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1. THE HIPPOCAMPUS 

The hippocampus is one of the most important areas of the vertebrate brain. It belongs to the 

limbic system, and plays many important functions such as short-term and long-term memory 

consolidation and spatial navigation (Morris et al., 1982; Eichenbaum, 2004).  

The hippocampus has been widely studied from anatomical, physiological and pathological 

points of view. It has been shown to be especially sensitive to ischemia (Schmidt-Kastner and 

Freund, 1991), and it is affected in several pathologies such as medial temporal lobe epilepsy, 

Alzheimer’s disease, stress and schizophrenia. For a review, see chapters 15 and 16 in "The 

hippocampus book" (Anderson et al., 2007). 

 

1.1. GENERAL STRUCTURE 

The hippocampal region includes two different structures: the hippocampal formation and the 

parahippocampal region. The hippocampal formation comprises the hippocampus proper or 

“Cornu Ammonis” (CA region, which is in turn subdivided into CA3, CA2 and CA1 regions), the 

dentate gyrus and the subiculum, whereas the parahippocampal region is formed by the 

presubiculum, parasubiculum and entorhinal cortex (Ramón y Cajal, 1911; Lorente De Nó, 

1934; for a review, see Witter and Amaral, 2004). The term “hippocampus” is commonly used 

to indicate the structure formed by the Cornu Ammonis and the dentate gyrus, and in this way 

is going to be used in this thesis. 

The hippocampus is a three-layered structure (Figure 1), and is therefore considered as 

archicortex. It derives from the cortical lamina, whose end turns and becomes the 

hippocampus. It presents a highly organized laminar and input distribution, with only one 

principal cell layer, making it one of the most studied structures of the brain. 

 

1.1.1. DENTATE GYRUS 

The dentate gyrus presents a simple U-shaped structure in rodents that is deeply indented in 

humans, hence the “dentate”. It comprises three layers: granule cell layer, molecular layer and 

hilus.  

The granule cell layer contains the soma and dendritic trunk of the principal cells of the dentate 

gyrus, the granule cells. It is made up of a densely packed layer that is four to eight granule cell 

thick. 
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Figure 1 - Parvalbumin immunostainig of a coronal section of the dorsal hippocampus.  Each region and layer of 
the hippocampus is identified. Note the continuity of CA3 to CA1 region. 
a, alveus; CA1, Cornu Ammonis region 1; CA2, Cornu Ammonis region 2; CA3, Cornu Ammonis region 3; DG, dentate 
gyrus; gcl, granule cell layer; h, hilus; lac-mol, stratum lacunosum-moleculare; ml, molecular layer; o, stratum 
oriens; pcl, stratum pyramidale; rad, stratum radiatum; sl, stratum lucidum 

 

The U-shaped granule cell layer limits the hilus, which is penetrated in the open side by the CA3 

pyramidal cell layer. Generally, the portion of granule cell layer located between the hilus-CA3 

layer and the CA1 region is known as “suprapyramidal granule cell layer”, whereas the portion 

of granule cell layer below the hilus that faces the thalamus is known as “infrapyramidal granule 

cell layer”. In coronal sections, the extreme portion of the U-shape granule cell layer is 

commonly known as the dentate apex.  

The packing level of granule cells in the granule cell layer is modified along the septotemporal 

axis, the granule being cells more tightly packed in the rostral hippocampus than in the caudal 

hippocampus (Gaarskjaer, 1978). Some GABAergic interneurons can also be found in this layer, 

usually in the border with the hilus or the inner molecular layer. These interneurons may 

express calcium binding proteins like parvalbumin (PV), calbindin (CB) or calretinin (CR); or 

neuropeptides such as cholecystokinin (CCK) or neuropeptide Y. For a review, see (Houser, 

2007). 

The molecular layer is a relatively cell-free layer, located between the hippocampal fissure and 

the granule cell layer. It contains the apical dendrites of granule cells, the cell bodies of certain 

interneurons and of ectopic or misplaced granule cells, and the remaining Cajal-Retzius cells 

(Liu et al., 1996). It also contains the afferent fibers to the dentate gyrus, located within a 

precise layered distribution according to their origin.  

h 
gcl 
ml 

pcl 
o 
a 

lac-mol 

sl 

rad 

DG CA3 

CA2 

CA1 
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The molecular layer is conventionally divided into three regions that roughly correspond to its 

equitable division into three parts. The closest third to the granule cell layer is known as the 

inner molecular layer (iml), and here we find the axons of the mossy cells in the ipsi and 

contralateral hemisphere (Buckmaster et al., 1996; Blasco-Ibáñez and Freund, 1997), 

commissural-associational fibers and afferent fibers from the supramammilary nucleus. The 

outer two-thirds of the molecular layer are generally included into the term “outer molecular 

layer” (oml). In this region we find the fibers that come from the entorhinal cortex (for a review, 

see Witter, 2007). For some particular situations, a finer distinction can be made between the 

middle third of the molecular layer and the outer third of the molecular layer, but in this thesis 

only inner molecular layer and outer molecular layer will be used. 

In the molecular layer we can also find, though not in as organized manner, GABAergic and 

cholinergic fibers coming from the medial septum and scarce serotonergic fibers coming from 

the raphe nuclei.  

Finally, the hilus, or polymorphic layer, is enclosed by the granule cell layer and contains both 

excitatory and inhibitory neurons of different types, spread in a non-laminar fashion. The 

principal cell population in this layer are the mossy cells. In this region, granule cell axons – the 

mossy fibers - ramify in their way to the CA3 and their collaterals establish synaptic contacts 

with both excitatory and GABAergic hilar neurons (Amaral, 1978; Acsády et al., 1998).  

 

1.1.2. CORNU AMMONIS 

As this thesis is focused in the dentate gyrus, we will give only a brief description of this region, 

to be able to understand the functional role of the dentate circuitry and its remodeling. 

The Cornu Ammonis (CA) is divided into three regions: CA3, CA2 and CA1, according to their 

structure and function. The CA3 is located next to the dentate hilus, with a fraction of the 

principal cell layer placed between both layers of granule cells. CA3 pyramidal cells present 

thorny excrescences in their proximal dendrites, where they receive input from mossy fibers. 

This layer is followed by the CA2 region, whose main characteristic is the absence of spines in 

the most proximal part of pyramidal cell dendrites. Finally, between the CA2 and the subiculum 

we find the CA1, which is characterized by presenting more tightly packed and smaller 

pyramidal cells in comparison with the other two regions.  
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Each of these regions is subdivided in the following layers, presented here from the deepest to 

the most superficial layer:  

• Alveus: contains commissural myelinated fibers of hippocampal and subiculum pyramidal 

cells. It finally merges with the fimbria. 

• Stratum Oriens: contains different types of interneurons and the basal dendrites of 

pyramidal neurons. In this region we can find some CA3 to CA3 associational fibers and CA3 

to CA1 Schaffer collaterals. 

• Stratum Pyramidale: contains the soma of pyramidal neurons, which are the principal cells 

of the Cornu Ammonis. In CA1 the pyramidal cell layer is tightly packed, while in CA2 and 

CA3 are more loosely packed. 

• Stratum Lucidum: it is present only in the CA3 region, but not in CA2 or CA1. Here, we find 

the mossy fibers from granule cells that form characteristic giant boutons that synapse onto 

the complex spines of CA3 proximal dendrites (Claiborne et al., 1986). 

• Stratum Radiatum: located superficial to the stratum lucidum in CA3, and above the 

pyramidal cell layer in CA2 and CA1. Here, pyramidal cell apical dendrites start to ramify. 

We also find CA3 to CA3 associational connections and the Schaffer collaterals in the CA3 

to CA1 pathway. 

• Stratum Lacunosum-Moleculare: in this region we find the dendritic arbor of the apical 

dendrites of pyramidal cells that continue to ramify from the branches in the stratum 

radiatum and reach the hippocampal fissure. Fibers from the entorhinal cortex via the 

perforant pathway are found here and synapse on distal apical dendrites of pyramidal cells.  

For an extensive review of the hippocampal cytoarchitecture, see: (Witter and Amaral, 2004; 

Anderson et al., 2007) 

 

1.2. CIRCUITRY OF THE HIPPOCAMPUS 

One of the most important characteristics of the hippocampal circuitry, compared to other 

cortical structures, is that its connections are mainly unidirectional (Ramón y Cajal, 1893). The 

most important hippocampal excitatory circuitry is called “tri-synaptic circuit” (Figure 2), and 

consists of a flow of information from the entorhinal cortex to the dentate gyrus and 
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hippocampus, and back to the entorhinal cortex. For a review, see chapter 3 in “The 

hippocampus book” (Anderson et al., 2007). 

Layer II principal cells of the entorhinal cortex give rise to axons that project to the dentate 

gyrus and in a lesser extent to the CA3 region. The entorhinal projection to the dentate gyrus 

carries sensory information and is called the Perforant Path. The dentate gyrus granule cells 

receive entorhinal cortex afferents in the outer molecular layer, and give rise to the mossy 

fibers that travel through the hilus and contact the apical dendrites of the CA3 pyramidal cells 

in the stratum lucidum. The pyramidal cells of CA3 are, in turn, the source of the major input 

to the CA1 field (the Schaffer collateral axons). Pyramidal cells in the CA1 field project to the 

deep layers of the entorhinal cortex and to the subiculum, providing its major excitatory input. 

Principal cells in the subiculum also project to the entorhinal cortex layer V. 

Layer III principal cells of the entorhinal cortex also innervate principal cells in the CA1 and 

subiculum fields, via the perforant and alvear pathways. 

Figure 2 - Tri-synaptic hippocampal circuit. Representation of the three major pathways and the principal cells in 
charge of the information flow from the entorhinal cortex (EC) to the dentate gyrus (DG), CA3, CA1 and back to 
the EC. Modified from Anderson et al. (2007). The hippocampus Book 
 

2. THE DENTATE GYRUS 

2.1. CELL POPULATIONS IN THE DENTATE GYRUS 

The main goal in this thesis is to deepen our knowledge of the dentate gyrus function. To better 

understand the scenario of the dentate gyrus circuitry, a detailed explanation of the cell 

populations present in this structure will be given in this chapter. 
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2.1.1. GRANULE CELLS 

Granule cells are the principal excitatory cell type of the dentate gyrus. These cells are densely 

packed in the granular cell layer, with few glial processes between them. However, the packing 

density of dentate granule cells decreases along the dorso-ventral axis (Gaarskjaer, 1978). They 

have a small, ovoid cell body with a single, more or less conical dendritic tree. Their somata are 

about 10 µm in diameter and about 18 µm in length (Claiborne et al., 1990), with their long axis 

oriented perpendicularly to the granule cell layer. 

Their spiny dendrites extend into the molecular layer and terminate near the hippocampal 

fissure. Dendritic morphology varies according to several facts: (1) location of the granule cell 

in the granule cell layer, with a wider dendritic extent in those cells closer to the molecular 

layer; (2) position in the dentate gyrus, with a higher spine density, more dendritic segments 

and greater transverse spread in the suprapyramidal blade than in the infrapyramidal blade 

(Desmond and Levy, 1985; Claiborne et al., 1990). 

Granule cells present an unmyelinated axon that emerges from the soma and project directly 

towards the hilus, where it ramifies before reaching the CA3. Three different types of synaptic 

terminals have been described for mossy fibers. The first and better known is the large mossy 

terminals, first described by Ramón y Cajal (1911), that synapse onto the dendritic excrescences 

of mossy cells and CA3 proximal dendrites (Claiborne et al., 1986). Amaral showed in 1978 a 

second type of terminal, consisting on filopodial extensions that protrude from the large mossy 

terminals and that contact hilar interneurons (Amaral, 1978; Acsády et al., 1998). Finally, a third 

type of terminal consists of small round en passant varicosities (Claiborne et al., 1986). 

Large mossy terminals target and surround the thorny excrescences of mossy cells and CA3 

pyramidal cells, establishing several asymmetric synaptic contacts. These terminals contain 

small vesicles with the neurotransmitter glutamate that are zincergic, and dense-core vesicles 

with neuropeptides such as dynorphin (Khachaturian et al., 1982; Conner-Kerr et al., 1993). 

Filopodial extensions and en passant varicosities innervate only interneurons, forming single, 

often perforated asymmetrical synapses on their cell bodies, dendrites and spines. These 

terminals outnumber the large mossy terminals (Acsády et al., 1998). 

 Regarding their afferent connectivity, granule cells receive synaptic input from different 

sources. They are the first rely of the trisynaptic circuit, with the entorhinal fibers innervating 

granule cell dendrites in the outer molecular layer. The medial third of the molecular layer 

receives afferents from the medial entorhinal cortex, and the distal third of the molecular layer 
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receives input from the lateral entorhinal cortex (van Groen et al., 2003). The overwhelming 

majority of the fibers coming from the entorhinal cortex are glutamatergic. In the medial 

molecular layer some of these excitatory fibers are also cholecystokinin-positive, while in the 

outer molecular layer they also co-express enkephalin (Gall et al., 1981; Witter and Amaral, 

2004). 

In the inner third of the molecular layer, granule cell dendrites receive excitatory innervation 

from associational and commissural fibers from hilar neurons (Laurberg and Sørensen, 1981; 

Buckmaster et al., 1992, 1996; Deller et al., 1996b). 

Finally, granule cells are also innervated by GABAergic fibers from dendrite-targeting hilar 

interneurons on their dendrites located in the molecular layer, and by perisomatic-innervating 

basket and axo-axonic interneurons on their somata (Freund and Buzsáki, 1996; Witter and 

Amaral, 2004).  

 

2.1.2. SEMILUNAR GRANULE CELLS 

Though semilunar granule cells were first described by Ramon y Cajal, and had also been 

reported in several classical golgi anatomical studies (Ramón y Cajal, 1911; Martí-Subirana et 

al., 1986), very little information is available about them. In fact, a clear identification of the 

different subtypes is missing in the literature, which leads to confusion on the proper term to 

be used when referring to these cells. 

Only recently, one subpopulation of these ectopic cells, located in the inner molecular layer, 

has been studied more in depth, by Strowbridge’s group and Santhakumar’s group (Williams 

et al., 2007; Larimer and Strowbridge, 2010; Gupta et al., 2012). These groups focused on 

ectopic granule cells located in the inner molecular layer, and they named them as “Semilunar 

Granule Cells” after Ramon y Cajal’s work. 

The term “semilunar granule cell” makes reference to their morphology, but in their work they 

have added valuable information on their physiological features. As they make no distinction 

between ectopic granule cells and semilunar granule cells in the inner molecular layer, in this 

thesis all ectopic granule cells located in the inner molecular layer will be considered 

“Semilunar Granule Cells”, and will be assumed to present all the physiological features they 

described. 
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On the other hand, as they ignore the ectopic granule cell population in the outer molecular 

layer, in this thesis we will make no assumption that they belong to the same cell population, 

and will be further considered as “outer molecular layer ectopic granule cells”. 

Despite the fact that semilunar granule cells have many common morphological features with 

granule cells, they also present some important characteristics. Firstly, they have different-

shaped somata (more triangular or "semilunar") located in the inner molecular layer, from 

which at least two primary dendrites arise. Secondly, they extend their dendritic arbor in a 

wider extension of the molecular layer than granule cells. Thirdly, the axonal branch in the 

inner molecular layer is initially oriented parallel to the granule cell layer and can also generate 

secondary collaterals that enter the granule cell layer (Martí-Subirana et al., 1986; Williams et 

al., 2007).  

Their particular location and morphological characteristics probably allow them to receive and 

establish synaptic contacts with other different cell populations than common granule cells.  

Therefore, they may play a different functional role than typical granule cells in the dentate 

local circuitry.  

Functionally, it is reported that semilunar granule cells have different electrophysiological 

properties than granule cells (Williams et al., 2007; Larimer and Strowbridge, 2010; Gupta et 

al., 2012). Among these differences, these autors highlight the fact that semilunar granule cells 

can fire action potentials throughout long-duration depolarizing steps (2s), they present a 

lower input resistance, and are more strongly activated by hilar stimulation than granule cells. 

Considering their connectivity, they establish glutamatergic synapses with distal dendritic 

segments of mossy cells, and probably receive a strong input from hilar mossy cells (Williams 

et al., 2007). 

The strong glutamatergic input that semilunar granule cells receive make them suitable to 

trigger plateau potentials. These plateau potentials are maintained by NMDA receptors, T-type 

and L-type voltage-gated Ca+2 channels, and are not a direct result of a reverberation due to 

the continuous excitatory input from mossy cells. In fact, more than one semilunar granule cell 

is needed to engage a subset of hilar cells into the hilar up-states (Larimer and Strowbridge, 

2010). 

In agreement to previous neurochemical studies, semilunar granule cells present nuclear 

expression of the homeodomain transcription factor Prox1 (Gupta et al., 2012). This protein 
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has been widely used to identify granule cells both in the granule cell layer and in ectopic 

locations (Galeeva et al., 2007; Lavado and Oliver, 2007; Lavado et al., 2010; Szabadics et al., 

2010). This indicates a shared lineage with granule cells. 

 

2.1.3. MOSSY CELLS 

Mossy cells are the hilar principal cells and are glutamatergic, and therefore excitatory 

(Scharfman, 1994, 1995; Soriano and Frotscher, 1994). They have a large pyramidal soma, of 

about 20-30 µm of diameter, and three to four primary dendrites. One of the characteristics of 

mossy cells is the presence of complex thorny excrescences on proximal dendrites and 

conventional spines on distal dendrites (Ribak et al., 1985).  

