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Chapter 1

Standard Model Theory and
the Higgs Boson

1.1 Introduction

The Standard Model (SM) constitutes one of the most successful achievements
in modern physics. It provides a theoretical framework which is able to describe
the known experimental facts in particle physics with high precision. All particles
described in the SM have been observed and, up to now, no significant deviations
from the theory have been found. The SM predicts a new scalar particle known as
the Higgs boson. The Higgs boson breaks electroweak symmetry and provides mass
to the fundamental particles. This is a key building block in the SM and the topic
of this thesis. Before the Large Hadron Collider (LHC) started to collect data from
proton-proton collisions, the Higgs boson was the only elementary particle in the
SM that had not been observed.

The aim of this chapter is to describe the formulation of the SM and present
the role of the Higgs boson. Section 1.2 presents an overview of the elementary
particles. This is followed by the description of the quantum electrodynamics and
quantum chromodynamics theories in Section 1.2.2 and 1.2.3, respectively. The uni-
fication of the electroweak is given in Section 1.2.4. In Section 1.3.1, the electroweak
symmetry breaking mechanism and the Higgs boson in the SM are discussed. Then,
the phenomenology of proton-proton collisions is described in Section 1.5. Finally,
different production modes and the main decay channels of the Higgs boson in

proton-proton collisions are presented in Section 1.6 and 1.7, respectively.
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1.2 The Standard Model

The SM unifies three of the four fundamental forces of the Universe: strong, weak
and electromagnetic interactions. Apart from gravity, the SM of particle physics is

able to describe nature in terms of fundamental constituents and their interactions.

1.2.1 Elementary Particles in the SM

The SM involves two kinds of particles, those carrying charge and those which
mediate interactions by coupling directly to charge. The physical nature of charge
depends on the specific theory. Three such kind of charges appear in the SM, the
so-called colour, weak isospin and weak hypercharge.

In the SM the mediators of the fundamental interactions are the spin-1 gauge
bosons: one massless photon (7), eight massless gluons (g) and three massive bosons
(W* and Z). The photons mediate the electromagnetic interactions between elec-
trically charged particles. The photon is a massless particle and it is described by
the theory of Quantum Electrodynamics (QED). The W* and Z bosons are the
elementary particles that mediate the weak interactions between fermions (quarks
and leptons).

These are massive and while the Z particle is electrically neutral, the W+
bosons carry an electric charge of +1 times the electron charge respectively. These
three gauge bosons along with the photon are grouped together in the electroweak
(EW) interaction. Finally, the gluons are massless particles that mediate the strong
interactions between particles with colour charge, as the quarks. Because the glu-
ons have colour charge, they can also interact among themselves. The gluons and
their interactions are described by the Quantum Chromodynamics (QCD) theory.
Table 1.1 summarises the three fundamental forces unified by the SM and their
associated gauge bosons.

TABLE 1.1: Fundamental forces and their associated gauge bosons. J denotes
the spin and P the parity of the particles [1].

Interaction Name Symbol Charge [e] JF Mass [GeV]
Electromagnetic Photon o 0 1~ 0

W bosons W= +1 1 80.385 + 0.015
‘Weak

Z boson Z 0 1 91.1876 + 0.0021

Strong Gluon g 0 1~ 0
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The fermionic matter content in the SM is given by 12 elementary particles:
the known leptons and quarks. There are six quarks: up (u), down (d), charm (c),
strange (s), top (¢), and bottom (b), and six leptons: electron (e), muon (u), tau (7),
and their corresponding neutrino partners: electron neutrino (v, ), muon neutrino
(v,) and tau neutrino (v;). The three neutrinos are neutral in terms of electric
charge and they are assumed to be massless in the SM 1.

All fermions are particles of spin % and each of them has its corresponding
anti-particle with opposite quantum numbers. According to the spin-statistics the-
orem [4], fermions respect the Pauli exclusion principle. The difference between lep-
tons and quarks relies on the coupling to the strong interaction. The physical nature
of the leptons shows that they are colourless and they do not interact via the strong
force. Oppositely, quarks carry colour and they do interact via strong processes. The
quarks are grouped together forming the known hadrons: baryons with half-integer
spin (three quarks), and mesons with integer spin (quark and anti-quark). This phe-
nomenon is called colour confinement. Quarks also carry electric charge and weak
isospin, hence they interact with another fermions both electromagnetically and via
the weak interaction. Table 1.2 lists the three fermion generations.

TABLE 1.2: Fermion generations overview from Ref. [1]. Masses and electric

charges in units of the electron charge are quoted. J denotes the spin and P the
parity of the particles.

Fermion I generation IT generation IIT generation Charge [e] JP
U c t
+
2.310 7T MeV 1.275 + 0.025 GeV 173.5 + 0.6 £ 0.8 GeV +2/3 1/2
Quarks
d s b
—1/s +
4.8707 MeV 95 + 5 MeV 4.18 £0.03 GeV 13 1/2
e~ o T
v L . X s -1 1/2+
0.511 £ (0.11 x 10~") MeV 106 + (35 x 10~ ") MeV  1776.82 £ 0.16 MeV
Leptons
Ve vy vr
(v v 0 1/2Jr
< 2.05¢V (95% CL) < 0.19eV (90% CL) < 18.2eV (95% CL)

Lastly, the SM theory predicts a new particle that completes the fundamental
particle spectrum: the Higgs boson. It appears trough the spontaneous electroweak
symmetry breaking mechanism, which is a necessary ingredient in the SM for en-
suring gauge invariance. It arises from the need to provide mass to the electroweak

mediators, i.e., the W+ and Z bosons, as will be discussed in the following sections.

1Note that several experiments with solar, atmospheric, reactor and accelerator neutrinos have
provided compelling evidence for oscillations of neutrinos caused by nonzero neutrino masses [2, 3].
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The theory constrains some aspects of the Higgs particle: it is a massive boson
(although its mass is not predicted), with no spin, electric charge, or colour charge.
In this sense, the position of the Higgs boson in the zoo of the fundamental particles

in the SM is unique, as is its role. Figure 1.1 collects the fundamental particles in
the SM.

mass > =23 MeVic* =1.275 GeVic* =173.07 GeVic* o =126 GeVic*

charge = 2/3 u 23 C 23 t o o I I
spin > 112 y 112 y 112 g 1 9 0

up charm top gluon gg%gﬁ
=4.8 MeVic* =05 MeV/c? =4.18 GeVic* o
153 d -113 113 b 0
102 ’ 112 S 102 p 1 ”
down strange bottom photon

0511 Mevicr 106.7 Mevic® 1.777 Gevic* 91.2 Gevie*

- -1 -1 o

12 e 112 u 112 T 1 2
electron muon tau Z boson

<2.26Vic* <0.17 MeV/c* <15.5 MeVic 80.4 GeVic

0 -l) 0 0 ])-[ 1
112 € 112 v}.l 112 1 W

electron

muon tau
neutrino neutrino neutrino W boson

FIGURE 1.1: The SM of elementary particles with the three generations of
fermions in the left-hand columns, gauge bosons in the fourth column and the
Higgs boson on the right column.

1.2.2 Quantum Electrodynamics

Historically, the first of the gauge field theories was electrodynamics. Its modern
version, Quantum Electrodynamics (QED), is the most thoroughly verified physical
theory yet constructed. QED represents the best introduction to the SM, which
both incorporates and extends it.

Let us consider the Lagrangian describing a free Dirac fermion with mass m

and electric charge Qe,

Lo = i (@) utp(x) — mip()ih(x), (1.1)

where () is the fermion field and (x) = ¢ is its adjoint. Note that natural
units (A = ¢ = 1) has been used in Eq. 1.1 and they will be assumed in the rest of

the chapter. Lg is invariant under global U(1) transformations,

U(1)

P(z) V' (x) = e Yp(a) (1.2)
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where Q6 is an arbitrary real constant hence,

Y(x) — efwi(x) and 0,¥(z) — eiQaauz/)(x) . (1.3)

The phase of 1(x) is then a pure convention-dependent quantity without any physical
meaning. However, the free Lagrangian is no longer invariant if one allows the phase
transformation to depend on the space-time coordinate, i.e., under local phase re-
definitions 6 = 6(x).

Explicitly, the local gauge transformation is,

v

() P (x) = ey (z) (1.4)

which clearly makes the Lagrangian non invariant due to the extra term from the

derivative of 0(x),

Ouibla) T €9, +iQD,0()b(a). (15)
Thus, if a given phase convention has been adopted at a reference point, the same
convention should be taken at all space-time points. This does not look reasonable.
As an illustration, let us consider a mechanism which annihilates electric charge at
one point in space and simultaneously create an equal amount of charge at another
spatial point. The charge is conserved globally in this case, but it would be in conflict
with special relativity. Electric charge has to be conserved locally. This property
of local conservation is at the heart of the local gauge symmetries exhibited by the
fundamental interactions.

The gauge principle is the requirement that the U(1) phase invariance should
hold locally. This is only possible if one adds an extra piece to the Lagrangian
in Eq. 1.1, transforming in such a way as to cancel the offending term in Eq. 1.5.
The needed modification is completely fixed by the transformation, hence one can
introduce a new field A, which transforms as,

Au(z) 29, A;(m)EAM(q;)_éaue. (1.6)

Defining the covariant derivative as,

D(x) = [0, +ieQA,(x)|Y(x), (1.7)
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which has the required property of transforming like the field itself,

Dyhla) “ Dy(a) =€V Dp(a). (1.8)
The newly obtained Lagrangian,
L = ip(@)"Dptb(x) — mp(2)y (@) = Lo — eQAu(x)¥(z)y"(2), (1.9)

is now invariant under local U(1) transformations. The price we had to pay was
the introduction of the new vector field A, that couples to ¢ through the last
term in Eq. 1.9. Actually, it is just the familiar vertex of QED which contains the
electromagnetic interaction between charged particles and its mediator, the photon.

If one wants A, to be a true propagating field, one needs to add a gauge-

invariant kinetic term,

1 1
Lin = —EFW(;U)FW(m) + §m?4AMAu , (1.10)
where F,, = 0,A, — d,A, is the usual electromagnetic field strength which is

invariant under the local gauge transformation given in Eq. 1.5. However, the term
A*A,, is not. In light of this, the gauge field must be massless: ma4 = 0 and
experimentally we have measured that m, < 1 x 107'8eV [1].

The final QED Lagrangian can be written as,

Lqep = i)(2)y" 9t (x) — mib(z)y(x) — EFHVFWL — eQAu(2)p(x)y" (), (1.11)

which gives rise to the Maxwell equations and specifies the current produced by
Dirac particles (J#),
O, FM = J" = eQyy'y. (1.12)

Thus, the requirement of local gauge invariance, applied to the free Dirac
Lagrangian, generates all electrodynamics, so it leads to a very successful quantum
field theory.

1.2.3 Quantum Chromodynamics

The large number of known mesonic and barionic states clearly signals the existence
of a deeper level of elementary constituents of matter: quarks. Assuming that

mesons are M = qq, while baryons have three quark constituents: B = gqq; one
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can classify the entire hadronic spectrum. However, in order to satisfy the Fermi-
Dirac statistics one needs to assume the existence of a new quantum number, colour,
such that each species of quark may have N¢ = 3 different colours: ¢, o« = 1,2,3
(red, green and blue). In order to avoid the existence of non-observed extra states
with non-zero colour, one needs to further postulate that all asymptotic states are
colourless, i.e., singlets under rotations in colour space. This assumption is known as
the confinement hypothesis, because it implies the non-observability of free quarks:
since quarks carry colour they are confined within colour-singlets bound states.

Let us denote ¢§ a quark field of colour @ and flavour f. To simplify the
equations, let us adopt a vector notation in colour space: q? = (q} , qj%, qf}) The
free Lagrangian,

Lo=> G5 (i¥"0 —my) qr (1.13)
7

is invariant under arbitrary global SU(3)¢ transformations in colour space,
¢ = (¢§) =Ugq}, UU'=UU=1, detU=1. (1.14)
The SU(3)¢ matrices can be written in the form,
2o
U=e¢e"2"%, (1.15)

where /\7& (a =1,2,...,8) denote the generators of the fundamental representation of
the SU(3)c algebra, and 6, are arbitrary parameters. The matrices A* are traceless

and satisfy the commutation relations,

2@ )\b b c
22| — g fabe 1.1
8] o "

with f2¢ the SU(3)¢ structure constants, which are real and totally antisymmetric.
As in the QED case, we can now require the Lagrangian to be also invariant under
local SU(3)¢ transformations, 8, = 0,(x). To satisfy this requirement, we need
to change the quark derivatives by covariant objects. Since we have now eight
independent gauge parameters, eight different gauge bosons G*(z), the so-called

gluons, are needed,

)\a
Dhqr = | 0" +1igs 5 Gh(z)| qr = [ 0" +igs G*(z)] q5 . (1.17)
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Note that we have introduced the compact matrix notation,

[GH(@)] 5 = (A;)aﬁ G"(z). (1.18)

We want D*qy to transform in exactly the same way as the colour-vector ¢;. This

fixes the transformation properties of the gauge fields,

Dh (DHY = UDFUT,  GF — (GMY = UGuUT + L (@"U)UT.  (1.19)

S

Under an infinitesimal SU(3)¢ transformation,

/! . @
- (o) =ap+i ()

1
G = (GM =aH - ;aﬂ (66,) — 0560, GH

B
00, qy s
B

[

(1.20)

The gauge transformation of the gluon field is more complicated than the one ob-
tained in QED for the photon. The non-commutativity of the SU(3)¢ matrices gives
rise to an additional term involving the gluon fields themselves. For constant §6,,
the transformation rule for the gauge fields is expressed in terms of the structure
constants f*¢. Thus, the gluon fields belong to the adjoint representation of the
colour group. Note also that there is a unique SU(3)¢ coupling gs. In QED it was
possible to assign arbitrary electromagnetic charges to the different fermions. Since
the commutation relation given in Eq. 1.16 is non-linear, this freedom does not exist
for SU(3)c.

To build a gauge-invariant kinetic term for the gluon fields, we introduce the
corresponding field strengths,

~ L [Dr, DY) = GEGY — VGH + g, [GM, GY] = % Gy (2),
s

GV (z) = "Gy — 0"Gly — g, f*"° Gy GY..

@ = (1.21)

Taking the proper normalisation for the gluon kinetic term, we finally have
the SU(3)¢ invariant Lagrangian of QCD,

1 .
Lacp = ~1 Gy Gy, + Z T (iv"D, — my) qr - (1.22)
f
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It is worthwhile to decompose the Lagrangian into its different pieces,
1 Yyal% Vv a a — (M fe
Cacp = — 7 (0°Gy = 9"GE) (9,65 = 0,G) + 3 a5 ("D —my) df
I

act San(y) o (1.23)
f op
9s rab b 92 b d
+ &y (orGy — 0 Gl) G GE — e . Gl GYGEGE

The first line in Eq. 1.23 contains the correct kinetic term for the different fields,
which gives rise to the corresponding propagators. The colour interaction between
quarks and gluons is given by the second line. It involves the SU(3)¢ matrices A%.
Finally, the G G}, term generates the cubic and quartic gluon self-interactions
shown in the last line. The strength of these interactions is given by the same
coupling g5 which appears in the fermionic piece of the Lagrangian.

In spite of the rich physics contained in it, the Lagrangian in Eq. 1.23 looks
very simple because of its colour symmetry properties. All interactions are given in
terms of a single universal coupling g,, which is called the strong coupling constant.
The existence of self-interactions among the gauge fields is a new feature that was not
present in QED. Hence, it seems then reasonable to expect that these gauge self-
interactions could explain properties like asymptotic freedom (strong interactions
become weaker at short distances) and confinement (the strong forces increase at

large distances), which do not appear in QED.

1.2.4 Electroweak Unification

The electroweak (EW) theory unifies the weak and electromagnetic interactions.
Historically, the basic structure was formulated by Sheldon Glashow (1961) [5]
and the complete form was developed by Steven Weinberg (1967) [6] and Abdus
Salam(1968) [7].

In the Glashow-Weinberg-Salam model left-handed leptons and quarks are
assigned to weak isospin doublets, i.e., they transform as doublets under SU(2)p,
where the L subindex denotes the left-handed property of the SU(2) symmetry
group. Massive leptons and quarks can exist in right-handed states and these are
assigned to weak isospin singlets. They are unaffected by SU(2)r, transformations.
The EW theory assumes zero mass for the neutrinos which are therefore uniquely
assigned to left-handed doublets. In order to incorporate the electric charge and

bring about the unification of the weak and electromagnetic interactions a new
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gauge symmetry, U(1)y, was introduced. It is a U(1) symmetry similar to QED
based on the hypercharge Y.

