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Abstract 

Alzheimer´s disease (AD), a neurodegenerative illness involving synaptic dysfunction 

with extracellular accumulation of Aβ1-42 toxic peptide, glial activation, inflammatory 

response and oxidative stress, can lead to neuronal death. Endogenous cannabinoid 

system is implicated in physiological and physiopathological events in central nervous 

system (CNS), and changes in this system are related to many human diseases, 

including AD. However, studies on the effects of cannabinoids on astrocytes functions 

are scarce. In primary cultured astrocytes we studied cellular viability using MTT assay. 

Inflammatory and oxidative stress mediators were determined by ELISA and Western-

blot techniques both in the presence and absence of Aβ1-42 peptide. Effects of WIN 

55,212-2 (a synthetic cannabinoid) on cell viability, inflammatory mediators and 

oxidative stress were also determined. Aβ1-42 diminished astrocytes viability, increased 

TNF-α and IL-1β levels and p-65, COX-2 and iNOS protein expression while decreased 

PPAR-γ and antioxidant enzyme Cu/Zn SOD. WIN 55,212-2 pretreatment prevents all 

effects elicited by Aβ1-42. Furthermore, cannabinoid WIN 55,212-2 also increased cell 

viability and PPAR-γ expression in control astrocytes. In conclusion cannabinoid WIN 

55,212-2 increases cell viability and anti-inflammatory response in cultured astrocytes. 

Moreover, WIN 55,212-2 increases expression of anti-oxidant Cu/Zn SOD and is able 

to prevent inflammation induced by Aβ1-42 in cultured astrocytes. Further studies would 

be needed to assess the possible beneficial effects of cannabinoids in Alzheimer's 

disease patients. 
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Introduction 

AD is a common neurodegenerative disease implicated in the aging process, 

affecting nearly 50% of people over 75 [1,2]. It involves neurofibrillary degeneration, 

extracellular accumulation of beta-amyloid peptide (Aβ) and synaptic dysfunction, 

resulting in neural cell death in the hippocampus and cerebral cortex, and in activation 

of glial cells [3,4]. Aβ can interact with different cellular components producing Ca
2+

 

deregulation, oxidative stress and inflammation [5,6].  

Astrocytes are specialized neural cells serving as a structural and metabolic support 

and trophic help to the brain [7]. Astrocytes also release cytokines and chemokines 

involved both in protective and toxic roles in neuroinflammatory processes [8]. 

However, released cytokines in neuroinflammation may induce deleterious effects on 

the viability and functionality of astrocytes [9]. Furthermore, in pathological situations 

such as hypoxia, cytokines induce activation of vascular endothelial cells thereby 

modulating inflammatory responses [10]. In AD, astrocytes are found around senile 

plaques producing phagocytosis, and cleaning up toxic compounds such as Aβ [11]. 

Moreover, when stimulated with compounds such as genistein or estradiol, astrocytes 

block the release of pro-inflammatory mediators and induce the synthesis of anti-

inflammatory proteins [12]. 

Endocannabinoids have been implicated in various physiopathological events in 

different organs, including the peripheral and CNS [13], and changes in the 

endocannabinoid system have been related to many human diseases, such as metabolic 

syndrome [14], neurodegeneration [15], inflammatory diseases [16], psychiatric 

disorders [17] and cancer [18]. The endocannabinoid signaling system is composed of 

anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) interacting with CB1 and CB2 

cannabinoid receptors. Receptor signaling may involve mechanisms such as adenylyl 
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cyclase blockade or activation of mitogen-activated protein kinases or ceramide 

signaling [13].  

Different authors have proposed cannabinoids as preventive treatment in AD [19] 

due to their anti-inflammatory and neuroprotective properties [16]. In this sense, 

cannabinoids prevented microglial activation and cognitive impairment in Aβ-treated 

rats [19]. In mice exposed to Aβ, cannabinoids also suppress neuroinflammation by 

inhibiting iNOS expression and interleukin-1β generation [20]. However, the effects of 

cannabinoids on astrocytes functions have been poorly investigated. Therefore, we 

investigated the role of WIN 55,212-2 (WIN) as a neuroprotective agent against lesions 

induced by Aβ1-42 on cultured astrocytes.   
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Material and Methods 

Materials  

Dulbecco’s modified Eagle’s medium (DMEM) and fetal bovine serum (FBS) 

were obtained from Gibco (Gibco Invitrogen Corporation, Barcelona, Spain). The 

oligomers Aβ (40-1 and 1-42), were prepared following manufacture instructions 

(Sigma-Aldrich biotechnology). Briefly, the peptides were dissolved in H2O, and, for 

assembly the oligomers, preparations were heated for 24 h at 37ºC. WIN and 3-(4,5-

dimethyl-2-thiazolyl)-2,5-dipheniyl-2H-tetrazolium bromide (MTT) were purchased  

from Sigma Chemical Co. (St Louis, MO). Enzyme-linked immunosorbent assay 

(ELISA) kits for IL-1β and TNF-α from Pierce Biotechnology, Inc. (Rockford, USA). 

Western Blot Chemiluminescent Detection System (ECL) was from Amersham 

(Amersham Biosciences, Barcelona, Spain). Monoclonal anti-peroxisome proliferator-

activated receptor antibody (PPAR-γ) (1:250) and polyclonal anti-cyclooxigenase-2 

antibody (COX-2) (1:250) from Sigma Aldrich (Madrid, Spain). Monoclonal p65 

antibody (p65) (1:250) from Santa Cruz Biotechnology (Madrid, Spain). Polyclonal 

anti-Cu/Zn superoxide dismutase antibody (Cu/Zn SOD) (1:250) from Assay Designs 

(Madrid, Spain). Monoclonal anti-tubuline (1:1000) from Cell Signaling (Beverly, MA, 

USA). All other reagents are analytical or culture grade purity. 

Primary culture of cortical astrocytes 

All animals were handled according to the recommendations of the Bioethics 

Committee of the School of Medicine of the University of Valencia, Spain. Ethics 

committee specifically approved this study. Cortical astrocytes were isolated from rat 

fetuses of 21 days gestation. Fetuses were obtained by cesarean section and decapitated. 

Cerebral cortices were removed and triturated 10–15 times through a Pasteur pipette 
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with 10 ml DMEM. The cell suspension was filtered through nylon mesh with a pore 

size of 90 μm and re-suspended in DMEM containing 20% fetal bovine serum (FBS), 

supplemented with L-glutamine (1%), HEPES (10 mM), fungizone (1%), and 

antibiotics (1%). Cells were plated on T75 culture flask and maintained in a humidified 

atmosphere of 5% CO2/95% air at 37°C during 15 days. After 4 days of culture, the 

FBS was maintained at 20% and after 1 week of culture, the FBS content was reduced to 

10%, and the medium was changed twice a week. The purity of astrocytes was assessed 

by immunofluorescence using anti-glial fibrillary acidic protein (astrocyte marker; 

Sigma-Aldrich), anti-CD-68 (microglial marker; Serotec), anti-myelin basic protein 

(olygodendroglial marker; Sigma-Aldrich) and anti-microtubule-associated protein 2 

(neuronal marker; Sigma-Aldrich). The astrocyte cultures were found to be at least 99% 

glial fibrillary acidic protein positive. No cells were found to express CD-68, myelin 

basic protein, or microtubule-associated protein-2. 

