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Abstract: Four-wave-mixing processes enabled during optical wave-
breaking (OWB) are exploited in this paper for supercontinuum genera-
tion. Unlike conventional approaches based on OWB, phase-matching is
achieved here for these nonlinear interactions, and, consequently, new fre-
quency production becomes more efficient. We take advantage of this kind
of pulse propagation to obtain numerically a coherent octave-spanning mid-
infrared supercontinuum generation in a silicon waveguide pumping at tele-
com wavelengths in the normal dispersion regime. This scheme shows a fea-
sible path to overcome limits imposed by two-photon absorption on spectral
broadening in silicon waveguides.
OCIS codes: (130.3120) Integrated optics devices; (190.4390) Nonlinear optics, integrated
optics.

References and links
1. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope

phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639
(2000).

2. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka and R. S. Windeler, “Ultrahigh-
resolution optical coherence tomography using continuum generation in an airsilica microstructure optical fiber,”
Opt. Lett. 26, 608–610 (2001).

3. S.V. Smirnov, J. D. Ania-Castanon, T. J. Ellingham, S. M. Kobtsev, S. Kukarin, S. K. Turitsyn, “Optical spectral
broadening and supercontinuum generation in telecom applications,” Opt. Fiber Technol. 12, 122–147 (2006).

4. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.
78, 1135–1184 (2006).

5. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic
crystal fibers,” Phys. Rev. Lett. 27, 203901 (2001).

6. G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources,” J. Opt. Soc. Am. B 24, 1771–1785 (2007).
7. M. Nakazawa, K. Tamura, H. Kubota, and E. Yoshida, “Coherence degradation in the process of supercontinuum

generation in an optical fiber,” Opt. Fiber Technol. 4, 215–223 (1998).
8. Y. Takushima, and K. Kikuchi, “10-GHz, over 20-channel multiwavelength pulse source by slicing super-

continuum spectrum generated in normal-dispersion-fiber,” IEEE Photon. Technol. Lett. 11, 322–324 (1999).
9. C. Finot, B. Kibler, L. Provost, and S. Wabnitz,“Beneficial impact of wave-breaking for coherent continuum

formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25, 1938–1948 (2008).
10. J. J. Miret, E. Silvestre, and P. Andrés, “Octave-spanning ultraflat supercontinuum with soft-glass photonic crystal

fibers,” Opt. Express 17, 9197–9203 (2009).
11. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt,“Coherent octave

spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,”
Opt. Express 19, 3775–3787 (2011).

12. W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave-breaking in nonlinear optical fibers,” Opt. Lett.
10, 457-459 (1985).

13. J. E. Rothenberg and D. Grischkowsky, “Observation of the formation of an optical intensity shock and wave
breaking in the nonlinear propagation of pulses in optical fibers,” Phys. Rev. Lett. 62, 531–534 (1989).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositori d'Objectes Digitals per a l'Ensenyament la Recerca i la Cultura

https://core.ac.uk/display/71050529?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


14. J. E. Rothenberg, “Femtosecond optical shocks and wave breaking in fiber propagation,” J. Opt. Soc. Am. B 6,
2392–2401 (1989).

15. J. Wu, F. Luo, Q. Zhang, and M. Cao, “Optical wave breaking of high-intensity femtosecond pulses in silicon
optical waveguides,” Opt. Laser Technol. 41, 360–364 (2009).

16. Y. Liu, H. Tu, and S. A. Boppart, “Wave-breaking-extended fiber supercontinuum generation for high compres-
sion ratio transform-limited pulse compression,” Opt. Lett. 37, 2172-2174 (2012).

17. K. E. Webb, Y. Q. Xu, M. Erkintalo, and S. G. Murdoch, “Generalized dispersive wave emission in nonlinear
fibers,” Opt. Lett. 38, 151–153 (2013).

18. M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, “Cascaded phase matching and nonlinear
symmetry breaking in fiber frequency combs,” Phys. Rev. Lett. 109, 223904 (2012).

