CASE FILE COPY RESEARCH MEMORANDUM

UNCLASSIFIED

F 550

RNA

PRELIMINARY FREE-JET PERFORMANCE OF XRJ43-MA-3 RAM-JET

ENGINE AT MACH NUMBER OF 2,50

By Ivan D. Smith and William R. Prince

Lewis Flight Propulsion Laboratory Cleveland, Ohio

SPECIAL RELEASE not to be indexed, referenced, or given further distribution without

UNCL

approval of NACA.

CLASSIFICATION CHANGED To Unalassified By authority of Class. Chg. Matur # Date 12

FRO

Copy 22 **RM E55C28**

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

WASHINGTON

えいとい

PRELIMINARY FREE-JET PERFORMANCE OF XRJ43-MA-3 RAM-JET

CONFIDENTIAL

ENGINE AT A MACH NUMBER OF 2.50

Ivan D. Smith

Ivan D. Smith Aeronautical Research Scientist Propulsion Systems

William R.C.

William R. Prince Aeronautical Research Scientist Propulsion Systems

Approved:

William A. Fleming Aeronautical Research Scientis Propulsion Systems

Rue 1. Le mu des

Bruce T. Lundin Chief Engine Research Division

maa - 3/25/55

NACA-Cleveland

CONFIDENTIAL

FOREWORD

To permit expeditious transmittal of performance data to those concerned, figures and a tabulation of "preliminary data" are presented herein. Preliminary data are test data that have not received the complete analysis and extensive cross-checking normally given a set of NACA data before release.

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

PRELIMINARY FREE-JET PERFORMANCE OF XRJ43-MA-3 RAM-JET

ENGINE AT A MACH NUMBER OF 2.50

By Ivan D. Smith and William R. Prince

SUMMARY

The performance characteristics of the XRJ43-MA-3 model 20B3 ramjet engine have been investigated in a free-jet facility as a part of the development program for the "Bomarc," ram-jet powered, interceptortype missile.

The performance characteristics and combustor blow-out limits of the ram-jet engine are presented for a Mach number of 2.50, altitudes from 44,000 to 65,000 feet, Miami cold day and hot day inlet temperatures $(790^{\circ} \text{ and } 873^{\circ} \text{ R}, \text{ respectively, at altitudes above 50,000 ft})$, and angles of attack between $\pm 7^{\circ}$.

The diffuser supercritical mass-flow ratio and the critical pressure recovery both decreased as angle of attack deviated from zero. The diffuser was unstable during subcritical operation. Areas of high and low Mach number developed at the diffuser outlet as pressure recovery was decreased to low engine thrust conditions. Angle of attack changed the positions of the diffuser-outlet Mach number contours, but had little effect on their severity.

A discontinuity occurred in all the performance data when combustion screech was encountered. Combustion screech, which was generally encountered in the medium-to-high fuel-air-ratio range, improved the performance, but the severity or destructiveness could not be determined because of the heavy duty engine used in this investigation. A hysteresis occurred when the fuel-air ratio was increased and decreased, taking the combustor into and out of screech.

Angle of attack and inlet temperature had little effect on engine performance, while increasing the altitude from 44,000 to 65,000 feet decreased the net thrust coefficient between 0.05 and 0.10. During combustor screech, altitude had a very small effect on engine performance.

In general, the combustor blow-out limits were decreased as altitude was increased or inlet temperature decreased.

CX-1

INTRODUCTION

CONFIDENTIA

The performance characteristics of the XRJ43-MA-3 model 20B3 ramjet engine have been investigated by free-jet technique in an altitude test chamber at the NACA Lewis laboratory. This investigation was conducted in cooperation with the Air Research and Development Command, U. S. Air Force, as a part of the development program for the "Bomarc," ram-jet powered, interceptor-type missile.

The interim Bomarc missile, for which this investigation was specifically conducted, requires engine operation between Mach numbers of 2.2 and 2.7 at altitudes from 30,000 to 65,000 feet. Rated thrust must be attainable at angles of attack between $\pm 4^{\circ}$ with inlet temperatures between those prescribed by the Miami cold day and Miami hot day schedules. Stable combustion must be possible at angles of attack to $\pm 7^{\circ}$ with a Miami cold day inlet temperature.

The performance data presented herein include the inlet-air-flow calibration, supersonic diffuser performance, combustor performance, combustor blow-out limits, and engine net thrust coefficient at a Mach number of 2.50, altitudes from 44,000 to 65,000 feet, Miami cold day and hot day inlet temperatures (790° and 873° R, respectively, at altitudes above 50,000 ft), and angles of attack between $\pm 7^{\circ}$. Facility air-flow limits prevented operation below an altitude of 44,000 feet. Combustion data are given over a range of fuel-air ratios with three different fuel-injection methods.

APPARATUS

Facility

The installation of the XRJ43-MA-3 ram-jet engine in the altitude test chamber is shown in figure 1. Air with moisture content of approximately 9 grains per pound of air was supplied to the entrance of the supersonic free-, jet nozzle at the required total pressure and temperature, and accelerated through the supersonic nozzle to the desired Mach number at the nozzle exit. The engine inlet was immersed in the supersonic stream at the nozzle exit. Angle irons and wire screens in the plenum chamber and on the supersonic nozzle inlet straightened the inletair profile. A jet diffuser was installed on the supersonic nozzle exit for part of this investigation, allowing a decrease in the facility pressure ratio and an increase in altitude. The supersonic nozzle was pivoted about a horizontal axis to simulate angles of attack between $\pm 7^{\circ}$. A shadowgraph system was used to determine the inlet shock pattern. The combustor in operation was observed by means of a periscope that was located downstream of the engine and that afforded a view of the combustion region through the exhaust nozzle.

Engine

A cross-sectional view of the heavy duty XRJ43-MA-3 ram-jet engine used in this investigation is shown in figure 2. Indicated in the figure are the diffuser inner body and longeron supports, the diffuser grid, the fuel system, the flame holder, and the instrumentation stations. The internal geometry of the heavy duty engine used is identical with the flight engine.

The projected area of the cowl lip was 0.403 and the throat area of the exhaust nozzle was 0.703 percent of the maximum combustion-chamber flow area. The inner body was supported by three equally spaced longerrons. About 1 percent of the inlet air flow was bled overboard from an air scoop in the main longeron to simulate air used by an air turbinedriven fuel pump in the flight engine. To simulate the flight installation, the engine was mounted in the altitude test chamber so that the main longeron was 45° counterclockwise at the top centerline when looking downstream. A grid, which was composed of two-dimensional airfoils (figs. 2 and 3) and had a blockage of about 38 percent, was located in the inlet diffuser. The purpose of this grid was to act as a flow-straightening screen and to optimize the position of the diffuser shock wave in order to eliminate shock-induced separation.

The engine fuel-injection system had two branches (figs. 2 and 3). One branch had 12 spray nozzles in the inner ring and 4 pairs of nozzles mounted at a radius outside the outer ring. The other branch had 16 spray nozzles in the outer ring. All spray nozzles used were a spring-loaded variable-area type. The fuel used during this investigation was clear gasoline having a hydrogen-carbon ratio of 0.182 and a lower heating value of 18,800 Btu per pound.

The flame holder used was a baffle-type with one annular V-gutter connected to the inner body by eight radial V-gutters (fig. 4). Flameholder projected blockage of the annular area was approximately 52 percent. A propane-air system with an electric spark was located inside the section of the inner body shown in figure 4(b) and used for ignition.