Cell treatments 

Ten days after seeding, WIN (10 μM) was added to culture flasks. Twenty-four hours 

later, 10 μM Aβ1-42 (toxic peptide) or Aβ40-1 (control peptide) (Sigma-Aldrich) were 

added to the flasks. Aβ1-42 concentration used in our study is in the range of toxic 

concentrations of the peptide [21,22]. Before incubation, the peptides were diluted in 

100 μM of phosphate-buffered saline (PBS) and incubated for 24 h at 37º C. Assays 

were performed 24 h after peptide addition.  

MTT assay 

Cell viability was determined by MTT assay. The MTT assay is a well-established, 

widely used and easily reproducible method for the assessment of cell viability and cy-

totoxicity [23,24].  Astrocytes were plated in 96-well culture plate and incubated with 
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WIN during 24h.  Subsequently, Aβ40-1 (control) and Aβ1-42 peptides were added to 

wells for another 24h. After cell treatments, the medium was removed and cells were 

incubated with red free medium and MTT solution [0.5 mg/ml, prepared in phos-

phate buffer saline (PBS) solution] for 4 h at 37ºC. Finally, the medium was removed 

and formazan particles were dissolved in dimethyl sulfoxide (DMSO).  Cell viability, 

defined as the relative amount of MTT reduction, was determined by spectrophotometry 

at 570 nm.  

Cytokine determination, IL-1 and TNFα 

Astrocytes were seeded as previously published [12]. At the time of assay, the red 

phenol medium was removed and replaced by PBS containing 1 mg/ml bovine serum 

albumin (BSA), either in the presence or absence of Aβ1-42 (10 μM). IL-1β and TNF-α 

concentration (pg/ml) were ascertained using ELISA kits (Pierce Biotechnology, Inc.). 

Western blot analysis 

Cultured cells were treated with lysis buffer and mechanically degraded to release the 

proteins. Protein concentration was determined using modified Lowry method [25]. 

Loading buffer (0.125 M Tris-HCl, pH 6.8, 2% SDS, 0.5% (v/v) 2-mercaptoethanol, 1% 

bromophenolblue and 19% glycerol) was added to protein sample and heated for 5 min 

at 95ºC. Proteins were separated on SDS-PAGE gels and transferred to nitrocellulose 

membranes in a humid environment using a transfer buffer (25mM Tris, 190mM glycine, 

20% methanol). Membranes were blocked with 5% milk in TBS (0.05% Tween-20) and 

incubated with primary antibodies overnight at 4ºC. Membranes were washed 3 times 

with wash buffer TBS-T (TBS, 0.2% Tween-20) and incubated with a secondary anti-

rabbit IgG or anti-mouse IgG (Cell Signalling Technologies Danvers, MA) antibody 

conjugated to the enzyme horseradish peroxidase (HRP) for 1 h. Membranes were 

washed three times and proteins were detected using the ECL method as specified by the 
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manufacturer. Autoradiography signals were assessed using digital image system 

ImageQuant LAS 4000 (GE Healthcare). 

Statistical analyses 

Values are expressed as mean±S.D. Differences between groups were assessed by 

one-way analysis of variance (ANOVA). Statistical significance was accepted at P ≤ 

0.05. Data sets in which F was significant were examined by a modified t-test.  

 

Results 

Protective role of WIN on cell viability 

The role of WIN on cell viability was studied using MTT conversion assay. Figure 

1A shows that incubation with WIN at different concentrations induced a significant 

increase in cell viability at 10 μM. Consequently, that concentration was used in future 

experiments. Astrocytes previously incubated with 10 μM Aβ1-42 for 24 h significantly 

decreased cell viability compared to control cells (Figure 1B). Furthermore, pretreating 

astrocytes during 48 h with WIN (10 μM) prevented the decrease in cell viability 

induced by Aβ1-42 (WIN + Aβ), conversely WIN (1, 2, 5µM) did not have any effect 

(Figure 1B). 

WIN prevents IL-1β and TNF-α increase elicited by Aβ1-42 

Cultured astrocytes were incubated with 10 μM Aβ1-42 and proinflammatory 

mediators TNF-α and IL-1β were detected by ELISA. Aβ1-42 increased 4.5-fold IL-1β 

release (480.4±150.3 pg/ml) compared with control (103.9±82.9 pg/ml) (Figure 2A) and 

2.4 fold TNF-α release (605.3±103.4 pg/ml vs 210.5±85.3 pg/ml in control group) 

(Figure 2B). Furthermore, WIN pre-treatment (10 μM) prevented the increase in pro-

inflammatory mediators induced by Aβ1-42 (Figure 2 A and B). 
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Effect of Aβ1-42 and WIN on p65 protein expression 

NF-κB, the pro-inflammatory transcription factor, is formed by different subunits. 

We measured p65 protein expression by western-blot. Incubation with Aβ1-42 increased 

p65 protein expression compared with control astrocytes (Figure 3), which was 

prevented by WIN pretreatment. (p<0.05 compared with Aβ1-42 treated astrocytes) 

WIN prevents COX-2 and iNOS protein increase induced by 

Aβ1-42 peptide 

Incubation with Aβ1-42 significantly increased inflammatory proteins COX-2 (Figure 

4A) and iNOS (Figure 4B) expressions compared to control. Furthermore, pretreating 

astrocytes with WIN prevented the effects produced by Aβ1-42. 

Effect of Aβ1-42 and WIN on PPAR-γ protein expression 

Pro-inflammatory gene expression is downregulated by PPARs family [26]. We 

found that pretreatment with WIN (10 μM) increased PPAR-γ expression compared to 

control cells (Figure 5).  Incubation with Aβ1-42 significantly decreased PPAR-γ 

expression that was prevented by WIN pretreatment.  

Effect of Aβ1-42 and WIN on Cu/Zn SOD and Mn SOD protein 

expression. 