19. M. Conforti and S. Trillo, “Dispersive wave emission from wave breaking,” Opt. Lett. 38, 3815–3818 (2013).
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1. Introduction

Narrow-band pulses can suffer huge spectral broadening when they propagate throughout non-
linear media due to the interplay of many nonlinear processes. It corresponds to the so-called
supercontinuum (SC) generation and it finds several applications in high-precision frequency
metrology [1], optical coherence tomography [2] or in telecommunications [3]. Its dynamics
is highly sensitive to the physical parameters of the nonlinear system. Since photonic crystal
fibers (PCF) allowed to improve the control of these properties, SC generation experienced a
great development from the advent of this kind of fiber [4].

Usually, SC is generated through higher-order-soliton compression and fission and the sub-
sequent dispersive waves (DW) emission due to the efficient spectral broadening achieved in
this solitonic regime [4, 5]. Nevertheless, noise amplification produced by modulation instabil-
ity (MI) can notably reduce the coherence of this SC if the soliton number of the input pulses
is not kept at low enough values [4,6]. Furthermore, even when this condition is fulfilled, there
may still be a significant timing and amplitude jitter in the output pulses [7]. The impact of
input pulse fluctuations can be avoided by pumping in the normal dispersion regime, where MI
is not produced. In addition, the impact of the initial pulse jitter is also reduced in normally
dispersive fibers [8]. However, narrower spectra are often expected under these conditions [9].

In a nonsolitonic regime, i.e., if the input pulse is pumped at normal dispersion, new frequen-
cies are generated through self-phase modulation (SPM) at the first stages of the propagation.
Even an octave-spanning SC can be obtained based on this mechanism, but a flattened and
low dispersion profile and high nonlinearities are required [10, 11]. However, since red-shifted
frequencies move faster and blue-shifted frequencies move slower than frequencies around the
carrier in the normal dispersion regime, a space-time overlapping among frequencies in the
pulse tails can take place when frequencies disperse. This overlap can give rise to the so-called
optical wave-breaking (OWB). Furthermore, it can favor new nonlinear interactions generating
new frequencies. This phenomenon was early studied both numerically and experimentally in
fibers [12–14] and recently numerically in silicon waveguides [15]. In the last years, it has been
used to induce additional spectral broadening [9, 11] and for pulse compression [16]. In these



cases, it is usually studied in all-normal dispersion systems. Despite these succesfull applica-
tions, the efficiency of the spectral broadening is limited since phase-matching is not achieved
in all-normal dispersion regime.

Recently, DW emission induced during OWB has been experimentally demonstrated [17]
and theoretically analyzed [18, 19]. In this paper, our first goal is to study this process from a
new theoretical approach [20] based on global properties of the pulse and its spectrum. That
allows us to identify the nonlinear process that emit the DW and so derive analytical expressions
that provide a third-order dispersion (TOD) enabling the phenomenon and the frequency of the
DW without solving the nonlinear propagation equation. It is worth noting that this nonlinear
process differs from the mechanism that allows solitons to emit DWs [18]. This fact is consistent
with recent papers [17, 19].

Going one step further, we will apply this new strategy to produce SC in silicon-on-insulator
(SOI) waveguides due to its interest for all-optical on-chip signal processing [21]. SC gener-
ation can get particular benefit from the strong third-order nonlinear optical effects [22–24]
enhanced by a tight optical confinement associated to its high-index-contrast [25]. However,
and in spite of these advantages, it has been demonstrated that silicon nonlinear losses limit
the spectral broadening ability of this platform, in particular at telecom wavelengths [26, 27].
For short pulses at low energies, two-photon absorption (TPA) is the dominant loss mecha-
nism [28,29]. We will pay special attention to this case, including these nonlinear losses in our
theoretical analysis. In this way, we numerically demonstrate an enhancement of the spectral
broadening produced by SPM in the presence of TPA, owing to additional nonlinear mixing
induced during OWB. Particularly, our numerical results show that it is feasible to achieve
an octave-bandwidth SC in a dispersion engineered SOI waveguide relying on OWB, even
pumping at telecom wavelengths. Moreover, this example illustrates our nonlinear inverse en-
gineering procedure. In a first step, nonlinear pulse propagation is tailored through the approach
presented here. In a second step, a waveguide (or fiber) design where the target output spectrum
is achieved can be easily found by means of our inverse dispersion engineering tool [30].

