ≡ Rj1 +Rj2 Re(ςd)−Rj3 Im(ςd) . (B.1)

The matrix R determines the neutral Higgs boson states in terms of the neutral components

of the scalar doublets in the Higgs basis (see sec. 2). The parameters y
ϕ0
j

u,d appearing in table 5
have been defined in eq. (2.11). The relevant cubic couplings in this case read [17]

λ
ϕ0
j

W+W− = λ
ϕ0
j

G+W− = Rj1 ,

λ
ϕ0
j

H+W− = Rj2 − iRj3 ,

λ
ϕ0
j

H+H− = λ3Rj1 + λR7 Rj2 − λI7Rj3 ,

λ
ϕ0
j

G+G− = 2λ1Rj1 + λR6 Rj2 − λI6Rj3 =
M2

ϕ0
j

v2
Rj1 ,

λ
ϕ0
j

H+G− = λ6Rj1 +
1

2
(λ4 + 2λ5)Rj2 −

i

2
(λ4 − 2λ5)Rj3 =

M2
ϕ0
j
−M2

H±

v2
(Rj2 − iRj3) .

(B.2)

Here λR,Ik denote the real and imaginary parts of λk respectively.
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C Decay amplitude for t → c V

Following the notation of eq. (3.9), all non-vanishing contributions to the t → cV (V = γ, Z)
decay amplitude have been given, for mc = 0, in tables 6, 7 and 8. Here we have defined

gV q = AV q +BV q γ5 , (C.1)

and
Sq ≡ AV q +BV q , Pq ≡ AV q −BV q , (C.2)

with q = (u, d). Values for the relevant constants are given in tables 9 and 10. The weak mixing
angle is determined by e = g sin θW , MW = gv/2 and MW = MZ cos θW . We use the notations:
sW ≡ sin θW and cW ≡ cos θW .
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Table 5: Amplitude for t→ c ϕ0
j in the limit mc = 0.

n α(n) argument

1 −
g3m2

qmt

4M3
W

ςd

{
ς∗u (y

ϕ0
j

d )∗ C̃0 +m2
q(ςu − ςd)∗ y

ϕ0
j

d C0 (pϕ0
j
,−pt,mq,mq,MH±)

−
[
2m2

qς
∗
dγ

ϕ0
j

d −M
2
ϕ0
j
ς∗u (y

ϕ0
j

d )∗
]
(C11 − C12)

}
2

g3m2
qmt

4M3
W

{[
2m2

qγ
ϕ0
j

d −M
2
ϕ0
j
(y
ϕ0
j

d )∗
]
(C11 − C12)− (y

ϕ0
j

d )∗C̃0

}
(pϕ0

j
,−pt,mq,mq,MW )

3 −
gm2

qmt

MW
λ
ϕ0
j

H+H−ςd

{
ς∗uC0 + ς∗d(C11 − C12)

}
(pϕ0

j
,−pt,MH± ,MH± ,mq)

4 −
gm2

qmt

MW
λ
ϕ0
j

H+G−

{
ς∗uC0 + ς∗d(C11 − C12)

}
(pϕ0

j
,−pt,MW ,MH± ,mq)

5 −
gm2

qmt

MW
(λ
ϕ0
j

H+G−)∗ςd

(
C0 + C11 − C12

)
(pϕ0

j
,−pt,MH± ,MW ,mq)

6 −
gm2

qmt

MW
λ
ϕ0
j

G+G−

(
C0 + C11 − C12

)
(pϕ0

j
,−pt,MW ,MW ,mq)

7 (D − 2)
g3m2

qmt

4MW

{
(y
ϕ0
j

d )∗C0 + 2γ
ϕ0
j

d (C11 − C12)
}

(pϕ0
j
,−pt,mq,mq,MW )

8 − g
3mt

4MW
λ
ϕ0
j

H+W−

{
ς∗uC̃0 + 2

[
m2
qς
∗
d + ς∗u(M2

ϕ0
j
−m2

t )
]
C0 (pϕ0

j
,−pt,MW ,MH± ,mq)

+
[
m2
qς
∗
d + (3M2

ϕ0
j
−m2

t )ς
∗
u

]
C11 −

[
m2
qς
∗
d + ς∗u(M2

ϕ0
j

+m2
t )
]
C12

}
9

g3mt

4MW
λ
ϕ0
j

G+W−

{
−C̃0 − 2(m2

q +M2
ϕ0
j
−m2

t )C0 (pϕ0
j
,−pt,MW ,MW ,mq)

+(m2
t −m2

q − 3M2
ϕ0
j
)C11 + (m2

q +M2
ϕ0
j

+m2
t )C12

}
10

g3m2
qmt

4MW
ςd(λ

ϕ0
j

H+W−)∗
{
C0 − C11 + C12

}
(pϕ0

j
,−pt,MH± ,MW ,mq)

11
g3m2

qmt

4MW
(λ
ϕ0
j

G+W−)∗
{
C0 − C11 + C12

}
(pϕ0

j
,−pt,MW ,MW ,mq)

12 −1

2
(D − 2)g3mtMW λ

ϕ0
j

W+W− (C11 − C12) (pϕ0
j
,−pt,MW ,MW ,mq)

13
g3m2

qmt

4M3
W

ςdς
∗
u y

ϕ0
j

u B0 (−pc,MH± ,mq)

14
g3

4M3
W

m2
qmt y

ϕ0
j

u B0 (−pc,mq,MW )
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Table 6: Amplitude for t→ c V (V = γ, Z) in the limit mc = 0: Coefficients a
(n)
3 .