An overview of all SM fermions and their electroweak quantum numbers:
charge @, weak isospin 7T, its third component T3 and hypercharge Y, are given in
Tab. 1.3. Those are related through the analogue of the well-known Gell-Mann -
Nishijima relation,

Y

Q=Ts+ 7. (1.24)

The left-handed isospin doublets 11, and the right-handed isospin singlets ¥
transform under the action of the SU(2);, ® U(1)y direct product group as follows,

wL _ '(//L _ eia“(x) To+iB(z)Y wLa a=1,23

/ Sy (1.25)
YR — P, =PV yp

where a®(z) and S(z) are local phases and T,/2 and Y are the generators of the
SU(2)r, and U(1)y groups of gauge transformations, respectively. Since there are
now four gauge parameters, a®(z) and S(z), there are as well four different gauge
fields needed.

TABLE 1.3: Electroweak quantum numbers for the SM fermions. The charge is

denoted by @ and is given in units of the electron charge. The weak isospin is
represented by T, its third component by T3 and the hypercharge by Y [1].

Generation Quantum numbers

Fermions 18t ond 3rd T Ts Y Qle]
( Ve ) < Vi ) ( vr ) 1/2 1/2 -1 0

Leptons e~ ). w), ), 1/2 ~1/2 1 1
R I TR 0 0 -2 -1

(), () G % o

Quarks ), s'" )L v ) 1/2 -1/2 1/3 -1/3
UR CR tr 0 0 4/3 2/3

dr SR br 0 0 -2/3 1/3

We can write the free Lagrangian for the left-handed fermion doublet and a

right-handed singlet as,
L =it Y 0ubr, + i gy iR - (1.26)

The Lagrangian in Eq. 1.26 can be made invariant by introducing the covariant
derivative,

g g
DH :8M+Z§WSTQ+Z§BHY, (127)
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where Wy (a = 1, 2, 3) and B,, denote the gauge fields related to the 3 + 1 degrees
of freedom from the SU(2);, ® U(1)y symmetry group. The coupling constants g
and g’ determine the strength of the coupling to the SU(2), and U(1)y gauge fields,
respectively. The corresponding field strength tensors of the gauge fields are given
by,

Wi = 0,Ws — 0,Wi — gearc WIWS
Bul/ = auBy - 61/B/L )

(1.28)

where €,p. denotes the totally antisymmetric tensor.
Finally, we introduce the kinetic terms for he gauge fields, —%W“ Wk and

pv

f%BWB’“’, and we arrive at the gauge invariant EW Lagrangian,

Lew = Z ZEJL’Y”DM% + Z i@%v”%% - iWSVW(f” - iBWBW . (1.29)
J k

where the sum in ¢ and k runs over all doublets and singlets listed in Tab. 1.3. In
addition to the kinetic energy term, self-coupling of the W, fields also appear in
the theory. Note that mass terms such as %mZBMB” are not gauge invariant and

therefore can not be added to the Lagrangian.
The gauge fields W/ and B,, do not carry the experimentally observed quan-
tum numbers for the W+ and Z bosons and the photon, hence they can not directly
be identified with these elementary particles. Instead, a linear combination of these

gauge fields leads to the physically observable states according to,

1
+ _ ”,1 72
W = \/§< wtl “) '
Z, = cosOw W, —sinfw B, , (1.30)

A, =sin F)WW3 +cosOw B, ,

where Wf and Z, denote the fields of the weak gauge bosons, A, the photon field
and Oy the weak mixing angle. The combinations above allow to relate the electric

charge e and the electroweak couplings by,
e = gsin(fw) = ¢ cos(Ow) . (1.31)

The principle of local gauge invariance works beautifully for the QED and
QCD interactions. Moreover, it allows to unify the weak and electromagnetic in-

teractions while keeping the renormalisability of the theory [8, 9]. Nevertheless, its
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application in the EW theory was stymied by the fact that the gauge fields have
to be massless. Whereas the photon and the gluons are massless, the W+ and Z
bosons as well as the leptons, are indeed massive objects [1]. Hence, it is necessary
to introduce a mechanism into the model to give mass to the gauge bosons. This

mechanism is known as the Brout-Englert-Higgs (BEH) mechanism.

1.3 The BEH Mechanism in the SM

The EW Lagrangian given in Eq. 1.29 does not fully describe the reality. As was
discussed in Section 1.2.4, gauge bosons have to be massless particles to keep the
invariance of the theory. While it is fine for the photon in QED, the physical W+
and Z bosons are quite heavy particles (~ 100 GeV, see Tab. 1.1). In this section,
the concept of the spontaneous symmetry breaking (SSB) will be discussed as this
is the base of the BEH mechanism.

1.3.1 Spontaneous Symmetry Breaking

In order to generate masses, we need to break the gauge symmetry in some way.
However, we also need a fully symmetric Lagrangian to preserve renormalisability.
This dilemma is solved by getting non-symmetric results from an invariant La-
grangian. Imagine a invariant Lagrangian which has a degenerate set of states with
minimal energy. If one of those states is arbitrarily selected as the ground state of
the system, it is said that there is spontaneous symmetry breaking (SSB). This is
one of the most important concepts in quantum field theory (QFT). In a QFT, the
ground state is the vacuum, thus the SSB mechanism will appear when there is a
symmetric Lagrangian, but a non-symmetric vacuum.

To illustrate the SSB concept, let us consider the following Lagrangian,
1 1 50 1.4
L= 30,00"0-V(9), V(0)= 316"+ Ao (1.32)

This Lagrangian has reflexion symmetry: it is invariant under the ¢ — —¢ opera-
tion. In order to have a ground state, the potential should be bounded from below
as ¢ — oo, i.e., the parameter A has to be positive. Then, we can find the minimum
of the potential by setting,

ov(¢)

a5 =6 (12 +26%) =0, (1.33)

which bring to the next two possibilities:
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e Case 1: u? > 0. The potential has only the trivial minimum ¢ = 0. Then the

Lagrangian describes a spin-zero particle of mass p and quartic coupling A.

e Case 2: pu? < 0. The minimum is obtained for those field configurations
satisfying,
—u2
o=\ =+ #0 (1.34)

Figure 1.2 shows the potential V(¢) for the two cases discussed above. As
it can be seen, the left plot has the minimum at ¢ = 0 (represented by the green
vertical line). However, in the second case (right plot), the ¢ = 0 point is not a
minimum. Instead, there are two minima at ¢ = 4v, which are, obviously, non-zero
values. Since the field ¢ takes on the value v in the ground state, v is called the
vacuum expectation value (VEV) of the field ¢.

u2>0 A>0 wW<0A>0

V(o)
V(o)

\L//\\i/

FIGURE 1.2: The potential V(¢) = $p°¢*> + $A¢* for (1> > 0, A > 0) and
(u*> <0, XA > 0) on the left and right, respectively.

To determine the particle spectrum, we must study the theory in the region

of the minimum,
¢(z) = v +n(z) (1.35)

so we are expanding around 7 = 0. Substituting Eq. 1.35 into the Lagrangian £ in

Eq. 1.32 we obtain,

1 1
L= 3 (8um 0*n) — ()\v2n2 + o + 4)\774> + constant . (1.36)
This Lagrangian represents the description of a particle of mass m2 = 2\v? = =242,

and two interactions: a cubic one of strength Av and a quartic one of strength %.
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The two descriptions of the theory in terms of ¢ or n must be equivalent if the
problem is solved exactly. The scalar particle described by the theory with u? < 0
is a real scalar because at the minimum of the potential there is a non-zero VEV.

The obtained Lagrangian in Eq. 1.36 seems not to preserve the reflection
symmetry in the new field 1 because of the cubic term. Nevertheless, the original
symmetry is still there but not in an obvious way. All we did was to add a constant
shift to the field, so the physics described by both Lagrangians in Eq. 1.32 and in
Eq. 1.36, have to be the same. The only piece that does not preserve the symmetry
is the choice of a specific VEV value, i.e., the fact of selecting +v instead of —v in
Eq. 1.35. Since for each possible ground state there corresponds to an equivalent
physical theory, any one of them can serve as the ground state. However, the
selection of one vacuum state means that it is not longer invariant under the action of
the symmetry group. When it happens, it is said that the symmetry is spontaneously
broken, which is an unfortunate description since the symmetry is not really broken,
just expressed differently. The phenomenon described here is known as spontaneous

symmetry breaking.

1.3.2 The Goldstone Theorem

Now, let us consider a complex scalar field ¢ = % (¢1 + i¢p2), described by the

Lagrangian,
2
L= 0,0 "0 V(9), V(o) =p2olo+ A (s70) . (1.37)

£ is invariant under global phase transformations of the scalar field ¢(x) — ¢'(z) =
e ¢(x), where @ is a constant. Written in terms of ¢; and ¢y the Lagrangian

becomes,

£ = 50001+ 5062l ~V(61,62), V(61,62) = gp* (S + 6+ MG +63)7

(1.38)

Asin Section 1.3.1, considering A positive, there are two possibilities for the minimum

condition of the potential. The first possibility, 42 > 0, is just the usual situation
with a single ground state.

The other case, u? < 0, with SSB, is more interesting. The potential has the

minimum along a circle of radius,

2 2 _ _NQ 2
6 + 3= - =07 (1.39)
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This potential is represented in Fig. 1.3.

FIGURE 1.3: The potential for a complex scalar field ¢. Note that the minima
of V(¢), when 1% < 0and X > 0, have infinite degenerate possible values along
the circle of radius v (see text) on the real components of the field plane.

As before, to expand around v?, we have to choose some point on the circle,
which will break the symmetry for the solutions. Let us pick up the point ¢; = v,
¢2 = 0, and write, with n and ¢ real,

6= %(v—kn(x) +ip(@)). (1.40)

Substituting this in Eq. 1.38, we again find a Lagrangian that can be interpreted in

terms of particles and their interactions,

1 1
L =5(8up)* + 5(8,m)°
2 2
1
+ it = (0 + w?)p? (141
2 3 A 2 2 1 4 A 4 .
= Av(mp” +07) = Sup” = i = 4p

+ constant .

The terms in the first line are normal kinetic terms. The first term in the second
line tells us that the 7 field corresponds to a particle of mfi = 2|p?]. Remarkably,
the second term in p? vanished, since the value inside the parenthesis is null by
definition, implying that the p field particle is massless. The fact that there are
massless excitations associated with the SSB mechanism is a completely general
result, known as the Goldstone theorem [10]: if a Lagrangian which is invariant

under a continuous symmetry group G (in our case it was U(1)) is spontaneously



16 Chapter 1. Standard Model Theory and the Higgs boson

broken (due to the choice of a particular ground state), then there must exist as
many massless spin-0 particles (Goldstone bosons) as broken generators. It is clear
how the massless particle arises: the potential is a minimum along a circle. Along
this circle the potential is flat, so there is no resistance to motion around the circle,

which is the meaning of the massless excitation.

1.3.3 The BEH Mechanism

At first sight, the Goldstone theorem discussed in Section 1.3.2 has very little to
do with the mass problem of the EW theory. In fact, it makes it worse in the
sense that we need massive states and not massless ones. However, something very
interesting happens when we consider the Lagrangian invariant under local gauge
transformations. From Section 1.2.2, we know that the local gauge transformations
require the introduction of a vector field A, and the Lagrangian should be written

in terms of the covariant derivative,
T 2 ¢ + 2
£ = (Du0)' (Dug) —u2oto— A (¢70) (1.42)

where we have not written the kinetic term (—%F,, F*") since it does not enter
in the analysis. We want to choose u? < 0 and write conveniently the field ¢(x)
profiting from the local gauge invariance,

v+ h(x)

P(x) = 2 (1.43)

with h being a real scalar field. Then the Lagrangian now takes the form,

L == (0,h) (0"h) + 39%2,4“14# — M?h? — \oh?

DO | =

) ) (1.44)
- Zh‘* + g*vhAF A, + igzthuA“ )

One can see in the second term of Eq. 1.44 that the gauge boson A has now ac-
quired mass M4 = gv. Note that it is non-zero only when the gauge symmetry is
spontaneously broken, i.e., because of selecting a particular VEV.

The massless Goldstone boson of Section 1.3.2 has now become the longitudi-
nal polarisation state of the gauge boson. This phenomenon is sometimes referred to
as the gauge boson having ”eaten” the Goldstone boson. The mechanism described

is the so-called Brout-Englert-Higgs (BEH) mechanism which was developed in 1964
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by three independent groups: by Robert Brout and Frangois Englert [11]; by Peter
Higgs [12]; and by Gerald Guralnik, Carl Hagen, and Thomas Kibble [13].

From the BEH mechanism, there arises a new single real boson h. From the
third term in Eq. 1.44, we can see that it has a mass M, = V2X02. Tt is the so-
called Higgs or BEH boson.? Note that the gauge boson mass is fixed if g% and v
are known, but the mass of the Higgs boson is not predicted by the model since it
depends on the strength parameter .

To apply the BEH mechanism to the EW theory, one has to extend the Higgs
field in the group symmetry of SU(2),

+
ZO , (1.45)

where ¢t and ¢° are each complex fields,
6" = o= (p1+ids) "= = (du+idy) (1.46)

V2 V2
The Lagrangian in the SU(2) space has the same form,
2

£=0,010"~V(6), V(o) =pn*sTo+x(o70) . (1.47)

As before we want to study the potential which is invariant under the local gauge
transformations,
p(z) = ¢/ (x) =T T2 g(z) (1.48)

where 7; are the Pauli matrices and «; are parameters. Proceeding as before in
Section 1.3.1 and 1.3.2, one can see that there is an infinite set of degenerate states

with minimum energy, satisfying,

a2 2

tp— — M U 1.49
dlo=h =" (1.9
By choosing a direction in SU(2) space, the symmetry gets spontaneously broken.

Considering one of the possible vacuum states, the appropriate choice is,

1 0
= .50
¢O \/§ v ) (1 )

2In this thesis this boson will be referred to Higgs boson as that term has long since passed into
common parlance, as was decided by the CERN Council in 2012 [14].
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corresponding to ¢3 = v and ¢1 = ¢3 = ¢4 = 0. Once more, we can study the

particle spectrum by expanding around the ground state,

1 0
¢(m):ﬁ vt | (1.51)

Again, we benefit from the local gauge invariance to make this simple choice. This
amounts to three fields coming from the Goldstone theorem when we have chosen
a particular vacuum state. Below we will see that these three massless bosons are
just what are needed for the longitudinal parts of the W+ and Z bosons. Then,
adding the U(1)y symmetry and writing the covariant derivative, the Lagrangian of

Eq. 1.47 can be rewritten. The piece generating the gauge boson masses is,
" ,U2 2
@) (D,0) = 5 [ (W02 + (72P) 4 (W -gm) | s

Regarding the relations given in Eq. 1.30, the first term in Eq. 1.52 becomes,

2
1 —\[
(27)92) (W), (W)k, (1.53)
yielding the W mass,
mw = % . (1.54)

Similarly, for the massive neutral gauge boson, Z, we obtain,

my = g\/g2 +g7. (1.55)

Finally, since no A, A" appears, M4 = 0 which is expected since it is the photon
term.

Thus, by SSB of the symmetry group SU(2), xU(1)y, three Goldstone bosons
have been absorbed by the W+ and Z bosons to form their longitudinal components.
Now these gauge bosons have acquired a proper mass term in the Lagrangian. Since
the U(1)y symmetry is still unbroken, the photon which is its generator, remains
massless, as it should be. There is a new massive fundamental scalar boson predicted
by the model: the Higgs boson. Its mass is given in terms of the signal strength,
My = vm.

Finally, the BEH mechanism provides a simple way to have massive lep-
tons and quarks in the SM as well. Since we have introduced an additional scalar

doublet into the model, we can add an interaction term for the leptons into the EW
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Lagrangian,
Cint = 9o (Loeq + 0 L) (1.56)
Ve
where the second term is the Hermitian conjugate of the first. Since L = N
e

and ¢ = (¢T¢), the term Lo = Ve + e ¢" is an SU(2) invariant.
Following the previous analysis for the EW gauge bosons, we can calculate

the mass spectrum by replacing,

0

v+H ?
V2

¢ — (1.57)

where v is the Higgs VEV and H represents the Higgs boson. Substituting this into
Eq. 1.56 gives,

geV (—— | T Je (= |, = _
Lint = ﬁ (eLeR + eReL) + \ﬁ (GLGR +€R€L> H, (1.58)

where the first term has exactly the expected form for the mass of the electron, so

gel

7

Since g, is arbitrary, the value of the electron mass is not predicted by the theory.