2. Supercontinuum generation relying on OWB in lossless waveguides

In this section, we present a new analytical approach to study the nonlinear pulse propagation
governed by the generalized nonlinear Schrödinger equation (GNLSE) [4, 31, 32],

∂zÃ(z,ω−ω0) = iβp(ω)Ã(z,ω−ω0)+ iγ0Fω0

[
|A(z, t)|2A(z, t)

]
, (1)

where ω0 is the carrier frequency, βp(ω) = β (ω)−β0−β1(ω−ω0), β (ω) is the propagation
constant of the mode and βk = dkβ/dω k|ω0 . γ0 represents the waveguide nonlinear coefficient
evaluated at ω0 and Fω0 [ f (t)] =

∫
∞

−∞
dt ei(ω−ω0)t f (t) is the Fourier transform centered at ω0.

We focus here on the principal physical processes. Losses will be analyzed in the next section.
The complex envelope, Ã, is defined as

Ẽ (x,ω) = Ã(z,ω−ω0)
e(xt)

(
∫

S dS ẑ · (et×ht)/2)1/2 ei(β0+β1(ω−ω0))z, (2)

where Ẽ is the analytic signal of the electric field — strictly speaking, Eq. (1) holds for ω > 0 —
[31,32], e and h are the electric and magnetic fields of the mode evaluated at ω0, the subindex t
stands for the transverse components and ẑ is the unit vector in the z-direction. The phase of the
ansatz in Eq. (2) includes β1(ω−ω0)z, that is equivalent to moving in the time reference frame
T = t−β1 z [33]. In addition, et and ht have been selected real and Ã has been normalized such
that |A(z, t)|2 represents the instantaneous power. The domain of the integral, S, corresponds
to the transverse plane to the waveguide. Our approach is based on the following z-dependent



Fig. 1. (a) Evolution of the generalized lengths, L −1, in the OWB regime. It corresponds to
the pulse propagation of (b-c). (b) Output spectrum for a femtosecond pulse in a waveguide.
λ0 indicates the pumping wavelength, λZD points out the zero-dispersion wavelength [note
it is the pump wave considered in Eq. (7)], and λ th

DW refers to the theoretical wavelengths of
the dispersive wave (i.e. the idler wave). (c) Output pulse corresponding to (b). (d) Output
spectrum for a picosecond pulse in a fiber. (See text for details.)

functions,

L −1
NL (z) =

γ0
∫

∞

−∞
dt |A(z, t)|4

2
∫

∞

−∞
dt |A(z, t)|2

, (3)

L −1
D (z) =

∫
∞

−∞
dω βp(ω)|A(z,ω−ω0)|2∫
∞

−∞
dω |A(z,ω−ω0)|2

. (4)

In [20], we proposed these functions and argue that they define the length scales where SPM
and the group-velocity dispersion (GVD) act at each propagation distance. In addition, the
conservation law associated to the Hamiltonian of the GNLSE [34, 35] can also be expressed
as L −1

NL (z)+L −1
D (z) = L −1

NL (0)+L −1
D (0) [20]. Throughout the next lines, we aim at getting

useful insight about the pulse propagation by analyzing the evolution of L −1
D and L −1

NL .
Figure 1(a) illustrates the behavior of L −1

D and L −1
NL in a regime where OWB appears [20].

The system is characterized at the beginning by a strong nonlinearity and a positive value of
the dispersive length (L −1

NL (0)� L −1
D (0) > 0), and the pulse propagation presents a mono-

tonic increase of L −1
D and, correspondingly, decrease of L −1

NL . It allows to identify two
stages in the evolution. In the first one, L −1

NL > L −1
D indicates that SPM rules the spectral

broadening. In the second stage, L −1
D > L −1

NL points out that new frequency generation re-
lies on nonlinear processes mainly governed by dispersive effects. It is also worth remind-



Fig. 2. Sketch for the interpretation of the FWM processes considered in this paper. We
assume that the schematic plots of the instantaneous frequency, δω(t) — continuous lines
—, and instantaneous power, P(t) — dashed lines —, correspond to the distance zOWB
given by Eq. (5). Thick lines highlight the blue shift and red shifht frequencies that overlap
after zOWB. The process described by Eq. (7) and the time shifting induced by dispersion
are also represented.