In the mouse and rat dentate gyrus, mossy cell dendrites remain mostly in the hilus (Ribak et 

al., 1985) , while their axon innervates mainly the inner third of the molecular layer, but they 

have been also found to form synapses in the hilus and the granule cell layer (Buckmaster et 

al., 1996). In the hilus, they establish synaptic contacts with the dendritic shaft of hilar 

interneurons, and with GABA-negative dendritic spines (Blasco-Ibáñez and Freund, 1997; 

Freund et al., 1997; Wenzel et al., 1997). An important feature of the mossy cell axons is that 

they project ipsi and contralaterally, and that they spread extensively through the dorso-

temporal axis of the hippocampus. 

They receive direct excitatory input from the granule cell mossy fibers (which contact the 

thorny excrescences), and from CA3 pyramidal cells that backproject to the hilus (Frotscher et 

al., 1991; Scharfman, 1994, 2007). They also receive inhibitory input, probably from dentate 

basket cells, hilar interneurons (ipsi and contralaterally), and putatively GABAergic fibers from 

the medial septum (Lübke et al., 1997). 

 

2.1.4. INHIBITORY PERISOMATIC-TARGETING CELLS 

There are two distinct types of perisomatic-targeting interneurons: axo-axonic cells and basket 

cells (Nunzi et al., 1985; Kosaka et al., 1987; Sloviter and Nilaver, 1987; for a review, see Howard 

et al., 2005; Freund and Katona, 2007). These interneurons are implied in both “feed-back” and 

“feed-forward” inhibition, and play a main role in the timing and synchronization of the firing 

of granule cells. 



 

Introduction 

12 

 

Axo-axonic cells are characterized by establishing synaptic contacts with the axon initial 

segment of their target cell. Due to the peculiar axon ending of axo-axonic cells, which presents 

rows of boutons in the principal cell layer, they are also called chandelier cells. Basket cells, in 

turn, are characterized by establishing inhibitory synaptic contacts around the soma and 

dendritic trunk of their targeted cells. 

Neurochemically, axo-axonic and a subpopulation of basket cells express the Ca+2 binding 

protein parvalbumin. Parvalbumin-positive interneurons are non-adapting fast-spiking cells 

and therefore regulate the local generation of Na+-dependent action potentials in the granule 

cell population in a very effective manner. As there is no marker expressed only by one of these 

populations, and they are morphologically very similar (even their axonal arbors are very 

similar), the only way to distinguish between them is checking their postsynaptic targets. On 

the other hand, they seem to receive similar afferents and fulfil a similar role. The other 

subpopulation of basket cells are regular spiking interneurons, that coexpress CCK and the 

vasointenstinal peptide (VIP) (Hájos et al., 1996).   

Morphologically, parvalbumin basket cells have aspiny dendrites (or with very few filiform 

processes) located in all layers of the dentate gyrus. According to the morphology of their 

somata and dendritic tree, there are 5 different types of basket cells in the dentate gyrus (Ribak 

and Seress, 1983): pyramidal basket cells, molecular layer basket cells, fusiform basket cells, 

inverted fusiform basket cells and horizontal basket cells (Figure 3). 

• Pyramidal basket cells have a triangular-shaped soma located in the hilar border of the 

granule cell layer. A main thick apical dendrite ascends through the granule cell layer and 

into the molecular layer, where it branches. Their axon arise from the apical dendrite, or 

the apical portion of the soma, while their basal dendrites arise from both sides of the soma 

base and ramify in the hilus. 

• Molecular layer basket cells have a multipolar soma located in the molecular layer close to 

the granule cell layer, and extend their dendrites in the molecular layer and also some of 

them entering the granule cell layer. 

• Fusiform basket cells are similar to pyramidal basket cells, with the exception of their soma 

and basal dendrites. Fusiform basket cells somata get thinner in their basal pole, and their 

basal dendrite arise opposite to the apical. 
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• Inverted fusiform basket cells have their somata in the border of the granule cell layer and 

the molecular layer. Their apical dendrites descend to the hilus, whereas basal dendrites 

ramify in the molecular layer. The axons arise from the dendrites in the molecular layer. 

• Finally, horizontal basket cells present a non-pyramidal soma, located in the hilar border 

and oriented obliquely to the granule cell layer. They have only one basal dendrite located 

in the hilus, and their apical dendrite travels through the granule cell layer to the molecular 

layer, where it branches. Their axon arise from the apical dendrite.  

However, it seems that there is no difference in their function and target cells, as they all extend 

their axons mainly in the granule cell layer (and proximal molecular layer) and establish 

multiple basket-like contacts with granule cells (Struble et al., 1978; Sik et al., 1997). 

Figure 3. Representation of the different morphologies found on parvalbumin interneurons sitting in the granule 
cell layer. A and C: pyramidal basket cell; B: molecular layer basket cell; D: fusiform basket cell; E: inverted fusiform 
basket cell; F: horizontal basket cell. Modified from Ribak and Seress (1993). 

 

Regarding their ultrastructural features, they present infolded nuclei with intranuclear rods and 

sheets, little amount of heterochromatin, and one large nucleolus. Their cytoplasm presents 

many RER cisternae and Nissl bodies, as well as well-developed cisternae and vesicles of the 

Golgi complex, numerous mitochondria, free ribosomes and lysosomes. This suggests a high 

level of physiological activity. In addition, basket cells terminals present numerous 

mitochondria near the active site, contain flat vesicles and form symmetric synapses. 

 

2.1.5. OTHER INTERNEURONS 

In addition to axo-axonic cells and basket cells, there are different types of dendrite-targeting 

interneurons (Figure 4). The latter play a different role than perisomatic-targeting 

interneurons. They cannot affect much to the somatic action potential generation, but they 
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may influence dendritic integration, shunt excitatory inputs on their way to the soma, or 

regulate dendritic spike initiation and/or propagation (Miles et al., 1996).  

The main types of interneurons innervating principal cell dendrites in the dentate gyrus are: 

Hilar Perforant Path-associated cells (HIPP cells), Hilar Commissural-Associational Pathway-

related cells (HICAP cells) and Molecular layer Perforant Path neurons (MOPP cells). 

• HIPP cells present a fusiform cell body and all their dendritic tree confined in the hilus. Their 

dendrites are covered with long thin spines and run mainly parallel to the granule cell layer, 

avoiding any possible innervation from the perforant or commissural-associational 

pathways. Their axon originates from the soma, cross the granule cell layer and ramify in 

the outer two-thirds of the molecular layer (Freund and Buzsáki, 1996; Sik et al., 1997). This 

interneuron population expresses the neuropeptide somatostatin (SOM) (Morrison et al., 

1982; Bakst et al., 1986). 

• HICAP cells present a triangular cell body located in the hilus or in the hilar border with the 

granule cell layer. Their dendrites may be smooth or sparsely spinous and branch in the 

hilus and molecular layer. Their axon emerge from the soma, travels through the granule 

cell layer and ramify mainly in the inner molecular layer (Han et al., 1993; Freund and 

Buzsáki, 1996).  

• MOPP cells present a round soma located in the inner molecular layer. Their dendrites are 

smooth with varicose swellings, and they extend only in the middle and outer molecular 

layer. Their axon emerge from the cell body and ramify exclusively in the outer molecular 

layer where they innervate the spines of the granule cells distal dendrites.  Due to their 

position, MOPP cells may play an important role in feed-forward inhibition of dentate 

granule cells (Han et al., 1993; Freund and Buzsáki, 1996).  

 

There may be also another two different types of interneurons specialized to innervate other 

interneurons in the dentate gyrus (IS interneurons): IS-1 and IS-3 neurons.  

IS-1 are immunoreactive for calretinin and present their cell body in the hilus or granule cell 

layer. Their smooth dendrites ramify in all layers of the dentate gyrus and form long 

dendrodendritric gap junctions with each other. Their axons form multiple symmetrical 

synapses with the dendrites and somata of other interneurons (calbindin, calretinin, VIP, but 

not parvalbumin- cells). They are thought to control the synchrony of the principal cell 
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dendrites inhibition. IS-3, on the other hand, are immunoreactive for VIP and present a fusiform 

cell body located in the molecular or granule cell layer, and ramify their axon in the hilus. They 

are driven by entorhinal afferents and contact hilar HIPP cells (Freund and Buzsáki, 1996). 

Figure 4 - Scheme showing the different interneuron populations in the dentate gyrus. Modified from Freund and 
Buzsáki (1996). 

 

2.2. SUBCORTICAL MODULATION OF THE DENTATE GYRUS 

The main projection to the dentate gyrus comes from the entorhinal cortex via the perforant 

pathway. However, the dentate gyrus also receives several modulatory inputs from subcortical 

regions of the brain, including: (1) excitatory fibers from the supramammilary region of the 

hypothalamus, that in rat express both substance P and calretinin; (2) afferents from raphe 

nuclei that contains serotonin (5-HT); (3) norepinephrine containing fibers from the locus 

coeruleus; (4) dopamine containing fibers coming from the ventral tegmental area and (5) both 

cholinergic and GABAergic fibers from the medial and lateral septum.  

 

2.2.1. INNERVATION FROM THE SUPRAMAMMILLARY NUCLEI 

There are many anatomical and electrophysiological data showing the presence of an 

innervation from the supramammilary nuclei to the dentate gyrus (for a review, see Leranth 

and Hajszan, 2007). The supramammilary nuclei play a critical role in the regulation of the 

information flow into the dentate gyrus. They enhance perforant-path elicited population spike 

in the dentate gyrus during theta activity (Mizumori et al., 1989; Carre and Harley, 1991), and 

facilitate synchronization (Vertes, 1981).  
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Several anatomical studies demonstrate the presence of an innervation from the 

supramammilary nuclei to the dentate gyrus in the rat (Segal and Landis, 1974; Segal, 1979) 

and in the monkey hippocampus (Amaral and Cowan, 1980). In the dentate gyrus, 

supramammillary fibers are mainly located in the border between the inner molecular layer 

and the granule cell layer, with a more intense labelling in the suprapyramidal blade than in 

the infrapiramidal blade. However, some fibers can be seen in the granule cell layer, the hilus 

and in the outer two-thirds of the molecular layer.  

The cells projecting from the supramammillary nuclei to the dentate gyrus are calretinin-

positive and substance P-positive cells, but are GABA-negative, and therefore, excitatory cells 

(Nitsch and Leranth, 1993). In addition to calretinin and substance P, another useful marker of 

supramammilary nuclei afferent boutons is the vesicular glutamate transporter-2 (VGluT2). 

This protein is expressed in diencephalic neurons (Fremeau et al., 2001), and it has been shown 

that it is expressed by neurons located in the lateral and medial supramammilary nuclei (Soussi 

et al., 2010). In fact, projecting neurons from the lateral supramammilary nucleus present in 

their synaptic terminals vesicular GABA transporter (VGAT) and VGluT2, and spread their fibers 

in the supragranular region of both dorsal and ventral hippocampus. On the other hand, 

projecting neurons from the medial supramammilary nuclei express only VGluT2 and locate 

their fibers in the inner molecular layer of the ventral hippocampus (Soussi et al., 2010).  

Supramammillary afferents form asymmetric synapses, usually in a basket-like manner, and 

target both principal cells (Maglóczky et al., 1994) and interneurons (Leranth and Nitsch, 1994). 

The interneuron populations in the dentate gyrus innervated are: (1) some parvalbumin-

positive basket cells and (2) calbindin-positive neurons located in the hilus and granule cell 

layer. 

Therefore this hypothalamic-hippocampal pathway can exert an excitatory control of the 

function of the dentate gyrus by two means: straight excitation of granule cells; and excitation 

of some of the interneurons innervating different subsets of granule cells. 

 

2.2.2. MONOAMINERGIC INPUTS 

Though we will not address the monoaminergic input systems to the dentate gyrus in this 

thesis, a quick overview could be interesting to better understand other regulatory pathways 

that could influence in the dentate function (Figure 5). 
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The serotonergic raphe-hippocampal pathway, as well as the innervation pattern of 5-HT 

positive fibers in the dentate gyrus, were first described by Moore and Halaris (1975). The 

median raphe nucleus seems to be the main source of serotonergic fibers in the dentate gyrus 

(Vertes et al., 1999). Once in the dentate gyrus, they remain mostly in the hilus, close to the 

granule cell layer, but some serotonergic fibers can also be seen in the molecular layer.  

In 1990 the GABAergic nature of the cells innervated by serotonergic fibers coming from the 

raphe was confirmed (Freund et al., 1990). However, only calbindin-immunoreactive 

interneurons were found to receive symmetrical contacts from serotonergic boutons, both in 

the cell body and in the dendrites. No contacts were found on parvalbumin-containing 

interneurons, which implies that serotonergic control of the hippocampus is addressed mainly 

to dendritic-targeting interneurons. 

Figure 5 - Drawings of horizontal sections representing the fiber distribution of the three main monoaminergic 
systems in the hippocampus. Noradrenergic fibers are very abundant in the dentate gyrus, densely populating 
the hilar region. Serotonergic fibers are also found in the hilus, but they are more restricted to the area close to 
the granule cell layer. Dopamine fibers are scarce in the dentate gyrus. Adapted from Swanson et al, 1978. Source: 
The Hippocampus Book. 

 

Dopamine is a catecholamine-type neurotransmitter that is widely found in the central nervous 

system. It is synthetized by the Tyrosine Hydroxylase (TH) enzyme from the amino acid tyrosine, 

and is converted in turn into norepinephrine by the Dopamine β-hydroxylase (DβH) enzyme. 
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These two enzymes are present in both dopaminergic and noradrenergic fibers respectively, 

and are widely used as their markers. 

Dopamine innervation to the dentate gyrus arises from the Ventral Tegmental Area (Swanson, 

1982), but it is scarce and unevenly distributed. Though dopamine has been proved to 

participate in memory consolidation, little information is known about its mechanisms, and 

generally related to dopamine receptors (Manahan-Vaughan, 2003). 

Finally, the main source of noradrenergic fibers is the locus coeruleus, region implicated in the 

physiological response to stress and panic. There is a dense innervation of noradrenergic fibers 

in the hilus of the dentate gyrus and in the stratum lucidum of CA3 (Moudy et al., 1993), while 

in the other layers only testimonial fibers can be found. Usually, these fibers present 

varicosities in which the neurotransmitter is released in a non-synaptic manner. However, 

some of the varicosities present in noradrenergic fibers may form inhibitory symmetric synaptic 

contacts with dendritic shafts and cell bodies of interneurons (Frotscher and Leranth, 1988). 

 

2.2.3. SEPTO-HIPPOCAMPAL CONNECTIONS 

The medial septum-diagonal band of Broca (MSDB) represents one of the most important 

extrahippocampal inputs to the dentate gyrus (Rose and Schubert, 1977). Septohippocampal 

fibers enter the dentate gyrus via the fimbria, and can be divided into two types of fibers: Type 

1, which are GABAergic fibers from parvalbumin interneurons (Freund et al., 1990); and Type 

2, which are GABA-negative and correspond to cholinergic fibers (Frotscher and Léránth, 1986; 

Freund and Antal, 1988).  

 

2.2.3.1. CHOLINERGIC INNERVATION 

The cholinergic system in the hippocampus plays a very important role in the cognitive function 

(Steckler and Sahgal, 1995). Anatomical studies have demonstrated that the dentate gyrus 

presents a massive cholinergic innervation (Frotscher and Léránth, 1985), with the densest 

band occurring between the granule cell layer and the molecular layer, and some fibers in the 

granule cell layer and hilar region.  

In the dentate gyrus, cholinergic boutons form asymmetric synaptic contacts with the dendrites 

and spines of granule cells, and symmetric contacts with non-spiny dendritic shafts belonging 
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to interneurons (Frotscher and Leranth, 1986). Mossy cells are also perisomatically innervated 

by cholinergic afferents (Deller et al, 1999). 

 

2.2.3.2. GABAERGIC INNERVATION 

It has been described that the discharge of granule cells is facilitated by septohippocampal 

input (Alvarez-Leefmans and Gardner-Medwin, 1975; Fantie and Goddard, 1982), and that this 

facilitation is mediated through an inhibitory connection from the MSDB onto inhibitory 

interneurons in the dentate gyrus (Bilkey and Goodard, 1985). This idea is confirmed 

anatomically, as several studies have shown that septohippocampal GABAergic terminals 

establish synaptic contacts with GABAergic interneurons (Freud and Antal, 1988; Gulyas et al, 

1990). 

 In addition, all subpopulations of hippocampal interneurons, including parvalbumin-positive 

interneurons, receive input from GABAergic septohippocampal afferents in the soma and/or 

both proximal and distal dendrites (Freund and Antal, 1988; Gulyas et al, 1990; Miettinen and 

Freund, 1992; Acsady et al, 1993).  

 

3. EXPERIMENTAL EPILEPSY MODELS 

Since the cells that we intend to study are located in a key position in the dentate gyrus circuitry 

and may be affected differently in epilepsy, we will analyze their behavior in some common 

epilepsy models. 

Epilepsy is a common neurological disorder that, according to the World Health Organization, 

affects around 1% of the world population. It is characterized by a misbalance between 

excitation and inhibition in the brain, which results in recurrent seizures. The hippocampus is 

one of the cerebral areas most affected by temporal lobe epilepsy (TLE). Due to the social and 

economic impact that hippocampal lesions produce, an important effort has been made to 

design experimental models that mimic the neurological changes and lesions produced by 

temporal lobe epilepsy disorder. 

Different approaches have been used to create experimental models that accurately reflect the 

most important clinical and neuropathological characteristics of temporal lobe epilepsy in 

humans, including straight electrical stimulation and chemical over-excitation. In addition, 

three different types of models can be achieved: acute seizures, chronic seizures and a post-
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epileptic state with spontaneous recurrent seizures. For a review, see (Löscher, 2002, 2011; 

McIntyre et al., 2002; Morimoto et al., 2004). 