Superoxide dismutase (SOD) is a key antioxidant enzyme. In our study, incubation 

with Aβ1-42 decreased Cu/Zn SOD expression in astrocytes in primary culture which was 

prevented by WIN pretreatment, evidencing that WIN could play a neuro-protective role 

against oxidative stress induced by Aβ1-42 peptide (Figure 6A). On the other hand, our 

results indicated that Mn SOD protein expression is increased in presence of Aβ1-42. 
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Pretreatment with WIN did not prevent Mn SOD increase induced by Aβ1-42 (Figure 

6B). 
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Discussion 

Oxidative stress and inflammation are the main mechanisms in the progression of 

various neurodegenerative diseases, including AD [27-30]. In our study, we determined 

different markers involved in inflammation and oxidative stress induced by the Aβ1-42 

peptide in primary cultures of astrocytes, with the aim to assess the antioxidant and anti-

inflammatory effects of cannabinoid WIN. We found that WIN significantly increased 

astrocytes viability compared to control cells. Furthermore, WIN prevented the decrease 

in astrocytes viability induced by Aβ1-42.  

It has been shown that cannabinoids preserve neurons from Aβ exposure by 

activating MAP kinase cascade [31] and by anti-oxidative and anti-apoptotic effects 

[32]. Moreover, some studies demonstrated that cannabinoids protect glial cells from 

death [33,34]. Nevertheless, in cancer, where cells are highly proliferative and 

undifferentiated, treatment with cannabinoids can block cell proliferation in a dose 

dependent manner [35-38], demonstrating that the effects of cannabinoids on cell 

viability are probably dependent on cell type [39] and developmental stage [40].  

Expression of CB1 [41] and CB2 [42] receptors in rat culture astrocytes have been 

published and also dual activation of both cannabinoid receptors by WIN 55,212-2 (the 

mixed non-selective CB1/CB2 agonist) in rat cortical astrocytes have been detected [41] 

On the other hand, WIN confers its protective and anti-inflammatory effects against Aβ 

injury through both CB1 and CB2 receptors [43]. Given that our results there is 

expression of both types of cannabinoid receptors (CB1 and CB2), it is likely that the 

effect of WIN observed in our study is due to the interaction with both types of 

receptors, consistent with published results by Fakhfouri and cols [44]. 

We found that WIN prevented the increase of inflammatory mediators IL-1β, TNF-α, 

NF-κB, iNOS and COX-2, as well as the decrease of the anti-inflammatory mediator 



12 

PPAR-γ induced by Aβ1-42 in astrocytes in primary culture. The inflammatory process is 

a characteristic mechanism in the development of AD, and pro-inflammatory agents are 

involved in the progression of cell damage [45,46,47,12]. Moreover, it is known that 

astrocytes participate in the inflammatory process induced by Aβ1-42 [27,28,48]. 

Initially, inflammation is beneficial since it produces pro-inflammatory substances 

involved in tissue protection, limiting the survival and proliferation of cells exposed to 

toxic agents, such as Aβ1-42 [49,50]. However, sustained inflammatory response could 

lead to neurotoxic damage or cell death [12,51,8]. NF-κB proteins are up-regulated in 

inflammation conditions such as astroglial activation induced by Aβ1-42 oligomers [52]. 

In this regard, we found an increase in NF-kB/p-65 expression in astrocytes after 

addition of Aβ1-42 that was prevented by WIN pretreatment. Valles and collaborators 

[53] found that the cytokine-receptor complex is able to bind to cytokines and other 

proteins of the extracellular matrix, producing inflammatory signals which could be 

important in pathologies such as Alzheimer's disease [53,54]. In agreement with our 

results, different authors have reported that cannabinoids mitigate neural cell activation 

in the neuroinflammatory response induced by Aβ1-42, reducing the levels of pro-

inflammatory molecules such as IL-1β, TNF-α, COX-2 and iNOS [55,56,57]. Likewise, 

the activation of cannabinoid receptors diminishes the release of IL-1β, IL-6 and TNF-α 

in microglial cells [58,59,60] as well as COX-2 and iNOS [61]. Studies conducted in 

rats pretreated with the Aβ peptide found that WIN prevented cognitive impairment, 

glial activation and neuronal loss [19,62,63], and also reduced COX-2, iNOS and TNF-

α levels [63,64].   

Kainu et al. [65] demonstrated for the first time the presence of mRNA and protein 

PPAR-γ in CNS cells. Subsequent studies have detected PPAR-γ expression in 

microglial and astrocytic cells [66,12]. PPAR-γ agonists protect against Aβ-induced 
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inflammatory and neuronal damage [67,68], thus making neurons and astrocytes 

potential therapeutic targets for PPAR-γ ligands [69,12]. Astrocytes also express the 

largest levels of PPAR-γ in the neural tissues [70,71]. As other authors [72,73,74], we 

found a decreased expression of PPAR-γ in astrocytes treated with Aβ1-42. Esposito et al. 

[56] showed in neurons that cannabinoids may act as neuro-protective agents by PPAR-

γ activation. In this study, we demonstrate an increase in this protein expression in 

astrocytic cells previously incubated with WIN. Furthermore, we found for the first time 

that WIN prevents PPAR-γ expression decrease induced by Aβ1-42 peptide in astrocytes 

in primary culture. There is strong evidence to suggest that some cannabinoids can act 

on PPARs through either direct or indirect pathways. In order to directly act on nuclear 

transcriptional factors PPARs, exogenous cannabinoids need to pass through plasma 

membrane and be transported into nucleus which may involve certain membrane and 

intracellular transporters. However, we still cannot rule out that cannabinoids effects 

could be indirect through the binding of other cellular targets which in turn induces 

PPARs activation [75]. In fact, WIN attenuates amyloid-beta-induced 

neuroinflammation in rats through activation of cannabinoid receptors and PPAR-γ 

pathway [44]. 

Different authors have demonstrated the role of oxidative stress in AD [76-79]. The 

cumulative damage caused by free radicals induces alterations in the activity or 

expression of antioxidant enzymes like catalase or SOD. These enzymes were found to 

be decreased in both CNS and peripheral tissues of AD patients [80,81].  In this sense, 

we demonstrate that Cu/Zn SOD is decreased in astrocytes treated with Aβ1-42. Our 

results are consistent with those reported by other authors, highlighting the role of 

oxidative stress in the development of AD [82]. New substances are under research to 

reduce damage caused by oxidative stress in this disease. Widely distributed in the body, 
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cannabinoids receptors were discovered few decades ago and are still under research 

[57]. Few studies address the effect of cannabinoids on oxidative stress. For instance, 

cannabinoids were found to prevent or antagonize oxidative stress toxicity in cortical 

neurons in cultures [83,84], and in lymphoblastic cells [85]. Studies with PC12 cells 

exposed to Aβ1-42 peptide demonstrated that cannabinoids reduced reactive oxygen 

species production and membrane lipid oxidation [86,32]. Our results provide evidence 

that Aβ1-42 decreases Cu/Zn SOD expression in astrocytes in primary culture, and 

pretreatment with WIN increases Cu/Zn SOD expression, preventing the decrease 

caused by Aβ1-42. These findings indicate that cannabinoids could act as a protective 

agent against oxidative stress caused by Aβ1-42. In Figure 7 the set of results are 

summarized. However our results indicate that Aβ1-42 elevated Mn SOD protein 

expression, increasing mitochondrial biogenesis mechanism, such as we previously 

published [74]. Pretreatment with WIN did not prevent Mn SOD overexpression 

induced by Aβ1-42. Mn SOD plays a role in the adaptive response which protects brain 

cells from damage, as in the case of AD. In fact, Mn SOD preserves neurons against 

oxidative stress [87] and protects developing neurons from β-amyloid toxicity [88]. This 

enzyme catalyzes the conversion of superoxide radicals to molecular oxygen and H2O2, 

whereas glutathione peroxidase, peroxiredoxin reductase and catalase neutralize H2O2. 