ing that the fundamental nonlinear process described by Eq. (1) is four-wave mixing (FWM),
ωp,1 +ωp,2 → ωs +ωi [31], where the subindex p,s, i refer to pump, signal and idler, respec-
tively, and its frequency conversion efficiency depends on both linear (dispersive) and nonlinear
contributions. In [20], we related the spectral broadening at this second step to the nonlinear
interactions enabled during OWB. So, we defined the distance at which the second stage begins,
L −1

D (zOWB) = L −1
NL (zOWB), as the OWB distance. In that work, we restricted our numerical

study to all-normal dispersion waveguides. Nevertheless, the dynamics of the characteristic
lengths suggests that only L −1

D > 0 must be satisfied in this regime and thus, an all-normal
dispersion is not necessary. As a result, nonlinear processes could be on phase-matching in the
second stage [36].

To test the feasibility of this scenario, we analyze FWM processes enabled in the OWB
regime in the framework of the above sketched two step model.

Considering that SPM rules the pulse propagation along the first stage, and that this step ends
when L −1

D (zOWB)≈ 1
2L −1

NL (0), we can estimate the OWB distance,

zOWB ≈
√

LDLNL

κ2σ2
, (5)

and the spectral content at that position — quantified by the chirp induced previously by SPM,

δω(zOWB, t)≈−κγ0∂t |A(0, t)|2zOWB. (6)

In the above equations, κ = (arcsinh
√

3)/
√

3, LNL = 1/(γ0P0), LD = T 2
0 /β2, and

σ2 =
∫

∞

−∞
dτ (∂τUp)

2Up/
∫

∞

−∞
dτ U2

p , where we have introduced a time scale normal-
ized to the input pulse width T0 as τ = t/T0, and a normalized power distribution Up as
|A(0,τ)|2 = P0Up(τ); P0 is the input pulse peak power (see Appendix A).

Among the FWM processes favored due to the space-time overlapping induced by frequency
dispersion [9, 11] and the difference between their instantaneous powers in this second stage,
see [20], we focus here on the degenerate FWM in which the frequency corresponding to the
minimum value of the SPM-induced chirp, ω0 + δωmin, acts as the pump wave to generate a
signal wave of frequency ω0 and an idler wave ωDW,

2(ω0 +δωmin)→ ω0 +ωDW. (7)



It is worth emphasizing two features about the above process. On the one hand, the pump
wave is expected to have enough power to be transferred to the idler wave. (Note that Eq. (6) es-
timates a frequency range with significant powers.) On the other hand, this process can produce
the minimum frequency that is attainable within this set of interactions, ωDW−ω0 = 2δωmin
(see Fig. 2).

The minimum frequency generated at the first stage can be written as δωmin =
−κϒzOWB/(LNLT0), where ϒ is the minimum value of ∂τUp (see Eq. (6) and text below
it). If the conventional phase-matching condition (namely, in the continuous-wave regime
under the pump undepleted approximation [36]) is imposed on the process represented in
Eq. (7), and neglecting the nonlinear contribution (note L −1

D > L −1
NL ), then ∆k ≡ β (ωi) +

β (ωs)−2β (ωp) = 0, that can be rewritten as ∆k = 2∑k β2k(ωp)(ωs−ωp)
2k/(2k)! [37], where

β2k(ωp) = d2kβ/dω 2k|ωp . Now, if higher order dispersion coefficients are not considered, then
β2(ω0 +δωmin) = β2 +β3δωmin = 0. That leads to

β3 =

√
σ2

ϒ2 β 3
2 LNL, (8)

ωDW−ω0 =
−2β2

β3
. (9)

Equation (8) characterizes an scenario where the efficiency of the process depicted in Eq. (7)
is optimum and, therefore, an important spectral broadening at significant power levels is ex-
pected. So, other FWM enabled in this regime will experience smaller gain, if any. In addition,
Eq. (9) can be considered an estimate of the bandwidth of the output spectrum. From this point
of view, these equations will also be useful for inverse engineering purposes.

