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Enhanced superconductivity in atomically thin TaS2
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The ability to exfoliate layered materials down to the single layer limit has presented the

opportunity to understand how a gradual reduction in dimensionality affects the properties

of bulk materials. Here we use this top–down approach to address the problem of

superconductivity in the two-dimensional limit. The transport properties of electronic devices

based on 2H tantalum disulfide flakes of different thicknesses are presented. We observe that

superconductivity persists down to the thinnest layer investigated (3.5 nm), and interestingly,

we find a pronounced enhancement in the critical temperature from 0.5 to 2.2 K as the layers

are thinned down. In addition, we propose a tight-binding model, which allows us to attribute

this phenomenon to an enhancement of the effective electron–phonon coupling constant.

This work provides evidence that reducing the dimensionality can strengthen super-

conductivity as opposed to the weakening effect that has been reported in other 2D materials

so far.
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T
he behaviour of superconductors in the two-dimensional
(2D) limit is a long-standing problem in physics that has
been the focus of extensive research in the field1–6. The

bottom–up approach has provided signs of the existence of
superconductivity at the 2D limit in experiments performed on
in situ-grown, ultrathin lead films fabricated by evaporation7,8.
However, for films grown in this way, it is difficult to avoid the
strong influence from the substrate lattice, yielding typically highly
disordered films. A different approach takes advantage of the
ability of certain van der Waals materials to be separated into
individual layers, which may later be isolated as defect-free 2D
crystals on a substrate of choice9. This top–down approach permits
overcoming the lattice and chemical restrictions imposed by the
substrate in the bottom–up strategy in such a way that the coupling
may be minimized by an appropriate choice of surface10–12.

Although graphene is not an intrinsic superconductor,
recent studies have brought forward the possibility of inducing
superconductivity in this 2D material by garnishing its surface
with the right species of dopant atoms or, alternatively, by using
ionic liquid gating13,14. However, reported experiments have
failed to show direct evidence of superconducting behaviour in
exfoliated graphene, leaving out the archetypal material from
studies of 2D superconductivity15.

An even more attractive family of 2D materials is provided by the
transition metal dichalcogenides (TMDCs) since some of its
members exhibit superconductivity in the bulk state16,17. Just as
in graphene, TMDCs present a strong in-plane covalency and weak
interlayer van der Waals interactions, which allow exfoliation of the
bulk18. This has given rise to a very rich chemistry of hybrid
multifunctional materials based on the restacking of TMDC
nano-layer sols with functional counterparts19,20. In addition, the
all-dry exfoliation methodologies have allowed for the deposition of
TMDC flakes on a variety of surfaces21,22. These micromechanical
exfoliation techniques allow access to nearly defect-free, large
surface area flakes of virtually any TMDC, opening the door to the
study of how a dimensionality reduction affects the properties of
these materials23–26. Surprisingly, despite the works reported in the
literature searching for intrinsic superconductivity in atomically
thin 2D crystals27–29, for a long time the sole examples came from
FeSe thin films grown in situ on a substrate30–33. Only very recently,
several studies of niobium diselenide (NbSe2) flakes have yielded the
first clear evidence of the existence of superconductivity in freshly
cleaved specimens of less than three layers in thickness34–37.

Tantalum disulphide (TaS2) is another member of the TMDC
family. In its bulk state, TaS2 is composed of robust covalently
bonded S–Ta–S planes that stack upon each other. A variety
of polytypic phases originate from the distinct in-plane Ta
coordination spheres described by the S2� ligands and by the
stacking periodicity of the individual planes. For instance, the 2H
and 1T polytypes present unit cells with two trigonal bipyramidal
and one octahedral Ta-coordinated layers, respectively. Although
extensively explored in the 1960s38, 1T and 2H polytypes are once
again attracting major attention as they constitute ideal case
studies for the investigation of competing orders, namely,
superconductivity, charge density waves (CDW)39,40 and hidden
phases41. In this scenario, the study of decoupled or isolated TaS2

layers may provide new insights into these exotic phenomena42.
Transport measurements of few-layer TaS2 flakes have been
reported in flakes as thin as 2 nm, but superconductivity in TaS2

layers thinner than 8 nm has not been observed, probably due to
the environmental degradation of the samples43.