Instrumentation

Instrumentation stations are shown in figures 1 and 2. Total pressures were measured at stations 0, 2, and 5; wall static pressures were measured throughout the entire length of the engine (fig. 2); and temperature was measured at station 0. All pressures were measured by mercury manometers, the wells of which were open to atmospheric pressure. Atmospheric pressure was measured by an absolute mercury manometer. All manometer readings were recorded photographically. Temperatures were recorded by a self-balancing potentiometer.

The fuel flow to each of the two branches of the fuel system was measured by a positive-displacement electronic flowmeter. These flowmeters were calibrated by comparison with standard rotameters.

Air-Flow Calibrator

The air flow through the engine is determined from the effective capture area of the supersonic diffuser and the total pressure and temperature upstream of the supersonic nozzle. (The symbols used and the calculations are presented in appendixes A and B, respectively.) Coldflow tests with an air-flow calibrator (fig. 5) were used to determine the effective capture area of the diffuser. The diffuser total-pressure ratio was varied by means of a butterfly valve. The flow was smoothed downstream of the valve by six 2-mesh 0.062-inch wire screens so that the pressure profile and, hence, the exhaust-nozzle discharge coefficient would be the same as with combustion. The same exhaust nozzle was used on the air-flow calibrator as on the combustor.

PROCEDURE

The XRJ43-MA-3 fuel control calls for three different types of operation during flight. For low thrust, the fuel system with 20 spray nozzles (see APPARATUS) is used alone. This use is referred to as innerring-only operation and is used to an over-all fuel-air ratio of about 0.035. For intermediate thrusts, the inner ring is held at a fuel-air ratio of approximately 0.035 and additional fuel is injected through the system with 16 spray nozzles (outer ring) until the desired thrust is attained. This type of operation is referred to as dual-pressure and is used until the pressure in the two fuel systems is equal (approximate over-all fuel-air ratio of 0.065). For high thrust, a common fuel pressure is supplied to both fuel branches. This procedure is referred to as single-pressure operation and is used for all fuel-air ratios above 0.065. The two branches of the fuel system were controlled independently during these tests, but the types of operation encountered during flight were simulated. These types of operation were not directed specifically to the interim engine.

Data were taken at the following angles of attack with each method of fuel injection at the seven inlet conditions listed:

CONFIDENTIAL

Inlet		Altitude,	Angle of attack, a, deg					
tempera	ture,	ft	Inner	Dual	Single			
°R			ring only	pressure	pressure			
Miami 812		45,000	+4	+4	0,+4			
cold	790	50,000	0,±4	+4	0,±4,-7			
day	790	60,000	0,±4	0, <u>+</u> 4	0,±4			
	790	65,000	0,+4	0,+4	0,+4			
Miami	914	45,000	+4	+4				
hot	873	60,000	<u>±4</u>	±4	4±ر0			
day	873	65,000	+4	+4	+4			

Data were taken over apporixmately the following fuel-air-ratio range with each fuel injection method: inner-ring-only, 0.030 to 0.050; dual-pressure, 0.040 to 0.070; single-pressure, 0.040 to 0.080. Lean blow-out data were taken with inner-ring-only fuel injection and rich blow-out data were taken with both dual-pressure and single-pressure fuel injection. To check the effect on performance of variations in the fuel control, dual-pressure fuel injection was run with the two nominal innerring fuel-air-ratio settings of 0.033 and 0.037.

Data were taken with and without the jet diffuser attached to the supersonic nozzle.

The combustor was ignited before the flow was established in the supersonic nozzle (i.e. with subsonic flow at the engine inlet) and then the exhaust pressure was lowered until the supersonic flow was established.

RESULTS

The engine performance data obtained are summarized in table I. Shown in graphic form are the engine-inlet air-flow calibration, diffuser-outlet Mach number contours, engine performance, and combustor blow-out limits.

The engine-inlet air-flow calibration is presented in figure 6, which gives the relation between diffuser total-pressure recovery and inlet mass-flow (or capture-area) ratio for several angles of attack at inlet temperatures of 790° (MCD) and 873° R (MHD) and an altitude of 60,000 feet. Over the range of angles of attack investigated, the supercritical mass-flow ratio decreased a maximum of 0.025 from the value at zero angle of attack. The supercritical mass-flow ratio also decreased about 0.013 as the inlet temperature was decreased from 873° to 790° R. The diffuser critical total-pressure recovery decreased about 0.03 at

 $\pm 4^{\circ}$ angles of attack and about 0.06 at $\pm 7^{\circ}$ angles of attack from the value at zero angle of attack (approximately 0.66). The diffuser critical pressure recovery also decreased about 0.005 as the inlet temperature was decreased from 873° to 790° R. During subcritical diffuser operation, the inlet shock pattern interferred with the supersonic nozzle flow and changed the Mach number slightly. However, shadowgraph observations and high-speed instrumentation both indicate that the diffuser was unstable during subcritical operation.

The diffuser-outlet (station 2) Mach number contours are presented in figure 7. High combustor total-pressure loss and upstream burning will result if the Mach number variation entering the combustor is too severe. The Mach numbers were calculated from the total-pressure readings and the static pressure assuming uniform static pressure across the passage as determined from the wall static measurements at each rake. The four wall static pressures were generally within ±0.01 of the average. Altitude, inlet temperature, and combustion had little or no effect on the diffuser-outlet Mach number contours. The effect of diffuser totalpressure recovery on the diffuser-outlet Mach number contours at zero angle of attack can be seen in figure 7(a). The difference between maximum and minimum Mach numbers increased from 0.16 to 0.49 as diffuser total-pressure recovery decreased from 0.658 to 0.421 at zero angle of attack. Variation of the diffuser-outlet contours with angle of attack is shown in figures 7(b) and (c) for diffuser total-pressure recoveries of approximately 0.595 and 0.475, respectively. Angle of attack changed the positions of the diffuser-outlet contours, but had little effect on their severity. The occurrence of combustion screech caused a shift in the diffuser-outlet contours but no increase in severity of the profile.

The performance of the engine is presented in figures 8 to 12. All performance figures show combustor-outlet total pressure, combustor totalpressure ratio, diffuser total-pressure recovery, combustor-inlet Mach number, combustion efficiency, and engine net-thrust coefficient as functions of fuel-air ratio. In this preliminary report no attempt will be made to explain trends and only a few major points will be discussed.

A discontinuity occurred in all the performance data when combustion screech was encountered. Combustion screech was generally encountered in the medium-to-high fuel-air-ratio range, and the frequency of oscillation was determined to be from 600 to 700 cycles per second. Combustion screech improved the performance, but the severity or destructiveness could not be determined because of the heavy duty (water-cooled boiler plate) engine used in this investigation. Therefore, the effect on a flight weight engine is unknown. A hysteresis occurred when the fuelair ratio was increased and decreased, taking the combustor into and out of screech.

CONFIDENTIAL

The engine performance at an altitude of 60,000 feet and an inlet temperature of 790° R (MCD) is shown on figure 8. Performance with the three different types of fuel injection are shown in parts (a), (b), and (c) of this figure. Angle of attack had a small effect on performance over the range investigated (between $\pm 4^{\circ}$). Data at two different innerring fuel-air-ratio settings (0.033 and 0.037) were obtained during dualpressure fuel-injection operation and each are indicated on part (b). This variation had a negligible effect on performance and is not indicated on all remaining performance figures. The effect of the addition of the jet diffuser to the supersonic nozzle is also shown in figure 8. The jet diffuser had a negligible effect on performance of the engine so that on succeeding figures no differentiation is made between operation with or without the jet diffuser.

