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Spectral broadening in silicon waveguides is usually inhibit at telecom wavelengths due to some adverse
effects related to semiconductor dynamics, namely, two-photon and free-carrier absorption. In this work, our
numerical simulations show that it is possible to achieve a significant enhancement in spectral broadening
when we properly pre-shape the input pulse to reduce the impact of FCA on spectral broadening. Our analysis
suggests that the use of input pulses with the correct skewness and power level is crucial for this achievement.
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Nowadays, continuous advances in nanophotonics tech-
nologies have spurred on the interest in the study of
silicon-based optical materials [1]. Strong confinement
of light in nano-engineered silicon-on-insulator (SOI)
waveguides results in a huge effective nonlinearity and
the ability for dispersion engineering (see, e.g. [2, 3]).
These achievements have opened up the possibility of
performing previously demonstrated signal processing
functionalities (mainly based in nonlinear kilometric
fibers) at chip scale with relatively low optical power
[4]. These Si-based components offer the benefits of
low cost (C-MOS-compatible large-scale-fabrication pro-
cesses) and low power consumption.
However, at the relevant wavelength region around

1.5 μm, Kerr-based spectral broadening or self-phase
modulation (SPM) is accompanied by an orchestra of
different nonlinear phenomena arising from the semicon-
ductor carrier dynamics [5–7]. Specifically we mention
the absorption and dispersion of free carriers produced
by two-photon absorption (TPA), which are not present
in conventional silica-based devices. The net effect re-
sults in a depletion of the achievable spectral broadening
for a Gaussian input pulse in comparison with the case
when only SPM is acting [8–10].
Additionally, the phenomenon under study is ex-

tremely sensitive to the input pulse characteristics due
to the inherent nonlinear nature of the spectral broad-
ening. In fact, up to some extent, pulse shaping tech-
niques have demonstrated to be effective in control-
ling the nonlinear broadening in photonic crystal fibers
[11,12] and other nonlinear materials [13–15], using both
single-pass [15] and self-learning adaptive configurations
[11–14]. Besides, these techniques offer valuable insight
in understanding the pulse dynamics through propaga-
tion [11,16]. In this Letter, we show that the proper ma-
nipulation of the pulse phase enhances spectral broaden-
ing even in the presence of TPA and free-carrier absorp-
tion (FCA).

Let us remind that the dynamics of an optical pulse
propagating in an SOI nano-waveguide can be described
in mathematical terms by [9]
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where A is the electric-field envelope; ν0 represents the
carrier frequency; β2 stands for the group velocity disper-
sion (GVD) parameter; n2 is the Kerr coefficient; Aeff

is the effective area of the waveguide; γ0 denotes the
non-linear coefficient of the waveguide defined as γ0 =
n22πν0/cAeff ; σ is the FCA coefficient; αl the linear loss
coefficient; Nc corresponds to the carrier density; βTPA

is the TPA coefficient; τc represents the carrier lifetime;
and the dimensionless parameters r = βTPAc/4πn2ν0
and μ account for the relative weight of TPA and free-
carrier dispersion (FCD), respectively. As in previously
published results [9], we consider λ0 = 1.55μm, αl

corresponding to 1 dB/cm, n2 ≈ 6 × 10−18 m2/W,
βTPA = 5 × 10−12 m/W, σ = 1.45 × 10−21 m2, r = 0.1,
μ = 7.5, and τc = 1ns. Likewise, in our numerical sim-
ulations we choose Aeff ≈ 1μm2. Because we focus our
attention on the interplay between SPM and carrier ef-
fects, we consider quite long pulses for which the GVD
term in Eq. (1) shall be neglected in the following.
In order to analyse in a qualitative way the spec-

tral broadening, it is very useful to study the instanta-
neous frequency of the propagated complex field. With
this aim, let us explicitly consider the phase of the
complex field envelope, A = |A| exp(iφ). By defining
the effective z-dependent losses-coefficient and length,

αeff = αl + σNc and zeff =
∫ z
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respectively, the following key equations are derived in
an analogous way to Eq. (60) in Ref. [6],
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where A0 = |A(0, t)|.
Despite their complexity, it is possible to get some

valuable physical insight from the above equations. From
Eq. (3), we note that the evolution of the instantaneous
frequency is governed by two processes. The first term of
the right-hand side corresponds to SPM whereas the sec-
ond one takes into account FCD. For low repetition-rate
pulses and if the input pulse width T0 � τc, the subterm
proportional to −Nc/τc can be neglected [9] and hence
the FCD term can be considered always positive. Accord-
ingly, FCD only produces blue-shifted components; by
contrast SPM can give rise to both blue-shifted and red-
shifted ones [9,10]. Finally, similarly to Ref. [6], we define
the threshold power Pth = 8γ0hν0A

2
eff /T0σμβTPA be-

yond which the FCD contribution exceeds that of SPM.
Having in mind the above facts, we realize that an

asymmetric input pulse induces two concomitant effects.
On one hand, the longer wavelength production due to
SPM is improved by means of a skew input pulse with
positive sign due to the enhanced slope on the lead-
ing edge of the pulse. On the other hand, if the peak
power P0 � Pth , the shorter wavelengths are generated
earlier in time, near to the peak power. According to
Eq. (2), the production of free-carriers is a cumulative
effect and hence, as one can see in Eq. (4), FCA highly
affects the trailing edge of the pulse. So, losses induced by
FCA could be partially compensated by generating blue-
shifted frequencies so fast that the free-carriers did not
have time to accumulate. Moreover, a positive skewness
of the pulse profile would strengthen this beneficial ef-
fect. Thus, both longer and shorter wavelength enhance-
ment could be feasible using positive skew pulses.
To prove the above ideas, we solve the previous equa-

tions considering two kinds of skew input pulses pro-
duced by adding a certain spectral phase to a Gaussian
pulse (hence preserving its bandwidth and energy). Both
cases could be experimentally implemented in a feasible
way by means of a pulse shaper with good spectral res-
olution. First we consider a spectral phase of the form
η(ω−ω0)