Experimental epilepsy models include three different stages: (1) induction, in which a 

convulsive agent is applied and an acute seizure is achieved; (2) a silent period variable in 

length, which can last from 3 to 42 days and in which a neuronal and circuit reorganization 

takes place; and (3) a chronic phase, characterized by the appearance of spontaneous recurrent 

seizures (Morimoto et al., 2004). 

Among the most common reagents inducing chemical overexcitation in experimental epilepsy, 

we find pilocarpine, kainic acid and pentylenetetrazole (Löscher, 2011).  

Systemic or local administration of a convulsive dose of pilocarpine (Turski et al., 1983) or kainic 

acid (Ben-Ari et al., 1980; Ben-Ari, 1985) is generally used to generate an acute epileptic state 

in rodents that can derive in chronic spontaneous seizures (Nadler et al., 1981; Turski et al., 

1984, 1989; Ben-Ari, 1985; Leite et al., 1990; Cavalheiro et al., 1991; Buckmaster and Dudek, 

1997).  

Both pilocarpine and kainic acid enhance excitation, since they act respectively as a non-

selective muscarinic receptor agonist and a specific agonist for the kainate receptor. 

Pentylenetetrazole, however, is a non-competitive GABA antagonist that binds to the 

picrotoxin site of GABAA receptor, and therefore acts by diminishing inhibition. Periodical 

administration of a sub-convulsive dose of pentylenetetrazole is used in rodents to generate a 

chemical kindling model of status epilepticus (Corda et al., 1991). 

Generally, in experimental models of epilepsy several neuropathological changes are observed. 

First, we find neuronal loss in several regions of the hippocampus. Hilar mossy cells are quite 

vulnerable to status epilepticus, and it is one of the first neuronal populations to be damaged 

in temporal lobe epilepsy (Nadler et al., 1980; Babb et al., 1984; Cavazos and Sutula, 1990; 

Cavazos et al., 1991). 

Second, an increase in the dentate gyrus adult neurogenesis has been observed in different 

models of epilepsy (Parent et al., 1997; Gray and Sundstrom, 1998; Scott et al., 1998; Nakagawa 

et al., 2000). As a result, an increase in the cellular proliferation and in the number of immature 

granule cells is observed in the subgranular zone. Many of the newly generated cells mature 

and integrate in the dentate circuitry. 
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Finally, granule cells also play an important role in the pathogenesis of temporal lobe epilepsy, 

as they undergo through several changes: aberrant sprouting of mossy fibers in the inner 

molecular layer (Tauck and Nadler, 1985), basal dendrites formation and presence of ectopic 

granular cells in the hilus and in the molecular layer. The above-mentioned sprouting is 

probably activated by the denervation of the inner molecular layer after mossy cells death 

(Cavazos and Sutula, 1990; Houser et al., 1990).  

This sprouting implies the formation of new asymmetric synaptic contacts between sprouted 

mossy fiber terminals and granule cells dendrites, and also between inhibitory interneurons in 

the granule cell layer and inner molecular layer. The innervation of granule cells by sprouted 

mossy fibers arising from granule cells creates an excitatory loop that increases network 

excitability and allows the propagation of seizures (Tauck and Nadler, 1985; Lothman et al., 

1992). However, other studies find that sprouting granule cell axons function to enhance 

recurrent inhibition by increasing the excitatory drive to inhibitory interneurons (Sloviter, 

1992). 

 

4. STUDY HYPOTHESIS AND OBJECTIVES 

According to previous data, it is assumed that parvalbumin basket cells in the granule cell layer 

are innervated by mossy fibers (Ribak and Peterson, 1991; Blasco-Ibáñez et al., 2000; Seress et 

al., 2001; Frotscher et al., 2006). However, the number and disposition of granule cells may 

imply that only a subpopulation of these cells establishes this innervation. Recently, new 

studies describing a new granule cell subpopulation in the dentate gyrus have appeared 

(Williams et al., 2007; Larimer and Strowbridge, 2010; Gupta et al., 2012). The semilunar 

granule cells present some characteristic features, such as an axon traveling in the inner 

molecular layer and generating collaterals in the granule cell layer, that make them good 

candidates as the origin of this innervation.  

Under this scenario, we hypothesize that semilunar granule cells will be in charge of the 

excitatory perisomatic control of parvalbumin interneurons in the dentate gyrus. Therefore, 

our main goals in this work are: first, to study the excitatory afferences on parvalbumin basket 

cell somata and to confirm the origin of the innervation from the semilunar granule cells; 

second, to integrate semilunar granule cells in the dentate local circuitry from an anatomical 

point of view; and third, study the possible implications that this connection may have in 

epilepsy. 
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The partial aims of this study are: 

1. Study of the perisomatic excitatory input on parvalbumin interneurons in the dentate gyrus. 

Quantitative analysis of the number of excitatory and inhibitory postsynaptic 

specializations on the perisomatic region of parvalbumin interneurons under confocal 

scanning microscopy. 

2. Study of the perisomatic excitatory input from mossy cells on parvalbumin interneurons in 

the dentate gyrus. Quantitative analysis of the number of mossy cell boutons in apposition 

to parvalbumin interneurons under confocal microscopy. Analysis of this innervation under 

electron microscopy. 

3. Study of the perisomatic excitatory input from granule cells and semilunar granule cells 

onto parvalbumin interneurons in the dentate gyrus. Analysis of the Timm-positive mossy 

fiber boutons on morphologically distinct parvalbumin interneurons. Analysis of 

intracellularly filled typical granule cells and semilunar granule cells at the optical and 

electron microscopy level. 

4. Characterization of the semilunar and ectopic granule cells populations in the dentate 

gyrus. Quantification of the number of semilunar granule cells and ectopic granule cells in 

the molecular layer of adult and aged mouse. Qualitative study of the presence of semilunar 

granule cells in postnatal development. 

5. Morphological study of semilunar granule cells. Qualitative study of anatomical features 

such as dendritic arborization, axonal structure and somatic spines in intracellularly filled 

semilunar granule cells. 

6. Neurochemical characterization of semilunar granule cells and outer molecular layer 

ectopic granule cells. Quantification in Thy1-transgenic line of the coexpression of principal 

cell markers, calcium binding proteins and cell activity markers with YFP-positive principal 

cells in the molecular layer. 

7. Study of the perisomatic synaptic input on semilunar granule cells. Qualitative study of the 

perisomatic inhibitory innervation onto semilunar granule cells and outer molecular layer 

ectopic granule cells by parvalbumin and cholecystokinin-positive boutons under optical 

and electron microscopy. Qualitative study of the perisomatic innervation on semilunar 

granule cells by supramammillary afferents. 
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8. Study of the role of semilunar granule cells and parvalbumin interneurons in different 

models of epilepsy: pentylenetetrazole-induced kindling, kainic acid mild overexcitation, 

DEDTC-driven mild overexcitation and pilocarpine-induced status epilepticus. 
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1. ANIMAL EXPERIMENTATION 

All animals used in this thesis were housed in groups of three to six under controlled 

temperature, humidity and on a 12h light/darkness cycle, with access to food and water ad 

libitum. They were allowed to habituate to our facilities at least two days prior to the 

experiments. An effort was made to avoid unnecessary stress in the animals due to handling. 

All animal experimentation was conducted in accordance with the Directive 2010/63/EU of the 

European Parliament and of the Council of 22 September 2010 on the protection of animals 

used for scientific purposes. 

All adult animals included in this study are comprised between the ages of 2 months and 5 

months, and therefore considered adults. Postnatal animals were used for intracellular 

injection via whole-cell patch clamp, in a range comprised between postnatal days 15 and 23. 

This range was chosen because it allowed a high survival of cells when slicing for patch clamp, 

with a relatively well formed dentate gyrus. 

For the study of the appearance of semilunar granule cells during development, pups of 

postnatal days 1, 7, 10 and 14 were used. 

No differentiation was generally made between males and females, except in the epilepsy 

experiments, as there is no evidence of anatomical differences between them in the expression 

of any of the studied cell markers, or in the studied projections.  

We used two different mouse strains in this thesis:  

- CD-1 ICR mice (Harlan)  

- Thy1 transgenic mice with C57BL/6J background (003709, The Jackson Laboratory). 

Strain name B6 Cg-Tg (Thy1-YFP) 16 Jrs/J.  

Thy1 transgenic mice expresses the YFP protein under the Thy1 promoter, resulting in a 

selective staining of principal neurons (Feng et al., 2000; Porrero et al., 2010). 

We also used adult Wistar rats in several partial objectives of this thesis.  
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2. STEREOTAXIC INJECTIONS  

2.1. TRACER INJECTION 

Adult mice (approximately 3-4 months old) were anesthetized with an intraperitoneal injection 

of chloride hydrate 4% in saline (1 ml/100 g body weight), and put in a stereotaxic apparatus 

(Kopf Instruments). Skin and connective tissue on the skull were removed, and the skull 

trepanned to access the desired nuclei. Coordinates for the trepanation were calculated with 

the Paxinos’ Atlas (Paxinos and Franklin, 2001), taking bregma as the reference point. Selected 

coordinates for the injection site were: 

- Medial Septum (MS)  bregma + 0.86 mm, lateral 0 mm, deep 3.8 mm  

- Supramammilary nuclei (SuM)  bregma -2.80 mm, lateral 0 mm, deep 4.3 mm 

Once the skull was trepanned, the tracer was injected with a glass borosilicate capillary with 2 

mm OD and 1.12 ID, pulled with a vertical puller (Model P-30, Sutter Instruments) until the 

desired length and thickness. 

The tracer used was the anterograde tracer biotin dextran amine BDA 10 KDa (Invitrogen), 

introduced in the capillary by suction at a final concentration of 10% in phosphate buffer 0,1M 

(PB).  

Once the tracer was in the glass capillary, this was injected in the brain at the corresponding 

coordinates, via 7 second on/off 5-10 µA current pulses during 15 min. The skin was closed with 

histological glue and the animal was introduced in a warm cage until it woke up. 

After 5-7 days of survival, animals were intracardially perfused as described in Section 5 of this 

chapter, and the brains resectioned in subseries.  

 

2.2. COLCHICINE TREATMENT 

The axonal transport blocker colchicine (Sigma) was injected into the lateral ventricle of three 

adult mice to better visualize the CART peptide in the cell somata. Each lateral ventricle 

received 2 µl of a 20 mg/mL solution in physiological saline. The stereotaxic procedure was 

performed as described in the above section, using the following coordinates: 

- Lateral Ventricle  bregma + 0.75 mm, lateral 0.5 mm, deep 2 mm  

Two days after the injection, animals were intracardially perfused, as described in Section 5 of 

this chapter. 
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3. WHOLE-CELL PATCH CLAMP 

Postnatal CD-1 mice between P15 and P23 were used for this experiment. Briefly, they were 

deeply anaesthetized with isoflurane (IsoFlo 1385 ESP, Esteve Veterinaria) and decapitated. 

The skull was immediately immersed into ice-cold solution and the brain quickly removed from 

it. This ice-cold solution contained (in mM): KCl 2.5; MgCl2 5; CaCl2 0.5; NaH2PO4 1.25; glucose 

10; NaHCO3 26; sucrose 252; bubbled with carbogen gas (95% O2 / 5% CO2). 

Horizontal hippocampal slices of 300 µm thickness were cut using a vibratome (VT 1000S, Leica) 

and placed into an interface-type holding chamber containing ACSF (artificial cerebrospinal 

fluid) at room temperature. 

ACSF contained (in mM): KCl 2.5; MgCl2 2; CaCl2 2; NaH2PO4 1.25; glucose 10; NaHCO3 26; NaCl 

126; bubbled with carbogen gas. 

After at least one hour incubation, slices were ready for use and transferred individually into a 

submerged type recording chamber. 

Patch pipettes were pulled from borosilicate glass capillaries with 1.5 mm O.D. and 0.84 mm 

I.D. (World Precision Instruments) using a horizontal puller (Model P-97, Sutter Instruments). 

They were filled with a solution that contained (in mM): NaCl 4; KGluconate 110; KCl 20; HEPES 

10; MgCl2 2. Biocytin (Sigma) was included in the pipette to procure the intracellular filling of 

the cell. Pipette resistance was checked in the bath regularly, varying from 3 to 6 MOhm. 

Whole-cell patch-clamp was performed under visual guidance using an Olympus Microscope 

(BX51WI, Olympus) with differential interference contrast optics, visualized by a NIR CCD 

camera (C7500-51 Hamamatsu). The amplifier used was an AM2400 (AM Systems), connected 

to a CED Micro 1401 AD converter (Cambridge Electronic Design Limited). The 

electrophysiological response of the cell was observed with the help of an oscilloscope HAMEG 

1507-3 (HAMEG Instruments). 

Patched cells were kept 5 minutes in Vclamp with a holding voltage of -75 mV, as it has been 

described that the these cells present a hyperpolarized resting membrane potential (Spruston 

and Johnston, 1992; Staley et al., 1992; Penttonen et al., 1997; Williams et al., 2007) . After 

that, we tested in Iclamp the voltage responses to a series of depolarizing square current pulses 

of 2 seconds length, as it had been described that semilunar granule cells and typical granule 

cell showed different responses under this experimental condition (Williams et al., 2007). The 

amplitudes of the current steps varied from 10 pA increments until 100 pA, and then at 50 pA 
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increments until 400 pA. No further information was obtained from this recording, but we got 

the patched cell to fire action potentials to the effect of improving the axonal filling. The 

response to the cell to the depolarizing current protocol was recorded using the free software 

WinWCP V4.3.4 (Strathclyde Electrophysiology Software). 

After 20 minutes, the slices were fixed by immersion in a fixative solution containing 4% PFA 
and 0.5% GA. 

 

 
Example of two intracellularly filled typical granule cell (A) and semilunar granule cell (B). Cells were selected 
due to their morphology and location in the dentate gyrus in a DIC image. Once patched, the firing pattern of the 
cell was recorded (lower panels), to check whether it may be a granule cell. Due to the experimental conditions, 
the step protocol obtained for both cell types varied with the one observed by (Williams et al., 2007). However, 
an anatomical identification of the cell was always performed to confirm that they were granule cells. 

 

4. EXPERIMENTAL MODELS OF EPILEPSY 

4.1. PENTYLENETETRAZOLE TREATMENT 

A total of 35 two-month old CD-1 mice were used for this experiment. Only males were used 

in the pentylenetetrazole model of epilepsy, as previous studies have shown a relation between 

gonadal steroid hormones and seizure susceptibility (Bauer, 2001). 
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Animals were treated with a subconvulsive dose of pentylenetetrazole [40 mg/Kg in 

physiological saline, intraperitoneal (Sigma)] every second day, until they reached the “kindled 

status”.  Animals were closely observed for 20-30 minutes after the drug was injected, to check 

their response to the drug and the evolution of the kindling procedure. 

The “kindled status” was considered to be achieved when animals reached stage 5 in Racine’s 

scale for four consecutive injections. 

CD-1 mice were chosen instead of C57BL/6, as they showed a slower response to the same 

dose of pentylenetetrazole. As we wanted to study the evolution of the kindling procedure, a 

slower response suited better our purpose. This dose was previously tested in a pilot 

experiment, to make sure that it was not convulsive but produced kindling after repeated 

administrations. 

Two different experiments were performed to better assess the initiation and evolution of the 

kindled status and its neurochemical consequences in the mouse hippocampus:  

• Fully kindled: subconvulsive dose of pentylenetetrazole every second day until they 

reached stage 5 in Racine scale in four consecutive injections. This group was used to study 

the plastic differences in various cell populations and in the circuitry that occur in the mouse 

dentate gyrus, once they have reached the kindling status and are hyperexcitable. 

• Fully kindled + 1 month of survival: once the kindled status was achieved, mice were kept 

one month without receiving any injection. The purpose of this experimental group was to 

study the maintenance and/or evolution of the differences observed in the first group. 

One additional control group was added per experimental group. Control groups received the 

same handling, but were injected with physiological saline. Animals were in all cases 

intracardially perfused two days after the end of the procedure, to avoid any acute effect of 

the drug. 

 

4.2. EPILEPSY STUDIES DIFFERENT THAN PENTYLENETETRAZOLE-INDUCED MODEL OF 
KINDLING 

For the last chapter of this thesis, sections from experiments previously performed in our 

laboratory were analyzed, focusing on the cell populations of interest. The following models 

were used: 
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- Pilocarpine-induced status epilepticus in mouse (Marqués-Marí et al., 2007) 

- Zinc chelator DEDTC combined with Kainic Acid in mouse (Domínguez et al., 2003a; b, 

2006) 

 

4.2.1. DEDTC AND KAINIC ACID MODEL OF EPILEPSY 

The zinc chelator diethyldithiocarbamate (DEDTC, Sigma) and the kainate receptor agonist 

kainic acid (Sigma) were used to induce status epilepticus in adult mice. Animals in this 

experiment were divided into four groups:  

• Control: this group received two injections of distilled water  

• Kainic acid treatment: this group received an injection of kainic acid at a subconvulsive dose 

(15 mg/Kgbw) followed by an injection of distilled water after 15 min. 

• DEDTC treatment: this group received an injection of distilled water 15 min before an 

injection of DEDTC (150 mg/Kgbw). 

• Kainic acid + DEDTC treatment: this group received an injection of kainic acid at a 

subconvulsive dose (15 mg/Kgbw), followed by an injection of DEDTC (150 mg/Kgbw) after 

15 minutes. 

All drugs were injected intraperitoneally, and solutions were adjusted for the same volume (0.5 

ml) for each injection. 