The engine performance at two other inlet conditions (altitude, 60,000 ft and inlet temperature, 873° R; altitude, 50,000 ft and inlet temperature, 790° R) is presented in figures 9 and 10. All three fuelinjection methods are presented on the same figure so that a direct comparison can be made between them. Inner-ring-only operation gave better performance to a fuel-air ratio of about 0.05 than dual-pressure operation. Dual-pressure and single-pressure operation gave similar results over the range of fuel-air ratios investigated. Angle of attack also had a small effect on performance at these inlet conditions.

The effect of inlet temperature on engine performance is shown in figure 11 at an altitude of 60,000 feet and an angle of attack of $+4^{\circ}$. A slightly higher net thrust coefficient was obtained at an inlet temperature of 790° R than at 873° R.

The effect of altitude on engine performance is presented in figure 12 at the Miami cold day inlet temperatures and an angle of attack of $+4^{\circ}$. The three fuel-injection methods are separated because of the volume of data and are shown on parts (a), (b), and (c). The net thrust coefficient decreased as altitude was increased and was between 0.05 and 0.10 lower at 65,000 feet than at 45,000 feet if the combustor was not screeching. During combustor screech, altitude had a very small effect on engine performance.

The combustor blow-out limits are presented in figures 13 and 14 for all conditions investigated. The combustor fuel-air ratio at blowout is shown in figure 13 and the approximate diffuser total-pressure recovery at blow-out is shown in figure 14. Rich blow-out data were taken with either dual-pressure or single-pressure fuel injection (as indicated) and lean blow-out data were taken with inner-ring-only fuel injection. In general, the combustor blow-out limits were decreased as altitude was increased or inlet temperature decreased.

3635

SUMMARY OF RESULTS

CONFIDENTIAL

The performance of the XRJ43-MA-3 ram-jet engine, tested in a freejet facility at a Mach number of 2.50, was as follows:

The inlet supercritical mass-flow ratio decreased a maximum of 0.025 as the angle of attack deviated from zero to $\pm 7^{\circ}$. The diffuser critical total-pressure recovery decreased about 0.03 and 0.06 at angles of attack of $\pm 4^{\circ}$ and $\pm 7^{\circ}$, respectively, from the value at zero angle of attack. The diffuser was unstable during subcritical operation.

Altitude, inlet temperature, and combustion had little or no effect on the diffuser-outlet Mach number contours. The difference between maximum and minimum Mach numbers increased from 0.16 to 0.49 as diffuser total-pressure recovery decreased from 0.658 to 0.421 at zero angle of attack. Angle of attack changed the positions of the diffuser-outlet contours, but had little effect on their severity. Combustion screech caused a shift in the diffuser-outlet contours but no change in the severity of the profile.

A discontinuity occurred in all the performance data when combustion screech was encountered. Combustion screech, which was generally encountered in the medium-to-high fuel-air-ratio range, improved the performance, but the severity or destructiveness could not be determined because of the heavy duty engine used in this investigation. A hysteresis occurred when the fuel-air ratio was increased and decreased, taking the combustor into and out of screech.

Angle of attack, inlet temperature, and the two inner-ring fuel-airratio settings on dual-pressure fuel injection all had a small effect on performance over the ranges investigated. The net thrust coefficient decreased as altitude was increased and was between 0.05 and 0.10 lower at 65,000 feet than at 45,000 feet if the combustor was not screeching. During combustor screech, altitude had a very small effect on engine performance.

In general, the combustor blow-out limits were decreased as altitude was increased or inlet temperature decreased.

Lewis Flight Propulsion Laboratory National Advisory Committee for Aeronautics Cleveland, Ohio, March 25, 1955

APPENDIX A

CONFIDENTIAL

SYMBOLS

The following symbols are used in this report:

A	area, sq ft
C	coefficient
F	thrust, lb
g	acceleration due to gravity, 32.174 ft/sec^2
М	Mach number
MCD	Miami cold day temperatures
MHD	Miami hot day temperatures
Ρ	total pressure, lb/sq ft abs
р	static pressure, lb/sq ft abs
R	gas constant, 53.34 ft-lb/(lb)(^O R)
T	total temperature, ^O R
v	velocity, ft/sec
W	flow rate, lb/sec
α	angle of attack, deg
r	ratio of specific heats
η	efficiency
ρ	density, lb/cu ft

Subscripts:

a air

b combustor

CX-2

CONFIDENTIAL NACA RM E55C28 10 discharge d f fuel g gas N nozzle netn stream tube (at free-stream conditions) having same area as 0 engine inlet engine inlet 1 diffuser outlet or combustor inlet 2 combustion chamber (28 in. diam.) 3 5 exhaust-nozzle throat 6 exhaust-nozzle exit

APPENDIX B

METHODS OF CALCULATIONS

Combustor air flow. - The combustor air flow was determined from nonburning conditions as follows:

$$W_{a,5} = \frac{P_5}{\sqrt{T_5}} A_5 C_{d,5} \sqrt{\frac{\gamma_{5g}}{R}} \left(\frac{2}{\gamma_5 + 1}\right)^{\frac{\gamma_5 - 1}{2(\gamma_5 - 1)}}$$

where A_5 is 2.996 square feet, no total-temperature loss $(T_0 = T_5)$ is assumed, and $\gamma_5 = 1.4$. Information supplied by the manufacturer and small-scale nozzle tests indicate the exhaust-nozzle discharge coefficient $C_{d,5}$ to be about 0.975. Therefore the air-flow equation is:

$$W_{a,5} = 1.553 \left(\frac{P_5}{P_0}\right) \frac{P_0}{\sqrt{T_0}}$$
 (B1)

r=+1

Very little combustion data were taken with the diffuser operating subcritically. Therefore, the diffuser supercritical air flow was used for all combustion data and $P_5/P_0 = \text{constant}$ (for a given angle of attack and inlet temperature).

The average supercritical values of P_5/P_0 as determined from the air-flow calibration are:

Angle of attack, α, deg	Inlet temperature, T _O , ° _R ,	P ₅ /P ₀
0 -4 +4 -7 +7 0 -4	790 873	0.2107 .2087 .2105 .2052 .2070 .2137 .2114 .2135
-7 +7		.2082 .2100

An inlet-air-flow calibration was not obtained at 0° , $+4^{\circ}$, and $+7^{\circ}$ angles of attack at an inlet temperature of 873° R. Therefore, the effect of angle of attack on P_5/P_0 as determined at an inlet temperature of 790° R was also applied to the data at an inlet temperature of 873° R.

Inlet mass-flow ratio (or capture-area ratio). - A small amount of air was bled overboard to simulate that used by the air-turbine-driven fuel pump in flight. This air bleed was determined to be about 0.01 so that

$$\frac{W_{a,5}}{W_{a,1}} = 0.99$$

÷ D

but

$$\frac{\frac{W_{a,5}}{W_{a,1}}}{\left(\frac{W_{a,1}}{W_{a,0}}\right)A_{0}P_{0}M_{0}\sqrt{\frac{\gamma_{0}g}{RT_{0}}}\left[1 + \frac{\gamma_{0} - 1}{2}M_{0}^{2}\right]^{-\frac{\gamma_{0}+1}{2(\gamma_{0}-1)}}$$

where $A_0 = A_1 = 1.7194$ square feet, $\gamma_0 = 1.4$, and

$$\frac{W_{a,1}}{W_{a,0}} = 4.524 \frac{P_5}{P_0}$$
(B2)

The values of P_5/P_0 were determined from the air-flow calibration.