n a
(n)
3 argument

1
ig2m2

q

2M2
W

ςd

{
−ς∗dSdC̃0 + Pd(ς

∗
dm

2
q − ς∗um2

t )C0 (pV ,−pt,mq,mq,MH±)

−
[
ς∗dM

2
V Sd − 2ς∗uBV dm

2
t

]
(C11 − C22) + 2ς∗dSdC24

}
2

ig2m2
q

2M2
W

{
−SdC̃0 + Pd(m

2
b −m2

t )C0 (pV ,−pt,mq,mq,MW )

+
[
2BV dm

2
t −M2

V Sd
]
(C11 − C12) + 2SdC24

}
3 −

g2m2
q |ςd|2

M2
W

gV H+H−C24 (pV ,−pt,MH± ,MH± ,mq)

4 −
g2m2

q

M2
W

gV G+G−C24 (pV ,−pt,MW ,MW ,mq)

5 − ig
2

2

{
(D − 2)PdC̃0 − (D − 2)m2

qSdC0 + Pd
[
(D − 2)M2

V C11 (pV ,−pt,mq,mq,MW )

−
(
(D − 4)M2

V + 2m2
t

)
C12 − 2(D − 2)C24

]}
6 − g2

2MW
gV G+W−

{
m2
qC0 +m2

t (C11 − C12)
}

(pV ,−pt,MW ,MW ,mq)

7 −
g2m2

q

2MW
gV G+W−C0 (pV ,−pt,MW ,MW ,mq)

8
g2

2
gVW+W−

{
−2C̃0 + 2(m2

t −M2
V )C0 (pV ,−pt,MW ,MW ,mq)

+(m2
t − 2M2

V )C11 +m2
tC12 − 2(D − 2)C24

}
9 i

g2m2
q

2M2
W

ςdς
∗
uPuB0 (pV − pt,MH± ,mq)

10 i
g2m2

q

2M2
W

PuB0 (pV − pt,MW ,mq)

12 i
g2m2

q

2M2
W

ςdPu

{
(ς∗d − ς∗u)B0 + ς∗dB1

}
(−pt,MH± ,mq)

13 i
g2m2

q

2M2
W

PuB1 (−pt,MW ,mq)

14
i

2
(D − 2)g2Pu (B0 +B1) (−pt,MW ,mq)
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Table 7: Amplitude for t→ c V (V = γ, Z) in the limit mc = 0: Coefficients b
(n)
1 .

n b
(n)
1 argument

1 i
g2m2

qmt

M2
W

ςd

{
ς∗uPdC0 + (ς∗dSd − ς∗uPd)C11 − ς∗dSd(C12 − C21 + C23)

}
(pV ,−pt,mq,mq,MH±)

2 −i
g2m2

qmt

M2
W

{
PdC0 + Sd(C12 − C21 + C23)− 2BV dC11

}
(pV ,−pt,mq,mq,MW )

3
−g2m2

qmt

2M2
W

gV H+H−ςd

{
ς∗uC0 + (ς∗d + 2ς∗u)C11 − ς∗d(C12 − 2C21 + 2C23)

}
(pV ,−pt,MH± ,MH± ,mq)

4 −
g2m2

qmt

2M2
W

gV G+G−

(
C0 + 3C11 − C12 + 2C21 − 2C23

)
(pV ,−pt,MW ,MW ,mq)

5 ig2mtPd

{
(D − 2)C11 − (D − 4)C12 + (D − 2)

[
C21 − C23

]}
(pV ,−pt,mq,mq,MW )

6 −g
2mt

MW
gV G+W−

(
C0 + C11

)
(pV ,−pt,MW ,MW ,mq)

8
g2mt

2
gVW+W−

{
2C0 −DC11 + (D + 2)C12 − 2(D − 2)

[
C21 − C23

]}
(pV ,−pt,MW ,MW ,mq)

Table 8: Amplitude for t→ c V (V = γ, Z) in the limit mc = 0: Coefficients b
(n)
2 .

n b
(n)
2 argument

1
ig2m2

qmt

M2
W

ςd

{
ς∗uPdC0 + Sd

(
ς∗uC12 + ς∗dC22 − ς∗dC23

)
− 2BV dς

∗
uC11

}
(pV ,−pt,mq,mq,MH±)

2
ig2m2

qmt

M2
W

{
PdC0 + Sd(C12 + C22 − C23)− 2BV dC11

}
(pV ,−pt,mq,mq,MW )

3
m2
qmt

M2
W

g2gV H+H−ςd

{
ς∗uC12 + ς∗d(C23 − C22)

}
(pV ,−pt,MH± ,MH± ,mq)

4
g2m2

qmt

M2
W

gV G+G−

(
C12 − C22 + C23

)
(pV ,−pt,MW ,MW ,mq)

5 − ig2mtPd

{
2C12 − (D − 2)

[
C22 − C23

]}
(pV ,−pt,mq,mq,MW )

6
g2mt

MW
gV G+W− (C0 + C11) (pV ,−pt,MW ,MW ,mq)

8 g2mtgVW+W−

{
C11 − C0 − 2C12 − (D − 2)

[
C22 − C23

]}
(pV ,−pt,MW ,MW ,mq)
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Table 9: Quark couplings with neutral vector bosons.

V AV d BV d AV u BV u

γ i
e

3
0 −i2e

3
0

Z −i g
cW

(
−1

4
+

1

3
s2
W

)
−i g

4cW
−i g
cW

(1

4
− 2

3
s2
W

)
i
g

4cW

Table 10: Cubic couplings of the neutral vector bosons.

V gV H+H− gV G+G− gV G+W− gVW+W−

γ e e −eMW e

Z e cot(2θW ) e cot(2θW ) gs2
WMZ gcW
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