3, where η denotes the strength of the skewness.
The negative η-sign guarantees the right skewness of the
temporal pulse profile.
We have solved numerically Eqs. (1) and (2) and com-

puted the achieved spectral width at −20 dB for different
values of the η parameter. In this calculation, we consider
T0 = 10ps and a 1 cm-long silicon waveguide. The results
are shown in Fig. 1 and support our explanation. The
maximum broadening is achieved at η = −125 ps3 for

Fig. 1. Spectral output width at −20 dB as a function
of the strengh η of the cubic-phase modulation for three
input peak powers: 10W (short-dashed curve), 100W
(dot-dashed curve), and 1 kW (solid curve). The long-
dashed curve corresponds to the input spectral phase
provided by the GS algorithm (see details in the text).

Fig. 2. Comparison of the output power spectrum be-
tween the unmodulated Gaussian input pulse (dashed
curve) and the spectrally chirped version (solid curve)
for: (a) P0 = 100W and η = −125 ps3; and (b) P0 =
1kW and η = −124 ps3.

100W and η = −124 ps3 for 1 kW (peak powers are re-
ferred to the unmodulated Gaussian pulse in both cases,
unshaped and shaped). Only the SPM effect is working
at 10W and therefore no significant improvement of the
spectral broadening is observed. Note that in our nu-
merical example Pth is about 50W. When we increase
the input power up to 100W, see Fig. 2(a), the SPM-
production of low frequencies is intensified by the pulse
asymmetry. In addition, the upper part of the spectrum
remains unaffected. Here the FCA changes induced by
pulse shaping do not provide an enhancement of higher
frequencies because of the reduction on blue-shifted com-
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ponents produced by SPM due to the smooth tail of the
asymmetric pulse. At higher (but realistic, see Ref. [10])
powers, a notable enhancement appears at both sides
of the spectrum, since FCA plays a less significant role
thanks to the pulse shape. The expected output spec-
trum is depicted in Fig. 2(b). In this case, it is even
up to 40% broader with respect to the unshaped case
(measured at the −20 dB level).
Finally we stress the connection between reducing

FCA and the spectral broadening by computing Nc at
the instant when the maximum of the output pulse oc-
curs, see Fig. 3(a). It is worth noting that the spectral
width reduction shown by the curve corresponding to
P0 = 1kW in Fig. 1 is consistent with the increase of
Nc for lower values of η. Moreover, we link this feature
with the oscillatory structure that appears near the lead-
ing edge of the input pulse due to the cubic spectral
phase used to obtain skew input pulses in these cases,
see Figs. 3(b)-(d). These secondary lobes generate addi-
tional carriers that enhance FCA where the production
of new frequencies is concentrated.
Note that for greater values of positive skewness, the

pulse shows bigger ripples before the main lobe. In or-
der to confirm this assumption, with the aid of the
Gerchberg-Saxton (GS) algorithm [17], we search for
spectral phases that preserve the shape of the main lobe
of the pulses shaped through a cubic spectral phase. Ac-
cordingly, for the different values of the η parameter con-
sidered previously, we take η(ω−ω0)

3 as our seed phase
(this choice accelerates the convergence of the algorithm)
and set our target as the the main lobe of the correspond-
ing η-skew pulse (i .e. the above referred oscillations of
the pre-shaped pulses are eliminated to construct the tar-
gets). Every GS solution is labelled with the η value of
the corresponding seed phase. According to Fig. 3(c) and

Fig. 3. (a) Density of carriers at the maximum of the
output pulse in terms of η. (b) Input pulses. (c) Out-
put pulses. In both plots, dashed curves correspond to
pulses resulting from the cubic-phase modulation and
solid curves refer to pulses resulting from the GS algo-
rithm. In all cases, η = −200 ps3 and P0 = 1kW. (d)
Secondary lobes of the modulated pulses of (b) and (c).

(d), the GS technique provides a reduction of the satel-
lite lobes, but not their total supression. The resulting
spectral behavior shown in Fig. 1 confirms the pernicious
effect of the secondary lobes when input pulses present
sufficient skewness.
In summary, we have shown that the skewness intro-

duced on a Gaussian input pulse of high enough peak
power leads to an spectral broadening enhancement on
SOI waveguides.The key point is to enhance longer wave-
length production due to SPM by increasing the leading
slope edge which simultaneously decreases FCA effects
on shorter wavelength production. Although in this work
we do not take into account dispersive phenomena, our
physical interpretation suggests that the current achieve-
ments can also be extended to this case.
This work was financially supported by the Plan

Nacional I+D+I under the research project TEC2008-
05490, Ministerio de Ciencia e Innovación (Spain), and
by the Generalitat Valenciana under the grant PROM-
ETEO 2009-077. One of the authors, D. C.-L., grate-
fully acknowledges funding from the Generalitat Valen-
ciana (VALi+d predoctoral contract). V. T.-C. gratefully
acknowledges funding from a Marie Curie International
Outgoing Fellowship (Project PIOF-2009-234996).

References

1. B. Jalali and S. Fathpour, J. Lightwave Technol. 24,
4600 (2006).

2. A. C. Turner-Foster, M. A. Foster, R. Salem, A. L.
Gaeta, and M. Lipson, Opt. Express 18, 1904 (2010).

3. L. Zhang, Y. Yue, R. G. Beausoleil, and A. E. Willner,
Opt. Express 19, 8102 (2011).

4. J. Leuthold, C. Koos, and W. Freude, Nature Photon.
4, 535 (2010).
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