Exhaust-gas temperature. - The exhaust-gas temperature was calculated from the following equation:

$$T_{5} = \left[\frac{P_{5}A_{5}C_{d,5}g}{W_{g,5}}\sqrt{\frac{\gamma_{5}}{gR}}\left(\frac{2}{\gamma_{5}+1}\right)^{\frac{\gamma_{5}+1}{2(\gamma_{5}-1)}}\right]^{2}$$

where $A_5 = 2.996$ square feet, and $C_{d,5} = 0.975$.

$$f(\gamma_{5,R}) = \sqrt{\frac{\gamma_5}{gR}} \left(\frac{2}{\gamma_5 + 1}\right)^{\frac{15+1}{2}(\gamma_5 - 1)}$$

Therefore,

$$T_{5} = \left[\frac{94.0 P_{5} f(\gamma_{5,R})}{W_{f} + W_{a,5}}\right]^{2}$$
(B3)

 $f(\gamma_{5,R})$ was determined from reference 1 and the engine fuel-air ratio.

Combustion efficiency. - The combustion efficiency was defined as

$$\eta_{\rm b} = \frac{\mathrm{T}_5 - \mathrm{T}_0}{\mathrm{\Delta}\mathrm{T}_{\rm ideal}} \tag{B4}$$

where $\Delta T_{\rm ideal}$ was obtained from reference 2 using $\rm T_O$ and the engine fuel-air ratio.

Net thrust coefficient. - The net thrust is defined as

$$F_{n} = \eta_{N} \frac{W_{g,6}}{g} V_{6} + (\eta_{N} p_{6} - p_{0}) A_{6} - \frac{W_{a,1}}{g} V_{0}$$
$$= \eta_{N} p_{6} A_{6} (1 + \gamma_{6} M_{6}^{2}) - \gamma_{0} p_{0} \frac{W_{a,1}}{W_{a,0}} A_{0} M_{0}^{2} - p_{0} A_{6}$$

The net thrust coefficient is defined as

$$C_{F_n} = \frac{F_n}{\frac{\rho_0}{2g} V_0^2 A_3}$$

but

$$\frac{{\rho_0 V_0}^2}{2g} = \frac{{\gamma_0 {\rho_0 M_0}}^2}{2}$$

and

$$C_{F_{n}} = \frac{\eta_{N} p_{6} A_{6} (1 + \gamma_{6} M_{6}^{2}) - \gamma_{0} p_{0} \frac{W_{a,1}}{W_{a,0}} A_{0} M_{0}^{2} - p_{0} A_{6}}{\frac{\gamma_{0}}{2} p_{0} M_{0}^{2} A_{3}}$$

where $A_3 = A_6$ and it is assumed that $P_6 = P_5$

$$C_{F_{n}} = \left[\frac{2\eta_{N}}{\gamma_{0}M_{0}^{2}} \left(\frac{P_{6}}{P_{6}}\right) \left(1 + \gamma_{6}M_{6}^{2}\right)\right] \frac{P_{5}}{P_{0}} - 2\left(\frac{A_{0}}{A_{6}}\right) \left(\frac{W_{a,1}}{W_{a,0}}\right) - \frac{2}{\gamma_{0}M_{0}^{2}}$$

where $A_0 = A_1 = 1.7194$ square feet, $A_5 = 2.996$ square feet, $A_6 = 4.276$ square feet, and it is assumed that $M_0 = 2.50$, $\gamma_0 = 7/5$, $\gamma_6 = 9/7$, $C_{d,5} = 0.975$, and $\eta_N = 0.97$. Then

CONFIDENTIAL

NACA RM E55C28

$$C_{F_n} = 3.587 \frac{P_5}{P_0} - 0.8042 \frac{W_{a,1}}{W_{a,0}} - 0.2286$$

where $W_{a,1}/W_{a,0}$ was assumed to a constant for each inlet temperature and angle of attack. Values can be calculated from the table of values of P_5/P_0 (p. 11) and equation (B2).

REFERENCES

- Whitaker, R. C.: Methods for Reducing and Processing Data from Free-Jet Tests of Ramjet Engines. Rep. 5362, Marquardt Aircraft Co., Nov. 23, 1953. (Contract AF33(038)-19589, Proj. 50, Boeing P.O. 350141-952.)
- Mulready, Richard C.: The Ideal Temperature Rise Due to the Constant Pressure Combustion of Hydrocarbon Fuels. Meteor Rep. UAC-9, Res. Dept., United Aircraft Corp., July 1947. (Proj. Meteor, Bur. Ord. Contract NOrd 9845 with M.I.T.)

NACA RM E55C28

CONFIDENTIAL

TABLE I. - PRELIMINARY FREE-JET PERFORMANCE OF XRJ43-MA-3 RAM-JET ENGINE AT A MACH NUMBER OF 2.50 () + + -(• 5 Ģ r, -.