Overexpression of Mn SOD induces cognitive recovery and reduces Aβ levels in AD 

animal models [89]. Furthermore, Mn SOD deficiency increases β-amyloid levels and 

amyloid plaque burden, promoting the development of behavioural disturbances [90]. 

Preclinical data suggest a beneficial role of some cannabinoids for treatment of 

different diseases. Dronabidol, an oil-based solution of Δ9-THC, is used as anti-emetic 

and appetite stimulant [91]. Δ9-THC also decreases agitation present in the advanced 

stage of AD [92]. In 2003, the FDA granted the patent for cannabinoids as antioxidants 
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and neuro-protectants (U.S. Department of Health and Human Services). Despite these 

promising preliminary results, the clinical utility of cannabinoids in AD is still to be 

determined [93]. 

Conclusions 

Taken together, our findings show that cannabinoid WIN increases cell viability and 

anti-inflammatory response in astrocytes in primary culture and prevents cell death 

induced by Aβ1-42. Furthermore, WIN increases expression of anti-oxidant Cu/Zn SOD 

and is able to prevent inflammation induced by Aβ1-42 in astrocytes. In this sense, 

clinical studies are needed to evaluate the neuro-protective effects of cannabinoids in 

Alzheimer´s disease. 
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Figure Legends  

Figure 1. Astrocytes viability. (A) Astrocytes viability induced by WIN. 

Concentration-dependent viability of WIN (1, 2, 5, 10 μM) was determined by MTT 

assay for 24 h. Data are means ± SD for 4 independent experiments. *p<0.04 comparing 

WIN vs control cells. (B) Astrocytes viability in cells treated during 24 h with 10 μM 

Aβ40-1 (control peptide, C), 10 μM Aβ1-42 (Aβ) and WIN (1, 2, 5, 10 μM) + 10 μM Aβ1-42 

(WIN + Aβ). Data are means ± SD of 3 independent experiments. *p<0.05 vs control 

cells.  

  

Figure 2. IL-1β and TNF-α secretion. WIN prevents the increase of IL-1β and TNF-α 

secretion caused by Aβ1-42 in astrocytes. Cells were incubated with 10 μM Aβ40–1 

(control peptide, C), 10 μM Aβ1–42 (Aβ), 10 μM WIN + 10 μM control peptide (WIN) 

and 10 μM WIN + 10 μM Aβ1–42 (WIN + Aβ). Cell culture supernatants were harvested, 

and IL-1β (panel A) and TNF-α (panel B) secretion were determined by ELISA. Values 

are means ± SD of replicate experiments from 4 independent astrocytes cultures. 

*p<0.05 vs control astrocytes. #p<0.05 vs Aβ1-42 treated cells. 

 

Figure 3. p65 protein expression. WIN 55, 212-2 prevents p65 expression induced by 

Aβ1-42 in astrocytes in primary culture. p65 and α-tubulin expressions were determined 

by Western-blot in astrocytes treated for 24 h with 10 μM Aβ40-1 (control peptide, C), 10 

μM Aβ1-42 (Aβ), 10 μM WIN + 10 µM control peptide (WIN) and 10 μM WIN + 10 μM 

Aβ1-42  (WIN + Aβ). A representative immunoblot of each protein is shown and tubulin 

was used as control amount of protein. Data are means ± SD of 5 independent 

experiments. *p<0.05 vs control cells. #p<0.05 vs Aβ1-42. 
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Figure 4. COX-2 and iNOS protein expression. WIN prevents COX-2 and iNOS 

expression induced by Aβ1-42. COX-2 (panel A), iNOS (panel B) and α-tubulin 

expressions were determined by Western-blot in astrocytes treated for 24 h with 10 μM 

Aβ40-1 (control peptide, C), 10 μM Aβ1-42 (Aβ), 10 μM WIN + 10 µM control peptide 

(WIN) and 10 μM WIN + 10 μM Aβ1-42  (WIN + Aβ). A representative immunoblot of 

each protein is shown and tubulin was used as control amount of protein. Data are 

means ± SD of 6 independent experiments. *p<0.05 vs control cells. #p<0.05 vs Aβ1-42. 

 

Figure 5. PPAR-γ protein expression. WIN induces PPAR-γ expression in astrocytes 

in primary culture treated with Aβ1-42. PPAR-γ and α-tubulin expressions were 

determined by Western-blot in astrocytes treated for 24 h with 10 μM Aβ40-1 (control 

peptide, C), 10 μM Aβ1-42 (Aβ), 10 μM WIN + 10 µM control peptide (WIN) and 10 μM 

WIN + 10 μM Aβ1-42 (WIN + Aβ). A representative immunoblot of each protein is 

shown and tubulin was used as control amount of protein. Data are means ± SD of 4 

independent experiments. *p<0.05 vs control cells. #p<0.05 vs Aβ1-42. 

 

Figure 6. Cu/Zn-SOD and Mn-SOD protein expressions. WIN prevents Cu/Zn-SOD 

expression decrease in astrocytes in primary culture treated with Aβ1-42. Cu/Zn-SOD, 

Mn-SOD and α-tubulin expressions were determined by Western-blot in astrocytes 

treated for 24 h with 10 μM Aβ40-1 (control peptide, C), 10 μM Aβ1-42 (Aβ), 10 μM WIN 

+ 10 µM control peptide (WIN) and 10 μM WIN + 10 μM Aβ1-42 (WIN + Aβ). A 

representative immunoblot of each protein is shown and tubulin was used as control 

amount of protein. Data are means ± SD of 4 independent experiments. *p<0.05 vs 

control cells. #p<0.05 vs Aβ1-42. 
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Figure 7. Preventive function of cannabinoid WIN on Aβ1-42-induced toxic effects in 

astrocytes in primary culture.  Cannabinoid WIN 55,212-2 increases cell viability and 

anti-inflammatory response in cultured astrocytes and prevents inflammatory effects 

induced by Aβ1-42. 
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WIN 55,212-2, agonist of cannabinoid 

receptors, prevents Amyloid β1-42 effects on 

astrocytes in primary culture. 
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Abstract 

Alzheimer´s disease (AD), a neurodegenerative illness involving synaptic dysfunction 

with extracellular accumulation of Aβ1-42 toxic peptide, glial activation, inflammatory 

response and oxidative stress, can lead to neuronal death. Endogenous cannabinoid 

system is implicated in physiological and physiopathological events in central nervous 

system (CNS), and changes in this system are related to many human diseases, 

including AD. However, studies on the effects of cannabinoids on astrocytes functions 

are scarce. In primary cultured astrocytes we studied cellular viability using MTT assay. 