It is worth comparing Eq. (9) with the frequency for the DW emitted by solitons, ωDW−ω0 =
−3β2/β3 [38]. For the soliton case, the location of the DW was firstly derived by means of a
phase-matching condition between the soliton — a nonlinear state — and the DW — a linear
state — [38]. Recently, in [18], Erkintalo et al. demonstrated that DWs are emitted through cas-
caded FWM in a soliton-like propagation. Of course, the original expression for the frequency
of the DW is recovered if this physical description is used. Notwithstanding, Webb et al. demon-
strated in [17] that the frequency spreading had to be considered, unlike the solitonic regime, to
explain the emission of (generalized) DW by pulses pumped in the normal dispersion regime,
β2 > 0. This case has been analyzed in [19] by Conforti and Trillo through phase-matching be-
tween a shock wave — which is, in this case, the nonlinear state — and the DW. This approach
allows them to interpret different scenarios that can appear if β2 > 0, thus providing a valu-
able insight even in complex regimes [39]. However, the phase-matching condition depends on
the shock wave velocity, which in general can only be determined numerically [19, 39]. Here,
we keep in mind design purposes, so a complete knowlegde of the complex envelope is not
necessary in our framework. Instead of solving Eq. (1), as in [19, 39], we take advantage of
our generalized lengths, L −1

NL and L −1
D , to characterize nonlinear pulse propagation. Further-

more, it allows us to identify a particular scenario, depicted by Eq. (8) and Fig. 1(a), where DW
emission is essentially due to one FWM process, see Eq. (7). Consequently, an analysis based
on the fundamental nonlinear process (that also explains the origin of the DW radiated by the
shock wave in this scenario) can be driven. Moreover, it leads to an analytical expression for
the frequency of the DW [see Eq. (9)], which turns out very useful to design waveguides for SC
generation.

Finally, it should be taken into account that our free parameters, namely γ0, β2 and A(0, t),
must entail that L −1

NL (0)� L −1
D (0) > 0 [9, 20, 40]. In addition, the β3 predicted by Eq. (8)

must not distort the wave-breaking regime represented in Fig. 1(a). Under such conditions we



can select and favor one of the possible four-wave mixing processes as it has been mentioned.
Other cases beyond the scope of this work will be studied elsewhere.

Now, we test Eqs. (8) and (9) by solving numerically Eq. (1). In Fig. 1(b), a Gaussian
pulse of 150 fs full-width at half-maximum (FWHM) in amplitude and 30 W of peak power
propagates throughout a 20 mm-long waveguide with γ0 = 100 W−1m−1 and β2 = 0.2 ps2m−1.
These parameters are feasible in silicon waveguides pumped at 2.2 µm [41]. Equations (8) and
(9) indicate β3 = 0.001 ps3m−1 and λDW = 4.129 µm for these values. The solid curve in
Fig. 1(b) corresponds to the output spectrum in this case and it is in excellent agreement with
our model. On the one hand, the evolution of L −1

NL and L −1
D is not notably modified when

our theoretical β3 is considered, though efficient new frequency generation is enabled. In other
words, the behavior shown in Fig. 1(a) is similar to that observed when only β2 controls dis-
persive effects (see [20]). On the other hand, a resonance is observed at the theoretical position
of the DW emitted according to our model. In Fig. 1(d), a Gaussian pulse of TFWHM = 1 ps,
300 W of peak power, propagates throughout a 50 m-long (commercially available) fiber with
γ0 = 4 W−1km−1, β2 = 25 ps2km−1. In this case, Eq. (8) provides β3 = 3 ps3km−1 and Eq. (8),
λDW = 1.572 µm. The solid curve in Fig. 1(d) is also in accordance with our theoretical results.
This indicates that this scenario can appear regardless of the input pulse duration, provided that
suitable dispersion could be attained.

3. Supercontinuum generation relying on OWB in the presence of TPA

Usually SC generation pumping in the normal dispersion regime is based on SPM [10, 11]. It
requires high nonlinearities. So, SOI waveguides could be an excellent platform to accomplish
this goal. Nevertheless, TPA coefficient of silicon increases dramatically below 2.2 µm, being
very relevant at telecom wavelengths [22–24]. Consequently, the spectral broadening produced
by SPM quickly saturates in SOI waveguides when pumped in the near infrared (IR) [26,42,43].

SC generation has already been studied both numerically and experimentally in silicon wave-
guides [44–48]. These works exploit pulse propagation in the solitonic regime, i.e., input pulses
are pumped at the anomalous dispersion regime. Here we explore SC generation in silicon
waveguides, but in the wave-breaking regime, even pumping at telecom wavelengths.