						1		A		
	Net thrust coefficient, CFn	0.744 .820 .830 .830 .8850 .907	.700 .733 .781 .781 .798 .813 .852 .852	0.775 .805 .811 .843 .856	.875 .915 .921 .925 .914	.788 .810 .830 .848 .848	. 780 . 806 . 825 . 825	.854 .856 .861 .879 .529	0.784 .828 .845 .865 .865 .865	. 703 . 744 . 775 . 799 . 808 . 833
	combustion efficiency, $\eta_{\rm b}$	0.941 .904 .910 .897 .908 .938	.865 .861 .863 .863 .861 .861 .861	0.935 938 911 915	919 950 952 953	946 935 924 925 925 925	835 835 835 835 835 835 835 835 835 835	.901 .907 .923 .923	0.904 .904 .899 .891 .891	.899 .885 .894 .900 .918 .913
	Exhaust gas total temper- ature, °5, °R	3605 3803 3812 3812 3812 3812 3812 3812 3904 3904	3437 3533 3661 36651 3695 3704 3715 3742	3643 3728 3822 3822 3848	3883 3983 3979 3858 3884	3734 3791 3832 3832 3836 3936 3936	3642 3699 3741 3828	3734 3796 3839 3894 2862	3628 3755 3783 3783 3828 3785 3785 3785 3785 3563	3557 3709 3863 3863 3863 3863 3865 3855
	Fuel air ratio, Wr Wa,5	0.0506 0558 0618 0618 0664 0723	.0523 .0561 .0624 .06297 .0697	0.0524 .0551 .0581 .0617 .0617	.0678 .0721 .0742 .0767	.0542 .0575 .0610 .0610 .0641 .0673	.0536 .0585 .0615	.0641 .0654 .0661 .0678	0.0552 .0607 .0639 .0639 .0704 .0741	.0520 .0593 .0638 .0679 .0719 .0750
	Fuel flow, Wf' lb/sec	3.23 3.53 5.92 5.92 5.92 5.92 5.92 5.92 5.92 5.92	3.31 3.57 3.57 3.57 4.17 4.17 4.17 4.17	22.55 22.98 3.11 3.11 3.11 3.11 3.11 3.11 3.11 3.1	3.27 3.47 3.57 3.77 3.77	2.58 2.290 3.221 3.321 3.321	96.28 3.96 3.96 5.96 5.96 5.96 5.96 5.96 5.96 5.96 5	3.08 3.15 3.20 1.94	2.21 2.21 2.21 2.21 2.21 2.21 2.27	2.26 2.26 2.26
CLADIN	Combustor total pressure P5 P2	0.848 .848 .850 .851 .851 .851 .851	.855 .855 .848 .845 .845 .838 .838 .838	0.839 847 846 850 848	849 846 842 842 840	.843 .848 .848 .850 .850 .848	.841 .849 .848	.850 .849 .851 .851 .851	0.826 825 828 828 828 820 824	819 823 823 823 823 818 818
oafur Tani a	Engine total pressure ratio, P5 P0	0.485 491 506 517 517 525 530	472 495 500 504 515	0.493 .502 .503 .512 .512	521 532 535 535	495 501 512 512 512 513	.494 .502 .507	512 516 522 419	0.496 .508 .513 .513 .518 .518 .518	.476 .488 .496 .503 .513
	Diffuser total pressure recovery, PO	0.572 .580 .595 .598 .609 .609	555 584 591 591 600	0.588 .592 .603	614 629 637 637	588 591 602 612	.588 .591 .598	.603 .607 .613	0.600 613 622 628 626 621 621	582 590 5598 614 621
ressur	Exhaust nozzle total pressure, F5, 1b sq ft abs	2691 2704 2815 2860 2899 2899	2607 2675 2735 2735 2759 2811 2811 2842	2042 2076 2085 2114 2135	2162 2204 2208 2219 2196	2050 2068 2095 2123 2152 2152 2152	2047 2078 2096 2150	2116 2154 2152 2156 2156	1286 1286 1314 1314 1326 1328 1328 1328	1241 1255 1279 1298 1303 1319
lg⊥e∞p1	Diffuser outlet total pressure, P_2 , 1b sq ft abs	3175 3189 3280 3310 3366 3425 3425	3051 3138 3227 3326 3355 3355 3355	2434 2450 2466 2488 2488 2519	2548 2606 2621 2643 2643	2433 2440 2474 2497 2538 2558	2435 2449 2672 2539	2491 2513 2529 2533 2190	1557 1569 1593 1601 1589 1589	1516 1518 1542 1564 1564 1593 1597
a) Sin	Diffuser outlet Mach number,] M2	0.318 .311 .296 .296 .285 .268	.314 .304 .304 .307 .307 .277	0.290 .292 .293 .278 .278	.286 .261 .257 .245	.302 .282 .281 .284	295 294 295	.290 .277 .274 .274	0.274 .271 .2655 .2565 .259 .229	222 2303 2303 2303 2303 2303 2303 2303
	Combustor supercritical air flow, Wa,5' lb/sec	63.89 63.27 63.41 63.54 63.554 63.250 63.91 63.91	6666652 6666652 666552 665555 66555 655555 655555 655555 655555 655555 65555 65555 65555 65555 65555 65555 655555 655555 655555 655555 655555 655555 655555 655555 6555555	48.11 48.10 48.17 47.99 48.11	48.23 48.15 48.09 48.22 48.00	47,59 47,59 47,56 47,756 47,72 47,73 47,58	48.15 48.18 48.10 49.36	48.03 48.14 48.42 47.88	20.24 29.88 29.88 29.88 29.88 29.88 29.88 29.88 29.76	28.99 28.99 28.99 28.94 28.94 28.94 28.94 28.94 29.23
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Free- Free- stream total pressure, PO 1D 30 ft abs	5551 5553 5510 5534 5531 5532 5522 5559	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4141 4140 4143 4127 4127 4138	4148 4141 4136 4147 4128	4141 4128 4135 4149 4150 4150	4141 4144 4137 4245	4131 4140 4164 4130 4225	2594 25594 25557 25557 25559 25559 25559 25559	2606 2574 2581 2581 2578 2578 25770
	Free- stream total temper- ature, oR	808 810 812 812 812 817 817 810	815 814 813 813 813 813 813 813 813 813 813 813	793 793 792 792 792	792 792 792 792	795 794 794	792 792 792	792 792 792 792	788 788 788 788 788 788 788 788	854 867 870 871 874 878
	Angle of attack, deg	o <u> </u>	4	° ——		*	• ‡		0	
	Alfitude, ft	44,000		50,000					60,000	

3635

TABLE I. - Continued. PRELIMINARY FREE-JET PERPORMANCE OF XRJ45-MA-3 RAM-JET ENGINE AT A MACH NUMBER OF

Concluded. Single-pressure fuel injection

(a)

NACA RM E55C28

3635

16

2.50

会ぐぐ会ぐ $\{0\}, \{0\}$

-\$4

37043

CONFIDENTIAL

*** > 00 **

3

38.83

TABLE I. - Continued. PRELIMINARY FREE-JET PERFORMANCE OF XRJ43-MA-3 RAM-JET ENGINE AT A MACH NUMBER OF 2.50

final infaction ÷ - uc n . n (h) Innan.