 

4.2.2. PILOCARPINE MODEL OF EPILEPSY 

Adult mice were used for this experiment. The experimental group received an intraperitoneal 

injection of scopolamine methyl-nitrate in physiological saline (1mg/Kgbw, Sigma) to reduce 

peripheral cholinergic effects. After 30 min, they received an intraperitoneal injection of the 

muscarinic receptor agonist pilocarpine hydrochloride (360 mg/Kgbw, Sigma).  

After the injections, animals were monitored until one and a half hour after the onset of status 

epilepticus. The seizures were terminated by an intraperitoneal injection of diazepam in 

physiological saline (10 mg/Kgbw). 

The control group received both scopolamine and diazepam injections, but were injected with 

saline instead of pilocarpine. 
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5. TISSUE FIXATION 

Animals were deeply anesthetized with an intraperitoneal injection of chlorate hydrate 4% in 

saline (0.9% NaCl), with a dose of 1 ml/100 g weight. Before proceeding with the perfusion, all 

animals were checked for reflex movements, and higher doses were used until the animal was 

completely anesthetized. 

Animals were perfused intracardially first with 10 ml saline followed by 30 min with the 

corresponding fixative, at a flow rate of 4 ml/min procured by a perfusion bomb. 

Four different fixative solutions were used, depending on the experiment: 

- 4% paraformaldehyde (PFA) with 15% of a saturated solution of picric acid was used for 

conventional optical and confocal studies. 

- 0.5% glutaraldehyde (GA), 4% PFA and 15% of a saturated solution of picric acid was 

used for electron microscopy studies. 

- 20 ml of 3.8% acrolein in 2% PFA followed by 100 ml 2% PFA were used for optical 

microscopy and electron microscopy studies. 

- For Timm staining, animals were initially perfused with 20 ml of 0.05% Na2S, followed 

by 100 ml of 4% PFA in PB.  

Due to the quality of the ultrastructure, and that one of the most used antibodies in this study 

gave several technical problems with GA, we decided to use acrolein as the main fixative for 

electron microscopy. 

Acrolein reacts with macromolecules in a similar fashion as formaldehyde, but produces more 

cross-links. An additional characteristic is that it can react with fatty acids through a double 

bond present in its molecular structure. However, as it is not widely used, and to avoid the 

analysis of unspecific staining, we tested all the antibodies in 4% PFA, 0.5% GA and in acrolein 

in both rat and mouse, to check that the labeling obtained of the desired marker corresponded 

to that described in previous studies.  

In all cases since both 0.5% GA and acrolein presented a similar staining, acrolein was chosen 

due to its better antigenicity and to procure as much homogeneity of the tissue used for the 

experiments as possible. 
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Once the animals were perfused, they were decapitated and the heads containing the brains 

were kept in the fridge for 30 min for post-fixation. After this, the brains were removed from 

the skull and kept in PB with 0.05% sodium azide at 4°C until they were sliced. 

Those animals that were perfused for Timm staining were not postfixed, their brain were 

immediately removed and fast sliced. This protocol was needed to ensure that the zinc labeling 

was optimal, as Timm staining critically diminishes with time. 

 

6. MICROTOMY 

As a standard procedure, once the brain was fixed, both hemispheres were separated by the 

middle line and cut in 60 µm-thick coronal sections with a vibratome (VT1000S, Leica), from 

the rostral to the caudal side, in 6 subseries. All the tissue was kept in PB with 0.05% sodium 

azide at 4°C, in either glass vials or 1.5 mL tubes. 

For further work with 300 µm-thick patched slices, they were flat included in a 4% agar solution 

(Bacteriologic Agar, Cultimed) and cut into 60 µm-thick sections.  

 

7. IMMUNOHISTOCHEMISTRY 

7.1. IMMUNOSTAINING FOR OPTICAL MICROSCOPY 

Immunostaining for optical microscopy was performed in free-floating sections, according to 

the avidin-biotin-peroxidase method. During the whole protocol, sections were in mild 

agitation and at room temperature (unless specified otherwise). 

Briefly, sections were washed three times in PB to completely remove the remaining fixative 

present in the tissue.  

Only if the tissue had been fixed with GA or acrolein, a 20 min incubation with Sodium 

Borohydride (BH4Na, Panreac) in PB was performed. Before proceeding with the 

immunostaining, at least four washes in PB were done. 

For blocking the endogenous peroxidase activity, sections were incubated in a solution 

containing Hydrogen Peroxide 1% (Panreac) in PB for 15 min. Sections were then washed three 

times in PB. 
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Following this, a blocking of the non-specific binding of the antibody to the tissue was 

performed. This was made by incubating the sections in a solution that contained 10% serum 

of the host species of the secondary antibody. For permeabilization of the tissue, the detergent 

Triton X-100 (Tx) was added in this solution for a final concentration of 0.2%. In those cases 

where this procedure was not enough to avoid the background staining, a solution containing 

the amino acids Lys and Gly was added to the 10% serum solution (amino acids considered as 

the main target of fixative agents), so they could react with the remaining reactive sites of the 

fixative and the tissue. 

Normal serums used in this study were: normal goat serum (Millipore); normal donkey serum 

(Jackson ImmunoResearch Laboratories) and horse serum (Sigma). 

Sections were then briefly washed in PB, and then incubated either overnight at room 

temperature, or 48 hours at 4°C, in a solution containing the primary antibody at the working 

dilution, the normal serum of the host species of the secondary antibody at 1% concentration 

and sodium azide 0.05% in PB. Triton X-100 was also added in this step for tissue 

permeabilization at a final concentration of 0.2% (PB-Tx). The working dilution and reference 

for all primary antibodies are detailed in Table 1. 

After three washes in PB, sections were incubated in a solution containing the secondary 

biotinilated antibody in working dilution in PB-Tx. The working dilution and reference for all 

secondary antibodies used in this study are detailed in Table 2. 

After three washes in PB, sections were incubated in Avidin Biotin-peroxidase complex (ABC) 

1:300 in PB-Tx. 

Finally, after three washes in PB, sections were pre-incubated in a solution containing 

diaminobenzidine DAB (Sigma) at a final concentration of 0.03%, to allow its full penetration in 

the tissue. Soon after, hydrogen peroxide was added to a final concentration of 0.01% to start 

the reaction. The brown precipitate formed by the oxidized-DAB indicated the presence of the 

desired antigen. 

 

7.2. DOUBLE IMMUNOSTAINING FOR OPTICAL MICROSCOPY 

The avidin-biotin-peroxidase method was also used for the staining of two different antigens 

in the same section. The different colors were achieved by doing two consecutive 

immunostainings and using in the first one DAB conjugated with nickel (DAB-Ni), and the 
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second one with DAB as chromogens. DAB-Ni produces a bluish black precipitate whereas the 

precipitate of the DAB is reddish brown. 

Briefly, the DAB-Ni solution contained: 0.04% NH4Cl, approximately 0.1% NH4NiSO4 and 0.03% 

DAB in PB. A pre-incubation of the sections with DAB-Ni was always done to ensure that enough 

Ni was present and to avoid possible loss of Ni in the second immunostaining and therefore a 

turn from dark-bluish into brownish of the precipitate. Once pre-incubated, the solution was 

changed for fresh DAB-Ni solution and then developed.  

After the development of DAB-Ni, a second immunostaining was done and a standard DAB 

development performed. 

 

7.3. IMMUNOSTAINING FOR CONFOCAL MICROSCOPY 

The immunostaining for confocal microscopy was always done in free floating sections and 

consisted in the following steps: 

The first step was an incubation with BH4Na for 20 minutes, only in those animals in which a 

GA or acrolein based fixative was used. Otherwise, this step was skipped.  

Next, the blocking of the non-specific binding of the antibody was performed by incubating the 

tissue with a 10% normal donkey serum in phosphate buffer saline with 0,2% Triton X-100 (PBS-

Tx) for 1 hour at room temperature.  

After briefly washing the blocking solution, an incubation with the primary antibodies was 

performed overnight at room temperature, or 48 hours at 4°C. The working dilution and 

reference for all primary antibodies are detailed in Table 1.  

After three washes in PBS-Tx an incubation with the secondary antibodies (always generated 

in donkey) was performed. From this step on, a special effort was made to keep the tissue in 

the darkness as much as possible. The working dilution and reference for all secondary 

antibodies are detailed in Table 2. 

Dako Mounting Medium was used when mounting the sections in slides, as it acts as an anti-

fading agent and prevents the fluorophores from quickly extinguishing their fluorescence. 

Slides were kept always at 4°C except when being analyzed under the confocal microscope. 
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7.4. IMMUNOSTAINING FOR ELECTRON MICROSCOPY 

This immunostaining was performed like a normal staining for optical microscopy, with the 

exception of the following steps: 

- No Triton X-100 or detergent of any kind was used in this sections, to avoid the degradation 

of the lipidic membranes. For permeabilization of the tissue and enhancing the penetration 

of the antisera, the “Freeze-Thawing” technique was used. Briefly, sections were incubated 

from 30 min to one hour at room temperature in a solution containing: sucrose 25% and 

glycerol 10% in PB 0.05 M. Once the sections were cryoprotected, three cycles of freezing 

and thawing were performed in an aluminium-foil boat over liquid nitrogen. 

- Special attention was paid in keeping the PB buffer cold during the incubations. 

- All primary antibody incubations were performed for 48 hours at 4°C. 

 

Once the immunostaining was finished, the sections were post-fixed, embedded in epoxy resin 

and mounted. After the development of diaminobenzidine, the protocol went as follows: 

sections were incubated in a solution containing 1% OsO4 (Electron Microscopy Sciences) and 

7% glucose in PB for 45 minutes at room temperature. Then, sections were rinsed first three 

times with PB and then two times of 15 minutes with maleate buffer (pH 5.2;0.93% maleic acid 

and 0.35% NaOH in distilled water), incubated 90 minutes in a “staining solution” containing 

0.61% maleic acid,  0.35% NaOH and 2% uranyl acetate (Panreac) , and rinsed again three times 

for 10 minutes in maleate buffer. Then, the sections were dehydrated in graded series of cold 

ethanol (30°, 50°, 70°, 90°, 2 x 96°, 2 x 100°, 100° + CuSO4) and cleared two times in propylene 

oxide (Sigma). Finally, sections were embedded overnight in epoxy resin (Durcupan, Sigma) and 

flat mounted on microscope slides. Coverslips used were covered by a commercial liquid 

release agent (Electron Microscopy Sciences) that facilitates their removal. 

Specimens were studied under the optical microscope, and the area of interest to be further 

studied under electron microscopy was isolated and re-included in an epoxy resin block. 

1 to 1.5 µm thick semithin sections, or 50 to 70 nm thick ultrathin sections were obtained using 

an ultramicrotome (Leica EM UC6). Semithin sections were mounted in microscope slides, and 

stained with borax-based toluidine blue and covered with durcupan. Ultrathin sections were 

collected on formvar-coated grids and counterstained with lead citrate for 12 minutes. 
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7.5. PROCESSING OF HISTOLOGICAL SECTIONS FROM INTRACRANIAL INJECTION 

The first subseries was always developed with the DAB-Ni method, and a Toluidine Blue 

counterstaining was performed after mounting the sections to better study the location of the 

injection and the presence/absence, amount and distribution of fibers projecting to the 

dentate gyrus. Only those injections that had relatively small sites of injection, that presented 

an adequate number and distribution of fibers, and that presumably had a good quality-tissue 

were used for the study. 

Further treatment of these sections was always done with a double immunostaining of the 

fibers and any other desired marker, developed with DAB-Ni and DAB respectively. 

 

7.6. PROCESSING OF SLICES FROM WHOLE-CELL PATCH CLAMP 

Once the cell of interest was patched and presumably filled with biocytin, the slice was fixed 

by immersion in a PB solution containing 4% PFA and 0.5% GA. 

For morphological evaluation of the filled cell, the slices were processed with BH4Na 1% in PB 

(to remove any possible auto-fluorescence in the tissue) and incubated in a PB-Tx solution 

containing A488-conjugated avidin. Then, slices were mounted in DAKO-mounting medium and 

visualized under confocal microscopy. 

To study the synaptic connectivity of semilunar granule cells, 300 µm-thick fixed slices were 

further processed as follows: first, they were flat included in a 4% agar solution (Bacteriologic 

Agar, Cultimed) and cut into 60 µm-thick sections. Then, the biocytin-filled cells were 

developed with DAB-Ni (as described above). Only those cells that showed axonal staining in 

the granule cell layer, and the level of background staining did not mask the actual axon 

staining, were further processed for a parvalbumin immunostaining with the DAB method for 

optical microscopy. Once we found enough examples of the innervation, the same procedure 

was performed for electron microscopy. 

 

7.7. PROCESSING OF SECTIONS FOR TIMM STAINING 

Once the brain was removed from the skull and quickly sliced into 60 µm-thick slices, they were 

washed in three times of 20-30 min in PB and then incubated in a solution containing: 14% 

acacia gum, 1.7% hydroquinone, 0.08% silver nitrate, 2.4% citric acid and 2.3% trisodium 
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citrate. The incubation was held at room temperature and protected from light, as both factors 

highly influence the speed and background of the reaction. The incubation lasted no less than 

20 minutes and no more than one hour, but was continuously checked to reach the optimal 

signal to background level, and the solution was renewed whenever turbidity was observed. 

Autometallography was stopped by directly adding 5% sodium thiosulfate in PB, and then an 

extra incubation of 5 min in the same solution. Sections were then washed three times in PB 

and mounted. 

When additional stainings had to be done on these sections, special attention was taken to 

perform them in as short a period of time as possible to avoid a possible weakening of the 

autometallography. 

 

7.8. PROCESSING OF SECTIONS FROM POSTNATAL MICE 

For the study of the appearance of semilunar granule cells during postnatal development, pups 

were intracardially perfused and the brain resectioned in 300 µm-thick slices. These slices were 

post-fixed as described in section 7.4, and included in Durcupan epoxy resin blocks. 

Serial ultrathin sections (1 µm-thick) were obtained from these blocks and mounted in parallel 

consecutive series in gelatin-covered slides with the help of a heating plate. Once fixed in the 

slide, the following protocol was performed on the semithin sections mounted on the slides:  

The first slide of the section was stained with toluidine blue in 1% borax at 75 °C for 2 min. The 

other two were processed for calretinin and calbindin immunochemistry as follows: 

Semithin sections were treated with a solution containing 50% sodium ethoxide, 30% acetone 

and 20% toluene for 12 minutes, to erode the epoxy resin. Next, they were rehydrated in 

consecutive ethanol solutions of decreasing concentration, washed in distilled water and finally 

kept in PB. To remove the osmium, slides were treated with a solution of hydrogen peroxide 

3% and then washed three times in PB. After this, the process continued using droplets of the 

solutions in a humid chamber. The immunostaining was performed according to the avidin-

biotin-peroxidase method described in section 7.1. Once finished, semithin sections were 

dehydrated again in consecutive ethanol solutions of increasing concentration, cleared in xylol 

and mounted with Eukitt.  

  



 

Material and Methods 

40 

 

7.9. TABLE OF ANTIBODIES USED IN THIS THESIS 

Primary antibodies  
    

 
 Host Dilution Company References 

 5-HT rabbit 1:2000 Enzo Cat. No. SZ1021 
 CAMKII mouse 1:500 abcam Cat. No. ab22609 
 CART rabbit 1:500 Phoenix Pharmaceuticals Cat. No. H-003-61 
 Calbindin D-28k rabbit 1:1000 Swant Cat. No. CB-38a 
 CB1R rabbit 1:2000 Synaptic Systems Cat. No. 258 003 
 CCK8 rabbit 1:1000 Sigma Cat. No. C2581 
 c-Fos rabbit 1:8000 Synaptic Systems Cat. No. 226 003 
 Calretinin rabbit 1:2000 Swant Cat. No. 7699/3H 
 Calretinin mouse 1:5000 Swant Cat. No. 6B3 
 DβH rabbit 1:800 Enzo Cat. No. DZ1020 
 Gephyrin mouse 1.1000 Synaptic Systems Cat. No. 147 011 
 HSP72 mouse 1:300 Oncogene Research  Not available 
 pan-Fos (c-Fos K-25) rabbit 1:1000 Santa Cruz Biotechnology Cat. No. sc-253 
 Parvalbumin guinea pig 1:2000 Synaptic Systems Cat. No. 195 004 
 Parvalbumin rabbit 1:5000 Swant Cat. No. PV-28  
 Prox1 mouse 1:1000 Millipore Cat. No. MAB5654 
 PSD95 goat 1:1000 abcam Cat. No. ab12093 
 Synaptophysin mouse 1:1000 Sigma Cat. No. S5768 
 Somatostatin rabbit 1:500 Millipore Cat. No. AB5494 
 TH mouse 1:1000 Millipore Cat. No. AB152 
 VAChT goat 1:3000 Diasorin Cat. No. 24286 
 VGluT2 Guinea pig 1:1000 Millipore Cat. No. AB2251 

TABLE 1 – List of primary antibodies used in this thesis. The dilution indicated was generally used for both ABC-
DAB immunostaining and immunofluorescence. When the nature of the fixation required it, the dilutions were 
slightly modified. 
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Secondary antibodies  

  Host Label Dilution Company 
Anti-Rabbit IgG Donkey Alexa Fluor 488 1:400 Molecular Probes 
Anti-Rabbit IgG Donkey Alexa Fluor A555 1:400 Molecular Probes 
Anti-Rabbit IgG Donkey Alexa Fluor 647 1:400 Molecular Probes 
Anti-Rabbit IgG Goat Biotin 1:300 Thermo Scientific 
Anti-Mouse IgG Goat Biotin 1:300 Vector 
Anti-Mouse IgG Donkey Biotin-SP 1:400 Jackson ImmunoResearch 
Anti-Mouse IgG Donkey DyLight 649 1:400 Jackson ImmunoResearch 
Anti-Mouse IgG Donkey DyLight 549 1:400 Jackson ImmunoResearch 
Anti-Mouse IgG Donkey Biotin 1:400 Jackson ImmunoResearch 
Anti-Mouse IgG Donkey Alexa Fluor 488 1:400 Jackson ImmunoResearch 
Anti-Guinea Pig IgG Donkey DyLight 549 1:400 Jackson ImmunoResearch 
Anti-Guinea Pig IgG Donkey DyLight 649 1:400 Jackson ImmunoResearch 
Anti-Guinea Pig IgG Goat Alexa Fluor 488 1:400 Invitrogen 
Avidin   A488 1:400 Molecular Probes 

TABLE 2 – List of secondary antibodies used in this thesis. 