(1.59)

me =

The second term in Eq. 1.58 contains the electron-Higgs interaction, whose strength
is proportional to the electron mass. The rest of the leptons and quarks masses can

be generated in the same way.

1.4 The Higgs Boson Mass Constraints

The SM is the combination of the previously discussed theories of EW and strong
interactions. Its Lagrangian has the symmetry group SU(3)¢ x SU(2)r x U(1)y.
After spontaneous symmetry breaking part of this symmetry group is reduced.
SU(2)r, x U(1)y becomes U(1)em which is the usual group of classical QED.

The Higgs boson is predicted by the theory when the BEH mechanism is
applied to the EW Lagrangian in order to get massive weak bosons. The Higgs
boson mass is unpredicted by the SM theory as was discussed in Section 1.3.3.
Nevertheless, constraints can be derived from internal consistency conditions. Upper

bounds on the mass can be generated by assuming that the SM can be extended
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up to a scale A before perturbation breaks down and new dynamical phenomena
emerge.

There are several ways to get constraints on the Higgs mass despite the general
lack of prediction from the theory, the first of which comes from one-loop EW ra-
diative corrections. The Higgs boson contributes to radiative corrections on the top
quark and W boson masses. Therefore, precision measurements of EW parameters,
like the top quark and W boson masses or the weak mixing angle () of the W
and Z bosons can constrain the Higgs boson mass.

Combining the high precision measurements of these masses taken at the
LEP [15] and Tevatron [16] colliders, leads to a Ax? fit of the Higgs boson mass.
Figure 1.4 shows this fit, from the measurements mentioned above, as a function of
the Higgs boson mass. The preferred value for the Higgs boson mass is at 87f§2 GeV
at a 68% confidence level (CL), which corresponds to the minimum of the fitting
curve. This is not a proof that the Higgs boson exists but it gives an idea for the
mass range in which it is expected. The upper limit on the Higgs mass is quoted for
my < 186 GeV at 95% CL and direct experimental searches by the LEP experiment
placed a lower limit of my > 114.4 GeV at 95% CL [17].

6 August E_.U[]E _ M imie .= 157 GeV
: (5) 1
5 ] -: Aahad =i : |
1} —0.02758+0.00035 :
% % - 0.02749+0.00012 [f § ]
4 .' incl. low Q° data : -
(\Ix 3 _ i
<
2 _
14 _
0 Excluded ./ Preliminary
30 100 300

my, [GeV]

FIGURE 1.4: Limits on the Higgs mass within the SM from precision electroweak
constraints, and direct Higgs searches by the LEP and Tevatron experiments.
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1.5 Phenomenology of Proton-Proton Collisions

The calculation of production cross sections at proton colliders takes into account the
fact that protons are composite objects. The process of interest takes place between
the constituents of the protons but these processes are accompanied by interactions
of the residual objects. The aim of this section is to give a brief summary of the
most important aspects of proton-proton collisions. A detailed description can be
found in Ref. [18].

1.5.1 General Aspects of Proton-Proton Collisions

Protons are not fundamental particles, instead they are composed of elementary
constituents known as partons which are valence quarks, sea quarks and gluons.
In proton-proton collisions, these basic constituents interact with each other. The
dominant processes are strong interactions which are described by the theory of
QCD. The amount of transferred momentum in the parton interaction allows to
classify the processes as hard or soft. In the case of hard scattering, the cross
section can be calculated using perturbation theory due to the small strong coupling
parameter. Oppositely, for soft processes the strong coupling strength becomes
larger and the scattering has to be calculated using non-perturbative QCD. The
soft scattering constitutes the majority of the cases in proton-proton collisions. A
hard scattering process is usually accompanied by soft interactions which occur with
the partons not participating in the hard scatter process.

A simplified representation of an interaction of two partons a and b, which

are constituents of the protons A and B, respectively is given in Fig. 1.5.

A
/fa>/

O—

FIGURE 1.5: Representation of the structure of a generic hard-scattering process
from Ref. [19].
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The hard scatter process ab — X produces some final state X and hadronised
proton remnants. The latter are referred to as the underlying event (UE). The cross

section of the hadrons A and B can be expressed by,

OAB = Z/dwa dwy fasa(za, Q) forp(ze, Q%)5 (1.60)
a,b

where ¢ denotes the partonic cross section of the initial state partons a and b. The
parton distribution function (pdf) is given by f,/4(q, Q?) (fo,B (20, Q?)). This
describes the probability to find a parton a (b) carrying the longitudinal momen-
tum fraction z, (73) at moment transfer Q2 of the hadron A (B). The pdfs are
not predicted by QCD perturbation theory but they can be measured in inelastic
scattering experiments for a given Q2 [20]. Figure 1.6 shows the pdfs of the proton
for different transfer scales Q2.

In the hard scattering many quarks and gluons are produced. The partons
carry colour charge, so they can radiate through bremsstrahlung process. The quarks
can radiate gluons which can radiate as well or create ¢g pairs, forming a parton
shower (PS). Such PS can be also produced from the initial state partons which
do not take part in the hard scatter process. When the emissions come from the
incoming partons, they are known as initial state radiation (ISR). If the emission is

related to the outgoing partons, then it is called final state radiation (FSR).

MSTW 2008 NLO PDFs (68% C.L.)

xf(x,Q7%)

Q2 =10 GeV?] w\(f.12=1u4 GeV? |

"‘, g/10

0 oy il n’ ol e
10*  10° 107 10" 1 10* 10" 102 10" 1

FIGURE 1.6: Parton distribution functions of the proton as determined for the
MSTWO08 PDF set for Q2 = 10GeV? and Q? = 10? GeV? on the left and right,
respectively. The bands reflect the uncertainties at the 68% confidence level [20].



Chapter 1. Standard Model Theory and the Higgs boson 23

1.5.2 Luminosity

In colliders the luminosity (L) is the ratio of the number of events detected (V) of

one type in a certain time (t) to the interaction cross section (o),

1dN
L=-="

. 1.61
o dt (1.61)

The luminosity has dimensions of events per time and per area. This is measured
in units of cm™2s71.

Today’s colliders all employ bunched beams. If two bunches containing n;
and no particles colliding head-on with frequency f.on1, a basic expression for the
luminosity is,

ning

L=foou-——, 1.62
! ”47ramay ( )

where o, and o, characterise the transverse beam sizes in the horizontal and vertical
directions. The expected number of events (Negp) is the product of the cross section

of interest (o) and the time integral over the instantaneous luminosity (£),
Newzax/Ldt:axL7 (1.63)

where the quantity £ is called integrated luminosity which is used to quantify the
total amount of collisions in a period of time. Cross sections are usually measured

in units of barns. 3

1.5.3 Expected Cross Section at Hadron Colliders

The formalism described in the previous sections is used to obtain predictions for
some SM cross sections at hadron colliders. Figure 1.7 presents an overview of
different cross sections for some processes as a function of the center-of-mass energy
for the Tevatron and the LHC colliders.

The total inelastic proton-proton cross section (ot0) is about 6 orders of
magnitude higher than the cross section of W or Z bosons. The Higgs boson with
my = 125GeV production cross section is predicted to be about ten to eleven,
depending on the production mechanism, orders of magnitude smaller than the
total inelastic proton-proton cross section. Thus, very high luminosities are needed

to produce sufficient rate of such processes.

31barn = 10728 m?2 = 10~ 24 cm?.
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FIGURE 1.7: Cross sections and expected number of events for an integrated lumi-

nosity of 1033 cm™2s™! of SM processes in proton-proton (LHC) and anti-proton-

proton (Tevatron) collisions as a function of the center-of-mass energy [18].

1.6 Higgs Boson Production Modes

In the SM, the main production mechanisms for the Higgs boson at hadron colliders
make use of the fact that the Higgs boson couples preferentially to heavy particles.
It includes the massive W and Z vector bosons, the top quark and, to a lesser extent,

the bottom quark. Other production processes, such as the associated production
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with a single top, b-quarks and diffractive production play minor roles and are not
considered here.

The four main production modes are thus:

Gluon-gluon fusion: gg — H

Vector boson fusion: q¢ — V*V* — qq+ H

Associated production with W /Z bosons: qqg — V + H

Associated production with top quark: gg, qq — ttH

The Feynman diagrams of these four main production mechanisms processes

are shown in Fig. 1.8.

q
q
q
v*
H
v*
_ q
q
q
a) Associated production with W/Z (WH/ZH) b) Vector boson fusion (VBF)

g 0uoo0000
H
[2AEN0.0[0/0101010/0)
c) Gluon-gluon fusion (ggF) d) Associated production with top quark (ttH)

FiGURE 1.8: The dominant SM Higgs boson production modes in hadron
colliders.

Figure 1.9 shows the cross sections for the dominant Higgs boson production
as a function of the Higgs boson mass in proton-proton collisions at a center-of-mass
energy of 8 TeV. The cross section decreases rapidly with increasing Higgs mass for
all production modes.

Table 1.4 shows the cross section for the main production mechanisms for a
Higgs boson mass of my = 125 GeV in proton-proton collisions at a centre-of-mass
of 8 TeV.
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FI1GURE 1.9: Higgs boson production cross sections in proton-proton collisions
at a center-of-mass energy of 8 TeV.

TABLE 1.4: The dominant Higgs boson production mechanisms for proton-proton

collisions and their cross section (o) at a center-of-mass energy of 8 TeV for a

Higgs boson mass with mpg = 125 GeV. The corresponding errors are expressed
in percent [21].

Production mode Representation o (pb) (myg = 125GeV)

ggF g9 = H 19.52+147%
VBF qq — qqH 1587300
WH qq — WH 0.70737%
ZH aq — ZH 0.3972-0%
tH g9 — ttH 0.13+11.6%

1.6.1 Gluon-gluon Fusion Production

Gluon-gluon fusion (ggF) is the main production mechanism of Higgs bosons in
high-energy proton-proton collisions throughout the entire mass range up to 1 TeV.
The gluon coupling to the Higgs boson in the SM is mainly mediated by triangular
loops of top quarks as shown in Figure 1.8-¢). The loop can also be mediated by a
bottom quark but the top quark is preferred because of its larger Yukawa coupling
to the Higgs boson compared to the bottom quark.

The dynamics of the ggF' mechanism is controlled by strong interactions. In

QCD perturbation theory, its cross section is proportional to the square of the QCD
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coupling constant. The ggF cross section has been calculated up to next-to-next-
to-next-to-leading order (NNNLO) in QCD using the large-m; limit [22, 23]. This
approximation has been tested at next-to-leading order (NLO). This calculation has
been compared to the exact Born cross section result, with the full dependence
on the mass of the top quark, yielding differences only of a few percent [24]. The
computation of the ggF cross section includes NLO electroweak corrections and QCD
soft-gluon resummation up to next-to-next-to-leading logarithmic (NNLL) terms.
The detailed description on the procedure is given in Ref. [25].

The Higgs boson can also be produced in association with one or more jets
with high momenta. At leading order (LO) the processes are just gg — Hg and
gg — Hgg which are mediated by triangles up to pentagon diagrams. Figure 1.10

presents some example Feynman diagrams for these processes.

@6@6(@%@ OO0 O

000000000,

a) H + 1jet b) H + 2jets

FIGURE 1.10: Feynman diagrams for the Higgs boson production through ggF
in association with jets at proton-proton colliders.

The kinematics of Higgs signals in association with jets differ significantly
from that of known SM backgrounds. These properties can be exploited to select
corners of phase space where the expected signal-to-background ratios are larger
than in a purely inclusive approach [26]. This is the basic strategy that follows the
Higgs boson search in Chapter 5.

1.6.2 Vector Boson Production

The second dominant process arises from the vector boson fusion (VBF) mechanism,
which is one order of magnitude lower than the ggF for a Higgs boson with mass
my = 125 GeV, as shown in Fig. 1.9. This production mode is characterised by the
presence of two forward jets arising from the two outgoing quarks. Figure 1.8 b)
presents the Feynman diagram for the VBF production mechanism.

The production of a Higgs boson accompanied by two jets mainly receives
contributions at hadron colliders from ggF, VBF and associated production modes.

For the former, the Higgs boson couples to a weak boson that links two quarks lines,
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which are dominated by ¢- and u-channel-like diagrams. For the latter, the two jets
appear when the associated vector boson decays into a pair of quarks. In the genuine
VBF channel, the hard jet pairs have a strong tendency to be forward-backward
directed while the Higgs boson decay products are expected in the central region of
the detector. This is in contrast to other jet-production mechanisms, as for example
tt decay processes, offering a good background suppression. Since quarks from the
incoming protons carry large momenta, the invariant mass of the two additional
quarks in the VBF production mechanism is expected to be larger than for QCD
processes where gluons are radiated off the incoming quarks. To measure the Higgs
couplings in VBF, specific cuts should be applied in order to suppress events from
Higgs accompanied by two jets via ggF, which becomes a new background to the
VBEF signal. In the ggF channel, as was discussed in Section 1.6.1, the Higgs boson
can be radiated off a heavy-quark loop that couples to any parton of the incoming
hadrons via gluons. Although the final states are similar, the kinematic distributions
of the jets are different. Applying appropriate event selection criteria, it is possible
to sufficiently suppress the ggF Higgs boson mechanism with respect to the VBF
one. The ggF and VBF production modes are of particular interest for the analysis

presented in Chapter 5.

1.6.3 Associated Production Modes

The next contributing production mechanism is the associated production with vec-
tor bosons represented by V', where V.= W, Z in Fig. 1.8 a). This is essentially a
Drell-Yan process in which the W+ or Z boson radiates a Higgs boson. Hence, these
Higgs boson production processes are usually referred to as Higgs-strahlung. The
cross section of the associated production mode with vector bosons is three (W H)
and five (ZH) orders of magnitude lower than the ggF.

The last mechanism is the associated production with the top quark. This is
the lowest contributing production process and its corresponding Feynman diagram

is shown in Fig. 1.8 d).

1.7 Higgs Boson Decay Modes

In the SM, once the Higgs boson mass is fixed, the properties of the Higgs particle is
uniquely determined. The Higgs couplings to gauge bosons are proportional to the

square of the boson masses and the coupling to fermions are directly proportional
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to the fermion masses,

2m3, 2m3,
9ufF = v YHVV = y GHHVV = —5—
v (1.64)
3m% 3m%
YHHH = ) YHHHH = 02

The Higgs boson has the tendency to decay into the heaviest ones allowed kine-
matically. Thus, the dominant decay mechanisms involve the coupling to the Higgs
boson to the weak bosons and/or the third generation of fermions.

Figure 1.11 shows the main Feynman diagrams for the Higgs boson decays
into fermions and gauge bosons. Since photons and gluons are massless, they do not
couple directly to the Higgs boson at tree level. Nevertheless, they can be generated
via loops involving heavy virtual W bosons and heavy virtual quarks, as shown in

the middle Feynman diagram in Fig. 1.11.

— = = = — — = — - — —>— —

f Y v

FIGURE 1.11: Feynman diagrams of the Higgs boson decay modes.

Figure 1.12 presents the branching ratio for different decay modes of the Higgs
boson as a function of its mass in proton-proton collisions. Below the threshold for
the production of a pair of W bosons, i.e. my < 2my, the predominant decay
channel is H — bb. The decays into a tau pair, a charm quark pair and into two
gluons are one order of magnitude lower. All they together contribute less than
~ 15% on the total Higgs boson decay.

As shown in Fig. 1.12, above myg ~ 130 GeV the dominant Higgs decay mode
is into a pair of W bosons. Note that below the W W~ mass threshold the Higgs
decay mode can be produced if one of the W bosons is virtual. The branching
ratio for the H — ZZ decay reaches its maximum above the mpy ~ 200 GeV
threshold. Similarly, the decay into a pair of top quarks (top and anti-top) starts
being significant above a Higgs boson mass of 350 GeV. Table 1.5 presents an
overview of the dominant Higgs boson decay modes for a Higgs boson mass my =
125 GeV [21].

It is important to mention that besides the branching ratio, the properties

and features of these decays play a central role. One clear example is the bb final
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FIGURE 1.12: Branching ratios of the different Higgs boson decay modes as a

function of the Higgs boson mass. The left plot extends the Higgs mass range

up to 1 TeV. The right plot only shows the decay modes for the low-mass range,
i.e., mu < 200GeV.

TABLE 1.5: Branching ratios for the dominant Higgs boson decay modes for a
Higgs boson mass my = 125 GeV with the errors expressed in percent [21].