Here, we explore 2D superconductivity in few-molecular-layer
tantalum disulphide flakes of different thicknesses, which have
been mechanically exfoliated onto Si/SiO2 substrates. Interest-
ingly, we observe that superconductivity persists down to the
thinnest layer investigated (3.5 nm, approximately 5 covalent

planes), with a pronounced increase in the critical temperature
(Tc) from 0.5 K (bulk crystal) to B2.2 K when the thickness of the
layer is decreased. In search of the origin of these observations, we
perform density functional theory (DFT) calculations and
construct a simple tight binding model to study the change in
the electronic band structure and density of states (DOSs) at the
Fermi level as a function of reduced thickness. We ascribe the
enhancement to an increase in the effective coupling constant
(leff) for reduced thicknesses, which ultimately determines Tc.

Results
Fabrication of transport devices. Although the exfoliation of
other TMDC members has been extensively studied, little has
been reported on the controlled isolation of atomically thin
2H-TaS2 flakes. This layered material appears to be difficult to
exfoliate and is also particularly susceptible to oxidation in
atmospheric conditions44, hindering the manipulation of very
thin flakes in open moist air. Although complex encapsulation
techniques help preserving samples from oxidation36, we find that
a rapid integration of freshly exfoliated flakes into final devices
and their immediate transfer to vacuum conditions for
measurement also permits retaining the pristine properties of
most TaS2 samples (vide infra).

The experimental process begins with the chemical vapour
transport growth of bulk TaS2 crystals (vide infra in Methods),
which are subsequently exfoliated onto Si/SiO2 substrates.
To ensure a high-quality material, optical, Raman and atomic
force microscopy characterization were performed on exfoliated
flakes of varying thicknesses (see Supplementary Figs 1–5 and
Supplementary Note 1 and 2 for details). As already established
for graphene and other TMDCs, inspection of the substrate
surface by optical microscopy permits identifying the presence
of nanometre thin TaS2 flakes. In an attempt to access flakes with
a reduced number of atomic layers, we developed a modification
of the micromechanical exfoliation method and optimized it for
the controlled isolation of few-layer 2H-TaS2 flakes45,46. The
method relies on precisely controlling a uniaxial pressure applied
directly with a single crystal over the accepting substrate and in
combination with a shearing cleavage movement. This allows
for the cleavage of very thin flakes, down to 1.2 nm thick
(see Supplementary Fig. 1 for details), corresponding to a single
2H-TaS2 unit-cell (see Fig. 1a) formed by two individual layers.
Unfortunately, all attempts to contact these flakes and measure
transport properties were unsuccessful, likely due to their
instability in ambient conditions.

To avoid the oxidation of few layer flakes, freshly exfoliated
samples designated for device fabrication and transport
measurements are immediately covered with an methyl
methacrylate/poly (methyl methacrylate) double layer resist in
preparation for subsequent device nanofabrication steps.
Figure 1b shows an example of a fabricated device incorporating
the thinnest flake measured with a thickness of 3.5 nm
(corresponding to approximately 5 layers) and lateral dimensions
of the order of a few micrometres as imaged by atomic force
microscopy. The chromium/gold (Cr/Au, 5 nm/70 nm) electrodes
were evaporated onto selected flakes by employing standard
e-beam lithography techniques (see Methods for details). All
transport measurements were made using a four terminal current
bias configuration in a temperature range of 20 mK to 4 K in a
dilution fridge.

Transport properties and superconductivity. We present
measurements on 12 flakes of varying thicknesses in the
E3–30 nm range, integrated in the described four-terminal
devices, with the aim of studying the effect of dimensionality
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reduction on the superconducting properties of TaS2. All devices
show a superconducting transition observed by four terminal
current bias measurements as a function of temperature. Figure 2
shows the current–voltage (I–V) and resistance–temperature
(R–T) characteristics for three representative devices having
thicknesses of 14.9 nm (Fig. 2a,b), 5.8 nm (Fig. 2c,d) and 4.2 nm
(Fig. 2e,f). The transport data for the thinnest 3.5 nm flake can be
found in the Supplementary Fig. 6. The zero bias, numerical
derivatives (dV/dI) as a function of temperature show a clear
superconducting transition for each device (Fig. 2b,d,f).
From these (interpolated) curves, we estimate Tc, taken at 50% of
the normal-state resistance. For the 14.9 nm flake, and despite
the fact that the sample does not attain a zero resistive state,
one may still appreciate that there is a phase transition centred
at 540±230 mK. This is in rough agreement with previously
reported Tc values of 600 mK for bulk 2H-TaS2 material47.
Interestingly, and in contrast with studies on other 2D
superconductors, the Tc values show a marked increase for the
thinner flakes of 5.8 nm (1.45±0.13 K) and 4.2 nm
(1.79±0.20 K). This peculiar result is discussed in detail below.
In addition, critical current densities increase by orders of
magnitude as the devices become thinner (14.9 nm,
JcE700 A cm� 2, 5.8 nm, JcE7� 104 A cm� 2 and 4.2 nm,
JcE5� 105 A cm� 2). In thin film superconductors with high
critical current densities, as those measured in our thinnest flakes,
Joule self-heating starts to play a role48. This explains the
pronounced asymmetry in the I–V characteristics for thinner
flakes (Fig. 2a versus Fig. 2e). As the current bias is swept from
high negative values through zero, non-equilibrium Joule heating
pushes the superconducting transition to a lower current value.
This asymmetry decreases as the temperature approaches Tc,
where Joule heating effects become less significant (Fig. 2e).