Inflammatory and oxidative stress mediators were determined by ELISA and Western-

blot techniques both in the presence and absence of Aβ1-42 peptide. Effects of WIN 

55,212-2 (a synthetic cannabinoid) on cell viability, inflammatory mediators and 

oxidative stress were also determined. Aβ1-42 diminished astrocytes viability, increased 

TNF-α and IL-1β levels and p-65, COX-2 and iNOS protein expression while decreased 

PPAR-γ and antioxidant enzyme Cu/Zn SOD. WIN 55,212-2 pretreatment prevents all 

effects elicited by Aβ1-42. Furthermore, cannabinoid WIN 55,212-2 also increased cell 

viability and PPAR-γ expression in control astrocytes. In conclusion cannabinoid WIN 

55,212-2 increases cell viability and anti-inflammatory response in cultured astrocytes. 

Moreover, WIN 55,212-2 increases expression of anti-oxidant Cu/Zn SOD and is able 

to prevent inflammation induced by Aβ1-42 in cultured astrocytes. Further studies would 

be needed to assess the possible beneficial effects of cannabinoids in Alzheimer's 

disease patients. 
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Introduction 

AD is a common neurodegenerative disease implicated in the aging process, 

affecting nearly 50% of people over 75 [1,2]. It involves neurofibrillary degeneration, 

extracellular accumulation of beta-amyloid peptide (Aβ) and synaptic dysfunction, 

resulting in neural cell death in the hippocampus and cerebral cortex, and in activation 

of glial cells [3,4]. Aβ can interact with different cellular components producing Ca
2+

 

deregulation, oxidative stress and inflammation [5,6].  

Astrocytes are specialized neural cells serving as a structural and metabolic support 

and trophic help to the brain [7]. Astrocytes also release cytokines and chemokines 

involved both in protective and toxic roles in neuroinflammatory processes [8]. 

However, released cytokines in neuroinflammation may induce deleterious effects on 

the viability and functionality of astrocytes [9]. Furthermore, in pathological situations 

such as hypoxia, cytokines induce activation of vascular endothelial cells thereby 

modulating inflammatory responses [10]. In AD, astrocytes are found around senile 

plaques producing phagocytosis, and cleaning up toxic compounds such as Aβ [11]. 

Moreover, when stimulated with compounds such as genistein or estradiol, astrocytes 

block the release of pro-inflammatory mediators and induce the synthesis of anti-

inflammatory proteins [12]. 

Endocannabinoids have been implicated in various physiopathological events in 

different organs, including the peripheral and CNS [13], and changes in the 

endocannabinoid system have been related to many human diseases, such as metabolic 

syndrome [14], neurodegeneration [15], inflammatory diseases [16], psychiatric 

disorders [17] and cancer [18]. The endocannabinoid signaling system is composed of 

anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) interacting with CB1 and CB2 

cannabinoid receptors. Receptor signaling may involve mechanisms such as adenylyl 
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cyclase blockade or activation of mitogen-activated protein kinases or ceramide 

signaling [13].  

Different authors have proposed cannabinoids as preventive treatment in AD [19] 

due to their anti-inflammatory and neuroprotective properties [16]. In this sense, 

cannabinoids prevented microglial activation and cognitive impairment in Aβ-treated 

rats [19]. In mice exposed to Aβ, cannabinoids also suppress neuroinflammation by 

inhibiting iNOS expression and interleukin-1β generation [20]. However, the effects of 

cannabinoids on astrocytes functions have been poorly investigated. Therefore, we 

investigated the role of WIN 55,212-2 (WIN) as a neuroprotective agent against lesions 

induced by Aβ1-42 on cultured astrocytes.   
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Material and Methods 

Materials  

Dulbecco’s modified Eagle’s medium (DMEM) and fetal bovine serum (FBS) 

were obtained from Gibco (Gibco Invitrogen Corporation, Barcelona, Spain). The 

oligomers Aβ (40-1 and 1-42), were prepared following manufacture instructions 

(Sigma-Aldrich biotechnology). Briefly, the peptides were dissolved in H2O, and, for 

assembly the oligomers, preparations were heated for 24 h at 37ºC. WIN and 3-(4,5-

dimethyl-2-thiazolyl)-2,5-dipheniyl-2H-tetrazolium bromide (MTT) were purchased  

from Sigma Chemical Co. (St Louis, MO). Enzyme-linked immunosorbent assay 

(ELISA) kits for IL-1β and TNF-α from Pierce Biotechnology, Inc. (Rockford, USA). 

Western Blot Chemiluminescent Detection System (ECL) was from Amersham 

(Amersham Biosciences, Barcelona, Spain). Monoclonal anti-peroxisome proliferator-

activated receptor antibody (PPAR-γ) (1:250) and polyclonal anti-cyclooxigenase-2 

antibody (COX-2) (1:250) from Sigma Aldrich (Madrid, Spain). Monoclonal p65 

antibody (p65) (1:250) from Santa Cruz Biotechnology (Madrid, Spain). Polyclonal 

anti-Cu/Zn superoxide dismutase antibody (Cu/Zn SOD) (1:250) from Assay Designs 

(Madrid, Spain). Monoclonal anti-tubuline (1:1000) from Cell Signaling (Beverly, MA, 

USA). All other reagents are analytical or culture grade purity. 

Primary culture of cortical astrocytes 

All animals were handled according to the recommendations of the Bioethics 

Committee of the School of Medicine of the University of Valencia, Spain. Ethics 

committee specifically approved this study. Cortical astrocytes were isolated from rat 

fetuses of 21 days gestation. Fetuses were obtained by cesarean section and decapitated. 