 

8. MICROSCOPY AND IMAGE ACQUISITION 

An Olympus CX41 optical microscope was used when observing and analyzing the slides 

processed for optical or electron microscopy. Images were acquired with an Olympus C-5060 

wide zoom camera, using Cam2com software. Images were always acquired setting manually 

the exposure time that best suited the staining. 

Electron microscopy analyses were performed using a JEOL JEM-1010 transmission electron 

microscope, with the voltage set at 60 kV. Images were acquired using either MegaView I digital 

camera, or AMT RX80 digital camera. 

For confocal microscopy analyses, two different confocal microscopes were used:  

- Leica TCS SPE confocal microscope 

- Olympus Fluoview F10i confocal microscope 

Special attention was paid to use the same confocal microscope with the same settings for each 

experiment. 
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9. IMAGE PROCESSING AND DATA ANALYSIS 

For image processing and analysis, FIJI (ImageJ 1.49j10) and Gimp 2.8 were used. 

 

9.1. QUANTIFICATION OF PERISOMATIC INNERVATION 

Quantification of the perisomatic innervation of parvalbumin cells was done under confocal 

microscopy. Briefly, Z-series of focal planes were taken from the surface of the section to the 

maximal Z that penetration of the antibody allowed, with a Z-step of 0.5 µm. In all cases, a 63x 

objective was used, with an optical zoom at 3x. 

For the analysis, either the LSM 5 Image Browser software, or ImageJ were used. As our aim 

was not to compare the quantification between two experimental groups, the color curves in 

the images were fitted individually to ensure that all the positive profiles were visible and to 

remove as much background as possible. Only those puncta that were “touching” the edge of 

the parvalbumin profile with no apparent space between both profiles, were considered as 

positive.  

 

9.2. CELL NUMBER ESTIMATION 

In all cases, both hemispheres of the brain were separated and cut into 60 µm-thick slices 

independently. Two different methods to estimate the cell number were used: 

1. Total number of cells per dentate gyrus. In this case, when the cell marker used was not 

very abundant in the dentate gyrus, the total number of positive-cells were counted in 

all sections from one subseries. The total number of cells per subseries was translated 

into total number of cells by multiplying by 6 subseries. 

As this data is not given in relation to the total dentate volume, the Cavalieri’s principle 

was not applied.  

2. When all the cells in a subseries could not be counted, the estimation was given as cell 

density as number of cells per mm2, and the sections analyzed were all from the same 

bregma approximately. In this case, a picture was taken from each section using the 

same optical parameters, in which the area of interest was included. These pictures 

were then scaled and the area of the dentate gyrus was calculated using the Image J 

software. The number of cells was counted and the result was given as number of cells 

per mm2. 
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9.3. SHOLL ANALYSIS  

This analysis was performed using the plugin “Simple Neurite Tracer” of the ImageJ software 

(Longair et al., 2011). In some cases, several stacks of the same cell were joined using the 

“stitching” plugin in ImageJ, to ensure both the quality of the final image and the presence of 

all dendritic segments of the analyzed cell (Preibisch et al., 2009). 

Concentric spheres centered in the cell soma were drawn with increasing radius and the 

number of dendrites crossing these spheres were counted. As the assumption of normality 

could not be accepted in all cases of this analysis, we used a Mann-Whitney test for the 

statistical analysis. 

 

9.4. STATISTICS 

Statistical analysis was performed using SPSS v.19, and data representation was performed 

with the output values of SPSS in Microsoft Excel.   

Although in biological samples the population is always assumed to present a normal 

distribution, a Shapiro-Wilk test was performed to make sure that our sample also followed a 

normal distribution.  

Shapiro-Wilk test was preferred to Kolmogorov-Smirnov, as this test is preferred when no 

previous assumption on the population mean and SD is made, and the “n” sampled is low (as 

in our case). 

Levene’s test was performed to check whether the population variances were equal, and if a t-

test could be performed. When there was no homoscedasticity, a t-test with no assumption of 

equal variances or a Mann-Whitney non-parametric test was used.  

Data is shown as mean ± SD, unless stated otherwise.  
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RESULTS I:  
PERISOMATIC INNERVATION ON PARVALBUMIN 
BASKET CELLS IN THE MOUSE DENTATE GYRUS 

 

1. PERISOMATIC EXCITATORY INNERVATION ON PARVALBUMIN 
BASKET CELLS IN THE GRANULE CELL LAYER  

As a first approach, we decided to analyze the importance of the perisomatic excitatory 

innervation within the whole of the innervation that parvalbumin basket cells receive in the 

perisomatic region. For that purpose, we combined parvalbumin with the following post-

synaptic markers:  

• Post-Synaptic density protein 95 KDa (PSD95), which is located in the post-synaptic density 

in asymmetric synapses and functions as an anchoring element for AMPA and NMDA 

receptors among other synaptic proteins (Lin et al., 2004; Jackson and Nicoll, 2011). 

Therefore, it labels specifically the postsynaptic specialization of glutamatergic synapses, 

and can be used as a marker of excitatory synaptic contacts. 

• Gephyrin (Geph), which labels specifically the postsynaptic specialization of inhibitory 

synapses (Fritschy et al., 2008), and can therefore be used as a marker of inhibitory synaptic 

contacts. 

To estimate the relative importance of excitatory and inhibitory innervation onto parvalbumin 

basket cells, a triple immunostaining was performed using parvalbumin, PSD95 and Gephyrin. 

In this experiment, a total of 16 molecular layer parvalbumin interneurons (Figure I.1 A) and 

16 parvalbumin interneurons sitting in the granule cell layer (Figure I.1 B) were analyzed in the 

dentate gyrus of 3 different animals. The cell depth analyzed in each parvalbumin cell was the 

same for both postsynaptic density markers (an average of 9 µm depth of the cell, taking into 

account that the penetration of both PSD95 and Gephyrin antibodies should be acceptable). 

An average of 200 positive elements were quantified per cell, in the soma and in the proximal 

portion of the dendrites, that has been considered functionally equivalent to the soma (Megıás 

et al., 2001; Papp et al., 2001). 

Since the penetration of the postsynaptic markers often did not allow for analysis of the whole 

depth of the cell, data are shown as percentages of PSD95 or Gephyrin in relation to the total 

number of postsynaptic densities. The total number of postsynaptic densities is calculated as 
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the sum of PSD95-positive elements and Gephyrin-positive elements in close apposition of the 

cell membrane surface by its inner side (Figure I.1 C-D). 

Our results show that parvalbumin cells presented more PSD95-positive elements in apposition 

than Gephyrin-positive ones. Therefore, the perisomatic excitatory input in parvalbumin basket 

cells is at least as important as the inhibitory input, suggesting the relevance of excitatory input 

on the perisomatic region of these cells. A summary of these results is shown in Graph I.1. 

For the whole number of parvalbumin cells the percentage of PSD95-positive postsynaptic 

elements is similar, even higher, than the percentage of Gephyrin-positive postsynaptic 

elements (56.38 ± 1.62% and 43.62 ± 1.62% respectively; n=32).  

When we considered the different location of the parvalbumin cells somata,  granule cell layer 

basket cells showed more PSD95-positive postsynaptic densities than molecular layer basket 

cells (58.72 ± 2.12% and 54.03 ± 2.39% respectively; n=16 and 16). However, there was no 

statistical difference between both groups (p=0.153). 

Similarly, Gephyrin-positive postsynaptic densities were more abundant in molecular layer 

parvalbumin interneurons than granule cell layer parvalbumin interneurons (45.97 ± 2.40% and 

41.28 ± 2.12% respectively; n=16 and 16). This difference was not statistically significant since 

the p-value in the statistical analysis is necessarily the same as the one obtained in the 

comparison of PSD95-positive elements due to the nature of the data.  

Graph I.1 – Similar excitatory and inhibitory innervation on different subtypes of parvalbumin interneurons 
Molecular layer and granule cell layer (gcl) parvalbumin interneurons (IN) receive similar percentages of gephyrin 
(Geph) and PSD95 puncta in the perisomatic area. 
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Figure I.1 – Excitatory and inhibitory perisomatic innervation on parvalbumin interneurons in the mouse 
dentate gyrus 
Triple immunostaining for parvalbumin (blue), Gephyrin (red) and PSD95 (green), postsynaptic markers for 
inhibitory and excitatory synapses respectively. Only those puncta in close apposition to the inner side of the 
border of the parvalbumin interneuron were considered for the analysis. In the case of PSD95, puncta was also 
found in the middle of the dendrites and cell body. These puncta were considered as a recently synthetized 
protein, or a mature form that was being transported to its final destination, and were not considered in the 
analysis in any case.  
A) Confocal plane showing the soma and a principal dendrite of a parvalbumin interneuron located in the inner 
molecular layer. Note the high density of PSD95 puncta in this area. 
B) Confocal plane showing the soma and dendritic trunk of a pyramidal basket parvalbumin interneuron, with the 
cell body sitting in the border between the granule cell layer and the hilus, and the dendritic trunk traveling to the 
molecular layer. As expected, the labeling of PSD95 was scarce in the granule cell layer and abundant in the hilus. 
C) Higher magnification of the inset shown in (A), from a molecular layer parvalbumin interneuron. The number 
of Gephyrin (arrowheads) and PSD95 puncta (arrows) was approximately the same in all the cells analyzed. 
D) Higher magnification of the inset shown in (B), from a parvalbumin pyramidal basket interneuron. The number 
of Gephyrin (arrowheads) and PSD95 puncta (arrows) was approximately the same in all the cells analyzed.  
gcl, granule cell layer; Geph, Gephyrin; h, hilus; iml, inner molecular layer; PSD95, postsynaptic density protein 95 
KDa; PV, parvalbumin. Scale bar: 20 µm 
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2. PERISOMATIC EXCITATORY INNERVATION FROM MOSSY CELLS ON 
PARVALBUMIN INTERNEURONS IN THE GRANULE CELL LAYER 

Synaptic contacts from the hilar mossy cells axons in their way into the inner molecular layer 

have been described among the possible sources of excitatory perisomatic connections on 

parvalbumin basket cells (Seress and Ribak, 1984). Therefore, we aimed to assess their share 

in the excitatory innervation on these interneurons. For that purpose, we analyzed the 

perisomatic innervation on parvalbumin basket cells in the granule cell layer using cellular and 

synaptic markers and studying their colocalization at the confocal microscopy level.  

To specifically stain the mossy cell population we used calretinin, as it has been proved to label 

mossy cells in the mouse and reliably stains mossy cell fibers and synaptic boutons (Blasco-

Ibáñez and Freund, 1997), whereas parvalbumin was used as a marker for fast-spiking basket 

cells. They were combined with the synaptic markers PSD95, present in the postsynaptic 

density, and synaptophysin (Syn), present in the membrane of the synaptic vesicles and 

considered therefore as a marker of the presynaptic element. 

A total of 6 parvalbumin cells from 3 different animals, selected by their morphology and 

dendritic distribution, were analyzed to quantify the presence of calretinin-positive synaptic 

boutons in close apposition to parvalbumin-positive interneurons (Figure I.2 A). For this partial 

objective, we only considered those parvalbumin interneurons located in the granule cell layer 

and not those ones located in the molecular layer. The latter were not included as, considering 

the resolution of confocal microscopy, the high density of calretinin puncta in the inner 

molecular layer would have introduced a big number of false-positive elements in our analysis. 

As a first approach we made a triple immunohistochemistry with parvalbumin, calretinin and 

synaptophysin (Figure I.2 D-F). Synaptophysin allowed for estimation of the totality of boutons 

on parvalbumin basket cells whereas its colocalization with calretinin set a maximum possible 

number for calretinin-positive boutons from mossy cells on them. However, this approach had 

the limitation that it did not allow us to distinguish between GABAergic calretinin-positive 

boutons and glutamatergic calretinin-positive boutons.  

Our results at this level showed that mossy cells may perisomatically innervate parvalbumin 

basket interneurons, though less than it was expected from literature. We analyzed 294 

synaptophysin-positive puncta, from which 43 were located on the soma, 85 were located on 
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the granule cell layer dendritic shafts, 135 on the dendrites located in the inner molecular layer, 

and 31 boutons on proximal dendrites  located in the hilus. 

The data reflected that the presence of putative synaptic boutons in apposition with 

parvalbumin cells is more evident in the inner molecular layer, were mossy cells send their axon 

terminals (27 ± 6% of synaptophysin-positive elements in apposition with parvalbumin 

dendrites contain calretinin). On the soma and the beginning of the main dendritic shaft they 

are less abundant, although we also found some presynaptic calretinin-positive terminals (16 

± 3%). On the parvalbumin-positive dendrites located in the granule cell layer we only found 

some calretinin-positive presynaptic element (7 ± 2%). Finally, in the dendrites located in the 

subgranular region of the dentate gyrus we rarely found some calretinin-positive presynaptic 

elements (2 ± 4%).  

Since the previous data could include GABAergic calretinin-positive boutons, to confirm if the 

results obtained with synaptophysin could be greatly affected by GABAergic boutons, we made 

a triple immunohistochemistry with PSD95, calretinin and parvalbumin and analyzed how many 

calretinin-positive boutons were adjacent to postsynaptic elements in parvalbumin cells 

(Figure I.2 A-C). With this objective we analyzed 6 cells and quantified a total of 281 PSD95 

puncta located in the inner side of the cell surface. From these puncta, 104 were located in the 

soma, 18 in the dendrites of the granule cell layer, 125 in the dendrites of the inner molecular 

layer and 34 in the hilus. 

The data showed that although part of the calretinin-positive boutons can be excitatory 

boutons presumably from mossy cells, an important part could correspond to GABAergic 

calretinin boutons or to calretinin-positive varicosities that do not contain an excitatory 

postsynaptic element. We found PSD95 puncta in close apposition to calretinin elements in the 

inner molecular layer (13 ± 3%) and in the soma (8 ± 3%). On the dendrites located in the 

granule cell layer we found some calretinin boutons in apposition to PSD95 puncta, but only 

testimonial and not representative (3 ± 5%). A summary of these results is shown in table I.1. 

  



 

Results 

53 

 

 

 soma iml dendrites gcl dendrites hilar dendrites 
Syn+CR+ puncta compared to 

Syn+ puncta 
 

16 ± 3% 
 

27 ± 6% 
 

7 ± 2% 
 

2 ± 4% 

PSD95+CR+ puncta compared 
to PSD95+ puncta 

 
8 ± 3% 

 
13 ± 3% 

 
3 ± 5% 

 
0% 

Table I.1 - Percentage of Synaptophysin (Syn) and PSD95 associated to calretinin (CR) positive elements in the 
different cellular compartments of dentate gyrus parvalbumin-positive interneurons. Iml, inner molecular layer; 
gcl, granule cell layer. 

 

Given the packing of the somata in the granule cell layer and the fact that almost all of the 

excitatory boutons in the inner molecular layer are immunoreactive for calretinin (Blasco-

Ibáñez and Freund, 1997), the possibilities of finding boutons that correspond to false-positives 

were considerably high. Therefore we studied this innervation at an ultrastructural level under 

electron microscopy. 

For this purpose, we performed a double immunohistochemistry with calretinin and 

parvalbumin. Color development was achieved by DAB-Ni and DAB staining respectively. This 

methodology allowed us to distinguish both staining patterns at the optical level and then to 

establish a correlation between optical and electron microscopy. 

A total number of 8 cells were analyzed at the electron microscopy level, among which at least 

one example of each morphology for parvalbumin interneuron -based on Ribak and Seress’ 

classification –was present, to discard the possibility that different morphologies could be 

correlated with different innervation and therefore different physiological function (Figure I.3-

6). Only parvalbumin interneurons that presented calretinin-positive elements in putative 

apposition were used in this study. 

Serial ultrathin sections were collected until the penetration of the calretinin antibody 

diminished. All the perisomatic surface of the selected parvalbumin interneurons was analyzed 

in all the consecutive ultrathin sections, to verify the identity of calretinin profiles. 

As a general rule, perisomatic calretinin-positive synaptic contacts were rarely found on 

parvalbumin interneurons whose somata were located in the granule cell layer (Figure I.3-5). 

In molecular layer interneurons, however, the frequency of calretinin-positive boutons in 

apposition was higher (Figure I.6), though not as much as expected by confocal microscopy 
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analysis. In all cases, the majority of calretinin-positive excitatory synapses were observed on 

the proximal dendrites in the inner molecular layer. 

On the other hand, there were numerous unlabeled boutons establishing asymmetric synaptic 

contacts on these cells (Figure I.4 E). The morphology of unlabeled excitatory contacts 

resembled of en passant boutons from mossy fibers: they were filled with round vesicles, 

though sometimes a dense-core vesicle could be observed, and established more than one 

synaptic contact on the postsynaptic parvalbumin profile.   