In Section 2 we have confirmed that new frequency generation in the wave-breaking regime
can be analyzed in two stages. Certainly, the nonlinear processes considered in the second stage
only depends on the frequencies created in the first stage. From this point of view, the broad-
ening mechanism of the first stage is not crucial, provided that frequency dispersion continues
governed by β2. Therefore, the presence of TPA does not invalidate our approach for these
cases. In particular, we can deal with TPA by means of the effective nonlinear coefficient, γ̂0,
of an equivalent lossless waveguide producing, at ẑOWB, the same minimum chirp that is gener-
ated in the waveguide affected by TPA at the same distance. Attending to [26,45], and ignoring
dispersive effects in the first stage in both equivalent systems,

min
t
{δω

TPA(t, ẑOWB)}= min
t̂
{δω̂(t̂, ẑOWB)} ,

min
t

{
−Re(γ0)∂t |A(0, t)|2 ẑOWB

1+2Im(γ0)|A(0, t)|2 ẑOWB

}
=−γ̂0 min

t̂

{
∂t̂ |A(0, t̂)|2

}
ẑOWB , (10)

where ẑOWB =
√

LDL̂NL/(κ2σ2) [cf. Eq. (5)], L̂NL = 1/(γ̂0P0), and γ̂0 is a real quantity — in
contrast to γ0, that is complex when TPA is considered [26].

If a Gaussian pulse is considered, Eq. (10) can be developed to derive

W 2−2ζ
2W −ζ

2 = 0, (11)



Fig. 3. (a) Output spectra produced by OWB and SPM in the presence of TPA (see details
in the text). (b) Output pulse corresponding to the solid curve spectrum in (a).

where ζ = e−1/2 [Im(γ0)/Re(γ0)] (ẑOWB/L̂NL), W = W0
[
e−1/2Im(γ0)P0 ẑOWB

]
, being W0 the

Lambert function [50]. For hyperbolic secant pulses, the corresponding equation is

Re(γ0)

γ̂0
=

4
3
√

3

√
1− x
x2 , (12)

where x = 4/(3+
√

9+16Im(γ0)P0 ẑOWB).
In Fig. 3(a), a Gaussian input pulse with TFWHM = 50 fs, analogously to [45], and 300 W of

peak power is propagated throughout a 8 mm-long waveguide with γ0 = (100+10 i)W−1m−1,
β2 = 0.2 ps2m−1 and β3 = 8× 10−4 ps3m−1. This value for β3 is obtained by means of Eq. (8)
when the effective nonlinearity calculated through Eq. (11), γ̂0 = 29 W−1m−1, is considered.
The spectrum after some propagation distances appears in Fig. 3(a). This case shares common
features with Figs. 1(b) and 1(d). On the one side, a sidelobe close to λDW = 2.634 µm, that
corresponds to the theoretical value given by Eq. (8), is observed. On the other side, similarly to
Fig. 1(c), the output pulse shows temporal oscillations at the leading pulse edge. It indicates that
this spectral broadening occurs during OWB, in agreement with our modelling. Despite TPA
losses, the spectral broadening produced SPM gets the zero-dispersion wavelength. Moreover,
neither β3 nor TPA disturb in this case the frequency overlapping in the pulse tails induced by
β2. This keeps our reasoning valid even for significant nonlinear losses.

Up to now, we have tested our analytical tools in some ideal cases. It has provided a signifi-
cant insight about the main processes involved in SC generation in silicon waveguides pumping
in the normal dispersion regime. In the next section, we take advantage of these conclusions to
simulate a realistic propagation in a properly engineered silicon waveguide.

4. Inverse design of a silicon waveguide

The objective of this section is to find a silicon waveguide design where an octave spanning SC
generation relying on OWB can be demonstrated. The analytical results presented in this paper
allows us to fix γ0, β2, β3 without intensive trial-and-error procedures. Indeed the parameters
obtained in the previous section can be used as targets in an inverse engineering approach, ac-
cording to [30]. We apply this strategy here and propose a silicon waveguide for SC generation.
Its geometry, dispersion and nonlinear coefficient curves are plotted in Figs. 4(a) and 4(b).