Decay mode BR x10~2
(mpg = 125 GeV)
H — bb 57.7752%
H —» WW®  215743%
H — gg 857102
H — 77 6322 7%
H — cc 2.91712.2%
H — 2z2®  2.6473%
H — vy 0.22850%
H — ufi 0.021718-9%

state, for which we expect the highest branching ratio for a Higgs boson mass of
myg = 125GeV, as shown in Tab. 1.5. In this case, the signal is inaccessible in
the ggF mechanism due to the direct QCD production of b-quark pairs produced
in proton-proton collisions. This search becomes more feasible in case of VBF or
VH production modes since they provide additional characteristics that help to
discriminate the SM background contamination. The counter-example is the H —
v decay which becomes one of the most powerful channels for the low mass search
despite its very low branching ratio. The feasibility of this channel heavily relies
on excellent photon resolution due to the expected small signal-to-background ratio

for the inclusive analysis. In general, final states involving electrons and muons,
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or photons are more beneficial for the search of the Higgs boson since they present
a clearer signature in the environment of proton-proton collisions. In light of this,
the H — ZZ* — 4 and the H—WW® — fuly (with £ = e, ) are expected
to provide high sensitivity. The former is commonly referred to as the ”Golden
channel” as with four leptons in the final state the signal is easy to trigger on,
thereby the signal-to-background ratio is increased. Moreover, this decay mode
allows for full reconstruction of the Higgs boson mass. The latter benefits from high
branching ratio for a wide mass range. The Higgs boson decaying into a W pair is
the most significant channel at my ~ 160 GeV and it has considerable sensitivity
at my = 125 GeV. The final state with two high pr leptons is the search on which
this thesis is focused. The analysis strategy is fully covered in Chapter 5.






Chapter 2

The ATLAS Experiment at
the CERN Large Hadron
Collider

2.1 Introduction

The European Organization for Nuclear Research (CERN) serves to provide parti-
cle accelerators and other infrastructure needed for high-energy physics research. It
was founded in the northwest of Geneva in 1954 deriving its name from the acronym
from the French ”Conseil Européen pour la Recherche Nucléaire”. Today CERN has
21 member states and over 600 institutes and universities around the world are in-
volved contributing in different ways. Numerous experiments have been constructed
at CERN following international collaborations such as the Large Hadron Collider
(LHC).

In the LHC, the last and biggest element in the accelerator complex at CERN,
particle beams are accelerated up to the record energy of 6.5 TeV per beam. The
ring of the LHC stands astride the Franco-Swiss border, near Geneva. It has a
circumference of ~ 27 km which is built at a mean depth of 100 m. Figure 2.1 shows
an aerial view composition of the LHC tunnel and its perimeter on the surface.

The two beams are brought into collision in 4 points located in the center
of the four main detectors situated in the LHC tunnel. The two biggest exper-
iments at the LHC, ATLAS (A Toroidal LHC Apparatus) [27] and CMS (Com-

pact Muon Solenoid) [28], use general-purpose detectors to investigate the largest

33
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range of physics possible. Their main aim is to confirm or exclude the Higgs boson
discussed in Chapter 1. There are two detectors with more specific roles, LHCb
(LHC-beauty) [29] and ALICE (A Large Ion Collider Experiment) [30]. The latter
focuses its research on quark-gluon plasma, simulating the conditions that existed
shortly after the Big Bang. LHCD investigates the dominant amount of matter
with respect to antimatter that is observed in the Universe nowadays. Figure 2.2
presents a diagram of the underground locations of the main four experiments at
LHC: ATLAS, CMS, ALICE and LHCb.

FIGURE 2.1: Aerial map of the LHC tunnel perimeter overlapped with the
underground beamline view.

There are three smaller experiments at the LHC: TOTEM (Total Cross
Section, Elastic Scattering and Diffraction Dissociation at the LHC), MoEDAL
(Monopole and Exotics Detector at the LHC) and LHCf (LHC forward experiment).
TOTEM uses detectors positioned on either side of the CMS interaction point, while
LHCf is made up of two detectors which sit along the LHC beamline since it focus
on particles brushing past each other rather than meeting head on when the beams
collide. MoEDAL uses detectors deployed near LHCDb to search for the theoretical
magnetic monopole particles.

This chapter starts introducing the LHC complex in Section 2.2. The ATLAS
detector, which delivered the data for this thesis, will be described in Section 2.3.
There, an overview of the characteristics of the ATLAS components and their

performance are described.
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FIGURE 2.2: Diagram of the locations of the main experiments located at the
LHC tunnel: ATLAS, CMS, ALICE and LHCb.

2.2 The Large Hadron Collider

The LHC physics goals require large collision energy since the cross-sections of pro-
cesses of interest, so-called signal, raise faster with increasing collision energy with
respect to the cross-sections of most background processes (see Fig. 1.7). In light of
this, stable high intensity beams are needed in order to produce as many energetic
collisions as possible.

The technological development to reach these goals have been achieved in the
LHC. It has delivered both proton-proton and heavy ion (Pb82+) collisions efficiently
since 2008. This section provides the basis on the LHC accelerator complex and its

design following the detailed description in Refs. [31-33].

2.2.1 LHC Accelerator Complex and Design

The accelerator complex at CERN is a succession of machines that accelerate par-
ticles to increasingly higher energies. Each machine boosts the energy of a beam of
particles, before injecting the beam into the next machine in the sequence. Figure 2.3

illustrates the accelerators complex design.



36 Chapter 2. The ATLAS experiment at the CERN Large Hadron Collider

LHC

LHCb

SPS
- )\iumlﬂos
ATLAS CNGS
Gran Sasso
I
AD
1993 (182 m)]

e - BOOSTER

157 m)|
@ AR ) oL De
? O East Area

PS

LINAC 2

neutrons

Leir
UNAC 3 2005 (78 m)
lons
» ion » neutrons » P (antiproton) —— /antiproton conversion  » neutrinos > electron

LHC Large Hadron Collider SPS  Super Proton Synchrotron PSS  Proton Synchrotron

AD Antiproton Decelerator CTF=3 Clic Test Facility CNGS Cern Neutrinos to Gran Sasso  ISOLDE  Isotope Separator OnLine DEvice
LEIR Low Energylon Ring LINAC LINear ACcelerator n-TofF Neutrons Time Of Flight

FIGURE 2.3: The CERN’s accelerators complex from Ref. [31].

Protons are pre-accelerated in four increasingly large machines before being
injected to the LHC ring. The beams injected in the LHC are actually a collection of
proton bunches. Each bunch is about 20 — 30 ym in diameter, and a few centimetres
long. The timing and control provided by the LHC is so precise that bunches only
cross paths, producing collisions, within the four caverns of the LHC in which are
located the detectors. The LHC challenge is to get as many bunches as possible
circulating into the ring, each with maximum number of protons. To do that, the
LHC complex starts with a simple bottle of hydrogen gas and an electric field to
strip the electrons from the hydrogen atoms.

The first chain of the accelerator system is a linear accelerator, Linac 2. This
delivers bunches of protons and gets them up to an energy of 50 MeV. From there,
the protons are dumped into the first circular accelerator, called Proton Synchrotron
Booster (PSB). This hardware dates from 1972, and it manages to get the protons up
to 1.4 GeV in 1.2 seconds. It also starts squeezing the bunches down so that they have
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a smaller cross-section. The beam is transferred to the Proton Synchrotron (PS),
which was built in 1959. It has a 628 m circumference, and it takes 3.6 seconds to
get two injections of bunches up to 25 GeV. In the last step of the LHC complex, the
protons are sent to the Super Proton Synchrotron (SPS) where they are accelerated
to 450 GeV. The protons are finally transferred to the two tubes of the LHC,
the so-called beam pipes. As was introduced previously, protons are not the only
particles accelerated in the LHC. Lead ions for the LHC are originate from a source
of vaporised lead and enter Linac 3 before being collected and accelerated in the
Low Energy Ion Ring (LEIR). They then follow the same route to maximum energy
as the protons.

The LHC tunnel was originally constructed between 1984 and 1989 for the
CERN Large Electron-Positron machine (LEP [15]). Inside the LHC, the two high-
energy particle beams travel in separate beam pipes. The beam in one pipe circulates
clockwise while the beam in the other pipe circulates anticlockwise. The beams
circulate inside the LHC under a high vacuum condition. Moreover, electromagnetic
devices are used to keep the particles in their orbits. The main components of the
accelerator are superconducting dipole magnets, operating at a temperature of 1.9 K
and designed for producing magnetic fields of 8.33 T. Superfluid helium is used to
cool down the more than 1200 dipole magnets. Finally, quadrupole magnets focus
the beam, and accelerating cavities, that are electromagnetic resonators, keep the
bunches at a constant energy. It takes about 4 minutes to fill each beam pipe of the
LHC, and 20 minutes for the protons to reach their maximum energy of 4 TeV. When
that energy is reached, the proton beams collide in the center of the experiments.
The details of the LHC beam parameters are quoted in Tab. 2.1.

Circumference 26.7km
Radius 4.24km
Number of magnets 9593
Number of dipole magnets 1232

Number of quadrupole magnets 392
Nominal magnetic field strength 8.33T
Dipole operating temperature 19K

Inelastic cross-section 60 mb
Total cross-section 100 mb
Revolution frequency 11.25 kHz
Bunch frequency 40.08 MHz

TABLE 2.1: Design parameters of the LHC operating at /s = 14 TeV.
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2.2.2 LHC Operation 2010-2012

The first proton beams were successfully circulated in the main ring of the LHC on
September 10" 2008. Nine days later there was an unfortunate incident produced
by a faulty electrical connection. This damaged over 50 superconducting magnets
and led to a long technical intervention that delayed the research program by 14
months [34]. On November 20" 2009, proton beams were successfully circulated
in the LHC tunnel again, with the first recorded proton-proton collisions occurring
three days later at a center-of-mass energy of 900 GeV and 2.36 TeV. On March 30"
2010, the collisions took place between two 3.5 TeV beams, setting a world record for
the highest-energy man-made particle collisions. During 2010 and 2011, the LHC
produced /s = 7TeV proton collisions increasing the number of bunches per beam
from 200 to 1380. In 2012 the energy was increased to 4 TeV per beam, delivering
/s = 8 TeV proton collisions.

The LHC program completed its first period of proton-proton collisions (Run
I) in 2013. During the first long shutdown in 2013-2014 the experiments of the
LHC have been updating its detectors in order to measure the future collisions at
the center-of-mass energy of 13 — 14 TeV. The LHC re-started its activity by mid
of 2015. Table 2.2 compares the parameters conditions of the LHC proton-proton

collisions in each of the years of the Run I and the design quantities.

2010 2011 2012 Design
Centre-of-mass energy 7TeV 7TeV 8§ TeV 14 TeV
Peak luminosity [cm™2s71] 2x10%  3.65x10% 7.73x 103 103
Protons per bunch (x10%!) 01-12 06-1.2 1.48 1.15
Number of bunches < 200 200-1380 1380 2808
Average collisions per bunch-crossing < 3 9.1 20.7 22
Time between bunches [ns] > 150 75/50 50 25
Delivered luminosity 48.1pb~'  5.46fb~! 22.8fb~! —

TABLE 2.2: Overview of machine parameters of the LHC operation during the
Run I collision years compared to the design values.

One of the most important characteristics of the LHC data is the luminosity.
Colliders’ luminosity depends exclusively on beams parameters and can be calculated

as follows [33],

I = N(?nbfrev'YT F

e (2.1)

where N, is the number of particles per bunch, n; is the number of bunches per

beam, f.., is the frequency of complete turns around the ring, =, is the relativistic
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gamma factor for particles in the beam, ¢, is the beam emittance which is a measure
of how the particles depart from the ideal trajectory, 5* is the beta function at the
collision point giving the envelope for the particle motion, and F' is the luminosity
reduction factor due to the crossing angle at the interaction point (< 1). Figure 2.4
shows the peak instantaneous luminosity delivered to the ATLAS detector per day
during the proton-proton collisions of 2010, 2011 and 2012.
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FIGURE 2.4: The peak instantaneous luminosity delivered to ATLAS per day
versus time during the proton-proton collisions of 2010, 2011 and 2012 from
Ref. [35].

The cumulative luminosities versus time delivered by the LHC, and recorded
by the ATLAS detector are shown in Fig. 2.5. The cumulative luminosity is obtained
integrating the instantaneous luminosity over time (see Eq. 1.63). A total integrated
luminosity of 5.46 fb~! was delivered by the LHC at a collision energy of 7 TeV in the
year 2011 of which 5.08 fb~! was recorded by ATLAS. In the year 2012 an integrated
luminosity of 22.8fb~! was delivered by the LHC at a collision energy of 8 TeV of
which 21.3fb~! was recorded by the ATLAS detector. These data samples are
analysed in Chapter 5 for the search of the Higgs boson in the H— WW *) — fviv
final state. During 2010, there was recorded 48.1 pb~! which served for studies on
the detector performance and efficiency.

From Eq. 2.1 is clear that the more protons per bunch, as well as the more
bunches circulating at once into the LHC ring, the higher the LHC’s instantaneous
luminosity. Thus, having the maximum energy of collisions at the LHC gives the
chance of exploring rare events. However, having high number of protons per bunch
crossing and/or high number of bunches in the beams of the LHC enhance the

probability of having multiple proton-proton interactions at the same event. This
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effect is referred to as pile-up and it can be separated in the next two types depending

on the origin of the additional proton-proton interactions,

e in-time pile-up: additional inelastic proton-proton interactions from the same
bunch crossings. The higher number of protons per bunch the higher in-time

pile-up effect.

e out-of-time pile-up: additional proton-proton interactions from nearby bunch

crossings. The lower bunch spacing the higher out-of-time pile-up effect.
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FIGURE 2.5: Total integrated luminosity delivered by the LHC (green), and
recorded by ATLAS (yellow) at /s = 7TeV and /s = 8 TeV in 2011 and 2012,
respectively [35].

The in-time pile-up has the largest impact on the physics analyses for the
2010-2012 running conditions. However, for the design 25ns bunch spacing, it is
expected that the out-of-time pile-up increases its contribution since the different
bunches will be closer to their neighbours. In the following, the in-time pile-up will
be referred simply as pile-up. The pile-up is directly related with the instantaneous
luminosity and it is defined by [36],

_ Loipa

- , 2.2
# np frev ( )

where o, is the inelastic cross-section which is taken to be 71.5mb for 7TeV

collisions and 73.0mb for 8 TeV collisions. The rest of variables are defined as in
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Eq. 2.1. Figure 2.6 shows the luminosity-weighted distribution of the mean number

of interactions per crossing for the 2011 and 2012 proton-proton collisions.
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FIGURE 2.6: Luminosity weighted distributions of the mean number of

interactions per bunch crossing for 2011 and 2012 from Ref. [35]. The inte-

grated luminosities and the mean p values are given for 2011 and 2012 running
conditions.

The increase in pile-up through the Run I data taking has been treated prop-
erly by the physics analyses. The simulated processes are weighted by the p dis-
tribution obtained from data in order to reproduce the same running conditions as
the recorded collisions. However, the high pile-up environment suffered specially
during 2012 has an important impact in the missing transverse momentum recon-
struction. This quantity is typically represented by the symbol Z7 and this will be
deeply analysed in Chapter 4. A big effort has been concentrated to recover the
degraded performance of the ' with the presence of high pile-up as it is presented
in Chapters 4 and 6.

2.3 The ATLAS Experiment

The general purpose of the ATLAS experiment is to investigate a large range of
physics processes that might become detectable in the high energetic collisions of
the LHC. The whole range of investigations using ATLAS include confirmations or

improved measurements of the SM of particles, as well as studies of hypothetical
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phenomena beyond the SM. One of the most important goals of ATLAS is to detect
the Higgs boson particle. Since its discovery in July 2012, the efforts focus on the
measurements of the Higgs boson properties. Up to now no deviations from the SM
theory have been founded. This section summarises the design and characteristics of
the ATLAS detector and its main components following the description in Refs. [37—
40].

The ATLAS machine is the largest of the four detectors installed in the LHC
tunnel. ATLAS is about 45 m long, more than 25m high and has an overall weight
of approximately 7000 tones. In the centre of the detector the two beams of pro-
tons or heavy ions circulating in the LHC collide at high energies. The particles
produced in each collision emerge from the centre of the detector in all directions.
The ATLAS detector has been designed to record the paths and energies of the
particles produced from the LHC collisions. In light of this, different components
are built to measure different types of particles. ATLAS is composed of the Inner
Detector (ID), electromagnetic and hadronic calorimeters systems, and the Muon
Spectrometer (MS). Figure 2.7 presents a view of the ATLAS detector and its main

components.

Muon Detectors Tile Calorimeter Liquid Argon Calorimeter

Toroid Magnets  Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

Fi1GURE 2.7: The ATLAS detector and its main components.