Effect of an external magnetic field on superconductivity. To
further characterize the devices at 50 mK, the upper critical field
(Bc2) of these type II superconductors is determined by applying an
external magnetic field, perpendicular to the surface of the flake.
Figure 3 shows colour scale plots of dI/dV–I curves as a function of
external field for the same three devices as in Fig. 2. Figure 3b
shows the zero-bias differential resistance as a function of external
field. From these curves, we estimate the Bc2 as the external field at
which the device returns to the normal-state resistance. Once

again, in accordance with the upper critical field reported for the
bulk material (110 mT), we measure a Bc2 of E130 mT for the
bulk-like 14.9 nm flake49. The thinner flakes present higher upper
critical fields of E0.9 T (5.8 nm) and E1.7 T (4.2 nm) following
the interesting trend for Tc. The critical fields at 50 mK allow
estimation of the superconducting Ginzburg–Landau coherence
lengths given by: Bc2(50 mK)¼j0/2px(50 mK) (ref. 2). The
coherence lengths for the 4.2 and 5.8 nm flakes are 13.9 and
19.1 nm, respectively, suggesting that these flakes are in the 2D
limit. To further qualify the 2D nature of the thinnest flakes, we
analyse the I–V and R–T curves (such as those in Fig. 2) of selected
devices at zero external field in order to infer the typical signature
of 2D superconductivity: the Berezinskii–Kosterlitz–Thouless
transition (see Supplementary Fig. 7 and Supplementary Note 3
for details). Note that this study can only be carried out for selected
thinner samples for which sufficient data are available. We find
that the transport data are consistent with a Berezinskii–Kosterlitz–
Thouless superconducting transition, further supporting the 2D
nature of the thinnest TaS2 flakes.

Effect of dimensionality on the superconducting state. We now
turn our attention to the collective behaviour of our 12 devices and
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the effect of reduced dimensionality on the superconducting
properties of TaS2. Figure 4 illustrates the measured Tc and Bc2 for
the devices reported. A bulk limit was found for samples over 10 nm
in thickness, such as the one in Figs 2a,b and 3a,b, for which the
superconducting properties were consistent with bulk crystals and
did not depend on the number of layers. It is interesting to note that
these types of flakes exhibit a non-zero residual resistance (red data
points) at base temperature, indicating a certain degree of crystalline
inhomogeneity and providing a plausible explanation to the slight
variation of Tc, similar to the variation in reported bulk values (0.6
and 0.8 K) (refs 25,50). The bulk-limit devices approach the edge of
the 2D limit set by the Ginzburg-Landau (GL) coherence length
(x¼ 55 nm) estimated from the bulk Bc2 (see Fig. 4b).

Discussion
In addition to thicker flakes that behave in a way consistent with
bulk properties, we also observe the superconducting transition in
devices made out of thinner TaS2 flakes, down to 3.5 nm
(B5 layers). Interestingly, we observe a strong enhancement of
Tc and Bc2 for thinner flakes, up to more than a factor of four
larger than in the bulk material. The Tc enhancement with

decreasing number of layers exhibited by the TaS2 samples is in
strict contrast to the Tc suppression previously reported in
elemental materials7, binary systems51 and even the closely
related dichalcogenide family member, NbSe2 (ref. 29). A
common theme in these studies is that as the material is
thinned down, substrate interactions, either from induced strain
or increased Coulomb interactions, suppress the formation of
Cooper pairs. In NbSe2 devices, a clear correspondence can be
made with a decrease in the residual resistance ratio (RRR) giving
an indication of increased substrate interactions or more probable
that flake degradation is more prevalent in thinner flakes30. This
agrees with our attempts to contact flakes thinner than 3.5 nm
showing a complete insulating state at room temperature.
Correspondingly, the RRR values (see Supplementary Fig. 8 for
details) for our TaS2 sample set show a significant reduction for
the two thinnest flakes. However, devices as thin as 4.5 nm still
maintain an RRR of 10, indicating pristine thin samples even
below our bulk limit of 10 nm.