We observed thin calretinin-positive profiles, probably mossy cell fibers, running along 

parvalbumin interneurons in the granule cell layer (Figure I.3 and I.5). The proximity of these 

fibers made us suppose that the probability of presenting synaptic contacts in the soma and 

apical dendrite was rather high. However, no clear excitatory postsynaptic specialization was 

usually observed. We sometimes found a submembranous density under a climbing calretinin-

positive fiber that could suggest a synaptic contact, but no other features of a synaptic boutons 

appeared, such as a nearby mitochondria, synaptic vesicles or an enlargement of the fiber. 

Electron-density in the DAB-Ni labeled calretinin element prevented us to discard them as 

puncta adherentia. 

Finally, calretinin boutons establishing synaptic contacts were also observed in a near vicinity 

of parvalbumin-positive cells, but not in close apposition. These calretinin profiles could have 

been considered as false-positives at the optical level and even at the confocal microscope level 

(Figure I.4 C).  

In conclusion, although a total of 9 calretinin boutons were found to establish synaptic 

asymmetric contacts in the perisomatic region of parvalbumin cells, this innervation was 

indeed scarce. In addition, under our analysis conditions, no clear differences were observed 

among all types of parvalbumin-positive interneurons except for one type: the molecular layer 

parvalbumin-positive interneuron, in which perisomatic calretinin boutons establishing a 

synaptic contact were found more frequently. Therefore the presence of calretinin boutons 

establishing asymmetrical contacts on parvalbumin elements depended mainly on the location 

of the somata and dendrites. They were present in the inner molecular layer but could be only 

rarely found in the granule cell layer. These data point to a layer specificity rather than to a cell 

morphology distribution.  

 



 

 

 
Figure I.2 – Mossy cells innervation on parvalbumin basket cells in the granule cell layer of the mouse dentate 
gyrus 
Confocal analysis of the calretinin-positive elements found in apposition to parvalbumin interneurons and their 
co-expression of synaptic markers. A-C) Confocal plane showing a triple immunohistochemistry for PSD95 (green), 
calretinin (red) and parvalbumin (blue). D-F) Confocal planes of a triple immunohistochemistry for synaptophysin 
(green), calretinin (red) and parvalbumin (blue).  
A) Example of a parvalbumin interneuron selected for analysis because of location, morphology and dendrite 
disposition. Calretinin mossy cell axonal fibers run through the granule cell layer and sprout densely in the inner 
molecular layer.  
B, C) Colocalization of PSD95 and calretinin puncta in close apposition to the soma and proximal dendritic trunk 
of a parvalbumin-positive interneuron, respectively. They presented possible perisomatic excitatory synaptic 
contacts originating from the mossy cells onto parvalbumin basket cells (arrows). This suggests the presence of 
calretinin-positive boutons associated to postsynaptic densities typical from excitatory synapses. 
D, E, F) Colocalization of Syn and calretinin elements in close apposition to a soma (arrows), beginning of the 
dendritic shaft and inner molecular layer dendrites of different parvalbumin cells. This suggests the presence of 
presynaptic vesicles in calretinin-positive fibers coming from the mossy cells, and therefore a high probability of 
synaptic contacts.  
CR, calretinin; gcl, granule cell layer; h, hilus; iml, inner molecular layer; oml, outer molecular layer; PSD95, 
Postsynaptic Density Protein 95 kDa; PV, parvalbumin. Scale bar: A, 20 µm; B-F, 5 µm. 
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Figure I.3 – Study of the perisomatic innervation from mossy cells on horizontal parvalbumin-positive basket 
interneurons in the dentate granule cell layer 
A) Optical plane of the perisomatic region of a horizontal parvalbumin interneuron (asterisk) analyzed at the 
electron microscope 
B and C) Panoramic view of the proximal dendritic segment (B) and cell soma (C) of the parvalbumin interneuron 
(asterisk) shown in (A) at low magnification. Note the calretinin-positive elements that are found in apposition to 
the cell body and dendrite (boxed areas). Calretinin-positive boutons (arrows) are found in close apposition to the 
cell body and main apical dendrite. 
D) Higher magnification of a calretinin-positive bouton shown in (B). Though analyzed in consecutive sections, no 
vesicles and no clear thick postsynaptic density (arrow) was observed.  
E) Higher magnification of a calretinin-positive fiber that runs along the parvalbumin-positive dendrite. No signs 
of synapses can be observed. 
F) Higher magnification of two calretinin-positive boutons shown in (C). Again, no vesicles were found in this 
bouton at different levels, but the synaptic cleft and a visible postsynaptic density (arrow) was observed, which 
means that this bouton most likely established an asymmetric contact. Note that just next to it, another calretinin-
positive bouton is establishing an asymmetric synaptic contact (arrowhead) on an immunonegative profile. This 
element would certainly constitute a false positive in a confocal microscopy analysis. 
Scale bar: B-C 2µm; D-F, 400 nm. 
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Figure I.4 – Study of the perisomatic innervation by mossy cells on a fusiform and a pyramidal parvalbumin-
positive basket interneurons in the dentate granule cell layer 
A) Immunostainig for calretinin (DAB-Ni) and parvalbumin (DAB) for electron microscopy. Upper panel: optical 
plane of the perisomatic region of an inverted fusiform parvalbumin interneuron (white asterisk). Lower panel:  
correlation at the electron microscope. 
B) Calretinin-positive bouton establishing a synaptic contact (arrow) on the perisomatic region of the parvalbumin 
interneuron shown in (A). Note the synaptic cleft and the postsynaptic density. 
C) Calretinin-positive element in close apposition to the cell shown in (A), but with the synaptic release place 
(arrowhead) oriented towards a negative element. 
D) Example of a calretinin-negative bouton establishing a symmetric synapse (arrow). The bouton is filled with 
flattened oval vesicles and dense-core vesicles.  
E) Higher magnification of two calretinin-negative boutons establishing an asymmetric synaptic contact (arrows) 
with the cell shown in (A), and resembling a bouton from a mossy fiber. 
F) Optical-electron microscope correlation of the perisomatic region of a pyramidal parvalbumin interneuron 
(asterisk).  
G) Proximal dendrite from the pyramidal parvalbumin shown in (A, boxed area), located in the hilus. Three 
different unlabeled boutons likely from mossy fibers establish asymmetric synapses (arrowheads) with the 
parvalbumin-positive dendrite. 
H) Example of an inhibitory symmetric contact (arrowhead) from a calretinin-negative bouton, with flattened 
vesicles and a single large mitochondria.  
I, J) Calretinin-negative excitatory asymmetric contacts (arrows) received by the pyramidal basket cell shown in 
(F). 
Scale bar: A, 5 µm; B-E 500 nm; F, 5 µm; G-J, 500 nm. 
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Figure I.5 – Study of the perisomatic innervation of a horizontal parvalbumin-positive basket interneuron by 
mossy cells in the dentate granule cell layer 
A) Optical plane of the perisomatic region of a horizontal parvalbumin interneuron (asterisk), and correlation at 
the electron microscope. 
B) Higher magnification of a fiber running along the horizontal parvalbumin interneuron shown in (A). 
C, D) Higher magnification of two calretinin-positive fibers in close apposition to the horizontal interneuron (black 
arrows). No synaptic connections were found for these elements in consecutive sections. 
E, F) Calretinin-negative boutons establishing an asymmetric synaptic contact (arrowheads) with the cell soma of 
the horizontal interneuron shown in (A). The morphology of the bouton and the synapse resembles the boutons 
from mossy fibers. 
G1, G2) Calretinin-positive boutons from two consecutive ultrathin sections, showing asymmetric synaptic 
contacts (arrows) with the proximal hilar basal dendrite of the horizontal interneuron shown in (A, boxed area). 
Scale bar: A, 5 µm; B, 1 µm; C-G, 500 nm.  
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Figure I.6 – Perisomatic innervation of molecular layer parvalbumin-positive basket interneuron by mossy cells 
in the dentate granule cell layer 
A) Optical focal plane of a molecular layer parvalbumin interneuron (asterisk) with the cell soma standing in the 
border of the granule cell layer and the inner molecular layer.  Correlation with electron microscopy.  
B) Example of a calretinin-negative bouton establishing multiple symmetric contacts (white arrowheads) in the 
perisomatic region of the cell in (A). 
C - E) Three examples of calretinin-negative boutons establishing asymmetric synapses (black arrows) with the cell 
soma of the molecular layer parvalbumin interneuron shown in (A). Note in (D) and (E) the presence of a calretinin-
positive element that could easily lead to a false positive in a confocal study. 
F-I) Calretinin-positive boutons establishing asymmetric synapses (white arrows) on the cell soma (F, G and I), and 
on the proximal dendrite (H) of the molecular layer parvalbumin interneuron shown in (A). Note the common 
features of mossy cells boutons: small boutons filled with round vesicles that establish asymmetric synapses as 
shown by the thick postsynaptic density. 
Scale bar: A, 5 µm; B-I, 500 nm. 
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3. PERISOMATIC EXCITATORY INNERVATION FROM GRANULE CELLS 
ON PARVALBUMIN BASKET CELLS IN THE GRANULE CELL LAYER 

In addition to the mossy cells, granule cells provide another source of perisomatic innervation 

onto parvalbumin interneurons (Ribak and Peterson, 1991; Kneisler and Dingledine, 1995; 

Blasco-Ibáñez et al., 2000). In some of these studies, Timm staining was used as an evidence of 

this innervation originating from granule cells, as mossy fibers have vesicular Zn+2 in their 

synaptic boutons. Timm-positive boutons formed basket-like arrangements surrounding the 

parvalbumin-positive interneurons in the granule cell layer, and following closely the shape of 

the dendrites present in this area. These boutons were confirmed to make asymmetric synaptic 

contacts on the parvalbumin cells: they were smaller than the mossy terminals characteristic 

of the mossy fibers, had round vesicles and presented dense core vesicles (Blasco-Ibáñez et al., 

2000).  

Although mossy fibers have Zn+2 in their synaptic boutons, and therefore are positive for this 

staining, there is no other evidence that the Timm-positive fibers on parvalbumin basket cells 

come from granule cells. Timm staining cannot be found on the granule cell somata, or in the 

axonal segments connecting the boutons, so the axon cannot be followed to the cell from which 

it originates. On the one hand, the number of fibers necessary to justify the innervation is small 

when compared with the total population of granule cells. Therefore, although Timm-positive 

fibers likely originate from granule cells, only a small sub-population of granule cells must 

participate. On the other hand, only with this staining it cannot be strictly ruled out that these 

fibers originate from another population of hippocampal or extra-hippocampal excitatory cells. 

The studies that demonstrated that Timm-positive fibers innervated parvalbumin interneurons 

were performed in rats. Since we would work mainly in the mouse, we analyzed if this 

connectivity was also present in this species. We found Timm-positive fibers establishing 

putative contacts onto parvalbumin-positive basket cells (Figure I.7), as well as fibers travelling 

through the granule cell layer that did not come close to any parvalbumin interneuron (Figure 

I.7 and I.8). We also found Timm-positive fibers emerging from the outer molecular layer and 

the inner molecular layer, indicating that these fibers did not represent a mossy fiber collateral 

ascending from the hilus (Figure I.8 C). 

In the dorsal dentate gyrus, though present, there were not many Timm-positive fibers in the 

inner molecular layer or outer molecular layer (Figure I.8 A). Timm-positive fibers appeared in 
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the granule cell layer as individual fibers that spread in the vicinity of the subgranular zone and 

then reached the hilus, where they could not be followed due to the high density of Timm-

positive fibers. In the ventral hippocampus, however, although their morphology was similar, 

many more Timm-positive fibers were present in the inner molecular layer and granule cell 

layer (Figure I.8 B).   

Not all the parvalbumin interneurons were innervated with the same intensity. A different 

innervation pattern was found regarding the morphology of the distinct parvalbumin 

interneurons: 

1. In molecular layer parvalbumin interneurons, two situations were observed: (a) 

parvalbumin-positive somata completely located in the molecular layer were generally not 

contacted by Timm-positive boutons. (b) When the parvalbumin-positive somata were 

located in the inner molecular layer border with the granule cell layer, only few perisomatic 

Timm-positive bouton were seen (Figure I.7 D-F). 

2. Inverted fusiform parvalbumin interneurons were also generally avoided by Timm-positive 

boutons in their somata, but not in the proximal dendrites, which had generally several 

Timm-positive boutons in apposition (Figure I.7 I). 

3. Horizontal parvalbumin interneurons somata were densely surrounded by Timm-positive 

boutons, as well as their apical dendrites. As the basal dendrites entered the hilus, the 

dense staining present there precluded further observations (Figure I.7 G). 

4. Pyramidal parvalbumin interneurons were also surrounded by Timm-positive boutons, 

though in a lesser extent than the horizontal type, and they generally presented a higher 

density in their basal pole. Their dendritic trunk also had Timm-positive boutons in 

apposition, though not as many, generally up to the first branching point of the dendrite. 

Due to the nature of the staining, pyramidal and fusiform parvalbumin interneurons were 

difficult to distinguish, as the base of the soma was usually masked by the high density of 

Timm-positive elements present in the hilus (Figure I.7 A-C). 

Therefore, although some Timm-positive fibers could go unreported due to low intensity or 

penetration problems, there is a differential innervation from Timm-positive mossy fibers to 

parvalbumin interneurons according to their morphological classification. Former studies in rat 

have not discussed this aspect of the innervation, but it is clear from their images that in this 

model the different cell types are innervated differently. 
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On the other hand, there were fibers and even basket arrangements that were not attached to 

a parvalbumin cell. This fact has also been reported in rat (Blasco-Ibáñez et al., 2000). The 

nature of the target cells is difficult to identify but their morphology suggest that other 

unlabeled basket cells are also innervated. 

 

3.1. PERISOMATIC INNERVATION FROM TYPICAL GRANULE CELLS 

To undoubtedly identify the source of the Timm-positive innervation on the parvalbumin 

basket cells we proceeded to reconstruct the morphology of individual granule cells using 

intracellular injection of biocytin on acute slices. This procedure allows for complete 

reconstruction of the dendritic and axonal arbor present in the slice and additionally confirms 

the granule cell nature by observing its firing pattern.  

Granule cells located in the granule cell layer were intracellularly filled with biocytin via whole-

cell patch clamp in P15-P23 mice, and a total of 19 cells were evaluated for this partial objective. 

Generally, during the patch-clamp intracellular injection, cells located in the subgranular zone 

were avoided, to reduce the possibilities of getting immature cells. In addition, once filled, all 

cells presenting features from immature granule cells, such as an undeveloped dendritic tree 

or filopodia-like spines, were discarded.  

In those granule cells whose axon was well-filled and present in the slice, no collaterals were 

generated in the granule cell layer, and no varicosities were observed until the axon reached 

the hilus. This suggests that the vast majority of granule cells do not innervate the perisomatic 

region of parvalbumin interneurons when they are located in the granule cell layer. In addition, 

we found no mossy fiber collaterals emerging in the hilus and entering in the granule cell layer 

in any of the analyzed cells. Only one exception was found, in which we observed an axon 

collateral initiating in the hilus and entering a very small fraction in the granule cell layer, in a 

ventral slice. When the parvalbumin immunostaining was performed, no biocytin-filled fibers 

could be found in apposition to parvalbumin interneurons located in the granule cell layer. 

 

3.2. PERISOMATIC INNERVATION FROM SEMILUNAR GRANULE CELLS 

A first batch of filled semilunar granule cells was kindly supplied by Dr. Norbert Hájos, from the 

Institute of Experimental Medicine in Budapest, Hungary. A preliminary study on these cells 

suggested that the perisomatic innervation from semilunar granule cells to parvalbumin 
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interneurons exists, although not all of semilunar granule cells contributed for it. In fact, it 

seemed that cells located in the inner molecular layer but close to the granule cell layer were 

better candidates to establish this innervation.  

To complete the study, more semilunar granule cells were intracellularly filled with biocytin in 

our laboratory via whole-cell patch clamp in P15-P23 mice. This age was chosen to ensure that 

the possible postsynaptic parvalbumin interneurons would remain as healthy as possible and 

were not degenerating in the slice. 

As previously described (Ramón y Cajal, 1911; Williams et al., 2007), semilunar granule cells 

presented a wider dendritic arbor than typical granule cells and a semilunar-shaped cell body. 

Their axon used to travel in the inner molecular layer parallel to the granule cell layer, where 

sometimes ramified and formed one or two axon collaterals. These axons travelled through the 

granule cell layer to the hilus, where they ramified like the axons of typical granule cells. A more 

detailed description of semilunar granule cell morphology will be done in the next chapter of 

this thesis, but the injections confirmed their granular nature, with spiny dendrites extending 

up to the hippocampal fissure and the presence of typical giant mossy terminals in the hilus. 

First, an additional set of 41 semilunar granule cells were filled with biocytin, resectioned and 

developed with DAB-Ni. Those cells that presented promising characteristics were used for the 

parvalbumin immunostaining. From those cells, only 4 formed putative contacts on 

parvalbumin interneurons (Figures I.9 and I.10).   