The ID is located in the innermost part of ATLAS. It is symmetrically built
around the beam pipe of the LHC and it is designed to reconstruct tracks and decay

vertices with high efficiency. It measures the trajectories of the charged particles
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emerged from the collisions. The inner detector is embedded in a solenoidal magnet
which generates a magnetic field of 2T. The curvature of the trajectories which
results from the the magnetic field bending power, is used to calculate the momentum
of charged particles passing trough it. Electromagnetic and hadronic calorimeters
surround the solenoid magnet. They are designed to measure the deposited energy
and to reconstruct the direction of the different types of particles for which they are
sensitive to. The last layer of ATLAS is formed by the muon spectrometer and a
toroid magnet. The muon tracking system measures the paths of charged particles
crossing the calorimeters. The trajectories are bent by the magnetic deflection
provided by three superconducting air-core toroid magnets, which generate a field
of 0.5T.

The ATLAS detector is optimised to obtain high resolution measurements of
different types of particles. Figure 2.8 presents an illustration of the signatures of
different particles passing through the ATLAS detector from Ref. [41].

Tracking {

FIGURE 2.8: Computer generated image representing how the different
components of the ATLAS detector measure different type of particles.

Basic requirements for the ATLAS design are the following,

e Efficient tracking at high luminosity for high-pr lepton-momentum measure-
ments, electron and photon identification, 7-lepton and heavy-flavour identifi-

cation, and full event reconstruction capability at low luminosity.
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e Very good electromagnetic calorimetry for electron and photon separation and
measurement, complemented by a full-coverage hadronic calorimetry for accu-

rate jet and Fp measurements.

e High-precision muon measurements, with the capability of guaranteeing accu-
rate measurements at the highest luminosity using the external muon spec-

trometer alone.

e Triggering and measurement of particles at low-pr, providing high efficiencies

for most physics processes of interest at LHC.

e Large acceptance in pseudo-rapidity () with almost full azimutal angle (¢)

coverage. The ATLAS coordinate system is described below.

ATLAS uses a coordinate system with the origin at the point where the beams
collide, the so-called interaction point (IP). The IP is located in the centre of the
detector. The z-axis is situated along the beam line, with the side-A of the detector
defined as that with the positive z. The z-y plane is perpendicular to the beam axis,
with the positive x-axis pointing from the detector to the center of the LHC ring
and the positive y-axis pointing upwards towards the surface. The azimuthal angle
(¢) is measured around the beam axis, and the polar angle () is the angle from the

positive z-axis towards the y-axis. The rapidity is an important variable defined as,

1 E+p,

where FE is the energy of the particle and p, is the particles momentum component
in the z direction. More common usage has the pseudorapidity since it depends only

on the polar angle of the particle’s trajectory,

n=—In <tan (Z)) : (24)

The pseudorapidity is actually the limit of the rapidity when setting the masses to
zero. The value of n = 0 corresponds to § = 5 and as the polar angle approaches
zero, the pseudorapidity tends towards infinity. The advantage of this particular
definition is that differences in pseudorapidity are invariant under boosts along the
z axis. The distance AR between two objects in the pseudorapidity-azimuthal angle

space is defined as,

AR = /A2 + Ag2, (2.5)
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where An and A¢ are the differences between the object coordinates in 7 and ¢,

respectively.

2.3.1 The Inner Detector

The ID is the closest element of the ATLAS detector, being located directly around
the beam pipe. It is built symmetrically with respect to the beams crossing point,
covering a length of 7m and a radius of 1.15m. The ID is surrounded by the solenoid
magnet and the LAr electromagnetic calorimeter. The magnetic field configuration
of the ID is based on an inner thin superconducting solenoid surrounding the ID
cylinder with a radius of 1.2m and a length of 5.3 m. It provides an axial magnetic
field of 2T in the centre of the tracking volume.

The ID is responsible for tracking and vertex reconstruction. It provides
excellent momentum and vertex measurements of charged particle tracks above
pr > 0.5GeV up to very high momentum. Using additional information from the
calorimeter and muon systems, the ID also contributes to electron, photon, and
muon identification, and supplies extra signatures for short-lived particle decay ver-
tices. It is formed by three highly granular subsystems: the Pixel detector followed
by the Semiconductor Tracker (SCT) layers, and the Transition Radiation Tracker
(TRT) detector made of sensitive straws. The layout of the ID provides full tracking
coverage over the range |n| < 2.5 and it is shown in Fig. 2.9. In the barrel region,
the high-precision detector layers are distributed on concentric cylinders around the
beam axis, while the end-cap detectors are mounted on disks perpendicular to the
beam axis.

Each track of a charged particle can be fully identified by the combination of
the parameters obtained from the three elements of the ID. These parameters are
given at the point of closest approach to the nominal beam axis (x = 0 and y = 0)
and they include: the impact parameters in  — y and r — z planes (dy and zp); the
azimutal and polar angles (¢ and 6); and the charged curvature (¢/p). The relative
precision of the measurement is well complemented by the different components of
the ID, so that no single measurement dominates the resolution and efficiency of the
detector.

The Pixel detector is the innermost element of the ATLAS detector and it
consists of three highly granulated cylindrical layers of pixel detectors. Each of the
three pixel detector contains 1744 identical rectangular modules with a nominal size
of 50 x 400 ym? and 250 ym thickness. The innermost layer of pixels is as close as

5cm to the beam pipe and it is responsible for the determination of the interaction
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FIGURE 2.9: The layout of the ATLAS Inner Detector.

point and tagging of short-lived particles such as 7 leptons and b-quarks. For this
last reason, this layer is also known as B-layer and it suffers the highest radiation.
Combining the measurements of the three layers of pixel detectors a precision of
10 pm in the transverse direction (r — ¢) and 115 pm in the longitudinal direction
(z for the barrels and r for the end-caps) is achieved.

The SCT is the second innermost detector in ATLAS and it is located between
the pixel and the TRT detectors. The basic principle of the semiconductor detectors
is that the passage of ionizing radiation creates electron-hole pairs in the semi-
conductor which are collected by an electrical field. The barrel of the SCT contains
four cylindrical layers of silicon micro-strip detectors while there are nine discs in
the end-cap region. In the barrel region one set of strips in each layer is oriented
parallel to the beam direction while another set of strips is running radially in the
end-cap region. Each module of silicon detector is 6.36 x 6.40 cm? and contains 780
readout trips. The SCT is designed to provide complementary measurements in the
intermediate radial range, contributing to the measurement of momentum, impact
parameter and vertex position. The achieved spatial resolution of the SCT is 16 um
in the r — ¢ plane and 580 ym in the longitudinal direction (z for the barrel and r
for the end-caps). The SCT highly suffers from radiation damage so, it is necessary
to operate the silicon sensors at low temperatures of approximately —5 to —10°C
to maintain adequate noise performance after radiation damage.

The outermost element of the ID is the TRT which is a gaseous straw detector

composed of many layers of tubes of 4mm diameter interleaved with transition
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radiation material. The straws are filled with a mixture of 70% Xe, 27% CO», and
3% Og. The main goals of the TRT are to enhance the tracking capability and to
provide particle identification. In particular, the TRT distinguishes electrons from
pions and other charged particles. Charged particles crossing a boundary between
different dielectric media emit transition radiation with an intensity proportional to
the Lorentz factor v+ = E/m. These radiated photons have the energy of typically
several keV, hence they are absorbed in the Xenon-based gas mixture of the straw
tubes. Electrons have a lower mass compared to pions and thus emit a significant
amount of transition radiation. This effect is used to achieved a better particle

identification.

2.3.2 Calorimeters

After traversing the ID and the solenoid, particles produced at the LHC collisions
enter in the ATLAS calorimetry system. The basis for the construction of the
ATLAS calorimeters is to assemble absorber and detection mediums. When a parti-
cle interacts with the absorber material it produces a shower of secondary particles,
of lower energies, which are detected in the active medium. The nature of the
interaction is different for different types of particles: leptons and photons interact
with matter via the electromagnetic interaction while hadrons may interact via the
strong interaction. In light of this, two sets of calorimeters are used in ATLAS
in order to provide good resolution of electromagnetic showers as well as a good
containment of the wider hadronic showers for a large energy range. Thus, the
ATLAS calorimetry system is composed of an electromagnetic calorimeter system
(EM) which is based on lead and Liquid-Argon (LAr) with accordion geometry,
and hadronic calorimeters based on a sampling technique with plastic scintillator
embedded in an steel absorber. The central barrels are made out of plastic tiles,
therefore the name of the hadronic central component: TileCal. The full calorime-
ter system covers the pseudorapidity range up to |n| < 4.9 and it contains the
EM calorimeter covering the range |n|<3.2, a barrel hadronic calorimeter covering
|n|<1.7, hadronic end-cap calorimeters covering 1.4<|n|<3.2, and forward calorime-
ters covering 3.2<|n|<4.8. At larger rapidities, where higher radiation resistance is
needed, the radiation-hard technology is used for all the calorimeters: ElectroMag-
netic End-Cap (EMEC), the Hadronic End-cap Calorimeter (HEC) and the Forward
Calorimeter (FCal). A scheme with all the calorimeters for ATLAS can be seen in
Fig. 2.10.
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FI1GURE 2.10: ATLAS calorimeters system.

2.3.2.1 Electromagnetic Calorimeter

The LAr EM calorimeter consists of two identical half-barrels, separated by a small
gap of 4mm at z = 0, covering the region |n| <1.47 and two end-caps comprising
two coaxial wheels covering the range 1.375 < |n| < 3.2.

Each half-barrel is divided into 16 modules and it is made of 1024 accordion-
shaped absorbers arranged with a complete ¢ symmetry around the beam axis.
Between each pair of absorbers, there are two liquid argon gaps, separated by a
readout electrode. In the region |n| < 2.5, each module is divided into three longi-
tudinal layers with decreasing granularity, while in the |n| > 2.5 range the LAr EM
calorimeter is segmented into two samplings as shown in Fig. 2.11. The first layer
has the finest granularity and it allows for precise measurements of the electromag-
netic shower shape. The cells in the second layer have granularities of 0.025 x 0.025
and 0.050 x 0.025 in An x A¢ in the barrel and end-cap regions, respectively. Most
of the energy of the electromagnetic showers originating from electrons and photons
is deposited in the second layer which has a thickness of about 16 radiation lengths
(Xo). The third layer owns a depth of about 2 X, and a granularity of 0.050 x 0.025
in An x A¢.

The EMEC, the HEC and the FCal calorimeters are placed inside the end-
cap cryostat. The EMEC uses the same technique as in the LAr EM barrel and it
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covers the range 1.375<|n|<3.2. The HEC covers the region 1.5<|n|<3.2 and it uses
copper plates as absorbers placed with parallel geometry in this case. The FCAL is
extended in the 3.2<|n|<4.9 region and it provides larger electromagnetic coverage
as well as hadronic shower measurements by using copper and tungsten as absorbers,

respectively. The total thickness of the end-cap calorimeter system is above 26 Xj.
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FIGURE 2.11: Diagram of a LAr EM calorimeter barrel module. It is shown the
longitudinal segmentation, the cell size and the accordion structure.

2.3.2.2 Hadronic Calorimeter

The hadronic calorimetry system at the ATLAS detector is mainly designed to
determine the energy and direction of the hadronic showers as well as to contribute
to the measurement of the Er quantity [42]. Detailed studies for the different
B definitions used by ATLAS are described in Chapter 4. The ATLAS hadronic
calorimetry surrounds the EM calorimeter and it has a high coverage extending its
region up to |n| < 5. In order to maximise the efficiency of the detector different
designs and techniques are used depending on different 7 ranges.

The TileCal calorimeter covers |n|<1.7 and it is divided into one central long
barrel with a length of 5.6 m and two extended barrels with a length of 2.9 m each.
There is a gap between the central and extended barrels of 0.6 m, which is needed

for the ID detector and LAr calorimeter services. The inner radius of the TileCal
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detector is approximately 2.2m and the outer radius approximately 4.2m. Each
TileCal barrel contains 64 wedge-shaped modules, where the scintillator tiles are
oriented radially and normal to the beam line. This achieves an almost full azimuthal
angle coverage. The modules are made out of plastic scintillating tiles, which are

embedded in a steel absorber structure as shown in Fig. 2.12.

Photomultiplier

Wavelength-shifting fibre
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Scintillator

FiGURE 2.12: TileCal module components and structure.

When the particles cross the TileCal, light is produced in the scintillating
material. The intensity of this light is proportional to the energy deposited by
the particle in the calorimeter. The produced light is collected using wave-length
shifting fibres and conducted to the PMTs that convert it to an electrical signal.
The front-end and digitizing electronics are situated in the back-beam region of
the modules on the so-called drawers. The motherboard is the basic element that
holds together all the electronics in a drawer. The PMTs are read-out in groups
of 12 by a motherboard, which sends out the digitalized data to the TileCal back-
end electronics. The back-end electronics are installed in the counting rooms of
the ATLAS cavern, in a low radiation environment. The Read-Out Driver (ROD)
system is the central element of the back-end electronics. This uses the data from
the front-end electronics as input to the online reconstruction algorithms in the
first level of trigger as described in Section 2.3.5. High performance on the TileCal

electronics and measurements are crucial for having a reliable reconstruction of the
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hadronic showers. The TileCal energy and time offline reconstruction using the
Optimal Filtering Algorithm are described in more detail in Chapter 3.

In the region 1.5 < |n| < 4.9 the LAr techniques are used for the two end-caps
(1.5 < |n| < 3.2) and the two high density forward calorimeters (3.2 < |p| < 4.9)
as described in Section 2.3.2.1. The hadronic end-caps are made up of two equal
diameter wheels. The first wheel is built out of 25 mm copper plates as absorber
and the second wheel uses 50 mm copper plates. Compared to iron, copper has a
shorter interaction length that allows to increase the size of the LAr gaps between
plates, thereby reducing the electronic noise, the integration time and pile-up noise.
In both wheels the absorber plates are separated by 8.5 mm gaps filled with liquid-
argon and a structure of three electrodes that divide the gap into four drift spaces
of ~ 1.8 mm.

The forward calorimetry should be efficient at forward jet tagging and Fr
reconstruction. The forward calorimeters are high density detectors in order to
accommodate at least 9 interaction lengths of active material in rather short longi-
tudinal space. Each forward calorimeter is divided into three longitudinal sections.
In the first section the absorber is copper while in the second and third sections
is tungsten. The calorimeter consists of a metal matrix (the absorber) filled with
rods (electrodes). Liquid-argon is the active medium and fills the gaps between the

matrix and the rods.

2.3.3 The Muon Spectrometer

The ATLAS muon spectrometer has been designed to make efficient use of the
magnet bending power with a coverage of |n|<3. It provides projective towers in 7
and ¢ and is made out of practical chamber dimensions for production, transport
and installation [43]. Figure 2.13 shows the position of the muon chambers.

The spectrometer is divided into three regions: barrel region (|n| < 1.05),
transition region (1.05 < |n| < 1.4) and end-cap region (|n| > 1.4). Four different
technologies have been used depending on spatial and timing resolution, resistance to
radiation and engineering considerations: Monitored Drift Tube chambers (MDT),
Cathode Strip Chambers (CSC), Resistive Plate Chambers (RPC) and Thin Gap
Chambers (TGC).

The MDT chambers are composed of multilayers of high-pressure drift tubes.
Each multilayer is mounted on each side of the support structure. The drift tubes
are made of aluminium, 30 mm of diameter, with a central wire of W-Re. They work

at 3bar absolute pressure with a non-flammable mixture of Ar — COs.
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FIGURE 2.13: The ATLAS muon spectrometer in rz (left) and zy views (right).

The CSCs are multi-wire proportional chambers operated with a mixture of
Ar — COy — CF,. The distance between anode wires (2.5mm) equals the distance
to the cathode. The cathode readout is segmented into strips (5.08 mm) orthogonal
to the anode wires. The precision coordinate is obtained by measuring the induced
avalanche in the segmented cathode, achieving space resolutions better than 60 pm.

The RPC is a gaseous parallel-plate detector with a typical space-time reso-
lution of 1cm x 1ns with digital readout. It is composed by two parallel resistive
plates made out of bakelite. The plates are separated by spacers that define the
size of the gas gaps. The gas is a mixture of CoHsFy. A uniform electric field of
a few kV/mm produces the avalanche multiplication of ionization electrons. The
signal is read out via capacitative coupling to metal strips placed at both sides of
the detector and grounded.

The TGC is built with 50 um wires separated by 2mm. The wires are
placed between two graphite cathodes at a distance of 1.6 mm. Behind the graphite
cathodes, strips or pads are located to perform a capacitive readout in any desired
geometry. Some advantages of these chambers are a fast signal, typical rise time
10 ns and low sensitivity to mechanical deformations.