Cerebral cortices were removed and triturated 10–15 times through a Pasteur pipette 
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with 10 ml DMEM. The cell suspension was filtered through nylon mesh with a pore 

size of 90 μm and re-suspended in DMEM containing 20% fetal bovine serum (FBS), 

supplemented with L-glutamine (1%), HEPES (10 mM), fungizone (1%), and 

antibiotics (1%). Cells were plated on T75 culture flask and maintained in a humidified 

atmosphere of 5% CO2/95% air at 37°C during 15 days. After 4 days of culture, the 

FBS was maintained at 20% and after 1 week of culture, the FBS content was reduced to 

10%, and the medium was changed twice a week. The purity of astrocytes was assessed 

by immunofluorescence using anti-glial fibrillary acidic protein (astrocyte marker; 

Sigma-Aldrich), anti-CD-68 (microglial marker; Serotec), anti-myelin basic protein 

(olygodendroglial marker; Sigma-Aldrich) and anti-microtubule-associated protein 2 

(neuronal marker; Sigma-Aldrich). The astrocyte cultures were found to be at least 99% 

glial fibrillary acidic protein positive. No cells were found to express CD-68, myelin 

basic protein, or microtubule-associated protein-2. 

Cell treatments 

Ten days after seeding, WIN (10 μM) was added to culture flasks. Twenty-four hours 

later, 10 μM Aβ1-42 (toxic peptide) or Aβ40-1 (control peptide) (Sigma-Aldrich) were 

added to the flasks. Aβ1-42 concentration used in our study is in the range of toxic 

concentrations of the peptide [21,22]. Before incubation, the peptides were diluted in 

100 μM of phosphate-buffered saline (PBS) and incubated for 24 h at 37º C. Assays 

were performed 24 h after peptide addition.  

MTT assay 

Cell viability was determined by MTT assay. The MTT assay is a well-established, 

widely used and easily reproducible method for the assessment of cell viability and cy-

totoxicity [23,24].  Astrocytes were plated in 96-well culture plate and incubated with 
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WIN during 24h.  Subsequently, Aβ40-1 (control) and Aβ1-42 peptides were added to 

wells for another 24h. After cell treatments, the medium was removed and cells were 

incubated with red free medium and MTT solution [0.5 mg/ml, prepared in phos-

phate buffer saline (PBS) solution] for 4 h at 37ºC. Finally, the medium was removed 

and formazan particles were dissolved in dimethyl sulfoxide (DMSO).  Cell viability, 

defined as the relative amount of MTT reduction, was determined by spectrophotometry 

at 570 nm.  

Cytokine determination, IL-1 and TNFα 

Astrocytes were seeded as previously published [12]. At the time of assay, the red 

phenol medium was removed and replaced by PBS containing 1 mg/ml bovine serum 

albumin (BSA), either in the presence or absence of Aβ1-42 (10 μM). IL-1β and TNF-α 

concentration (pg/ml) were ascertained using ELISA kits (Pierce Biotechnology, Inc.). 

Western blot analysis 

Cultured cells were treated with lysis buffer and mechanically degraded to release the 

proteins. Protein concentration was determined using modified Lowry method [25]. 

Loading buffer (0.125 M Tris-HCl, pH 6.8, 2% SDS, 0.5% (v/v) 2-mercaptoethanol, 1% 

bromophenolblue and 19% glycerol) was added to protein sample and heated for 5 min 

at 95ºC. Proteins were separated on SDS-PAGE gels and transferred to nitrocellulose 

membranes in a humid environment using a transfer buffer (25mM Tris, 190mM glycine, 

20% methanol). Membranes were blocked with 5% milk in TBS (0.05% Tween-20) and 

incubated with primary antibodies overnight at 4ºC. Membranes were washed 3 times 

with wash buffer TBS-T (TBS, 0.2% Tween-20) and incubated with a secondary anti-

rabbit IgG or anti-mouse IgG (Cell Signalling Technologies Danvers, MA) antibody 

conjugated to the enzyme horseradish peroxidase (HRP) for 1 h. Membranes were 

washed three times and proteins were detected using the ECL method as specified by the 
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manufacturer. Autoradiography signals were assessed using digital image system 

ImageQuant LAS 4000 (GE Healthcare). 

Statistical analyses 

Values are expressed as mean±S.D. Differences between groups were assessed by 

one-way analysis of variance (ANOVA). Statistical significance was accepted at P ≤ 

0.05. Data sets in which F was significant were examined by a modified t-test.  

 

Results 

Protective role of WIN on cell viability 

The role of WIN on cell viability was studied using MTT conversion assay. Figure 

1A shows that incubation with WIN at different concentrations induced a significant 

increase in cell viability at 10 μM. Consequently, that concentration was used in future 

experiments. Astrocytes previously incubated with 10 μM Aβ1-42 for 24 h significantly 

decreased cell viability compared to control cells (Figure 1B). Furthermore, pretreating 

astrocytes during 48 h with WIN (10 μM) prevented the decrease in cell viability 

induced by Aβ1-42 (WIN + Aβ), conversely WIN (1, 2, 5µM) did not have any effect 

(Figure 1B). 

WIN prevents IL-1β and TNF-α increase elicited by Aβ1-42 

Cultured astrocytes were incubated with 10 μM Aβ1-42 and proinflammatory 

mediators TNF-α and IL-1β were detected by ELISA. Aβ1-42 increased 4.5-fold IL-1β 

release (480.4±150.3 pg/ml) compared with control (103.9±82.9 pg/ml) (Figure 2A) and 

2.4 fold TNF-α release (605.3±103.4 pg/ml vs 210.5±85.3 pg/ml in control group) 

(Figure 2B). Furthermore, WIN pre-treatment (10 μM) prevented the increase in pro-

inflammatory mediators induced by Aβ1-42 (Figure 2 A and B). 
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Effect of Aβ1-42 and WIN on p65 protein expression 

NF-κB, the pro-inflammatory transcription factor, is formed by different subunits. 

We measured p65 protein expression by western-blot. Incubation with Aβ1-42 increased 

p65 protein expression compared with control astrocytes (Figure 3), which was 

prevented by WIN pretreatment. (p<0.05 compared with Aβ1-42 treated astrocytes) 

WIN prevents COX-2 and iNOS protein increase induced by 

Aβ1-42 peptide 

Incubation with Aβ1-42 significantly increased inflammatory proteins COX-2 (Figure 

4A) and iNOS (Figure 4B) expressions compared to control. Furthermore, pretreating 

astrocytes with WIN prevented the effects produced by Aβ1-42. 

Effect of Aβ1-42 and WIN on PPAR-γ protein expression 

Pro-inflammatory gene expression is downregulated by PPARs family [26]. We 

found that pretreatment with WIN (10 μM) increased PPAR-γ expression compared to 

control cells (Figure 5).  Incubation with Aβ1-42 significantly decreased PPAR-γ 

expression that was prevented by WIN pretreatment.  

Effect of Aβ1-42 and WIN on Cu/Zn SOD and Mn SOD protein 

expression. 