These results suggest that the Timm-positive innervation that has been described on 

parvalbumin basket cells comes from semilunar granule cells. Still, it is clear that the frequency 

in which we could find these contacts was low. This fact may indicate that not all semilunar 

granule cells participate in the innervation of parvalbumin basket cells, and that there are a 

functionally distinct subpopulation of semilunar granule cells. However, this frequency could 

have been easily underestimated: first, we do not have the complete axonal arbor and could 

have lost collaterals; second, parvalbumin labelling can be lost from many basket pyramidal 

interneurons in the acute slices. They could either be dead because of the preparation or simply 

they could have not expressed parvalbumin. Third, if we consider that the term “semilunar 

granule cell” may include different subpopulation of granule cells, one of which is involved in 

the innervation to the parvalbumin basket cells, we could have been not aiming always to the 

pertinent semilunar granule cell subpopulation when patching the cells.  
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To confirm that semilunar granule cells do innervate granule cell layer interneurons, we 

searched for the synaptic contacts at the electron microscopy level. Semilunar granule cells 

were intracellularly filled and processed for electron microscopy. From a total of 57 filled cells 

for the electron microscopy study, 30 were further processed for the parvalbumin 

immunostaining. Under these conditions there were limitations relating the penetration of 

antibodies and the quality of the ultrastructure. From the most promising examples, the best 

ultrastructure corresponded to a semilunar granule cell located on the limit between the 

granule cell layer and the inner molecular layer (Figure I.11). Among the collaterals of the 

semilunar granule cell axon one of them seemed to establish dendritic and perisomatic 

contacts on a typical pyramidal parvalbumin basket cell. 

Under optical and electron microscopy, the identity of the injected cell was confirmed by its 

morphology and ultrastructure. The dendrites were covered by spines (Figure I.11 D), which 

received small boutons making asymmetric contacts, as it has been described for granule cells. 

The large varicosities of the axon in the hilus corresponded to typical mossy terminals that 

made multiple asymmetric contacts on mossy cell complex spines (Figure I.11 E). The 

reconstruction of the axonal collateral in apposition to the parvalbumin cell confirmed that the 

fiber made asymmetric synaptic contacts on the inner molecular layer proximal dendrites of 

the target parvalbumin interneuron (Figure I.12), and on the dendritic trunk of the same 

parvalbumin interneuron (Figure I.13). The boutons were small and filled with round vesicles. 

Their morphology was similar to the one described for the Timm-positive boutons on 

parvalbumin basket cells in rat under electron microscopy (Blasco-Ibáñez et al., 2000). In the 

juxtagranular hilus the axon also made synaptic contacts on parvalbumin dendrites whose 

origin could not be determined (Figure I.13) and on unlabeled postsynaptic elements 

corresponding to degenerating dendrites.  

In conclusion, our results confirm that the origin of the Timm-positive perisomatic innervation 

observed on the parvalbumin basket cells comes from granule cells, more concretely from 

semilunar granule cells, or at least, by a subpopulation of these cells. However, although we 

found no normal granule cell likely contacting parvalbumin interneurons in the granule cell 

layer, their presence cannot be completely ruled out. 

Altogether, the lack of relevance of the excitatory innervation from mossy cells on parvalbumin 

basket cells in our study, and the confirmation of the origin of the Timm-positive innervation 



 

Results 

69 

 

on them allows us to establish the semilunar granule cells as the principal source of excitatory 

perisomatic drive on parvalbumin basket cells. 
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Figure I.7 – Timm-positive boutons are found in close apposition with different subtypes of parvalbumin-
positive interneurons in the rodent dentate gyrus 
Focal planes of different subtypes of parvalbumin-positive interneurons (DAB) after Timm staining (black).  
A-C) Parvalbumin pyramidal (B) and fusiform (A, C) basket cells present many Timm-positive boutons (arrows) in 
their perisomatic region and apical and basal dendrites. 
D-F) Molecular layer parvalbumin interneurons present few if any Timm-positive boutons in the soma. In (F), a 
molecular layer parvalbumin interneuron sitting in the outer molecular layer presents no Timm-positive boutons 
in apposition. The cell somata of the parvalbumin interneurons in (D) and (E) present none and one Timm positive 
bouton (arrow). However, their dendrites entering the granule cell layer are highly innervated (arrows). 
G-H) Horizontal basket cells present a high density of Timm-positive boutons in the soma (arrows), as well as in 
the apical dendrite. In (G), though out of focus in this focal plane, a parvalbumin interneuron sitting in the inner 
molecular layer showed no Timm-positive boutons in apposition to the cell soma. 
I) Inverted fusiform parvalbumin interneurons present scarce Timm-positive innervation in the soma, but very 
dense in the dendrites, particularly, in the basal dendrites entering the hilus (arrows). 
gcl, granule cell layer; h, hilus; iml, inner molecular layer; oml, outer molecular layer.  
Scale bar for all pictures: 20 µm. 
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Figure I.8 – Timm-positive boutons distribution in the rodent dentate gyrus 
Focal planes of different sections stained for parvalbumin (DAB) after Timm staining (silver enhanced, black).  
A) Dorsal level of the dentate gyrus. In this level, Timm-positive fibers in the granule cell layer and inner molecular 
layer, though present, are scarce and generally observed closer to the hilus. 
B) Example of one Timm-positive fiber originating in the inner molecular layer and entering the granule cell layer 
(black arrows). Most likely, an axon collateral that emerges from the axon can be observed (white arrows). In this 
section, corresponding to the early ventral or intermediate dentate gyrus, some fibers lacking putative 
postsynaptic parvalbumin partner are observed. 
C) Ventral level of the dentate gyrus. In this level Timm-positive boutons are highly present in the inner molecular 
layer and in the granule cell layer. 
gcl, granule cell layer; iml, inner molecular layer; oml, outer molecular layer.  
Scale bar for all pictures: 40 µm. 
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Figure I.9 – Boutons from intracellularly filled semilunar granule cells are found in close apposition to 
parvalbumin interneurons (I) 
A) Panoramic Z-stack projection of the axon of an intracellularly filled semilunar granule cell (DAB-Ni) and 
parvalbumin immunostaining (DAB). The semilunar granule cell soma is located in the inner molecular layer in 
other section (not shown). The axon travels along the inner molecular layer and passes through the granule cell 
layer until it reaches the hilus, where it starts to ramify (black arrows). Boutons from this axon (white arrows) are 
found in apposition to the cell body and proximal dendrite of a parvalbumin interneuron (asterisk).  
B and C) Single plane of the putative synaptic boutons shown in (A), in the cell soma and dendrite respectively. 
D) Panoramic Z-stack projection of an intracellularly filled semilunar granule cell (DAB-Ni) and parvalbumin 
immunostaining (DAB). The cell body is located in the border between the granule cell layer and inner molecular 
layer, with its major axis oriented perpendicular to the granule cell layer, and both the axon (arrows) and a 
dendrite (white arrowheads) entering the granule cell layer.  
E) Stitching of single planes showing synaptic boutons (white arrows) formed by the axon of the cell in (D) on 
parvalbumin interneurons located in the granule cell layer and in the hilar border (asterisks). The main axonal 
branch is depicted by black arrows, and one ramification is depicted by black arrowheads. 
F and G) Single planes of putative synaptic boutons (white arrows) established by the axon of the cell in (D) on 
parvalbumin interneurons located in the hilus (asterisks). The axonal branch is depicted by black arrows. Note the 
presence of big mossy terminals. 
Scale bar: A and D, 100 µm; B-C and E-G, 25 µm. 
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Figure I.10 – Boutons from intracellularly filled semilunar granule cells are found in close apposition to 
parvalbumin basket cells (II) 
A) Panoramic Z-stack reconstruction from several focal planes of the axon of an intracellularly filled semilunar 
granule cell (DAB-Ni) and parvalbumin immunostaining (DAB). The axon travels along the inner molecular layer 
and establishes several collaterals in the granule cell layer (arrows). Once in the hilus, the axon forms mossy 
boutons (black arrowheads) and travels to the CA3 area. One of the collaterals forms boutons in close apposition 
to the cell body and proximal dendrite (white arrows) of a parvalbumin interneuron (asterisk).  
B) Detail of the spiny dendrite of the filled semilunar granule cell. 
C) Detail of the cell body of the filled semilunar granule cell. The axon can be easily distinguished and followed 
while it enters the inner molecular layer (arrows). 
D) Reconstruction from several focal planes of the targeted parvalbumin interneuron (asterisk) in (A), in higher 
magnification. The putative contacts are shown by white arrows. 
E) Panoramic view of a different filled semilunar granule cell, with its axon going straight to the apical dendrite of 
a parvalbumin interneuron. 
F) Reconstruction from several focal planes of the semilunar granule cell and parvalbumin interneuron (asterisk) 
in (E). The axon of the semilunar granule cell follows the dendrite of the parvalbumin interneuron, and forms 
several boutons (white arrows) in apposition to the cell.  
Scale bar: A, C and E, 40 µm; B and D, 10 µm; F, 20 µm. 
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Figure I.11 – Morphological description of a semilunar granule cell establishing synaptic perisomatic contacts 
with a parvalbumin interneuron 
Double immunostaining of an intracellularly filled semilunar granule cell, visualized with DAB-Ni, and parvalbumin 
(DAB).  
A) Panoramic view of the dendritic arbor of the intracellularly filled semilunar granule cell. The axon is observed 
running along the inner molecular layer (arrows), entering the granule cell layer and reaching the hilus, where it 
starts to produce collaterals and varicosities. 
B) Higher magnification of the axon shown in (A). On its way through the granule cell layer, the axon approaches 
to the perisomatic region of a parvalbumin interneuron. The axon at this level presents varicosities, further 
characterized as synaptic boutons. Arrows show the varicosities that were studied under the electron microscope.  
C) Cell soma of the cell shown in (A). The cell body is sitting in the border between the inner molecular layer and 
granule cell layer. We observe the axon protruding from a proximal dendrite (arrow) and running along the inner 
molecular layer, where it can be followed in the section represented in (A). 
D) Higher magnification of the dendrites of the intracellularly filled semilunar granule cell shown in (A). Spine 
morphology is similar to the one observed for typical granule cells. 
E) Serial sections under the electron microscope of a hilar mossy bouton from the semilunar granule cell shown 
in (A). The mossy bouton contacts the complex spines forming the thorny excrescences of hilar mossy cells. 
gcl, granule cell layer; h, hilus; iml, inner molecular layer.  
Scale bars: A, 50 µm; B, 10 µm; C, 25 µm; D, 20 µm; E, 1 µm. 
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Figure I.12 – Axon collaterals from semilunar granule cells establish asymmetric synaptic contacts on 
parvalbumin dendrites in the border between the inner molecular layer and granule cell layer. 
Same cells as in Figure I.11. The axon collateral of the semilunar granule cell is visualized with DAB-Ni, while the 
parvalbumin interneuron in visualized with DAB.  
A) The dendritic trunk of the parvalbumin interneuron presents a DAB-Ni positive fiber in close apposition. Black 
arrows point to the boutons that were further studied at the electron microscopy level. 
B) Electron microscopy panoramic view of the dendritic segment of the parvalbumin interneuron, in which a 
bouton (boxed area) is observed in close apposition.  
C) Consecutive ultrathin sections of the bouton shown in (B). The bouton displays the morphology of an en passant 
bouton, filled with round vesicles and establishing a synaptic contact (arrows) with the dendritic profile (d) of the 
parvalbumin basket cell. 
D) Electron microscopy panoramic view of the dendritic segment of the parvalbumin interneuron, in which a 
bouton (boxed area) is observed in close apposition. 
E) Two consecutive ultrathin sections of the bouton shown in (D). In this example, the ultrastructure allows to 
distinguish the synaptic cleft and postsynaptic density (arrow), which indicates that the boutons in this collateral 
establish asymmetric synapses on the parvalbumin dendrite. 
F) Electron microscopy panoramic view of the dendritic segment of the parvalbumin interneuron at another level, 
in which a bouton (boxed area) is observed in close apposition. Note that this bouton was already starting to 
appear in (D, arrowhead). 
G) Two consecutive ultrathin sections of the bouton shown in (F). The morphology of this bouton, though bigger, 
is similar as the previous ones, filled with round vesicles and establishing an asymmetric synapse (arrow) with the 
dendrite of the parvalbumin interneuron.  
d, dendrite from the target parvalbumin interneuron.  
Scale bars: B, D and F, 2 µm; C, E and G, 500 nm. 
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Figure I.13 – Axon collaterals from semilunar granule cells establish asymmetric synaptic contacts on 
parvalbumin dendrites in the granule cell layer and yuxtagranular hilus. 
Same cells as in Figure I.11. The axon collateral of the semilunar granule cell is visualized with DAB-Ni, while the 
parvalbumin interneurons in visualized with DAB.  
A) Optical-electron microscopy correlation of the apical dendritic trunk of the parvalbumin interneuron shown in 
Figures I.11 and I.12. A synaptic bouton (boxed area) from the semilunar granule cell axon collateral is found in 
close apposition to the dendrite of the parvalbumin dendritic trunk (arrow). Note the presence of granule cell 
bodies next to the dendrites. 
B) Two consecutive ultrathin sections from the bouton shown in (A). The postsynaptic density can be observed in 
the dendritic profile next to a clear synaptic cleft (arrow), indicating that this bouton is establishing an asymmetric 
synapse. 
C) Electron microscopy panoramic view of a string of labeled boutons (arrowheads) next to DAB-positive 
parvalbumin profiles in the hilus, in the border with the granule cell layer. 
D) Higher magnification of a labeled bouton shown in a boxed area in (C) from a different ultrathin section. This 
bouton is establishing an asymmetric synapse (arrow) with parvalbumin-positive profiles in the yuxtagranular 
hilus, probably corresponding to basal dendrites from parvalbumin basket cells.  
E) Higher magnification of a labeled bouton shown in a boxed area in (C). This bouton is also establishing 
asymmetric synapses (arrows) with a parvalbumin-positive profile in the yuxtagranular hilus. 
d, parvalbumin-positive dendrite; g, granule cell; gl, granule cell layer; h, hilus.  
Scale bars: A and C, 5 μm; B and D, 500 nm. 
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RESULTS II:  
CHARACTERIZATION OF SEMILUNAR GRANULE 
CELLS  

 

Since semilunar granule cells may play an important role in the perisomatic control of 

parvalbumin interneurons in the dentate gyrus, it is necessary to study what differences them 

from normal granule cells to gain insight in their function in the dentate circuitry. 

To study the semilunar granule cells population, we used three different approaches in our 

laboratory: (1) intracellular injection via whole-cell patch clamp; (2) a transgenic mouse line, in 

which the fluorescent protein YFP is expressed under the Thy1 promoter only by a subset of 

the principal neurons (Feng et al., 2000; Porrero et al., 2010); (3) immunohistochemistry with 

Prox1, which is a specific marker for granule cells. 

 

1. DISTRIBUTION AND ORIGIN OF SEMILUNAR GRANULE CELLS 

To estimate the number of semilunar granule cells present in the mouse brain, we performed 

an immunohistochemistry with Prox1. This protein has been described as a specific marker for 

all granule cells  (Oliver et al., 1993; Galeeva et al., 2007; Lavado and Oliver, 2007; Lavado et 

al., 2010), and allowed us to study the number and distribution of granule cells out of the 

granule cell layer. For that, we cut the brains in equal subseries and used one of them to count 

the number of Prox1-positive cells in the inner molecular layer of the dentate gyrus. We also 

considered as semilunar granule cells those cells located close to the border with the granule 

cell layer but that were separated from it, as we had previously observed that they are 

morphologically similar to those located more detached into the inner molecular layer. Among 

the similar morphological characteristics we found a more semilunar-shaped soma, wider 

dendritic arbor than deeper granule cells, and two or more primary dendrites emerging from 

the soma, generally from opposite poles. 

As previously described, Prox1-positive cells in the dentate gyrus were mainly confined in the 

granule cell layer (Lavado and Oliver, 2007; Lavado et al., 2010; Iwano et al., 2012). Some Prox1-

positive cells were found in the molecular layer and in the hilus, corresponding to semilunar 

granule cells (Gupta et al., 2012) or misplaced hilar granule cells. Sometimes, positive nuclei 
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were also found in the CA3, which have been previously identified as misplaced granule cells 

that are fully integrated in the circuitry (Szabadics et al., 2010). Only occasionally a Prox1-

positive nuclei was found in the CA1. There were also Prox1-positive cells in the cortex, 

probably corresponding to interneurons (Rubin and Kessaris, 2013). 

An average of 1072 ± 175 Prox1-positive cells were located in the inner molecular layer of one 

whole dentate gyrus from 3 young-adult mice (3 months old), from its most rostral to its most 

caudal level. In adult mice (12 months old), the number of semilunar granule cells in the inner 

molecular layer was similar (1244 ± 157 Prox1-positive cells). A summary of these results is 

shown in Graph II.1. 

Generally, Prox1-positive cells considered as semilunar granule cells were more abundant at 

ventral levels, as well as in the apex of the dentate gyrus. They were also more common in the 

suprapyramidal layer than in the infrapyramidal layer of the dentate gyrus (Figure II.1). 

Prox1-positive nuclei were also present in the outer molecular layer of all animals, though not 

in a homogeneous manner, corresponding to ectopic outer molecular layer granule cells. Some 

of these nuclei presented a more cylinder-like morphology that may correspond to a different 

orientation of the cell within the molecular layer (Martí-Subirana et al., 1986).  

The variability of the number of these cells was also higher between animals. In young-adult 

mice, 260 ± 20 Prox1-positive cells were found in the outer molecular layer of the whole 

dentate structure. In middle-age mice the number of Prox1-positive cells in the outer molecular 

layer was 280 ± 96. A summary of these results is shown in Graph II.1. 