For the sake of completeness we include free-carrier related processes using an extended
version of the GNLSE to simulate the pulse propagation,

∂zÃ =−α

2
Ã+ iβp(ω)Ã+ iγ(ω)Fω0

[
|A|2A

]
− σ

2
(1+ iµ)Fω0 [Nc(z, t)A] , (13)



Fig. 4. (a) Dispersion curve of a strip silicon waveguide with a slot of SiO2 [47] (included
as an inset). (b) Complex nonlinear coefficient. (c) Output spectrum spanning an octave
after a propagation distance of 3 mm. (d) Modulus of the complex degree of first order
coherence corresponding to (c) .

Nc(z, t) =
2π [Im(γ0)]

2

hω0βTPA(ω0)

∫ t

−∞

e−
t−t′
τc |A(z, t ′)|4dt ′, (14)

where α corresponding to 7 dB/cm [47] takes into account linear losses, h is the Planck con-
stant, σ = 1.45× 10−21 m2 is the FCA coefficient, µ = 7.5 represents the relative weight of
FCD, and τc = 1 ns is the carrier lifetime [28, 29, 45]. In addition, we calculate the nonlinear
coefficient, including both material and mode dispersion, according to the following expres-
sion [51, 52]:

γ(ω) =
ε0

µ0(
∫

S(et×ht) · ẑdS)2

∫
S

dS
[

ωn2

c
+ i

βTPA

2

]
ρn2

[
(et · et)

2 +
2
3

et · et|ez|2 + |ez|4
]
,

(15)
where ε0 is the vacuum permittivity, and µ0 is the vacuum permeability. We attend to the ex-
perimental data from [23, 24] to characterize the dispersion of the Kerr index, n2, and the TPA
coefficient, βTPA, of silicon (see Appendix B) and take n2 = 2.6×10−20 m2 W−1 for silica [36].
The parameter ρ characterizes the nonlinear anisotropy. We consider ρ = 1.27 for silicon [28]
and ρ = 1 for silica. Note that frequency and transverse coordinates dependence of the inte-
grand has been omitted in Eq. (15). Following [52], we ignore the term that accounts for polar-
ization effects in the nonlinear phenomena for silicon waveguides [28]. In addition, Sellmeier
coefficients of the refractive index, n, of silicon and silica were taken from [53].

In Fig. 4(c) we consider a propagation supported by the fundamental TM mode of a slotted
silicon waveguide [47–49], see inset in Fig. 4(a). (Note that Raman scattering can be safely



neglected for such a mode [28,47,48]). It gives rise to an octave-spanning SC generation when
a Gaussian pulse with TFWHM = 50 fs and P0 = 300 W is propagated 3 mm throughout the
waveguide. A dispersive wave is emitted close to λDW = 2.634 µm, in spite of the higher order
terms of both the group-velocity dispersion and the nonlinear coefficient [cf. Fig. 3(a)]. It agrees
with the dispersive wave emitted through the nonlinear process considered in our approach.
[Note that ∆k = β2(ωp)(ωs−ωp)

2+1/12β4(ωp)(ωs−ωp)
4+ ..., so the phase-mismatch is still

quite controlled by β2(ωp) when higher order dispersion is considered. Equation (19) could be
used to deal with these higher-order effects.]

The difference on the efficiency of the DW emission compared to Fig. 3(a) can be mainly
atributed to the dispersion of both real and imaginary parts of the nonlinear coefficient. It is
worthwhile to note that similar results can be obtained for lower peak powers if asymmetric in-
put pulses are used [54]. Finally, we have computed the complex degree of first order coherence
attending to [55] in Fig. 4(d). We simulated input pulse fluctuations including one photon per
mode with a random phase and averaged over 1000 realizations. It confirms that highly stable
SC generation is achieved in the wave-breaking regime.