Superoxide dismutase (SOD) is a key antioxidant enzyme. In our study, incubation 

with Aβ1-42 decreased Cu/Zn SOD expression in astrocytes in primary culture which was 

prevented by WIN pretreatment, evidencing that WIN could play a neuro-protective role 

against oxidative stress induced by Aβ1-42 peptide (Figure 6A). On the other hand, our 

results indicated that Mn SOD protein expression is increased in presence of Aβ1-42. 
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Pretreatment with WIN did not prevent Mn SOD increase induced by Aβ1-42 (Figure 

6B). 
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Discussion 

Oxidative stress and inflammation are the main mechanisms in the progression of 

various neurodegenerative diseases, including AD [27-30]. In our study, we determined 

different markers involved in inflammation and oxidative stress induced by the Aβ1-42 

peptide in primary cultures of astrocytes, with the aim to assess the antioxidant and anti-

inflammatory effects of cannabinoid WIN. We found that WIN significantly increased 

astrocytes viability compared to control cells. Furthermore, WIN prevented the decrease 

in astrocytes viability induced by Aβ1-42.  

It has been shown that cannabinoids preserve neurons from Aβ exposure by 

activating MAP kinase cascade [31] and by anti-oxidative and anti-apoptotic effects 

[32]. Moreover, some studies demonstrated that cannabinoids protect glial cells from 

death [33,34]. Nevertheless, in cancer, where cells are highly proliferative and 

undifferentiated, treatment with cannabinoids can block cell proliferation in a dose 

dependent manner [35-38], demonstrating that the effects of cannabinoids on cell 

viability are probably dependent on cell type [39] and developmental stage [40].  

Expression of CB1 [41] and CB2 [42] receptors in rat culture astrocytes have been 

published and also dual activation of both cannabinoid receptors by WIN 55,212-2 (the 

mixed non-selective CB1/CB2 agonist) in rat cortical astrocytes have been detected [41] 

On the other hand, WIN confers its protective and anti-inflammatory effects against Aβ 

injury through both CB1 and CB2 receptors [43]. Given that our results there is 

expression of both types of cannabinoid receptors (CB1 and CB2), it is likely that the 

effect of WIN observed in our study is due to the interaction with both types of 

receptors, consistent with published results by Fakhfouri and cols [44]. 

We found that WIN prevented the increase of inflammatory mediators IL-1β, TNF-α, 

NF-κB, iNOS and COX-2, as well as the decrease of the anti-inflammatory mediator 
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PPAR-γ induced by Aβ1-42 in astrocytes in primary culture. The inflammatory process is 

a characteristic mechanism in the development of AD, and pro-inflammatory agents are 

involved in the progression of cell damage [45,46,47,12]. Moreover, it is known that 

astrocytes participate in the inflammatory process induced by Aβ1-42 [27,28,48]. 

Initially, inflammation is beneficial since it produces pro-inflammatory substances 

involved in tissue protection, limiting the survival and proliferation of cells exposed to 

toxic agents, such as Aβ1-42 [49,50]. However, sustained inflammatory response could 

lead to neurotoxic damage or cell death [12,51,8]. NF-κB proteins are up-regulated in 

inflammation conditions such as astroglial activation induced by Aβ1-42 oligomers [52]. 

In this regard, we found an increase in NF-kB/p-65 expression in astrocytes after 

addition of Aβ1-42 that was prevented by WIN pretreatment. Valles and collaborators 

[53] found that the cytokine-receptor complex is able to bind to cytokines and other 

proteins of the extracellular matrix, producing inflammatory signals which could be 

important in pathologies such as Alzheimer's disease [53,54]. In agreement with our 

results, different authors have reported that cannabinoids mitigate neural cell activation 

in the neuroinflammatory response induced by Aβ1-42, reducing the levels of pro-

inflammatory molecules such as IL-1β, TNF-α, COX-2 and iNOS [55,56,57]. Likewise, 

the activation of cannabinoid receptors diminishes the release of IL-1β, IL-6 and TNF-α 

in microglial cells [58,59,60] as well as COX-2 and iNOS [61]. Studies conducted in 

rats pretreated with the Aβ peptide found that WIN prevented cognitive impairment, 

glial activation and neuronal loss [19,62,63], and also reduced COX-2, iNOS and TNF-

α levels [63,64].   

Kainu et al. [65] demonstrated for the first time the presence of mRNA and protein 

PPAR-γ in CNS cells. Subsequent studies have detected PPAR-γ expression in 

microglial and astrocytic cells [66,12]. PPAR-γ agonists protect against Aβ-induced 
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inflammatory and neuronal damage [67,68], thus making neurons and astrocytes 

potential therapeutic targets for PPAR-γ ligands [69,12]. Astrocytes also express the 

largest levels of PPAR-γ in the neural tissues [70,71]. As other authors [72,73,74], we 

found a decreased expression of PPAR-γ in astrocytes treated with Aβ1-42. Esposito et al. 

[56] showed in neurons that cannabinoids may act as neuro-protective agents by PPAR-

γ activation. In this study, we demonstrate an increase in this protein expression in 

astrocytic cells previously incubated with WIN. Furthermore, we found for the first time 

that WIN prevents PPAR-γ expression decrease induced by Aβ1-42 peptide in astrocytes 

in primary culture. There is strong evidence to suggest that some cannabinoids can act 

on PPARs through either direct or indirect pathways. In order to directly act on nuclear 

transcriptional factors PPARs, exogenous cannabinoids need to pass through plasma 

membrane and be transported into nucleus which may involve certain membrane and 

intracellular transporters. However, we still cannot rule out that cannabinoids effects 

could be indirect through the binding of other cellular targets which in turn induces 

PPARs activation [75]. In fact, WIN attenuates amyloid-beta-induced 

neuroinflammation in rats through activation of cannabinoid receptors and PPAR-γ 

pathway [44]. 

Different authors have demonstrated the role of oxidative stress in AD [76-79]. The 

cumulative damage caused by free radicals induces alterations in the activity or 

expression of antioxidant enzymes like catalase or SOD. These enzymes were found to 

be decreased in both CNS and peripheral tissues of AD patients [80,81].  In this sense, 

we demonstrate that Cu/Zn SOD is decreased in astrocytes treated with Aβ1-42. Our 

results are consistent with those reported by other authors, highlighting the role of 

oxidative stress in the development of AD [82]. New substances are under research to 

reduce damage caused by oxidative stress in this disease. Widely distributed in the body, 
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cannabinoids receptors were discovered few decades ago and are still under research 

[57]. Few studies address the effect of cannabinoids on oxidative stress. For instance, 

cannabinoids were found to prevent or antagonize oxidative stress toxicity in cortical 

neurons in cultures [83,84], and in lymphoblastic cells [85]. Studies with PC12 cells 

exposed to Aβ1-42 peptide demonstrated that cannabinoids reduced reactive oxygen 

species production and membrane lipid oxidation [86,32]. Our results provide evidence 

that Aβ1-42 decreases Cu/Zn SOD expression in astrocytes in primary culture, and 

pretreatment with WIN increases Cu/Zn SOD expression, preventing the decrease 

caused by Aβ1-42. These findings indicate that cannabinoids could act as a protective 

agent against oxidative stress caused by Aβ1-42. In Figure 7 the set of results are 

summarized. However our results indicate that Aβ1-42 elevated Mn SOD protein 

expression, increasing mitochondrial biogenesis mechanism, such as we previously 

published [74]. Pretreatment with WIN did not prevent Mn SOD overexpression 

induced by Aβ1-42. Mn SOD plays a role in the adaptive response which protects brain 

cells from damage, as in the case of AD. In fact, Mn SOD preserves neurons against 

oxidative stress [87] and protects developing neurons from β-amyloid toxicity [88]. This 

enzyme catalyzes the conversion of superoxide radicals to molecular oxygen and H2O2, 

whereas glutathione peroxidase, peroxiredoxin reductase and catalase neutralize H2O2. 