An initial point that needs to be addressed once trying to
interpret the Tc enhancement is the possibility of electrochemical
doping coming from either the original crystals, or through
fabrication processes (lithography resists). Although it is well
understood that the Tc of TaS2 crystals is particularly sensitive to
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intrinsic non-stoichiometric doping52, we may rule out this effect
coming from the original crystals by having measured a bulk Tc of
B0.5 K. Now considering the potential doping coming from
environmental or intercalation interactions, Raman spectroscopy
provides us with strong evidence of the absence of such processes.
In contrast with the remarkable peak shifts displayed by
intercalated crystals of 2H-MX2 (ref. 53), the Raman spectra of
exfoliated flakes presented in the supplement (review
Supplementary Figs 3–5) show no significant change in crystal
structure for flakes of only four layers. Given that the flakes are
not undergoing intercalation through exfoliation or fabrication,
there could indeed be some doping coming from surface
contamination or from the oxide substrate. However, previous
studies show that gate-induced or surface-induced electrostatic
doping allows for a carrier density modulation of maximum ca
1012 cm� 2 (ref. 54), which is at least three orders of magnitude
lower than the estimated single-layer carrier concentration in
these metallic TMDCs (ca 1015 cm� 2) (refs 30,55). In this line,
these doping effects have shown to modulate Tc in NbSe2 by 8%
at most30. Finally, although substrate interactions have led to the
interesting Tc enhancements found in epitaxial grown FeSe on
STO, we rule out such effects as the TaS2 flakes presented here are
weakly coupled to the substrate. This suggests a deeper
mechanism as opposed to simple substrate interaction,
intercalation or degradation reported in previous studies.

A possible mechanism at work could be the enhancement of the
superconducting properties associated with a suppression of the
commensurate CDW order, which is in direct competition with
superconducting pairing19. This is consistent with the
interpretation presented of the enhanced Tc and Bc2 observed in
the studies of intercalation of TMDC, where it is argued that the
in-plane chemical doping leads to the suppression of the charge
density order, and in certain TMDCs under pressure where the
same claim is made49,56,57. To explore the effect of the CDW on
the DOS at the Fermi level as a function of reduced thickness, we
calculate the DOS from an effective one-orbital tight-binding
model and simulate the CDW at a mean field level as a periodic
potential that locally shifts the onsite energy (see Supplementary
Figs 9 and 10 and Supplementary Note 4 for details). We find that
the DOS at the Fermi level is not appreciably affected by the CDW
for reduced thicknesses. Ultimately, to determine if such a
competition with CDWs could be playing a role, one could
search for direct evidence of such suppression in STM studies of
thin flakes below the 10-nm bulk limit observed here.

An alternative explanation of the enhanced Tc could be a
change of the band structure of the material in atomically thin
flakes. To explore this possibility, we perform DFT calculations
and construct a simplified tight-binding model to study the
electronic band structure and DOS nN(0) as a function of the
sample thickness. The results of the calculation can be observed in
the Supplementary Figs 11 and 12 and Supplementary Notes 5
and 6. The resulting 2D bands contain hole pockets and show
saddle points below the Fermi level. These saddle points give rise
to van Hove peaks, whose height increases as the number of
layers is decreased, and ultimately diverge in the 2D limit.
However, the DOS per layer at the Fermi level nN(0) decreases as
the number of layer is reduced (see Supplementary Fig. 13 for
details). For a simplified model with a constant attractive
interaction V, the coupling constant, that ultimately determines
the Tc, takes the usual BCS value l¼VnN(0). This behaviour of
the DOS would suggest at first an analogous trend of Tc, which
does not suffice to explain the experiments. The value of the
superconducting gap and Tc can be influenced by the interactions
properties of the material. The effective coupling constant58

determining Tc is given by leff¼ l–m�, where l is the electron–
phonon coupling constant, and m�, known as Anderson–Morel