5. Conclusions

A new approach to deal with nonlinear pulse propagation based on the evolution of two average
magnitudes of pulses has been presented in this work. They allow characterizing the dynami-
cal regime and identify the most important physical processes at work. Analytical expressions
to delimit the different stages in the SC generation as well as suitable dispersion curves to
stimulate certain nonlinear processes have been derived. It represents an advance compared to
the usual “brute-force” design strategies. Interestingly, these results indicate that key features
of the pulse evolution can be determined even when complete information about the pulse at
each propagation distance is not available. Our approach makes easier the design tasks of SC
sources. By applying this nonlinear inverse engineering, we easily find a design of a silicon
waveguide where an octave-spanning SC can be produced pumping at telecom wavelengths in
the normal dispersion regime. We emphasize that the huge spectral broadening relies here on
nonlinear processes enabled during wave-breaking, unlike common SC produced in a solitonic
regime.
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Appendix A

In this appendix we outline the derivation of Eqs. (5) and (6). For the sake of completeness, we
also indicate how higher-order dispersion can be taken into account when zOWB is derived.

Firstly, starting from the Taylor expansion of βp(ω), we can rewrite
L −1

D (z) = ∑k=2(βk/k!)µk(z), where µk is the kth moment of the spectrum at the base-
band. Since the action of SPM is straightforward in the time domain, it is convenient to
calculate µk in that domain. It can be done, attending to [56], as

µk =

∫
∞

−∞
dω (ω−ω0)

k|Ã(ω−ω0)|2∫
∞

−∞
dω |Ã(ω−ω0)|2

=

∫
∞

−∞
dt A∗(t)(i∂t)

kA(t)∫
∞

−∞
dt|A(t)|2

≈
∫

∞

−∞
dt [−∂ϕ(t)]k|A(t)|2∫

∞

−∞
dt|A(t)|2

,

(16)



where we only retain the contribution of the envelope phase, ϕ , being A(t) = |A(t)|eiϕ(t) and
Ã(ω −ω0) =

∫
∞

−∞
dt ei(ω−ω0)tA(t). In order to evaluate ∂tϕ , we take into account dispersion

through the following ansatz [57]:

|A(z, t)|2 = a(z)
∣∣∣∣A(0,

t√
1+αz2

)∣∣∣∣2 . (17)

From the energy conservation of the pulse and the condition L −1
D (zOWB)≈L −1

NL (0)/2, we de-
rive a(z) = (1+αz2)−1/2 and α = 3/z2

OWB. It allows us to calculate the instantaneous frequency
distribution at zOWB, Eq. (6),

δω(zOWB, t) =−∂tϕ(zOWB, t)≈−γ0

∫ zOWB

0
dz∂t |A(z, t)|2 ≈−κγ0∂t |A(0, t)|2zOWB, (18)

where κ = (arcsinh
√

3)/
√

3.
Equation (5) can be generalized to include higher-order dispersion provided βp(ω) is a sym-

metric function with respect to ω0. Following the procedure presented in Section 2, we can
derive

∑
k=2

(−1)k

k!
LNL

L(k)
D

(
κzOWB

LNL

)k

σk =
1
2
, (19)

where L(k)
D = T k

0 /βk and σk =
∫

∞

−∞
dτ (∂τUp)

kUp/
∫

∞

−∞
dτ U2

p . Equation (19) is in agreement
with the numerical results shown in Fig. 1 in [20]. We want to emphasize that this equation
allows us to evaluate the impact of higher-order dispersion on zOWB with no additional efforts,
unlike previous approaches based on approximate solutions of the pulse profile [9, 40].

Appendix B

For the convenience of the reader, we have included in this appendix the numerical fit consid-
ered in Section 4 to describe the dispersion of the Kerr index, n2, and the TPA coefficient, βTPA,
of silicon. We have fitted the experimental measurements presented in [23, 24] to a Cauchy
model of the form ∑

2
k=0 ak/λ 2k. The parameters ak are included in Table 1. The mean values of

such fits has been employed to evaluate the nonlinear coefficient [see Eq. (15)] within the range
of interest.

Table 1. Cauchy parameters for the Kerr index and the two-photon absorption coefficient.
Magnitude (units) a0 (units) a1 (units×µm2) a2 (units×µm4)
n2 (m2W−1) [23] −9.31422×10−19 1.78924×10−17 −2.25824×10−17

βTPA (m W−1) [23] −8.03605×10−12 5.07515×10−11 −4.63796×10−11

n2 (m2W−1) [24] 1.83568×10−17 −3.49209×10−17 2.02215×10−17

βTPA (m W−1) [24] −9.18175×10−12 6.22685×10−11 −3.11114×10−11