Overexpression of Mn SOD induces cognitive recovery and reduces Aβ levels in AD 

animal models [89]. Furthermore, Mn SOD deficiency increases β-amyloid levels and 

amyloid plaque burden, promoting the development of behavioural disturbances [90]. 

Preclinical data suggest a beneficial role of some cannabinoids for treatment of 

different diseases. Dronabidol, an oil-based solution of Δ9-THC, is used as anti-emetic 

and appetite stimulant [91]. Δ9-THC also decreases agitation present in the advanced 

stage of AD [92]. In 2003, the FDA granted the patent for cannabinoids as antioxidants 
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and neuro-protectants (U.S. Department of Health and Human Services). Despite these 

promising preliminary results, the clinical utility of cannabinoids in AD is still to be 

determined [93]. 

Conclusions 

Taken together, our findings show that cannabinoid WIN increases cell viability and 

anti-inflammatory response in astrocytes in primary culture and prevents cell death 

induced by Aβ1-42. Furthermore, WIN increases expression of anti-oxidant Cu/Zn SOD 

and is able to prevent inflammation induced by Aβ1-42 in astrocytes. In this sense, 

clinical studies are needed to evaluate the neuro-protective effects of cannabinoids in 

Alzheimer´s disease. 
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Figure Legends  

Figure 1. Astrocytes viability. (A) Astrocytes viability induced by WIN. 

Concentration-dependent viability of WIN (1, 2, 5, 10 μM) was determined by MTT 

assay for 24 h. Data are means ± SD for 4 independent experiments. *p<0.04 comparing 

WIN vs control cells. (B) Astrocytes viability in cells treated during 24 h with 10 μM 

Aβ40-1 (control peptide, C), 10 μM Aβ1-42 (Aβ) and WIN (1, 2, 5, 10 μM) + 10 μM Aβ1-42 

(WIN + Aβ). Data are means ± SD of 3 independent experiments. *p<0.05 vs control 

cells.  

  

Figure 2. IL-1β and TNF-α secretion. WIN prevents the increase of IL-1β and TNF-α 

secretion caused by Aβ1-42 in astrocytes. Cells were incubated with 10 μM Aβ40–1 

(control peptide, C), 10 μM Aβ1–42 (Aβ), 10 μM WIN + 10 μM control peptide (WIN) 

and 10 μM WIN + 10 μM Aβ1–42 (WIN + Aβ). Cell culture supernatants were harvested, 

and IL-1β (panel A) and TNF-α (panel B) secretion were determined by ELISA. Values 

are means ± SD of replicate experiments from 4 independent astrocytes cultures. 

*p<0.05 vs control astrocytes. #p<0.05 vs Aβ1-42 treated cells. 

 

Figure 3. p65 protein expression. WIN 55, 212-2 prevents p65 expression induced by 

Aβ1-42 in astrocytes in primary culture. p65 and α-tubulin expressions were determined 

by Western-blot in astrocytes treated for 24 h with 10 μM Aβ40-1 (control peptide, C), 10 

μM Aβ1-42 (Aβ), 10 μM WIN + 10 µM control peptide (WIN) and 10 μM WIN + 10 μM 

Aβ1-42  (WIN + Aβ). A representative immunoblot of each protein is shown and tubulin 

was used as control amount of protein. Data are means ± SD of 5 independent 

experiments. *p<0.05 vs control cells. #p<0.05 vs Aβ1-42. 
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Figure 4. COX-2 and iNOS protein expression. WIN prevents COX-2 and iNOS 

expression induced by Aβ1-42. COX-2 (panel A), iNOS (panel B) and α-tubulin 

expressions were determined by Western-blot in astrocytes treated for 24 h with 10 μM 

Aβ40-1 (control peptide, C), 10 μM Aβ1-42 (Aβ), 10 μM WIN + 10 µM control peptide 

(WIN) and 10 μM WIN + 10 μM Aβ1-42  (WIN + Aβ). A representative immunoblot of 

each protein is shown and tubulin was used as control amount of protein. Data are 

means ± SD of 6 independent experiments. *p<0.05 vs control cells. #p<0.05 vs Aβ1-42. 

 

Figure 5. PPAR-γ protein expression. WIN induces PPAR-γ expression in astrocytes 

in primary culture treated with Aβ1-42. PPAR-γ and α-tubulin expressions were 

determined by Western-blot in astrocytes treated for 24 h with 10 μM Aβ40-1 (control 

peptide, C), 10 μM Aβ1-42 (Aβ), 10 μM WIN + 10 µM control peptide (WIN) and 10 μM 

WIN + 10 μM Aβ1-42 (WIN + Aβ). A representative immunoblot of each protein is 

shown and tubulin was used as control amount of protein. Data are means ± SD of 4 

independent experiments. *p<0.05 vs control cells. #p<0.05 vs Aβ1-42. 

 

Figure 6. Cu/Zn-SOD and Mn-SOD protein expressions. WIN prevents Cu/Zn-SOD 

expression decrease in astrocytes in primary culture treated with Aβ1-42. Cu/Zn-SOD, 

Mn-SOD and α-tubulin expressions were determined by Western-blot in astrocytes 

treated for 24 h with 10 μM Aβ40-1 (control peptide, C), 10 μM Aβ1-42 (Aβ), 10 μM WIN 

+ 10 µM control peptide (WIN) and 10 μM WIN + 10 μM Aβ1-42 (WIN + Aβ). A 

representative immunoblot of each protein is shown and tubulin was used as control 

amount of protein. Data are means ± SD of 4 independent experiments. *p<0.05 vs 

control cells. #p<0.05 vs Aβ1-42. 

 



29 

Figure 7. Preventive function of cannabinoid WIN on Aβ1-42-induced toxic effects in 

astrocytes in primary culture.  Cannabinoid WIN 55,212-2 increases cell viability and 

anti-inflammatory response in cultured astrocytes and prevents inflammatory effects 

induced by Aβ1-42. 
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