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The generation of multiple tones using four-wave
mixing (FWM) has been exploited for many appli-
cations, ranging from wavelength conversion to fre-
quency comb generation. FWM is a coherent process,
meaning that its dynamics strongly depends on the
relative phase among the waves involved. The co-
herent nature of FWM has been exploited for phase-
sensitive processing in different waveguide structures,
but it has never been studied in integrated microres-
onators. Waveguides arranged in a resonant way allow
for an effective increase in the wavelength conversion
efficiency (at the expense of a reduction in the opera-
tional bandwidth). In this letter, we show that phase
shaping of a three-wave pump provides an extra de-
gree of freedom for controlling the FWM dynamics in
microresonators. We present experimental results in
single-mode, normal-dispersion high-Q silicon nitride
resonators, and numerical calculations of systems oper-
ating in the anomalous dispersion regime. Our results
indicate that the wavelength conversion efficiency and
modulation instability gain in microcavities pumped
by multiple waves can be significantly modified with
the aid of simple lossless coherent control techniques.
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The effect of four-wave mixing (FWM) has enabled a variety of
ultrafast photonics applications, including high-speed sampling,
switching, wavelength conversion and amplification [1, 2]. The
FWM effect can become very efficient when using resonating
systems [3], when the input waves are matched to the resonator
cavity’s longitudinal modes. This comes at the expense of a
reduction in the operational bandwidth owing to an inherent
tradeoff between resonance linewidth and conversion efficiency
(although this can be partly alleviated by using an arrangement
of coupled resonators [4]). Nevertheless, resonant FWM has
been used in practice for wavelength conversion of high-speed

data signals [4] and threshold-less comb generation with two
[5, 6] and several pumps [7]. Synchronous pumping of nonlinear
fiber loops has been used for optical data buffering [8]. Nonlin-
ear effects including the breaking of time-reversal symmetry [9]
and the generation of dispersive waves [10] have been reported
in fiber cavities.

If three or more waves are input to the nonlinear medium,
the gain dynamics of the mixing process, be it resonant or not,
depends on their relative phases [11]. While this phase-sensitive
process has been widely studied in different fiber configurations
[11, 12], the phase sensitive dynamics of FWM in resonators has
received less attention outside of single pump cases [13].

This letter explores the FWM phase dependence both in ex-
periments and simulations for integrated resonating cavity sys-
tems. The first part focuses on the phase sensitive nature of
non-degenerate FWM and compares experiments with simula-
tions as well as a simplified analytical model. The second part
shows, through simulations, the strongly phase-dependent na-
ture of the idlers generated in the modulation instability (MI)
regime, where the nonlinear medium has anomalous dispersion.
Our results indicate that control over the relative phase of the ini-
tial seed provides a powerful tool that can greatly influence the
generated waveform at the system output. Optimization of that
phase will therefore be critical for frequency comb generation in
both normal and anomalous dispersion regimes.

In the experiment, a silicon nitride based microresonator
with a Q-value above 7× 105 was pumped close to resonance by
three phase-locked waves of identical amplitude at 1547.9940 nm,
1548.2260 nm and 1548.4582 nm with a total pump power of
25 dBm giving an estimated coupled power (to the bus waveg-
uide) of 21 dBm. The pumps were generated using a single tun-
able external cavity laser with a specified linewidth of 100 kHz
and an intensity modulator driven by a radio frequency source
set to match the free spectral range (FSR) of the resonator cavity
at roughly 29 GHz. A pulse shaper (with 10 GHz optical resolu-
tion) was then used to tune the phase of the central pump wave.
Due to FWM, new lines were then generated inside the microres-
onator [See Fig. 1(a)]. A schematic of the setup can be seen in
Fig. 1(b). The silicon nitride microresonators used in this experi-
ment were manufactured in a multi-project wafer run using the
commercially available dual-layer Triplex™ technology [14]. The
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Fig. 1. (a) A sketch showing the three pumps (black) and the
generated idler lines (red) in the foreground with a transmis-
sion spectrum showing the relevant resonances in the back-
ground. (b) A schematic representation of the setup showing
the initial generation block, containing the laser, the modulator
and the pulse shaper, as well as the resonator. The two polar-
ization controllers are tuned for optimum operation: the first
one for maximum extinction in the intensity modulator and
the second one for coupling into the TE mode of the device.