In the barrel region the chambers are situated in three concentric cylinders
(the so-called stations) around the beam axis at a radial distance of 4.5m, 7m
and 10m. MDT chambers are used for high precision measurements and RPC for
triggering. The low-pr muon trigger uses two double-layer RPCs located on each
side of the middle station, while the high-pr trigger uses one triple layer chamber
located at the outer barrel muon station. In the transition and end-cap region
most of the chambers are installed perpendicular to the beam axis as it is shown in

Fig. 2.13. In the transition region (1.05 < || < 1.4) the muon track is measured
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with three vertical stations, placed inside or near the barrel magnet. In the end-
cap region (|n| > 1.4), the stations are located before and after the end-cap toroid
magnets and a third one near the cavern wall. The trigger is provided by the TGC
chambers while precision measurements are provided by the MDT chambers at small

1 and the CSC chambers at large rapidity.

2.3.4 Magnetic Field

The main purpose of the ATLAS magnetic field is to bend particles in order to
perform momentum measurements. The ATLAS magnetic field is optimised to
increase the identification power of the sub-detectors in a light and open structure
which minimises scattering effects [44]. This consists of a central solenoid servicing
the inner detector with an axial magnetic field of 2T, surrounded by eight large
scale air-core toroids generating a tangential magnetic field of approximately 0.5 T
and 1T for the muon spectrometer in the barrel and end-cap regions respectively
(Fig. 2.14). The Nb-Ti superconductor in a copper matrix technology is used in this
case. The magnet system weights 1300t and is cooled by liquid He at 4.5 K.

END-CAP TOROIDS

FIGURE 2.14: Scheme of the ATLAS superconducting air-core toroid magnet
system (left) and picture of the central toroid (right).

2.3.5 Trigger System

The interactions in the ATLAS detectors create an enormous flow of data. To
digest the data, ATLAS uses an advanced trigger system to tell the detector which
events to record and which to ignore. Complex data-acquisition and computing

systems are then used to analyse the collision events produced at the LHC [45]. The
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major challenge for the online selection of interesting events is the high efficiency
requirement to reduce the original event rates of 40 MHz down to 200 Hz. This
selection has to be fast and efficient since the selected events are stored permanently
and used by the physics analysis. The ATLAS trigger system is composed of three
levels of event selection where each level refines the decision made at the previous
level by applying additional selection criteria. The three distinct levels illustrated

in Fig. 2.15 are briefly described in the following.

Interaction rate
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FIGURE 2.15: Schema of the ATLAS Trigger and Data Acquisition system from
Ref. [45]. The Level 1 trigger system receives the data directly from the front-end
electronics of the muon and calorimeter sub-systems. The data reconstructed by
the ROD boards is transferred to the Level 2 for all the sub-systems. The Event
Filter reduces by a factor 10 the data rate and its output is then recorded.

The Level 1 (L1) trigger stage is hardware-based and uses a limited amount
of the total detector information to reach a decision whether to keep an event in less
than 2.5 us, reducing the event rate from up to 40 MHz to about 75—100 kHz. During
this time the data from the sub-detectors are initially stored in pipeline memories.
The L1 trigger uses reduced-granularity information from the calorimeter and muon
systems and searches for high transverse momentum signatures originating from
electrons, photons, jets and hadronically decaying 7 leptons as well as large

measurement. The possible trigger objects rely on the so-called Regions of Interest
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(RoI’s) which are defined by their coordinates in n and ¢. The topoclustering
algorithm is one of the algorithms used in ATLAS for merging cells with energies
above a certain threshold to reconstruct an object. This clustering algorithm is
described in detail in Chapter 3. This is evaluated through the performance of the
energy reconstructed in TileCal.

Once the RoI’s are defined, they are held in read-out buffers (ROBs) until
they are processed by the Level 2 (L2) trigger. Then they can be either discarded
or accepted, in which case they are transferred by the DAQ system to the storage
system for the next level of triggering. The Level 2 (L2) trigger is software-based.
The selection is largely based on the full- granularity information of all sub-detectors
in the Rol’s. A sequence of dedicated L2 algorithms is executed for each L1 Rol
to compute event feature quantities to determine if the candidate object should
be retained. The average processing time available for L2 algorithms is 40 ms and
a reduced rate of approximately 3kHz is achieved. The data accepted by the L2
trigger systems are further passed on to the Event Builder (EB), which performs a
full reconstruction of the event.

The final online selection is performed by the Event Filter (EF) that typi-
cally uses the same algorithms as the offline reconstruction taking the full detector
information into account. The event processing time is of about 4s per event and
it achieves the additional event rejection to reduce the output rate to about 200 Hz.
The events selected by the EF are finally stored in the CERN computer centre for

further offline processing and analysis.






Chapter 3

Description and Performance
of the TileCal Noise

3.1 Introduction

The TileCal is the central component of the ATLAS hadronic calorimeter system, as
described in Chapter 2. The features of the energy reconstruction in TileCal affect
the performance of physics observables such as Fp and jets. Specially, the noise
treatment in TileCal has a direct impact on signal processing and thus, it causes
effects on the performance of topological clusters. These clusters are the baseline for
I and jet algorithms, which rely on the energy deposits in the ATLAS calorimeter
system. Hence, it is crucial to have a good response and reliable measurements in
TileCal cells.

The aim of this chapter is to present the performance of the TileCal noise
using randomly triggered events collected by the ATLAS detector during 2008 and
2009. Firstly, the energy reconstruction algorithm in TileCal cells is presented in
Section 3.2. The Optimal Filtering algorithm is used for time and energy recons-
truction in TileCal cells and described in detail. The reconstruction of the energy
deposited in the TileCal cells is used as input for the ATLAS Topological Clustering
algorithm. This algorithm merges together neighbouring cells as long as the signal
in the cells is significant compared to noise as described in Section 3.3. The per-
formance of different configurations is evaluated through shape-based topocluster
quantities, so-called topocluster moments. The conclusions extracted from these re-

sults motivate the introduction of an improved noise description which accounts for

o7
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the non-Gaussian observed contribution. The two-Gaussian approach is presented
in Section 3.4. Finally, Section 3.5 contains the results on topoclusters and Er

performance comparing both, one- and two-Gaussian noise procedures.

3.1.1 Data and Monte Carlo Samples

Four data samples taken at the ATLAS detector during 2008 and 2009 are used for
the noise studies presented in this chapter. Their characteristics are summarised
in Tab. 3.1. The first three data samples are performed under comparable detec-
tor conditions. These are closed detector and both solenoid and toroid fields on.
All of them are collected without collisions; instead a random trigger from cosmic
interactions is used. The main differences with collision data are the timing, due
to cosmic events being asynchronous with time in LHC machine, and the particle
direction, since cosmic events are not coming from the interaction point. There-
fore, randomly triggered events are ideal for energy reconstruction and noise studies
since they allow to test detector performance without any extra contribution of
energy deposits from particles generated at the collisions. Moreover, the events
are recorded with absence of LHC beams except for the data sample listed at the
bottom in Tab. 3.1. The TileCal cell energy in these randomly triggered events is
reconstructed using the Optimal Filtering algorithm described in Section 3.2.1. The
TileCal noise description methods are quoted in the sixth column and described in
Section 3.4.

Run Year Month Trigger LHC Noise Number
Number &8 conditions description of events

91890 2008  October Random cosmics No beams one-Gaussian 6000
121513 2009  July Random cosmics No beams one-Gaussian 6060
137909 2009 November Random cosmics No beams two-Gaussian 109927
140535 2009 November Random cosmics One beam two-Gaussian 5540

TABLE 3.1: Data samples used in the TileCal noise performance studies presented

in Chapter 3 and Appendix A. They were collected by the ATLAS detector with

absence of collisions between October 2008 and November 2009. The number of
events are quoted in the last column.

The results presented in this chapter are obtained with the Athena software re-
leases from 14.5.0 to 15.3.0. Moreover, the official ATLAS package CaloRec-02-08-62
has been modified accordingly to obtain different configurations of topoclusters and

to compare their performance. Finally, simulated samples are used to compare the
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observed performance of the TileCal in real data in contrast with W — {v events

generated with Pythia. This sample contains over 10 simulated events.

3.2 The Energy Reconstruction

The TileCal is divided into four partitions in 7, two in the central long barrel (LBC
and LBA) and two in the extended barrels (EBC and EBA). The nomenclature of
the TileCal partitions refers to long (L) or extended (E) barrels (B) and it ends
assessing the sign of the coordinate position along the beam axis (A and C for
positive and negative 7 side respectively). The TileCal is also segmented in depth
into three layers as shown in Fig. 3.1. The innermost layer contains type A cells.
The layer in the middle contains BC cells in the long barrel and B cells in the
extended barrels. The cells in the outermost TileCal layer are known as D cells.
In addition to the standard cells, the Intermediate Tile Calorimeter (ITC) cells are
located in the intersection between the crack region and the extended barrel. They
cover the regions 0.8 < 7 < 1.0 (labelled D4 and C10 in Fig. 3.1) and 1.0 <1 < 1.6
(E cells) [42, 46].

3ges mm 00 ("'1 o2 03 04 0.5 06 ?-7 09 10 1 12
N 1 1 s ,/ 7 » .
Do |Dt | (o2 / [ D3 e , L . .
; - ’f // ’/ - 2 L . D5 - /’, D6 -
BC1 |BC2 |BC3 |BC4 |'BCS |BCs |'BC7 | BCS |, ) . . 14
N 1] ’ /| r ’ 7
L] y - - L7 e -
g i i Bi1]-7 B12|,-"B13 [.-"B14 |.-7 B15 | -15
| ! B9 ‘ . - P B
! ! ’ r ’ . . . _ B P L6
d [ 7 7 7 P e NP —- - — —=
Al ,“Az*Aa ,|A4 /"AS ,{A6,1A7 z.AB *Ag /+A1D, E2 % A13 k Al4 % A15,’t A6 -~
2280 mm ! / ’ , o ;e ] N
s 1 B ’ B 7 . R - 4 P = 7 P
0 500 1000 1 e PEA
I I | 500 mm E3, LT -
“ A -
i B4’ .
: ) beam axis

e =

FIGURE 3.1: Segmentation in depth and 7 of the TileCal modules in LBA (left)
and EBA (right) partitions.

In total, TileCal has 5182 cells, which corresponds to 9836 read-out channels.
The light produced in the scintillating tiles is read out on two radial sides by wave-
length shifting fibres which are bundled together in groups that form the TileCal
cells. Since most of the cells are read out by two channels, the energy of the cells
is defined as the sum of the energies obtained in each of the channels connected to
the cell. The signal collected by the photomultipliers (PMTs) is digitised each 25 ns.



60 Chapter 3. Description and Performance of the TileCal Noise

Seven samples are then used to reconstruct the amplitude, time and pedestal of the

pulse using the Optimal Filtering (OF) algorithm.

3.2.1 The Optimal Filtering Algorithm

TileCal uses the OF algorithm to reconstruct the pedestal, amplitude and phase
of the digitised signal. In this section a brief description of the method is given.
Details of the OF algorithm can be found in Refs. [47-49].
The signal produced by the TileCal electronics can by expressed by the fol-
lowing equation,
S(t)=Ag(t—71) + p, (3.1)

where ¢(t) represents the pulse shape as a function of the time (¢). A is the amplitude
of the signal, 7 refers to the relative phase and p the pedestal level. These magnitudes

are illustrated in Fig. 3.2 and defined below.
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FIGURE 3.2: Pulse shape with the definition of amplitude, reconstructed phase
and pedestal. The points represent the seven samples transmitted to the read-out
detector electronics.

e The pedestal is the obtained measurement in absence of particles crossing
the detector. This contains information related to the electronic noise contri-
bution. In the presence of particles crossing the TileCal cells, this quantity

represents the baseline of the expected signal pulse shape.
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e The amplitude is the distance from the pedestal to the maximum of the re-
constructed peak. The energy deposited by a particle passing through a cell
is proportional to the signal amplitude. Several constants should be applied

in order to obtain calibrated energy measurements.

e The phase is defined as the time between the peak of the pulse (7) and the
expected time of the pulse (7p), which is taken as the 4th sample by convention.
This reference time is calculated with calibration systems for each channel,
taking into account the time of flight of the particles from the interaction

point and the length of the wavelength shifting optical fibres.

The seven samples that are transmitted to the back-end are the inputs to
the OF method. The procedure to compute the amplitude, phase and pedestal
magnitudes with the OF algorithm is a liner combination of the samples like the

following,

A= Zai Si, (32)

1

T = Z;blby, (33)
1 7

p= Z;Q Si, (3.4)

where S; represents the i-th digital sample, A is the amplitude, 7 is the phase of
the pulse and, a;, b; and ¢; are weights obtained from the signal pulse shape of the
PMTs and the correlation of noise between digital samples.

The phase obtained by the OF is correlated with the reference phase (7g)
used for the computation of the weights. If the weights are calculated for 7y = 0,
as in Fig. 3.2, then the phase provided by the OF corresponds to our definition
of phase 7. However, if the weights have been obtained for any other phase, then
the reconstructed phase by the OF is 7 4+ 79. The phase reconstructed by the OF
algorithm refers to the time between the expected phase of a pulse produced by a
particle coming from the interaction point (which is the input for computing the

weights) and the actual peak of the reconstructed pulse.

3.2.2 The Optimal Filtering with Iterations

The OF results rely on having a fixed and known offset between the signal peak

and the collisions time for each TileCal read-out channel. However, signals caused
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by cosmic rays are random and asynchronous with respect to the LHC collisions,
hence the energy reconstruction will differ from the one caused by collision events.
Note that this is the case for the non-collision data used in the studies presented
here. Nevertheless, the OF algorithm can still be applied if it uses proper weights
for each randomly triggered event according to the time position of the signal. With
this purpose the OF algorithm explained above is extended to an iterative version,
which is used when the expected time of the signal is not fixed.

The OF with iterations computes the phase in three iterations. The phase
obtained in each iteration is used as the input reference time to select the proper
weights for the next iteration. The first iteration starts from weights computed at
time equal to zero. The following iterations select weights that are closer to the time

of the pulse. The OF with iterations method is defined by the following equations,

7
A = Zai|m,1 Si, (3.5)
i=1
LT
™= AL ;bi’7k71 Si, (3.6)
7
Pk = Zci|ml Sis (3.7)
=1

where S; represents the i-th digital sample, k is the iteration index [0,2] with £k =0
corresponding to 79 = 0. Finally, the set of weights (a;, b;, ¢;) are different from
each iteration k. They have been computed at each reference phase, 7,_1. Those
are stored in the ATLAS conditions database as described in Section 3.2.3.

The OF with iterations method is implemented in the ATLAS offline software
and this is the default reconstruction algorithm of the signal measured by TileCal
cells. The OF with iterations algorithm is used to obtain the results presented in
this chapter. In the following and for sake of simplicity, the iterative method of the
OF will be simply referred to as the OF algorithm.

3.2.3 Energy Calibration

The calibrated energy reconstructed in one channel (Eg,) is obtained by weighting

the amplitude of the signal by several constants as follows,

Ech =Ax CADC%pC X CpC’—)GeV X CCS X CLaser7 (38)
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where A is the signal amplitude in units of Analog to Digital Converter (ADC)
counts, Capc — pc is the conversion factor of ADC counts to charge, Cpc — gev
is the conversion factor of charge to energy in GeV, C¢; is the correction factor
of non-uniformities after the gain performed by the Cesium—137 radioactive source
calibration system [50, 51] and Cpaser refers to qualitative constants of the PMTs
measured in between Cs scans [52]. The calibration constants shown in Eq. 3.8 are
stored in the database for each TileCal channel, as well as the several sets of weights
(a;, bi, ¢;) required by the OF algorithm for different values of the expected time
of the pulse. In this way, the OF algorithm can be evaluated offline using the last

version of the calibration and weights parameters stored in this database.

3.3 The Topological Clustering Algorithm

Due to the nature of the strong interaction, the hadronic showers are formed by
many calorimeter cells and are expanded in both lateral and longitudinal directions.
Clustering algorithms are designed to group these cells and to sum up the total
deposited energy within each cluster. The algorithm used in ATLAS with this
purpose is the Topological Clustering algorithm. This algorithm starts with a seed
cell and iteratively adds to it neighbouring cells. A requirement is applied to select
cells with energy measurements incompatible with a noise fluctuation. With this
requirement, a new cell-based structure known as a topocluster is built. Topoclusters
are further used for object reconstruction algorithms in ATLAS together with other
measurements provided by the rest of the detector systems. The evaluation of
the topoclusters formed in TileCal is crucial from the point of view of jets and Er
measurements. This section summarises the procedure of the Topological Clustering
algorithm from Ref. [53].