NACA RM E55C28

	Net thrust coefficient, C _F n	0.224 4455 .5115 .551 .551	0.407 .416	0.252 .373 .438 .506 .545	.245 .357 .501 .539 .539 .554	0.252 .370 .432 .504 .534	0.237 .318 .414 .471 .504	226 396 435 506	178 241 178 1413 178	211 .392 .432	.208 .288 .356 .415	0.195 .290 .360 .401	.166 294 402 453 314 314
	combustion efficiency, $\eta_{\rm b}$	0.565 .685 .744 .760 .757 .751	0.725 .732	0.586 .679 .716 .722 .716	566 559 751 751 751 751 751	0.579 666 696 715 715	0.547 604 652 652 671 688 711	572 574 645 645 670	526 633 668 712	508 631 631	543 611 651 671	0,484 .552 .593 .592 .592	454 558 601 595 601 595
	Exhaust gas total temper- ature, T5, oR	1899 2293 2580 2784 2904 2675	2489 2539	1940 2285 2484 2684 2790	1910 2243 2553 2738 2738 2797 2846 2846 2955	1929 2266 2452 2652 2652 2738	1872 2097 2376 2536 2645 2846	1848 2041 2316 2447 2667	1886 2191 2371 2615 2615 2861	1790 2308 2417 2528	1943 2189 2410 2588 2708	1742 2007 2209 2316 2557	1670 2025 2140 2336 2465 22657
	Fuel air ratio, Wr Wa,5	0.0294 0339 0380 0380 0423 0428	0.0367	0.0299 0345 0377 0377 0427	0304 0347 0382 0420 0453 0453	0.0349 0349 0425	0.0304 0391 0391 0443 0487	0313 0343 0343 0418 0418	0295 0345 0380 0429 0429	0303 0386 0420	.0306 .0341 .0380 .0380 .0419	0.0303 .0347 .0383 .0383 .0419	.0296 .0348 .0377 .0417 .0417 .0463
	Fuel flow, Wf, lb/sec	1.88 2.968 2.968 2.968 2.968 2.968 2.968 2.968 2.968 2.968 2.968 2.968 2.968 2.968 2.9586 2.958 2.958 2.958 2.958 2.9586 2.957676 2.9576 2.9576 2.9576 2.957676 2.9576 2.957	2.24 2.27	1.43 1.66 1.81 2.05 2.22	2211-25 221-25 25-21-11-65 25-21-11-11-65 25-21-11-11-11-11-11-11-11-11-11-11-11-11-	1.44 1.68 2.05 2.21	0.92 1.05 1.18 1.28 1.28 1.28	1.02 1.16 1.25 1.25		.91 1.16 1.26 1.35		0.72 .82 .92 1.100 1.10	70 889 1.10 86
	Combustor total pressure P P P P P P	0.807 826 838 843 845 845	0.823	0.815 825 831 831 831	4858 8220 8258 8258 8258 8258 8258 8258 8	0.820 .826 .828 .832 .832	0.815 .826 .833 .835 .835 .835 .835 .835 .835	798 811 821 828	793 803 816 816 821	.811 .831 .828	813 822 829 827 826	0.807 .820 .828 .827 .827	808 824 824 827 821 821 821
	Engine total ratio, P P P P P O	0.340 .576 .401 .431 .431	0.394 .396	0.348 .381 .399 .418 .429	343 404 426 4428 4428	0.347 .380 .398 .417 .426	0.343 366 393 409 418	.338 .358 .396 .396	328 356 393 414	.336 .386 .408	.338 .360 .396 .396 .396	0.332 .358 .378 .389 .389	323 359 359 389 403
	Diffuser total pressure recovery, P	0.421 .455 .479 .479 .510	0.478	0.427 462 480 505 505	480 463 50 514 5314 531	0.423 460 502 513	0.421 443 443 471 471 489 496	424 441 483 503	414 4444 460 504	414 465 480	416 4538 494 494	0.411 455 456 470	400 449 411 450
	Exhaust nozzle total pressure, F5, 1p sq ft abs	1875 2078 2215 2318 2379 2156	2092 2099	1433 1569 1646 1722 1722	1416 1543 1562 1732 1754 1807 1807	1430 1567 1637 1720 1758	886 944 1014 1052 1106 1119	871 921 991 1024 1075	849 920 965 1017 1071	864 994 1022 1051	873 930 977 1018 1050	673 724 796 836	656 752 752 823 750
	Diffuser outlet total pressure, P2, 1b sq ft abs	2325 2515 2644 2815 2815 2587	2541 2547	1759† 1980 2080 2126	1775 1904 2101 2118 2190 2186	1744 1898 1977 2068 2118	1087 12143 1217 1258 1314 1345	1091 1136 1217 1247 1299	1071 1146 1189 1246 1304	1066 1196 1235 1271	1074 1132 1179 1231 1271	834 883 936 952 1013	812 884 913 963 1003 917
	Diffuser Outlet Mach number, M2	0.466 423 392 357 357	0.372	0.433 .398 .376 .376 .356	451 429 383 381 358	0.423 383 357 347	0.436 .410 .381 .359 .359 .359	466 441 396 378	481 427 415 398 377	.441 .379 .364	441 .396 .386 .355	0.447 .411 .381 .382 .382	463 409 373 369 403
	Combustor supercritical air flow, Wa,5' lb/sec	63.37 63.34 63.44 63.45 63.45 63.35 63.37 60.54	60.83 60.53	47.88 47.92 47.92 47.94 47.94	44447 477.57 4697776 46977776 8658 7878 7878 7878 7878 7878 7878	47.90 48.05 48.01 48.18 48.18	30.11 30.13 30.17 30.12 30.93 29.99	29.73 29.77 29.85 29.88 29.88	28.77 28.70 28.78 28.66 28.69	30.03 30.02 30.02 30.03	29.10 28.91 28.91 28.93 28.95	23.71 23.59 23.94 23.88 23.88 23.70	53.485 53.495 53.405 55.405 55.405 55.405 55.405 55.405 55.405 55.405 55.405 55.405 55
	Free- stream total pressure, Po' 1D' sq ft abs	5521 5521 5523 5525 5525 5525 5502	5316 5299	4124 4117 4122 4122 4119 4118	41124 41114 41116 41152 41179 41179 41152	4113 4123 4123 4123 4123 4130	2580 2580 2582 2582 2564 7 2560 2560	2575 2574 2581 2583 2582	2590 2584 2587 2587 2589	2574 2573 2572 2572	2584 2582 2572 2572 2572	2029 2022 2022 2052 2046 2033	2029 2028 2038 2041 2041 2041
	Free- stream total temper- ature, G	811 812 812 812 812 812 908	816 819	794 790 790 790 789	787 787 780 786 775 775 775	790 787 786 782 782	786 784 784 782 782 782 782 782 782	788 785 785 785 785	874 874 871 878 878	785 785 785 786	867 868 873 871 871 867	784 786 787 787 786 786 786	788 788 791 790 788 873
	Angle of attack, deg deg	‡	 ‡≁	o —	4>	* • •	o	1		4		o	
	Altitude, ft	44,000	45,000	50,000			60,000					65,000	