dual-layer technology allows for single mode operation while
maintaining measured linear losses below 0.5 dB/cm. Since
silicon nitride, as opposed to pure silicon, lacks two-photon
absorption in the optical C-band, it is very promising for high-
power applications [15]. Simulations done using a finite element
solver (COMSOL) both verify the single mode property as well
as provide an estimated value for the group velocity dispersion.
Figure 2 shows the geometry as well as the corresponding simu-
lated mode profile and dispersion curve. It is clearly visible that
the waveguide has strong normal dispersion.

To verify the single mode property in practice, a transmission
spectrum was measured by sweeping a single tunable external
cavity laser over a wavelength range covering several FSRs. A
part of that scan can be seen in Fig. 3(a). The broadband scan
indicates that there exists no coupling to counterpropagating
modes nor higher order transverse modes. This ensures that
the normal dispersion profile is maintained across the C- and
L-band. This is in contrast to recent experiments where inter-
actions between modes produce abrupt changes in the local
dispersion of the microresonator [16, 17]. Figure 3(b) shows a
zoomed in view of one resonance. When the pump power is
increased, owing to thermal effects, the resonance will gradually
shift towards the red side when scanning the pump wavelength
giving an asymmetric transmission spectrum. This leads to a
practical difficulty of pumping close to resonance on the red side,
with the detuning parameter δ0 > 0, but also contributes to ther-
mal stability when pumping on the blue side, where δ0 < 0 [18].
We will therefore, even in the simulations, stick to situations
where δ0 < 0. In practice, this also means that it is challenging
to achieve phase matching and induce modulation instability in
this waveguide platform when pumping with a single CW laser.

Sweeping the phase of the middle pump with the pulse

shaper resulted in the generated idler power varying period-
ically, matching numerical simulations, see Fig. 4. The simula-
tions were done using a standard split-step Fourier nonlinear
Schrödinger equation (NLSE) solver to propagate the light inside
the resonator while coupling in the pumps together with quan-
tum noise after every round-trip. In the simulations, the value
for the detuning, δ0, was approximated to be −0.025 by match-
ing a measured value for the outcoupled idler power compared
to the outcoupled pump power with φs = 0 to the corresponding
simulated value. The resulting value for δ0 was then kept for the
rest of the simulations and numerical calculations. The results
from the measurements show a π-periodic power dependence
on the central pump phase as well as a variation in the conver-
sion efficiency of 8.0 dB. The split-step simulations confirm the
periodicity while having a slightly larger variation at 8.4 dB.

To get a more quantitative understanding of the influence of
the resonator parameters in the final idler power, we study the
stationary solutions of the Lugiato-Lefever equation [19]. This
equation has previously been used in describing the nonlinear
dynamics of both fiber-based and microresonator systems [20,
21]:

0 =

(
−α + θ

2
− iδ0

)
Es(τ)− iL

β2
2

∂2Es(τ)

∂τ2 +

iγLEs(τ)|Es(τ)|2 +
√

θEin(τ), (1)

where the constants L, α = αiL, θ, β2 and γ stand for the res-
onator length, the total power loss during one round trip, the
power coupling coefficient, the group velocity dispersion and
the nonlinearity respectively. In the experiment, we observed
the generation of two new lines on either side of the pumps, so
we are interested in stationary solutions, Es(τ), consisting of five
waves:

Es(τ) =
2

∑
m=−2

Em exp(miΩτ), (2)

where Em represents the complex amplitude of wave m. The
frequency spacing between the waves is denoted with Ω and
corresponds to the FSR of the resonator. For the input signal
Ein(τ), we specify the three-wave pump:

Ein(τ) = Ep(exp(−iΩτ) + exp(iφs) + exp(iΩτ)), (3)

where the amplitudes of the three waves are all equal, |Ep|,
the phases of the two side-pumps are fixed and equal, and the
phase of the middle pump wave is shifted by φs (in practice
controlled by the pulse shaper). We can do this without loss of
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Fig. 2. (a) A top view of the layout of the resonator, with a
bus waveguide-resonator gap of 1000 nm and a total length
of 6031.86 µm. (b) A schematic of the 2D cross section of
the waveguide geometry. (c) Dispersion simulation around
1550 nm for the fundamental TE mode with the inset showing
the simulated power distribution of the mode.
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Fig. 3. (a) Transmission spectrum showing multiple reso-
nances belonging to the single propagating mode. (b) Zoomed
in view showing one resonance swept with a 5 dBm low pow-
ered pump (blue) and a 25 dBm high powered pump (red).
Owing to temperature effects occurring when pumping with
high powers the resonance experiences a shift towards longer
wavelengths leading to a triangular shape when sweeping[18].
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Fig. 4. Outcoupled idler power compared to the outcoupled
pump power as a function of the central pump phase, φs. The
solid black curve shows the calculated ratio using the sim-
plified analytical formula, while the red rings and the black
crosses show the simulated and measured ratios respectively.
The offset between the analytical formula and the measured
and simulated data is present because of the extra assump-
tions that are made during its derivation.

generality, since a linear phase relation between the three lines
only corresponds to a time shift of the resulting waveform. By
inserting Eqs. (2) and (3) back into Eq. (1) and discarding the
terms containing frequencies more than two FSRs away from the
central pump we arrive at a set of 5 complex valued equations,
one for each line. The ones describing the idlers are as follows:

0 =E±2(−i
α + θ

2
+ δ0 − 2LγPtot + Lγ|E±2|2 − 2Lβ2Ω2)

−Lγ(E∗0 E2
±1 + E2

0E∗∓2 + 2E0E±1E∗∓1 + 2E−1E1E∗∓2) (4)

where Ptot = |E0|2 + |E−1|2 + |E1|2 + |E−2|2 + |E2|2.
To draw some qualitative conclusions about how the idler

power depends on various parameters, we will have to make
some extra assumptions and simplifications. When pumping a
nonlinear material with three pumps there are several FWM pro-
cesses acting simultaneously. These will correspond to different
terms in the equation above. Some of the processes have already
been ignored when avoiding the frequency terms far away from
the pumps, where the power levels are low [22]. We will from
here on also ignore the two symmetric FWM processes that
couple the two idlers together: the degenerate one transferring
power from the middle pump to the two idlers and the nonde-
generate one transferring power from the two side pumps to the
two idlers. These assumptions, removing the terms containing
E∗∓2, allow us to simplify Eq. (4) retaining the main features of
the system behavior, and permit recasting it into the following

closed-form expression:

|E±2|2 =
|E0|2|E−1|2|E1|2L2γ2

(α+θ)2

4 + (δ0 − 2LγPtot + Lγ|E±2|2 − 2Lβ2Ω2)
2

×
(

4 +
|E±1|2
|E∓1|2

+ 4
|E±1|
|E∓1|

cos(2φ0 − φ−1 − φ1)

)
. (5)

Further assuming that the idlers will remain low in power,
E0,±1 � E±2, and that the three pumped waves remain unde-
pleted and equal in power (as it seems to be in the experiment),
we get:

|E0|2 = |E±1|2 ≈
|Ep|2θ

(α+θ)2

4 + δ2
0

, (6)

φ0 = φ−1 + φs = φ1 + φs, (7)

leading to a closed form expression for |E±2|2 that only depends
on the initially known parameters of the system:

|E±2|2 =
|E0|6L2γ2 (5 + 4 cos(2φs))

(α+θ)2

4 + (δ0 − 6|E0|2Lγ− 2Lβ2Ω2)
2

, (8)

where |E0|2 is given in Eq. (6). The pump phase dependent
conversion efficiency for |E±2(φs)|2 is thus 9 (or 9.5 dB) with a
period of π matching the measured and simulated curves seen
in Fig. 4. What is interesting to note from this analysis, is that
the maximum conversion efficiency will take place for a phase
matching condition similar to the case of modulation instability
in microresonator frequency combs pumped by a single CW
laser [23].