The basic idea of the Topological Clustering algorithm is to group neighbour-
ing cells that have enough signal compared with the expected noise. The energy
significance threshold (s) is defined as the signal to noise ratio given by,

|E|

s=—, (3.9)

where |E| is the absolute value of the cell’s energy and o is the expected noise
value for such a cell. Note that using the absolute energy ensures symmetry in
the noise spectrum. The Topological Clustering algorithm assumes that a normal
distribution describes properly the noise amplitudes of all ATLAS cells. The energy

significance threshold shown in Eq. 3.9 is measured in units of Gaussian sigmas. The
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noise parameters o are obtained from the root mean square (RMS) of the energy
distribution for every cell in randomly triggered events. Those o values are stored

in the database in order to be used by the Topological Clustering algorithm.

D

FIGURE 3.3: Representation of topocluster formation in the n — ¢ plane. First,

the seed cell (red) is expanded in all directions. If the added cells satisfy the

neighbouring threshold (orange), the topocluster includes them in a second itera-
tion. The algorithm ends by adding cells with low significance (yellow).

A representation of the procedure to form topoclusters is presented in Fig. 3.3.
The Topological Clustering algorithm starts by finding the seed cells. These should
have an energy significance above a large threshold (ss). Then, neighbouring cells
are added to the cells tagged as seeds in the first step if the energy significance
of the formers is above a low threshold (s.). Moreover, cells around a seed cell
can serve as additional seeds to further expand the cluster from them. It happens
if they satisfy an energy significance above a medium threshold (s,). Typically,
the definition of neighbouring cells includes the surrounding cells within the same
calorimeter layer. Optionally, the set of neighbouring cells can also include cells
overlapping partially in 7 and ¢ in adjacent layers and/or adjacent calorimeter
systems. Finally, the topoclusters may include bad cells if they satisfy any of the
noise thresholds described above. However, the total energy of the topocluster does
not account for the reconstructed energy in the cells labelled as bad cells. The energy
of the topocluster is then calibrated and corrected for energy deposited outside the
cluster, in dead material or bad cells as detailed in Refs. [53-55].

The default threshold values used by the Topological Clustering algorithm
are s; = 4, s, = 2 and s, = 0. This is also known as the (4,2,0) configuration. The
selection of these values is optimal to find efficiently low energy clusters. The lowest
threshold at the perimeter of the cluster ensures that the tails of the hadronic showers

are not discarded. The large s; and s,, values guarantee that the measured energy
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is incompatible with a noise fluctuation. Assuming the electronic noise follows a
normal distribution, the probability of tagging noise as a seed or neighbouring cell
is below 6.3 x 1072% and 4.6% respectively [53].

3.3.1 Topocluster Moments

The total amount of energy contained in a topocluster object is obtained by summing

up the energy of all cells contained in it. This is given by the following expression,

N
Etopo = Z E; 5 (310)

where the index 7 runs over the N cells forming the topocluster. Note that negative
contributions enter in the definition given in Eq. 3.10. Assuming a normal distri-
bution for the electronic noise of the calorimeter, these noise contributions would
cancel on average, hence Eio,, = 0. Any deviation may indicate the presence of
non-gaussian noise sources.

Apart from the total energy of a topocluster, it is also important to evaluate
its shape. This section introduces two shape-related topocluster variables calculated
from positive energy depositions. Typically, a cluster moment of a certain degree
n in an observable m, defined for a cell constituent of the cluster, is given by the

following expression,

1

<m" >=
Enorm

X Z E;m?, where Fyorm = Z E;. (3.11)
i|E;>0 i|E; >0

In Eq. 3.11 the index ¢, in both sums, runs over the cells with positive energy only,
as mixing negative and positive weights could lead to unphysical behaviour. Typical
observables for first and second moments are radial and longitudinal distances from
the shower axis and the shower centre respectively. Once the shower axis § and the
shower centre ¢ are defined, two other quantities are calculated, the radial distance

of the i-th cell from the shower axis,
ri = |(#; — ¢) x 5], (3.12)
and the longitudinal distance of the i-th cell from the center along the shower axis,

X = (7 — @) - . (3.13)
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The longitudinal and lateral extensions of a topocluster can be measured in
terms of the second moments in A (< A% >) and r (< r? >) using Eq. 3.11 but with

n = 2. Specifying topocluster dimensions in this way describes a spheroid with two

axes of respective lengths v/< A2 > and v/< 72 >.
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FIGURE 3.4: Schematic picture of a tau shower shape and its relevant variables,
such as the RMS of the transverse extension in 7 (v/'< r2 >) and the RMS of the
longitudinal extension in A (v/< A2 >) from Ref. [56].

Figure 3.4 shows the schematic picture of a tau shower and its related longi-
tudinal and transversal moments. In the following sections, the second moment in
A and the normalised second moment in r will be evaluated for different topocluster

configurations. The normalised second moment in 7 is given by,

<r?>
= - (3.14)
< rcore >

where < 72, . > is computed by the two most energetic cells in the topocluster using
a fixed value of r = 40mm in Eq. 3.11, as described in Section A.2. For sake of
simplicity, the normalised second moment in 7 will be referred to as < r? > in the

rest of the chapter.

3.3.2 Performance of the Topocluster Moments

This section summarises a set of comparative performance studies on the Topological

Clustering algorithm using different significance threshold values: s, s,, and s., as
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defined in Section 3.3. In total, there are 18 configurations of topoclusters analysed,
which are classified into four groups. These groups are listed in Tab. 3.2. The

complete set of distributions is presented in Appendix A.

ss =4 ss = 4.5 Ss =05 Sp =2
(4,1.5,0) (4.5,1.5,0) (5,1.5,0) (3,2,0)
(4, 2, 0) (4.5, 2, 0) (5,2, 0) (3.5, 2,0)
(4,2.5,0) (4.5,25,0) (5,25,0) (4,2,0)
(4, 3,0) (4.5, 3 ,0) (5, 3,0) (4.5, 2,0)

(4,2,0.5) (5,2, 0)
(4,2, 1) (5.5, 2, 0)
(6,2, 0)

TABLE 3.2: Topocluster configurations used for studies presented in Appendix A.
The results in Chapter 3 are focussed on the performance of the first column.
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FIGURE 3.5: Topocluster multiplicity for different configurations (ss,sn,s¢) using

randomly triggered events collected by the ATLAS detector during 2008. Distri-

butions have been normalised to the number of topoclusters obtained with the
nominal (4,2,0) Topological Clustering configuration.

The effect on the topocluster multiplicity due to selecting different threshold
values as inputs for the Topological Clustering algorithm is shown in Fig. 3.5. The
top plot maintains fixed significance for the seed cells s; = 4 while the bottom
distribution compares different configurations with s,, = 2 and s, = 0. The sz value
has significantly higher impact on the topocluster multiplicity, as expected.

Moreover, it is observed that the currently used s, = 2 and s, = 0 thresholds
provide the minimum number of formed topoclusters in each configuration group.
In this light, the following studies evaluate several topocluster configurations fixing

sp = 2 and s, = 0. The results will focus on the comparative performance using
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different s, values. Table 3.3 summarises the number of formed topoclusters from
Fig. 3.5 and the mean energy per topocluster. The results show a tendency to higher
positive mean energy values as ss increases.

Figure 3.6 shows the second moment in r and A spectrums obtained from
randomly triggered events collected by ATLAS during 2008. These results point to

the presence of two contributions of the noise which form two sets of topoclusters,
e small sized topoclusters: V< r2 > € [0, 0.2] or V< A2 > € [0, 400] mm,

o large sized topoclusters: V< r?2 > € [0.2, 1.4] or v'< A2 > € [400, 1200] mm.
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FIGURE 3.6: Squared root of the normalised second moment in r (left) and second

moment in A (right) for different values of the s, significance threshold. The data

correspond to randomly triggered events collected by the ATLAS detector during
2008. Distributions have been normalised to unity for comparison.

The same trends are obtained in the 2008 data as well as in the initial 2009
data collected by the ATLAS detector under the same conditions. The Topological
Clustering configuration (4,2,0) is applied for both data years in the topoclusters
moments shown in Fig. 3.7. The contribution from large topoclusters in 2009 data
sample is ~ 10% higher than in 2008 data (see Tab. 3.4). Hence, we refute the
hypothesis that this is a spurious effect in the TileCal during 2008 since this be-
haviour is observed for both data periods. Additional investigations on this effect
are collected in Appendix A. These results clearly show that the energy contribution

from TileCal is dominant in large topoclusters.
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Configuration Niopo E (MeV) Er (MeV)
(3,2, 0) >150 15.8 8.03
(3.5,2,0) 140.28 27.9 14.7
(4, 2, 0) 42.57 51.7 27.8
(4.5, 2, 0) 16.12 75.3 42.4
(5,2, 0) 7.77 92.8 52.3
(5.5, 2, 0) 4.30 102 59.0
(6, 2, 0) 2.54 112 65.0
TABLE 3.3: Multiplicity, mean of the energy and transverse energy of topoclus-
ters formed with different configurations: (ss, 2, 0), where ss ranges from 3 to 6
in steps of 0.5. The data correspond to randomly triggered events collected by
the ATLAS detector during 2008.
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FIGURE 3.7: Second moment in A (left) and normalised second moment in r

(right) for reconstructed topoclusters with the Topological Clustering algorithm

using the (4,2,0) configuration. Data collected by ATLAS in 2008 (green) and
2009 (pink) periods normalised to unity are compared.

Due to the stochastic nature of hadronic showers in randomly triggered events
we mainly expect small topoclusters. However, Figs. 3.6 and Fig. 3.7 show a notice-
able contribution of large topoclusters in all studied configurations and for several

data periods. Large topoclusters can be affected by,

e cells which concentrate a large fraction of the total energy (so-called hot spots),

e source of coherent noise affecting an extended area in the detector (e.g. elec-

tronic cross-talk effects).
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FIGURE 3.8: Normalised second moment in r (left) and second moment in A
(right) as a function of energy from reconstructed topoclusters in randomly trig-
gered events in data (red) and simulation (blue).

The two dimensional correlation of the topocluster shape-related parameters
as a function of the topocluster energy is shown in Fig. 3.8. These distributions com-
pare randomly triggered data events collected by ATLAS during 2008 with W — v
simulated process.

The large topoclusters obtained using collected data are not observed in the
MC sample. Hence, there is a noticeable effect in the Topological Clustering al-
gorithm which is not taken into account in the simulation. The presence of large
topoclusters observed in data for different s, threshold values motivate to evaluate
the modelling of the cell noise in TileCal. A more reliable description on the noise
using a two-Gaussian model is described in Section 3.4 following Ref. [57]. The bene-
fits on the topoclusters performance and [ measurement from the introduction of

the two-Gaussian model are presented in Section 3.5.

3.4 Description of the TileCal Noise

TileCal noise constants are measured and kept up to date because the noise is
the input to the algorithm reconstructing topoclusters, as described in Section 3.3.
The Topological Clustering algorithm assumes that a normal distribution describes
properly the noise contribution of the cells. However, the results on the perfor-
mance of the Topological Clustering algorithm using topocluster moments shown in
Section 3.3.2 clearly illustrate that TileCal noise is not properly described with the

single Gaussian approach.



Chapter 3. Description and Performance of the TileCal Noise 71

The measured noise contribution in a channel extrapolated from topocluster
results can be considered as a linear combination of an intrinsic term (electronic
noise) and a correlation term (coherent noise). The latter may be caused by cross-
talk effects between channels situated in the same motherboard as described in
Section 2.3.2.2. The relation of the topocluster features with the energy treatment
of the TileCal noise motivates the evaluation of the noise description at the cell
level. These investigations are based on the development of a new model to improve
the noise description in the detector. This section describes the treatment of the
dominant and intrinsic electronic noise in the TileCal, as well as the introduction of
the two-Gaussian method [57].

3.4.1 The TileCal Electronic Noise

Electronic noise in TileCal is derived from standalone runs with absence of signal
from the PMTs or injected calibration charge. These are called pedestal runs and
are used to compute two sets of noise constants: Digital Noise computed for each
channel and measured in ADC counts, and Cell Noise constants corresponding to
the noise of each calorimeter cell and gain combination, measured in MeV. All these
constants are stored in the database. Digital Noise constants are calculated before
energy is reconstructed by the OF algorithm. Cell Noise constants are calculated
after reconstruction. Problematic channels are masked in this process; for these the
noise is read out but never used. These noise constants have a direct impact on the
energy reconstruction in each channel and on a number of physics observables.
The Cell Noise is used as an input to the Topological Clustering algorithm.
The o values in Eq. 3.9 were obtained by fitting a Gaussian distribution function
to the energy distribution of the events in several pedestal runs. If the energy
distribution were Gaussian RMS/c = 1, however, the results obtained show that
this ratio is larger. Due to this behaviour, using the width of a normal distribution
to define seed cells degrades the performance of the topoclustering algorithm in the
low 7 region. Figure 3.9 illustrates the non-Gaussian nature of the TileCal cell
noise. The plot shows the energy distribution of a typical TileCal cell for randomly
triggered events collected in 2008. The OF algorithm is used to reconstruct the
energy of the two channels forming the cell, being the energy of the cell the average.
A free parameter fit to a Gaussian distribution is overlaid. Strong deviations from
the Gaussian assumption are visible in the tails of the distribution, the relevant

region for the Topological Clustering algorithm.
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FIGURE 3.9: Reconstructed energy (in pC) of a typical cell for randomly trig-
gered events collected by the ATLAS detector during 2008 from Ref. [57]. The
distribution is fitted with a Gaussian function represented by the red line.

The shape of the reconstructed amplitude of a cell in randomly triggered
events provides tails in the distribution as seen in Fig. 3.9. To improve the TileCal

performance, a new approach for the noise description was developed.

3.4.2 Two-Gaussian Description of the TileCal Noise

In early tests during the ATLAS test beam the electronic noise was described by a
single Gaussian. When the TileCal was installed in the ATLAS cavern and connected
to the Low Voltage Power Supplies (LVPS) the noise increased significantly. In light
of these features, a new noise modelling was needed to provide an accurate energy.
A two-Gaussian function with three independent parameters was adopted in the
spring of 2009. This will be referred to as two-Gaussian method in the following.
The general two-Gaussian probability density function (pdf) is given by the

following equation,

1 1 - (71:—;1%)2 R _ (z—;tzz)z
— [} 207 —+ e 203 . 3.15
Togpas 1+R \ V2703 V2T oy ( )

Here, 01 and o9 are the sigmas of the two Gaussians and R is their relative nor-

malisation. The mean values of the distributions w1 and ps are constrained to
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1 = pe = 0. This is a good approximation for TileCal cells and allows efficient
storage in the database.

The result of a fit to the energy distribution of a typical TileCal cell with a
two-Gaussian function is illustrated in Fig. 3.10. The parameters p1 and uo are left
as free parameters to better illustrate their typical values. They are represented by
G1p and G2u respectively, which are small and can be approximated by 0. The
parameters Glo and G20 corresponds to o1 and o5 in Eq. 3.15.

The comparison in Fig. 3.10 clearly shows that the two-Gaussian approach
is more accurate in modelling the noise shape of the TileCal cells. As input to the
Topological Clustering algorithm an equivalent sigma o.,(E) is introduced. This is
defined to give the same significance as the one o region for a Gaussian pdf (e.g.
ff;‘iq figpdr = 0.68). The oc4(F) is introduced to measure the E/o., of the two-
Gaussian pdf in units of ¢ of a normal distribution, with the purpose of comparing
the performance of both pdfs’ descriptions.

The equivalent significance for an energy deposition (F) and a two-Gaussian

pdf can be expressed as,

E E
E e alerf(\/%l) + Ragerf(\/%)

: 3.16
Oeq(E) o1 + Ros ( )

where erf is the error function. !

One advantage of this definition of o4 is that there is a common unit for noise
description for TileCal and LAr cells, so that the topological clustering algorithm is
able to cluster cells in both calorimeters. These advantages are detailed in Ref. [57].
The input to the Topological Clustering algorithm is the o., parameter in Eq. 3.16.
Figure 3.11 illustrates the improvement in the estimation of the E/o using randomly
triggered events when the two-Gaussian template is used and the noise is expressed

in terms of the 0., width.

3.5 Performance of the two-Gaussian Description

The benefit of using the two-Gaussian description in estimating the noise compatibi-
lity of energy deposits can be illustrated through the improvement of the perfor-
mance of the topoclusters created in TileCal. The more accurate description of the

TileCal noise using the two-Gaussian description has to be reflected in the reduction

Terf(x) = % Iy et dt
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FIGURE 3.10: Reconstructed amplitude distribution of a typical cell for randomly

triggered events collected by the ATLAS detector during 2008, from Ref. [57].