CONFIDENT PAL

17

0.00 5 - 5 .0 - 2 .0 - 0 .0 .0 .0 .0 .0 .0 .0 .0

2.50
Ю
NUWBER
A MACH
Εł
RAM-JET ENGINE
XRJ43-MA-3
ОF
T PERFORMANCE
FREE-JE
PRELIMINARY
Continued.
•
TABLE I

(c) Dual-pressure fuel injection

Net thrust coefficient, C_	u A	0.481 .650 .752 .802		.494 .585 .655 .718	0.827	0.436 715 751 603 650 650	.609 .727 .796 .806 .820 .658	. 732 . 795 . 800 . 814 . 842	0.532 .725 .797 .835 .396	711 784 846	.359 660 532 532 641 771	484 484 607 608 607 868
Combustion efficiency, $\eta_{\rm b}$		0.751 .843 .886 .886 .899	.828 .872 .881 .881	.801 .836 .859 .859 .859	0.930	0.617 .892 .897 .886 .886 .659 .651	882 882 882 882 882 882 882 882 882 882	.901 .920 .905 .905 .912	0,785 916 906 896 548	.870 .862 .902 .917	.571 .707 .767 .883 .885	.887 .657 .639 .814 .755 .714
Exhaust gas total temper-	ature, P5, oR	2686 3254 3754 3754 2933	3278 3613 3733 3769	3029 3365 3589 3737 3732	3900 3955	2441 34441 35555 3556 35667 2567 3278 3278	3057 3432 3682 3731 3731 3225	3464 3672 3637 3637 3671 3710 3796	2773 3432 3647 3741 2284	3377 3599 3779 387 4	2218 3246 3123 3481 3618	3702 2517 2534 2534 3049 3006 2924
Fuel air ratio, We	Wa,5	а. 8.0403 8.0488 8.0554 8.0554 9.0609 0443	.0508 .0581 .0581	.0438 .0505 .0560 .0560	0.0638	0.0439	8.0410 8.0410 8.0538 8.0538 8.0558 8.0563 8.0568	0504 0550 0558 0558 0558 0558	^a 0,0409 a.0484 a.0557 a.0557 a.0516 .0449	.0505 .0567 .0628	8.0403 8.0464 8.0465 8.0465 8.0523 8.0527 8.0527	8,0609 0450 0460 0460 0496
Fuel flow, Wf,	1b/sec	2.56 3.10 3.87 2.81 2.81	3.22 3.69 4.03	2.67 3.04 3.40 3.73 4.04	3.85 4.18	2.09 2.68 2.68 2.68 2.69 2.69 2.98 3.30	1.97 2.26 2.57 2.71 2.19 2.19	2.65 2.65 2.70 2.74 2.97 2.97	1.23 1.46 1.68 1.68 1.86 1.35	1.52 1.71 1.89 2.08	1.20 1.59 1.56 1.56	1.81 1.33 1.52 1.52
Combustor total pressure ratio	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.843 .862 .862 .858 .858	.864 859 855 855	846 855 862 860 850 850	0.827 .825	0.817 .822 .826 .826 .826 .825	816 827 827 823 823 823 823 823 823 823 823 823 823	823 832 835 835 835 835 835 835 835 835 835 835	0.822 .826 .931 .827 .825	.827 .827 .831	806 810 838 834 810 810	813 820 825 825 825 827 827
Engine total pressure ratio.	60 50 50 50 50 50 50 50 50 50 50 50 50 50	0.411 458 458 501 432	.461 .489 .501	418 443 463 474 474	0.511	0.397 474 484 484 4657 4657 4657 4657	447 480 499 508 508	.481 .499 .500 .500	0.425 .479 .500 .510 .388	.475 .496 .513	375 459 454 484 480	499 405 445 445 439
Diffuser total pressure	PO PO	0.488 552 564 568 508	. 534 569 596	.494 .518 .537 .552	0.617	0.486 577 584 583 593 541 553	541 588 604 602 557	585 598 598 599 599 603	0.518 .580 .602 .617	575 599 618 629	466 5057 5057 505 503 503 503 503	614 500 539 539 539 539 539
Exhaust nozzle total nressure	Pressure, P5, 1b sq ft abs	2269 2534 2684 2766 2388	2548 2701 2769 2807	2317 2452 2569 2617 2646	2693 2743	1637 1959 2025 2025 1922 1922 1971	1839 1963 2043 2076 2090 1898	1990 2062 2068 2088 2088 2112	1097 1235 1289 1316 1000	1227 1280 1324 1354	970 1187 1091 1174 1237 1264	1286 1062 1045 1148 1146 1133
Diffuser outlet total	Pressure, P2, 1b sq ft abs	2693 2941 3114 3224 2804	2950 3143 3239 3306	2740 2867 2980 3042 3093	3256 3325	2005 24441 24441 23055 2401 2401	2228 2405 2493 2510 2510 2510	2418 2418 2476 2477 2494 2520	1335 1495 1552 1592 1212	1464 1547 1594 1624	1264 1466 1407 1560 1560	1581 1295 1392 1370 1365
Diffuser outlet Mach	M2 M2	0.380 .335 .335 .306 .305	327 304 306	375 346 328 311 313	0.256	0.401 2302 2334 2334 2334 2356 2356 2356 2356	.317 209 288 277 274 311	212 274 274 272 272 272 269	0.328 291 265 380	293 280 265 248	406 326 374 311 311	294 387 381 381 348 348
Combustor supercritical air flow,	₩a,5' lb/sec	63.37 63.47 63.45 63.42 83.42	63.42 63.38 63.45 63.37	60.57 60.25 60.65 60.05 60.23	60.32 60.52	47.65 47.65 47.65 47.56 48.14 47.77 47.77	48.09 48.01 48.01 47.78 47.92 47.92	48.20 48.21 48.35 48.35 48.24 48.24 48.24 10	30.12 30.15 30.20 30.08	30,10 30,16 30,18 30,19	29.81 29.81 29.78 29.78 29.78 29.78	29.70 30.47 29.88 29.88 29.86 29.86
Free- Btream total	pressure, Po, 1b sq ft abs	5521 5523 5523 5525 5525 5525	5525 5528 5528 5528 5528	5546 5534 5555 5516 5516 5511	5274 5282	4122 41327 41330 41322 41112 4162 4162	4116 4093 4140 4134 4123	4135 4135 41355 41355 41255 41255 41255	2579 2578 2580 2580 2579	2582 2581 2581 2581 2581	25844 25884 25866 25866 25573 2573	25588 2588 2588 2582 2582 2582 2583 2583
Free- stream total	temper- ature, o R	811 811 118 118 118 118	811 811 811 811 811 811	921 927 927 918	817 814	787 789 797 791 781 781 785 785	785 785 793 795 795	785 785 785 785 785 787 787	785 783 781 781	788 784 785 783	789 787 787 787 787 787	790 758 786 786 786 785
Angle of attack,	άeg	4		D =	*	4	*		o——		1	-
Altitude, ft		44,000			45,000	50,000			60,000			

CONFIDENTIAL

NACA RM E55C28

	and support states and state								the second se
	Net thrust coefficient, CF	0.711 675 718 7691 782 832	.339 528 613 618 618 618 .777	548 690 761 622 622 760 760	565 747 762 776 659	.371 .606 .531 .726 .781	0.449 .733 .801 .844 .871		.835 .787 .426 .621 .681 .733
	combustion efficiency, $n_{\rm b}$	0.862 .792 .815 .873 .857 .903	545 767 767 846 846 865	790 881 846 735 846 832 885		. 556 818 699 8448 854 858 878	0.625 .906 .918 .918	.576 .896 .896 .895 .895 .893 .893	.897 .816 .656 .835 .842 .858 .858
	Exhaust gas total temper- ature, oR	3395 35395 35386 35574 35574 35564 3721	2318 2969 33299 35299 3689 3689	2831 3315 3524 35524 3032 2933 2494 3311	2823 3361 3432 3480 3480 3499 3119 3119	2409 3274 2951 3515 3515 3565 3788	2463 3490 3697 3797 3837	2269 3362 3612 3737 2538 3439 3642	3769 3530 2616 3318 3318 3509 3674 3811
	Fuel air ratio, Wa,5	0.0516 .0536 .0536 .0571	0440	a, 0420 a, 0420 a, 05500 04256 04425 04442 04442	.0502 .0513 .0513 .0513 .0560	0452	.0439 .0506 .0560 .0560	a.0416 a.0416 a.0554 a.0554 a.0514 0614 0507	.0631 .0670 .0440 .0502 .0561 .0561
ron	Fuel flow, Wf, lb/sec	1 22 1 22 1 22 1 22 1 22 1 22 1 22 1 22	1 26 1 44 1 62 1 62 1 93 1 93	11.32 1.32 1.33 1.33	1.55 1.55 1.58 1.58 1.69	1.45 1.45 1.48 1.62 1.79 1.79	1.05 1.19 1.33 1.48	1.33 1.245 1.245 1.204 1.204 1.330	1.48 1.57 1.100 1.28 1.41 1.55
I inject:	Combustor total pressure P5 P2	0.815 .838 .841 .812 .812 .811 .811	821 821 821 821 821 821 825 825 825 825 825 825 825 825 825 825	828 828 828 828 828 828 828 828 828 828	833 817 818 818 818 818 818 828 848 848 848 848	.805 .826 .834 .824 .824 .824	0.834 822 824 821 821 821	818 821 821 823 823 828 828 828 828	.820 .825 .825 .825 .825 .825 .828 .828 .828
тапт	Engine total pressure ratio, P <u>5</u>	0.474 .464 .489 .488 .488 .488 .488	4808 480 480 480 480 480 480 480 480 480	4630 4630 4689 4689 4059 4059	435 491 491 491 491	288 287 287 287 287 287 287 287 287 287	0.402 .482 .501 .513 .520	4978 4784 4978 4908 4979 4979	.510 .496 .453 .473 .473 .473
al-pressure	Diffuser total pressure recovery, PO	0.581 .553 .556 .603 .557	603 603 603 603 603 603	518 570 5547 547 547 547 576	518 577 594 599 599 599 597 597 597	476 543 513 513 570 583	0.483 586 608 624 634	. 571 . 571 . 571 . 601 . 601 . 579 . 579 . 579 . 579 . 579 . 579 . 579 . 579 . 579 . 571	622 484 5542 5542 5569 5569
	Exhaust nozzle total pressure, P 15, 1b sq ft abs	1223 1192 1221 1264 1266 1308	962 1159 1159 1268 1248 1248	1108 1261 1159 1151 1043 1228	1117 1223 1244 1263 1272 1272 1272	988 11157 11001 1288 1286 1286	823 978 1020 1045	766 958 10029 827 970 1004	1030 1002 809 919 953 984
	Diffuser outlet total pressure, P2, 12 sq ft abs	1501 1422 1452 1557 1557 1561 1561	1180 1328 1412 1405 1480 1513	1336 1461 1541 1406 1366 1366 1494	1332 14888 15288 15288 1545 1545 1541 1401	1227 1400 1321 1467 1467 1565	987 1190 1238 1273 1285	936 1161 1220 1226 1256 1171 1218	1256 1195 1981 1981 1154 1154 1222
ncruae	Diffuser outlet Mach number, M2	0.315 326 304 308 303 303 303 295	419 360 323 308 308 308 308 308	2112 2911 2405 2405 250 250 250	220 2004 2033 2033 2033 2033 2033 2033 2	428 201 200 200 200 200 200 200 200 200 200	0.361 .315 .298 .294	385 2337 2598 2598 2324 2324 298	.300 .367 .368 .308 .308 .308 .308 .308 .308
(c) Con	Combustor supercritical air flow, Wa,5, lb/sec	29,86 29,86 29,86 29,87 29,87 29,53 29,53 20,19	28.75 28.73 28.63 28.63 28.63 28.69 28.83 28.63 28.63 28.63	3333333 300,09 300,09 300,09 300,04 0,04 0,04 0,04 0,04 0,04 0,04 0,	29.97 30.23 30.23 30.45 30.52 30.11	28,83 28,83 28,85 28,85 28,84 29,85 29,85 29,85 29,03	23.86 23.60 23.73 23.77 23.62	23,52 23,63 23,63 23,63 23,63 23,57 23,57 23,57 23,57	23.50 23.48 22.76 22.75 22.75 22.75 22.75 22.78 22.78
	Free- stream total pressure, p 1 0 1 sq ft abs	25542 25542 25567 25584 25584 25566	25887 25887 25887 25881 25881 25881 25881 25881	2572 2572 2577 2577 2577 2577 25572 255772 25572 25572 25572 25572 25572 25572 25572 25572 25572 2557772 2557777772 25577777777	25577 25564 25589 25589 25589 25589 25589	25577 25577 25573 25586 25886 25886	2045 2030 2030 2039 2039 2026	1997 2032 2032 2028 2028 2028 2028	2021 2019 2025 2028 2028 2028 2028 20231 2023
	Free- stream total temper- ature, RO, R	786 786 787 786 795 795	8 4 7 0 8 4 7 0 8 6 6 4 8 6 6 6 8 6 6 6 6	7711 771 7710 7710 7711	786 785 763 763 786 786	873 878 874 874 877 879	787 792 789 788 788	790 790 788 788 788 788	790 873 873 873 873 873
	Angle of attack, deg deg			+	,	@	0	4	
	Altitude, ft	60,000					65,000		