pseudo-potential, is a term that represents the renormalized
repulsive Coulomb interaction. In usual 3D superconductors
characterized by a featureless—hence constant—DOS, the
projection on the Fermi level of the high-energy degrees of
freedom gives rise to a pseudo-potential of the form m� ¼m/(1þm
ln(W/o0)), with o0 the characteristic phonon frequency, W the
system bandwidth and m the bare Coulomb repulsion. In a 2D
system, with a DOS characterized by a van Hove singularity near
the Fermi level, the renormalization of the bare m can be
significantly larger than in a 3D material. This effect is therefore
strongly dependent on the number of layers. For a generic DOS
nN(e), the pseudo-potential takes the form

m� ¼ m

1þm
RW
o0

de ~nNðeÞ=e

with ~nNðeÞ the total DOS normalized with its value at the Fermi
energy. Assuming a constant repulsive interaction U, one can
estimate m¼UnN(0). For a weak repulsion, the renormalization is
negligible and the effective coupling constant follows the DOS at
the Fermi level nN(0). For a relatively strong Coulomb repulsion,
the value of the pseudo-potential at the Fermi level can be strongly
affected by features of the DOS at higher energies, such as van
Hove singularities. As the number of layers is decreased, the
renormalization of a relatively strong repulsion for the band
structure in the model is sufficient to reverse the dependence of Tc

on the number of layers obtained from a simple electron–phonon
attractive interaction (see Supplementary Fig. 14 for details). This
analysis points to a non-negligible role of the Coulomb repulsive
interaction in superconducting 2H-TaS2, characterized by a
predominant Ta 5d orbital character at the Fermi level. The
Coulomb repulsion has also been proposed to be at the origin of
superconductivity in MoS2 (refs 59–61).

In conclusion, we have reported 2D superconductivity in
2H-TaS2 in atomically thin layers. In contrast to other van der
Waals superconductors such as NbSe2, we find that the Tc of this
material is strongly enhanced from the bulk value as the thickness
is decreased. In addition to a possible charge-density wave origin,
we propose a model in which this enhancement arises from an
enhancement of the effective coupling constant, which
determines the Tc. Our results provide evidence of an unusual
effect of the reduction of dimensionality on the properties of a
superconducting 2D crystal and unveil another aspect of the
exotic manifestation of superconductivity in atomically thin
transition metal dichalcogenides.

Methods
Crystal growth. Polycrystalline 2H-TaS2 was synthesized by heating
stoichiometric quantities of Ta and S in an evacuated quartz ampoule at 900 �C for
9 days. The growth of large single crystals from the polycrystalline sample was
achieved by employing a three-zone furnace. The powder sample was placed in the
leftmost zone of the furnace and the other two zones were initially brought to
875 �C and kept at that temperature for 1 day. Following, the temperature of the
source zone was risen to 800 �C during the course of 3 h. The temperature of the
centre zone was then gradually cooled down at a speed of 1 �C min� 1 until a
gradient of 125 �C was finally established between the leftmost (875 �C) and centre
(750 �C) zones. A gradient of 50 �C was also set between the rightmost and growth
zones. This temperature gradient was maintained for 120 h and the furnace was
then switched off and left to cool down naturally. The crystals were then thor-
oughly rinsed with diethyl ether and stored under an N2 atmosphere.

Device fabrication. Contact pads and optical markers are first created on the
surface of the Si/SiO2 substrates to locate and design contacts to the transferred
flakes. The contacts (chromium� 5 nm/ gold� 70 nm) are then patterned with
standard e-beam lithography (Vistec, EBPG5000PLUS HR 100), metal deposition
(AJA International) and subsequent lift-off in warm acetone. To preserve the
sample integrity, it is crucial to exfoliate, pattern the electrodes and load into the
dilution fridge within a few hours. In that respect and even after minimizing the
fabrication time, all attempts to contact flakes with thicknesses below 3.5 nm were
unsuccessful because of sample degradation.
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Band structure calculations. The DFT simulation of the band structure of
2H-TaS2 has been performed using the Siesta code on systems with different
number of layers62. We use the generalized gradient approximation, in particular,
the functional of Perdew, Burke and Ernzerhoff63. In addition, we use a
split-valence double-z basis set including polarization functions64. The energy
cutoff of the real space integration mesh was set to 300 Ry and the Brillouin zone k
sampling was set, within the Monkhorst–Pack scheme65, to 30� 30� 1 in the case
of multi-layer samples and 30� 30� 30 in the case of the bulk calculation. We use
the experimental crystal structure of 2H-TaS2 for all the calculations66.
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