The two-Gaussian fit is shown in red. The blue and the green functions are its
first and second Gaussian components respectively.

of the number of topoclusters and their size compared to the previous noise treat-
ment using the single Gaussian approach. Furthermore, this improvement should
be also observed by studying the TileCal contribution to the [f7 measurement. The
aim of this section is to evaluate effects on the topoclusters formation when the
two-Gaussian approach is applied instead of the one-Gaussian parametrisation.

Figure 3.12 shows the number of topoclusters formed using the nominal
(4,2,0) Topological Clustering algorithm configuration for both one-Gaussian and
two-Gaussian noise descriptions. These distributions are obtained for different runs
collected by the ATLAS detector during 2008 and 2009 with randomly triggered
events. The mean number of topoclusters formed with the two-Gaussian descrip-
tion for the TileCal noise is reduced by over a factor of two compared with the
one-Gaussian model. Moreover, a reduction in the width of the topocluster mul-
tiplicity is observed. The two-Gaussian description of the TileCal noise limits the
formation of topoclusters by using a larger noise constant o, as described in Sec-
tion 3.4.1.

Figure 3.13 compares the second moment in r and A of the topoclusters ob-

tained for both TileCal noise descriptions on two runs used previously and a new
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FIGURE 3.11: The energy deposited in TileCal cells divided by the noise cons-
tant stored in the database for different noise description models using randomly
triggered events collected by the ATLAS detector during September 2008, from
Ref. [57]. The black points correspond to the expected distribution for ideal
one-Gaussian TileCal noise. The red and blue triangles are the measured E/ocq
values from data using one- and two-Gaussian descriptions respectively. The dis-
tribution obtained with two-Gaussian approach is fitted with a Gaussian function
represented by the black line.

sample with the two-Gaussian method applied. The existence of large topoclusters
is highly reduced when the two-Gaussian approach is required in the computation of
the TileCal noise constants. In order to evaluate this improvement, the ratio of the
number of large over small topoclusters (Nrarge/Nsman) comparing different TileCal
noise descriptions is studied. The values are quoted in Table 3.4. The presence of
large topoclusters using the two-Gaussian approach for the TileCal noise is reduced

by almost a factor 10 with respect to the one-Gaussian treatment.

3.5.1 Noise Effects on Missing Transverse Momentum

The missing transverse momentum is a fundamental quantity which relies on the
energy measured in the topoclusters (see Chapter 4). The E/o thresholds used to

construct topoclusters, as wells as the approach for describing the noise in TileCal,
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Run Number Year Data Type Noise Treatment  Nparge /Nsman
91890 2008 random trigger one-Gaussian 0.26
121513 2009 random trigger one-Gaussian 0.34
137909 2009 random trigger two-Gaussian 0.046

TABLE 3.4: Several randomly triggered ATLAS samples using one-Gaussian or

two-Gaussian descriptions are listed. The contribution of large topoclusters is

evaluated through the ratio values shown in the last column (Nparge/Nsman). The

reduction in the formation of large topoclusters is almost an order of magnitude
when applying the two-Gaussian method.

have a direct impact on the performance of this measurement. In order to inves-
tigate the effects of the TileCal noise, the negative vectorial sum of the transverse
energy from all topoclusters in an event is evaluated under different scenarios. This

magnitude will be referred to as MET in the following and is computed as,

2 2

MET = || =) Er.(i)| + |- Er,() ] , (3.17)

where the index ¢ runs over the total number of topoclusters (V) per event. Er
and Er, represent the longitudinal (z) and perpendicular (y) components of the

Er vector respectively.
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FIGURE 3.14: MET spectrum from randomly triggered events collected by the
ATLAS detector during 2008 using different Topological Clustering algorithm
configurations. The one-Gaussian approach is considered in the noise description.
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The MET quantity is positive defined, as explicitly shown in Fig. 3.14. This
distribution illustrates the dependence of the MET spectrum with respect to different
Topological Clustering algorithm configurations. The width and tails observed in
the MET distributions, computed as defined in Eq. 3.17, are directly correlated with
the threshold value used in the definition of the seed cell in the Topological Cluster-
ing algorithm. In light of this, the MET measurement may depend on the selected
TileCal noise description approach. To evaluate the impact of the two-Gaussian ap-
proach in the MET performance the nominal Topological Clustering configuration
(4,2,0) is selected as a baseline.

Figure 3.15 compares the MET spectrums using both one-Gaussian and two-
Gaussian methods to obtain the noise constants. In general, the datasets processed
with the two-Gaussian approach present less tails than the cases using the one-
Gaussian description. The differences are also noticeable at the level of 1 GeV con-
sidering the reconstructed peak for each method. There is an improvement in the
resolution of the MET that can be evaluated by comparing the width of the spec-
trums in the different cases. Table 3.5 quotes the RMS values of the MET spectrums
extracted from Fig. 3.15. Note that the run 91890 has been reprocessed using the
two-Gaussian approach for direct comparison with the one-Gaussian. These results
point to a reduction of 33-50% in the width of the MET distribution when the

two-Gaussian approach is used with respect to the one-Gaussian.
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FIGURE 3.15: MET spectrum using both one-Gaussian and two-Gaussian models

for the noise in TileCal. The data samples correspond to randomly triggered

events collected by the ATLAS detector during 2008 and 2009. In the legend

shows the run number and the noise description for each data sample. The
distributions are normalised to unity for comparison.



Chapter 3. Description and Performance of the TileCal Noise

79

Run Year Data Type Noise Treatment RMS [MeV]
91890 2008 randomly trigger one-Gaussian 899
91890(%) 2008 randomly trigger two-Gaussians 632
121513 July 2009  randomly trigger one-Gaussian 798
137909 Nov. 2009 randomly trigger two-Gaussians 380
140535 Nov. 2009 randomly trigger + 1 beam two-Gaussians 420

TABLE 3.5: RMS of the MET distributions obtained using randomly triggered

events from non collision runs collected by the ATLAS detector during 2008 and

2009. The run 91890™ refers to the re-process procedure apply to this sample
with the TileCal noise constants obtained from the two-Gaussian method.

In order to study the effect of the two-Gaussian approach for TileCal noise des-

cription in the tails of the MET distributions, the following investigations consider
randomly triggered events satisfying MET > 3GeV and |Ep| > 0.5GeV. These
selected events will provide information related to the topocluster characteristics
that form the tails observed in the MET distributions in Fig. 3.15. Figure 3.16 shows

the second moment in A for topoclusters satisfying the above energetic requirements

when the one-Gaussian method is used. The results show that the high values

of MET in randomly triggered events are mostly produced by large topoclusters
(V< A2 > > 400 mm). The contribution of the tails in the MET distribution is up

to 15%. Hence any reduction of large topoclusters will reduce the MET tails.

FIGURE 3.16: Second moment in A\ using topoclusters satisfying the requirements
in MET > 3GeV and |Er| > 0.5GeV. The randomly triggered events were
collected by the ATLAS detector during 2009 using the one-Gaussian description

Arbitrary counts

=
=
=

oo
o

40

20

Topoclusters with

Entries 966
Mean 540.6
RMS 253.3

MET >3 GeV

ek e [0

0 200 400 600 800 1000 1200 1400 1600 1800 2000

V< A2 > [mm)

for the TileCal noise constants (run 121513).



80 Chapter 3. Description and Performance of the TileCal Noise

Figure 3.17 shows the noise occupancy in the n — ¢ plane of topoclusters
with different energy thresholds. This distribution is expected to be homogeneous
since the data sample corresponds to randomly triggered events collected by the
ATLAS detector during 2009. However, there is a large contribution of low energetic

topoclusters mainly localised in TileCal at |n| < 1.6 and ¢ ~ 2.5 rad.

I E<1GeV
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B £>10 GeV
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FIGURE 3.17: Noise occupancy in the 1 — ¢ plane for topoclusters with different

energy thresholds. Low energetic topoclusters are mainly localised at || < 1.6

and ¢ ~ 2.5 rad. The randomly triggered events were collected by the ATLAS

detector during 2009 using the one-Gaussian description for the TileCal noise
constants (run 121513).

Figure 3.18 shows the noise occupancy in the x —y plane of large topoclusters
located in |n| < 1.6 TileCal region and those topoclusters producing the observed
MET tails. This plot shows a high occupancy of large topoclusters in a TileCal region
around the point (z,y) = (0.0,3.0) m. Half of the events illustrated in Fig. 3.18
contain topoclusters located in this region. This affects the computation of the
MET since the presence of large energetic topoclusters unbalances the measurement
of the MET quantity thereby creating the observed long tails. The identification
of this anomaly in the TileCal performance requires that action be taken for the
affected cells. These actions go from trying to recover the problematic channels to

label them as bad channels in the database.
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and |Er| > 0.5GeV (blue). Large topoclusters are mainly produced around the

region (z,y) = (0.0,3.0) m. The randomly triggered events were collected by the

ATLAS detector during 2009 using the one-Gaussian description for the TileCal
noise constants (run 121513).

R Noise Total Events with Contribution
i description events MET > 3GeV of MET tails

121513 one-Gaussian 6060 966 16%

137909 two-Gaussians 109927 136 0.1%

TABLE 3.6: Contribution of the MET tails observed in Fig. 3.15 for randomly

triggered events from non collision runs collected by the ATLAS detector during

2008 and 2009. The last column quotes the fraction of events with MET > 3 GeV
over the total number of processed events for each collection of data.

The introduction of the two-Gaussian approach for the derivation of the
TileCal noise constants allows to reduce the formation of large topoclusters by
almost a factor 10, as shown in Tab. 3.4. Moreover, this procedure relies on an
improvement on the MET resolution up to a factor 2, as quoted in Tab. 3.5. The
benefit of identifying the region with large topoclusters forming the MET tails can
be quantified by comparing the contribution of large topoclusters in the high MET
region. Table 3.6 quotes the high reduction in the MET tails formation comparing
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randomly triggered events for two data collections. The two-Gaussian approach and
the treatment of the hot spots in TileCal leads to a reduction of the MET tails from
16% to 0.1%.

Finally, Fig. 3.19 illustrates the noise occupancy of the topoclusters satisfy-
ing the requirements on MET > 3GeV and |Er| > 0.5GeV after considering the
two-Gaussian approach for the TileCal noise constants derivation and after the con-
siderations taken over the highly populated area shown in Fig. 3.18. The occupancy

is more homogeneous, as expected for randomly triggered events.
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FIGURE 3.19: Noise occupancy in the = — y plane for topoclusters satisfying

MET > 3GeV and |Er| > 0.5GeV. The randomly triggered events were

collected by the ATLAS detector during 2009 using the two-Gaussian description

for the TileCal noise constants (run 137909). The region covered by the TileCal
and the EM detectors is coloured in pink and purple respectively.

3.6 Conclusions

The reconstruction of the cell energy and time in the TileCal detector is provided
by the OF algorithm. The determination of the cell noise is crucial for the object
reconstruction algorithms since they rely on these noise values for discriminating the
signal. The impact of the TileCal noise constants stored in the ATLAS conditions
database has been evaluated through the objects formed by the Topological Clus-
tering algorithm. The results from the topocluster performance allow to identify

anomalies in the TileCal noise description using randomly triggered events. The
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more accurate description of the TileCal noise constants made by the two-Gaussian
method, as well as the treatment of localised hot spots result in a direct benefit
the performance of the topoclusters and the MET measurement. The comparison
of the topocluster moments using the two-Gaussian method is crucial to validate
the two-Gaussian approach. The results show better MET resolution and a reduced
population in the high MET region using randomly triggered events collected by the
ATLAS detector during 2008 and 20009.

Other important contribution to the cell noise is the effect from simultaneous
proton-proton interactions in the same bunch-crossing. A more reliable TileCal noise
description with increasing pile-up conditions is described in Ref. [58]. Finally, a
complete study on the performance of the Topological Clustering algorithm in the
ATLAS calorimeters during LHC Run I can be found in Ref. [54].






Chapter 4

Missing Transverse
Momentum in ATLAS

4.1 Introduction

The missing transverse momentum is a fundamental quantity to reconstruct physics
processes produced at hadron colliders. Some particles, such as neutrinos or new
stable weakly-interacting particles, traverse matter with a negligible probability of
interaction. Hence, no direct evidence of them can be measured in a general purpose
detector. However, the total momenta in the perpendicular plane to the beam axis
has to be conserved, so any transverse momentum imbalance may signal the presence
of such undetectable particles. In this light, the missing transverse momentum in
ATLAS is defined as the negative vector sum of the transverse energy measured
from all detected particles in an event. The symbol F will be used in the following
to represent the magnitude of this vector.

An optimised reconstruction and calibration of the Er is crucial in any search
involving processes with low interacting particles in the final state. This is the case
of the H— WW ) — ¢ulv analysis described due to the presence of two neutrinos.
Because of the complexity of measuring undetectable particles, this task represents
one of the main challenges in collider experiments. Limited detector coverage and
resolution, non-instrumented regions, as well as cosmic rays and beam-halo particles

crossing the detector, can affect the 7 reconstruction.

85
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The most important sources affecting the Fr measurement in ATLAS are,

e Pile-up. Additional proton-proton collisions superimposed to the hard scatte-
ring process may originate particles which deposit energy in the detector.
These extra energetic contributions will enter in the Fr computation, affecting
significantly the genuine measurement. The high pile-up environment suffered
during 2012 at the LHC motived different investigations to reduce this effect

in the Fr reconstruction.

e Efficiency of ATLAS calorimeters. The capability to discriminate noise
from signal when reconstructing the energy at the cell level is directly propa-
gated to the high-p1 objects tagged as leptons, photons, jets... As extensively
reported in Chapter 3, the two-Gaussian approach for extracting the TileCal
noise constants is validated through topoclusters’ quantities. Topoclusters are
used as inputs in the ' computation, hence the calorimeter noise description

significantly affects the B measurement, as discussed in Section 3.5.1.

This chapter provides a full overview on the Fr performance in terms of
data/MC comparisons, resolution, response and tails of several Fp measurements
computed under different approaches. Section 4.2 defines three different algorithms
for reconstructing the Fr magnitude in ATLAS. Characteristics and information of
the data and simulated samples analysed in this chapter are detailed in Section 4.3.
For all three Fr definitions, the quality of data and simulation agreement is re-
ported in Section 4.4. Section 4.5 presents the investigations developed to quantify
the performance as well as comparisons between the different Iz measurements in
Z — 00 and H— WW® = fulv processes. Finally, the treatment for obtaining the

systematic uncertainties of the Jr measurement is described in Section 4.6.

4.2 Missing Transverse Momentum Reconstruction

This section presents three different algorithms developed in ATLAS for reconstruc-
ting the [r magnitude. These are differentiated by which part of the detector
provides the energetic measurements that enter in each calculation. There are two
different approaches to obtain the Fp measurement.

Calorimeter-based Fr definitions make use of the energy reconstructed by the
calorimeters. The first definition is described in Section 4.2.1 and will referred as
Emss in the following. Due to the increase in the average of interactions per bunch

crossing during 2012 data taking conditions, a correction was developed to minimise
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the impact from pile-up in the EX* measurement. This pile-up suppression tech-
nique relies on track information and is applied to several EXSS terms as described
in Section 4.2.2. This correction defines the pile-up suppressed calorimeter-based
measurement, known as E iss, STVE

The 7 computation described in Section 4.2.3 uses as input the trans-
verse momentum of the tracks produced by charged-particles traversing the ID
system. This measurement efficiently suppresses pile-up contributions since only
tracks associated to the hard scattering process are selected. The symbol Ef’ iss,track

will be used in the following for referring to this track-based measurement.

4.2.1 Calorimeter-Based Hr: ENis

The EMsS magnitude is reconstructed from energetic deposits in the calorimeters
and muons reconstructed in the MS [59, 60]. These energetic deposits are associ-
ated with a reconstructed and identified high-pt parent object in the following order:
electrons (e), photons (7), taus (7), high-pr jets (jets), and muons (x). Remaining
energetic contributions, not associated to any such objects, are also considered in
the EXss calculation through the so-called soft-term. This term includes energetic
measurements from topoclusters reconstructed by the Topological Clustering algo-
rithm with (4, 2, 0) configuration, as described in Section 3.3. The selection criteria
applied to each high-pr object identification is detailed in Appendix B. All these
contributions are accounted for in separated non-overlapped terms to compute the
r— and y—components of the EX as follows,

miss __ miss, e miss, v miss, 7 miss, jets miss, Soft Term miss,
v = Fa) T Euqy F ey T ey + B +Eyy " (A1)

where each term is calculated from the negative sum of the reconstructed energy