- Concluded. PRELIMINARY FREE-JET PERFORMANCE OF XRJ43-MA-3 RAM-JET ENGINE AT A MACH NUMBER

лт 4 -•r ٢ c r Ļ , 7 ŕ ζ 1 ,

TABLE I.

5.000

NACA RM E55C28

, 3 3 3 3 4 CONFIDENTIAL *****

^aInner ring fuel-air ratio, 0.033 - All others, 0.037.

3635 CX-3 back

OF 2.50

 $\overline{a} \sim \overline{a}$

 $\phi \in \mathcal{A} \otimes \phi$

おやっや 察

: * *

CONFIDENITAL.

l.,

Figure 3. - View looking upstream showing fuel-spray rings and grid installed in diffuser. Flame holder removed.

3635

NACA RM E55C28

的 警察 化 的

ંક 10

ð 25

0000

1 金 御 御 四 梁 帝

CONVIDENTIAL

19 %

6360 20 20

& 3 -129

10 C 10

NACA RM E55C28

3635

\$ \$ \$

の き き き き

李浩 二 张 ?

\$ \$ \$ \$ \$ \$

2000

Figure 4. - Concluded. Flame holder used in XRJ45-MA-3 model 20B3 ram-jet engine.

* . (

NACA RM E55C28

0.00.00

100

CONFIDENTIAL

0.20.00

\$ \$ \$

Diffuser total-pressure recovery, $\frac{P2}{P0}$

3635

26

000 0 000 000 000 000

-ŝĝ

Diffuser total-pressure recovery, 0.658.

Diffuser total-pressure recovery, 0.525.

Diffuser total-pressure recovery, 0.476.

0°40'

0.40

0.30

0.14 min.

- (a) Effect of diffuser total-pressure recovery. Angle of attack, α , 0° .
 - Figure 7. Diffuser-outlet (station 2) Mach number contours. Altitude, 60,000 feet; inlet temperature, 790 [®]R (MCD).

3635 CX-4 DACK

Cômpidential

Angle of attack, -7°.

Angle of attack, +7°.

 (b) Effect of angle of attack. Diffuser total-pressure recovery, approximately 0.595.
Figure 7. - Diffuser-outlet (station 2) Mach number contours. Altitude, 60,000 feet; inlet temperature, 790 °R (MCD).

(a) Inner-ring-only fuel injection.

Figure 8. - Engine performance. Altitude, 60,000 feet; inlet temperature, 790 °R (MCD).

CONFIDENTIAL

(a) Concluded. Inner-ring-only fuel injection.

Figure 8. - Continued. Engine performance. Altitude, 60,000 feet; inlet temperature, 790° R (MCD).

800 800 800 からのな

 $\langle \langle \rangle \rangle = \langle \rangle$

 (b) Concluded. Dual-pressure fuel injection.
Figure 8. - Continued. Engine performance. Altitude, 60,000 feet; inlet temperature, 790° R (MCD).

梁 梁 湾

CONFIDENTIAL

(c) Concluded. Single-pressure fuel injection.
Figure 8. - Concluded. Engine performance. Altitude, 60,000 feet; inlet temperature, 790° R (MCD).

3635

CX-5 back

Figure 9. - Engine performance. Altitude, 60,000 feet; inlet temperature, 873 °R (MHD).

13 N N N

CONFIDENTIAL

Figure 9. - Concluded. Engine performance. Altitude, 60,000 feet; inlet temperature, 873 °R (MHD).

37

\$ \$ \$ \$ \$

Figure 10. - Engine performance. Altitude, 50,000 feet; inlet temperature, 790 °R (MCD).

Figure 10. - Concluded. Engine performance. Altitude, 50,000 feet; inlet temperature, 790 °R (MCD).

39

2 3 5 5 7 3 2 8 3 8

CONFIDENTIAL

Figure 11. - Effect of inlet temperature on engine performance. Altitude, 60,000 feet; angle of attack, $+4^{\circ}$.

1 4 1

御をうち

13 38

CONFIDENTIAL

湯 御

18 A

Figure 11. - Concluded. Effect of inlet temperature on engine performance. Altitude, 60,000 feet; angle of attack, +4°.

CONFIDENTIAL

Figure 12. - Continued. Effect of altitude on engine performance. Miami cold day inlet temperature. Angle of attack, +4°.

Figure 12. - Continued. Effect of altitude on engine performance. Miami cold day inlet temperature. Angle of attack, +4⁹.

\$ \$ \$

(b) Concluded. Dual-pressure fuel injection.
Figure 12. - Continued. Effect of altitude on engine performance. Miami cold day inlet temperature. Angle of attack, +4°.

8 9 7 7 7 7 9 8 9 8 8

10.00

CONFIDENTIAL

Figure 12. - Continued. Effect of altitude on engine performance. Miami cold day inlet temperature. Angle of attack, +4°.

CONFIDENTIAL

ゆう な

-

* >

Figure 12. - Concluded. Effect of altitude on engine performance. Miami cold day inlet temperature. Angle of attack, 440.

3635

Figure 13. - Combustor blow-out limits.

3635

CONFIDENTIAL

Figure 14. - Approximate diffuser total-pressure recovery at combustor blow-out.