Although strictly speaking there is no threshold in the case
of FWM wavelength conversion in a resonator pumped with
several waves [5], one can see that the efficiency of the process
is inversely proportional to the square of the resonator loss. For
comparison, a similar analysis can be carried out for a simple
waveguide system without a resonating cavity. In that case,
the steady state situation would be equivalent to a propagated
distance that is long enough for the gains from the Kerr effect and
the losses to be of equal strength in the idler, but short enough
for the losses not to have attenuated the pumps significantly yet.
By performing the same simplifications as before, we arrive at
the following equation:

|E±2,wg|2 =
|Ep|6γ2 (5 + 4 cos(2φs))
α2

i
4 +

(
6|Ep|2γ + 2β2Ω2

)2
, (9)

where αi corresponds to the propagation losses per length while
the rest of the parameters are defined as before. The significant
difference between the ring and the waveguide case is that for
the waveguide it is the pump power, whereas for the resonator
system it is the in-cavity power that appears. To draw some
conclusions, we can take an additional step: assume that, for the
resonating system, δ0 = 0, the dispersion is optimal and that we
have critical coupling (θ = α). The in-cavity idler power will
then be proportional to 1/α5 and the outcoupled one will be
proportional to 1/α4. This is in comparison with the straight
waveguide case, where the output idler power will remain pro-
portional to 1/α2

i . In the low loss regime, pumping a resonator
instead of a waveguide will thus greatly enhance the output
idler power.

The previous analysis dealt with resonant wavelength con-
version via FWM. However, the thermal locking dynamics to-
gether with the normal dispersion of the waveguide prevented
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Fig. 5. (a) Simulated output spectra for a microresonator
pumped with three equally powered waves at resonance as
a function of the middle pump phase. The parameters were
set to Pin,tot = 0.1 W, α = θ = 0.01, r = 500 µm, δ0 = −0.05,
ng(at 1550 nm) = 2, γ = 5 /W/m and β2 = −50 ps2/km.
The simulation resolution corresponds to 1 FSR so the spac-
ing between the pump lines is not resolved in the figure. (b-c)
Simulated output power in the time domain for the same pa-
rameters with a detailed view of two time domain traces.

the formation of MI and hence parametric gain. In the anoma-
lous dispersion regime, when the power levels are high enough,
combs can be generated using a single continuous wave pump
(see analysis in [20, 21, 24]). To investigate the phase depen-
dence in such a case, we turn to the split-step NLSE simulations.
The analytical model developed in the previous paragraph will
not be valid in general as we discarded the waves located far
away from the pump in the frequency domain. When using
several pumps to seed the comb, lower power levels can already
cause MI growth [5, 7]. In these cases however, the relative
pump phases also have great effect on the final power in the MI
sidebands. Figure 5 shows the results from a simulation demon-
strating such a case. The simulations were done using three
equally powered pumps, placed slightly off resonance on the
blue, thermally stable, side. The ring parameters were chosen
to be realistic and are specified in the figure caption. Setting the
pump phase difference from φs = 0 to φs = π/2 gives signif-
icantly different results; in the first case, we see MI sidebands
of significant amplitudes, whereas in the second case there is
no new frequency generation at all, giving a phase dependent
relative conversion efficiency for the generated idlers of above
40 dB. In the time domain picture, when the MI gain is present,
an interference pattern corresponding to the distance between

the pump laser and the MI generated sidebands is also visible.
These results indicate that the relative phase between the input
lines drastically alter the gain profile of the MI. Further investi-
gations are needed to find the limits and the full extent of this
dependence.

In summary, we have demonstrated triply resonant four-
wave mixing in a silicon nitride microresonator and verified the
periodic phase dependence of the results using both split-step
NLSE simulations and a simplified analytical expression derived
from the Lugiato-Lefever model. We have also demonstrated
simulations showing a strong phase dependence of modulation
instability gain giving rise to a conversion efficiency difference
of above 40 dB in resonators with anomalous dispersion. The
control and optimization of the relative phases of a multiple-
pump seed thus provides a powerful tool in controlling the final
waveform, with implications for applications both in the normal
and the anomalous dispersion regime.
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