Again, outer molecular layer Prox1-positive cells were more abundant at ventral levels of the 

dentate gyrus, and in the suprapyramidal layer than in the infrapyramidal layer. Interestingly, 

these cells generally appeared in groups, and were not evenly distributed along the whole 

outer molecular layer. 
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Graph II.1 - Number of total Prox1-positive nuclei per hemisphere in the inner molecular layer and outer 
molecular layer of three month and 1 year old mice. No significant differences could be observed between adult 
and aged mice regarding the number of Prox1-positive nuclei, neither in the inner molecular layer nor in the outer 
molecular layer. Data are shown as mean ± SEM (n=3)  

An assay of studying the same population in younger animals was unsuccessfully performed. In 

P7, P16 and P22 animals, Prox1 staining revealed the presence of nuclei generally in the inner 

molecular layer but also sometimes in the outer molecular layer. However, the quality of the 

staining, with a high unspecific glial staining, did not allow for a quantification of the number 

of semilunar granule cells at this age.  

To determine the appearance of the semilunar granule cells during the development of the 

dentate gyrus, consecutive semithin sections (1 µm-thick) of mouse dentate gyrus from 

postnatal ages: P1, P7, P10, P14, from previously embedded hippocampal slices available at the 

laboratory, were used. 

On these consecutive sections, the following stainings were performed: 

• Nissl staining with Toluidine Blue, used as a general histological marker to distinguish the

different layers in the postnatal hippocampus.

• Calretinin, as it has been described as a good marker for immature granule cells in the

mouse dentate gyrus (Liu et al., 1996). Its expression begins one day after generation and
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disappears when the cell is integrated in the circuitry, between 7 and 21 days in adults 

(Marqués-Marí et al., 2007). 

• Calbindin, which is expressed by mature granule cells that are integrated in the dentate

circuitry after the loss of calretinin (Sloviter, 1989; Celio, 1990; Brandt et al., 2003).

Due to the thinness of the sections, a single cell could be followed in the three sections and co-

expressions could be detected. 

At P1, the dentate gyrus was still not well formed (Figure II.2 A). Calretinin-positive granule 

cells were found mainly in the deepest region of the granule cell layer (Figure II.2 B), but no 

calbindin-positive cells were found yet (Figure II.2 C).  

At P7, the dentate gyrus already presented its typical shape (Figure II.2 D), and although there 

was still a majority of calretinin-positive cells (Figure II.2 E), the first calbindin-positive granule 

cells appeared in the upper region of the granule cell layer, and in the molecular layer (Figure 

II.2 F).

At P10, the infrapyramidal blade of the dentate gyrus presented already more calbindin granule 

cells, whereas the infrapyramidal did not present much yet (Figure II.3 B). The CA3 stratum 

lucidum was already labeled for calbindin, indicating that the mossy fibers were maturing and 

reaching their target (Figure II.3 A). On the other hand, we still found a majority of calretinin-

positive granule cells corresponding to immature cells, and a sparsely labeled inner molecular 

layer, corresponding to the axons of mossy cells starting to mature (Figure II.3 C). 

At P14, there was already a majority of calbindin cells, and calretinin immature neurons were 

restricted to the subgranular zone. The inner molecular layer was completely labeled for 

calretinin boutons, which means that mossy cells were already mature. Calbindin-positive 

granule cells could be seen already in the inner and outer molecular layer (Figure II.3 E and F). 

Altogether, the fact that no calretinin-positive granule cells were found in the inner molecular 

layer, and that the first calbindin-positive granule cells appeared in this region, is indicative that 

semilunar granule cells are among the first to be generated and to migrate to the inner 

molecular layer in early postnatal development of the dentate gyrus. It is also noteworthy that 

the suprapyramidal cell layer, that contains higher number of semilunar granule cells, is also 

formed earlier than the infrapyramidal cell layer.  



Figure II.1 – Prox1 expression in the mouse dentate gyrus 
Immunohistochemistry for Prox1 (DAB) in different levels of the mouse dentate gyrus. 
A, B) Dorsal sections of the dentate gyrus, corresponding to Bregma -1.5 mm (A) and -2.8 mm (B) approximately. 
Prox1-positive nuclei out of the granule cell layer abound in the apex. There is a higher incidence of semilunar 
granule cells in the suprapyramidal blade than in the infrapyramidal blade, as well as more Prox1-positive cells in 
the molecular layer at more caudal levels. 
C) Ventral section of the dentate gyrus. There is an increment in the number of Prox1-positive nuclei both in the
inner and outer molecular layer, in comparison with more dorsal levels.
D) Higher magnification of an area in the CA3 as delimited in the inset in panel (C), where a relatively high number
of ectopic granule cells can be found.
E, F) Higher magnification of the insets in (C) of the infrapyramidal granule cell layer (E), and suprapyramidal
granule cell layer (F). Semilunar granule cells are more abundant in the suprapyramidal than in the infrapyramidal
layer. In the dorsal molecular layer, semilunar granule cells remain within the inner molecular layer, reaching the
border but just crossing it seldom (arrows). However, in more ventral regions of the molecular layer, more ectopic
granule cells can be found in the outer molecular layer (arrowheads). Note also that ectopic granule cells in the
outer molecular layer are also grouped in clusters instead of being equally distributed.
gcl, granule cell layer; h, hilus; iml, inner molecular layer; infra gcl, infrapyramidal granule cell layer; oml, outer
molecular layer; supra gcl, suprapyramidal granule cell layer.
Scale bar: A-C, 500 µm; D-F, 200 µm.
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Figure II.2 - First appearance of calbindin immunoreactive granule cells. 
A) At 1 day postnatal, the dentate gyrus (DG) appears as a blurred diffuse cell layer at the end of the forming
Cornu Ammonis (CA).
B, C) Calretinin (B) and calbindin (C) in two consecutive semithin sections (1 µm thick). Granule cells forming the
granule cell layer were small, and presented calretinin immunoreactivity. There were also numerous putative
granule cells in the hilus that were also immunoreactive for calretinin.  The molecular layer was narrow and some
large calretinin immunoreactive cells were present there. These cells may correspond to Cajal-Retzius cells.
Calbindin was still absent from cells in the dentate gyrus.
D- F) At 7days postnatal, consecutive semithin sections stained for Nissl, calretinin and calbindin respectively. The
morphology of the dentate gyrus was maturing, but there were abundant immature neurons in all layers; some
more mature neurons began to appear. Immature granule cells were small and immunoreactive for calretinin but
not for calbindin (red arrows). Maturing cells presented larger nucleus free of chromatin lumps in which nucleoli
could clearly be distinguished. They were calretinin-immunonegative granule cells that began to show calbindin
immunoreactivity concentrated in the nucleus (black arrows). These calbindin cells were located in the areas in
which the semilunar cells are located. Maturation began in the free border of the dorsal blade of the dentate gyrus 
where these pictures were taken. There is no overlapping between these granule cell populations.
CA, Cornu Ammonis; DG, dentate gyrus; h, hilus; gcl, granule cell layer; ml, molecular layer. Capillaries served as
landmarks (asterisks).
Scale bar 50 μm.
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Figure II.3 - Maturation of semilunar granule cells 
A) By 10 days postnatal, the dorsal blade of the dentate gyrus (black arrows) presents calbindin immunoreactivity
but the ventral blade (red arrows) only has sparse calbindin cells. The stratum lucidum of CA3 (asterisk),
corresponding to the projection field of granule cells, is becoming immunoreactive.
B, C) Consecutive sections from a 10 days postnatal animal stained for calretinin (B) and calbindin (C). Calretinin
granule cells (red arrows) are small cells sited mainly in the subgranular area of the dentate gyrus, and they are
still very numerous. The inner molecular layer can be distinguished for the first time due to the presence of
calretinin boutons in it, representing the maturation of the hilar mossy cells. Calbindin cells (black arrows) are
large, by this stage they present calbindin immunoreactivity in the perykaria and in their dendrites, defining the
molecular layer. Only the cells with somata in the molecular layer and the border of the granule cell layer seem to
strongly express calbindin.
D-F) Consecutive semithin sections from a 14 days old animal stained for Nissl (D), calretinin (E) and calbindin (F).
The dentate gyrus is acquiring its mature configuration. Although many small nuclei, corresponding to calretinin
immunoreactive cells (red arrows), are present in the subgranular zone adjacent to the hilus, the granule cell layer
is formed by large nuclei with mature granule cell characteristics and expressing the mature marker calbindin
(black arrows). On the other hand the inner molecular layer is now filled with calretinin boutons, arising from the
hilar mossy cells. These boutons surround the calbindin cells present in the upper border of the dentate gyrus and 
the granule cells present in this area. Calbindin immunoreactivity corresponding to mature granule cells dendrites 
fills the molecular layer, whereas the calbindin immunoreactivity in the hilus corresponds to the mossy fibers.
DG, dentate gyrus; h, hilus; gcl, granule cell layer; iml, inner molecular layer; oml, outer molecular layer. Capillaries 
were used as landmarks (asterisks). Scale bar 50 μm.
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2. MORPHOLOGICAL CHARACTERIZATION OF SEMILUNAR GRANULE

CELLS

To have a better knowledge of the morphological characteristics of semilunar granule cells, we 

studied 60 intracellularly filled cells. These cells were chosen according to their location in the 

inner molecular layer of the dentate gyrus and morphology. We discarded those cells that could 

not be clearly identified as granule cells, and kept for the analysis only those cells that 

presented a similar morphology according to previous data. Due to the staining, not all 

reconstructed cells could be analyzed for all different features, so the data are given as a 

percentage of analyzed cells. 

Semilunar granule cells had a wide dendritic arbor, which generally created a half-moon shape 

in the soma, with a long axis generally defined by the protrusion of the main dendrites (hence 

the “semilunar”), and a short axis defined by the scarce cytoplasm surrounding the nucleus. 

From the soma, two to four principal dendrites arose toward the hippocampal fissure. 

Our results showed that many semilunar granule cells displayed distinct morphological 

features, when compared to typical granule cells (Figure II.4).  

One characteristic was the location of the axon initial segment (Figure II.4 F and G). We 

observed the semilunar granule cell axon initial segment was located in a main dendrite in 31% 

of the analyzed reconstructed cells (8 out of 26), rising from it and forming an almost right 

angle. Though this feature has been previously observed in interneurons, it is not so common 

for principal cells. The frequency in which we observe axon-carrying dendrites in semilunar 

granule cells is high compared to typical granule cells, in which the axon almost always emerges 

from the cell body. 

Another morphological feature was the presence of dendrites entering the granule cell layer 

and even the hilus, instead of travelling to the hippocampal fissure (Figure II.4 I). This 

phenomenon appeared with less frequency than the former one, in only 21% of the analyzed 

reconstructed cells (11 out of 52). In these cells, we could usually observe dendritic mature 

dendritic spines and a completely formed mossy fiber, which discards the possibility that they 

are still migrating immature granule cells. 
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2.1. SHOLL ANALYSIS 

Sholl analysis was used to determine the dendritic arborization pattern of biocytin filled 

semilunar granule cells. Intersections were set at 20 µm, and different crossing points were 

statistically compared with typical granule cells. The aim of this analysis was to observe if the 

wider dendritic arborization observed for semilunar granule cells was translated into a higher 

neurite complexity, especially in distal dendrite branches located in the outer molecular layer, 

where they receive input from the entorhinal cortex.  

As a normal distribution was not accomplished in all situations, a U Mann-Whitney test was 

performed. In closer distances to the soma, the number of crossings in the sholl analysis was 

statistically significant, as expected. However, in longer distances, there was no statistical 

significance between the numbers of crossings (Graph II.2).  

These data indicate that the arborization complexity in both cell populations is similar, and 

suggest that semilunar granule cells do not present a higher chance of receiving more input 

from entorhinal cortex than typical granule cells. 

Graph II.2 - Sholl analysis of anatomically reconstructed typical granule cells and semilunar granule cells. 
Statistical difference is found in the proximal dendritic tree, where the number of crossings is higher for semilunar 
granule cells (n=20) than for typical granule cells (n=10). In the distal dendritic arbor, no differences are found. 
Data are shown as mean ± SEM.  *(p < 0.05) and *** (p<0.001) indicate statistically significant differences between 
groups after U-Mann Whitney test.  
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We measured the longest and shortest diameter of the somata of YFP-positive typical granule 

cells (n=28) and YFP-positive semilunar granule cells (n=32) in Thy1 transgenic mice, to assess 

whether there was a difference in the cell body size. Our results show that both cell populations 

present a similar cell body size (long diameter: 12.04 ± 1.09 µm for typical granule cells, and 

11.95 ± 1.91 µm for semilunar granule cells; short diameter: 8.41 ± 0.97 µm for typical granule 

cells, and 8.97 ± 1.01 µm for semilunar granule cells). 

2.2. ULTRASTRUCTURAL STUDY OF SEMILUNAR GRANULE CELLS IN THE INNER 

MOLECULAR LAYER AND ECTOPIC GRANULE CELLS IN THE OUTER MOLECULAR LAYER 

Ultrastructural analysis was also conducted in semilunar granule cells in the inner molecular 

layer, and ectopic granule cells in the outer molecular layer. For the ultrastructural analysis, 

semilunar and ectopic granule cells were recognized either by their granule-like morphology, 

or by the nuclear marker Prox1. Several approaches were used, and all of them shared the 

same characteristics. 

Semilunar granule cells were usually as big as typical granule cells, although apparently more 

cytoplasm could be observed in semilunar granule cells than in typical granule cells. The cell 

body sometimes presented a more triangular-shaped (or semilunar) morphology. In our 

preparations from 3-5 months old mice, the Golgi apparatus were quite abundant, as well as 

lipofuscin bodies. No other differences were found between semilunar granule cells and typical 

granule cells. 

Their cell bodies seemed to have glial processes in apposition more frequently than typical 

granule cells. Satellite glial cells somata were frequently found close to ectopic granule cells 

located in the outer molecular layer. However, this fact may be probably due to their location 

in the molecular layer instead of their function. 

Quite often, and more frequently in the outer molecular layer, semilunar or ectopic granule 

cells presented small protrusions which resembled small somatic spines (Figure II.5). Examples 

of this phenomenon have been found, with varying incidence, in most of the semilunar and 

outer molecular layer ectopic granule cells studied. However, only few synapse specializations 

have been found on them, and also generally in the outer molecular layer. 

To exclude the possibility that these somatic spines may be an artifact due to fixation with 

acrolein or the mouse strain, rat tissue for standard electron microscopy was analyzed in search 
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of somatic spines (Figure II.5 H-I). Our results show that these cells also present spine-like 

protrusions on their cell body although, due to the small sample analyzed, no actual synapses 

were found on them. 
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Figure II.4 – Morphological features of semilunar granule cells 
A-C) Three examples of intracellularly filled normal granule cells. From an ovoid body protrudes one apical
dendrite that ramifies extensively in the molecular layer and reaches the hippocampal fissure. The axon grows
from the basal part of the soma and goes directly to the hilus (arrows).
D-E) Example of two intracellularly filled semilunar granule cells in the border between the inner molecular layer
and the granule cell layer. The axon in these cells (arrows) originates in the cell soma, and either enters straightly
in the granule cell layer (D) or travels along the inner molecular layer until it enters the granule cell layer (E).
F-G) Example of two intracellularly filled semilunar granule cells at different levels of the inner molecular layer. In
these cells, the axon (arrows) arises from the proximal part of the dendrite in (G), and from a relatively distant
dendritic segment in (F). Note also the huge dendritic extension of the cell in (F) in the molecular layer when
compared to typical granule cells.
H-I) Example of two intracellularly filled semilunar granule cells in the border between the inner molecular layer
and the granule cell layer. These cells display more than two main dendrites originating in the soma. They also
extend their dendritic arbor in a wider extension than typical granule cells. The axons in both cells travel a
considerable distance along the inner molecular layer until they enter in the granule cell layer (arrows), presenting
varicosities during its transit by the granule cell layer. The semilunar granule cell in (I) shows, in addition, one basal
dendrite entering the granule cell layer and reaching the hilus (arrowhead).
Scale bar for all images: 50 µm.
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Figure II.5 – Semilunar granule cells present spine-like protrusions and spines in the cell soma 
A-C) Low-magnification views of somatic spines of three different semilunar granule cells of the inner molecular
layer under electron microscopy.
D) High-magnification image of a spine-like protrusion of a semilunar granule cell (arrowhead). No synaptic contact
or indicative was found on the head or neck of this protrusion in consecutive sections.
E) High magnification of the spine shown in (A). This protrusion lacks the typical shape of spines found in the
dendrites of principal cells, and no neck-head structure is found. It receives an excitatory synaptic contact in its
head (white arrow).
F) High magnification of the spine shown in (B). This spine-like protrusion is probably receiving a synaptic contact
in its head (white arrow).
G) High magnification of the spine shown in (C). The white arrow indicates the synaptic contact received from a
probably excitatory presynaptic bouton.
H-I) Two examples of spine like protrusions (arrows) from semilunar granule cells in the inner molecular layer of
the rat dentate gyrus. The fixation used here is GA 2%, in contrast to acrolein used in the previous examples. This
shows that the presence of these spine-like protrusions is found both in mouse and rat, and it is not dependent
of the fixation agent.
Scale bar: A-C, 1 µm; D-I, 400 nm.
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3. NEUROCHEMICAL CHARACTERIZATION OF SEMILUNAR GRANULE

CELLS

In order to determine the phenotypic characteristics of these neurons, and to find a marker 

which could be used to differentiate this population, we tried a set of different 

immunohistochemical stainings using several markers. 

We used a transgenic mice line expressing the fluorescent protein YFP under the Thy1 

promoter, resulting in a selective staining of principal cells in several regions of the brain (Feng 

et al., 2000; Porrero et al., 2010), including the dentate gyrus, to test the expression of the 

markers on the semilunar granule cells. We decided to test this methodology instead of a 

double immunostaining protocol with Prox1 and the selected marker for two reasons: (1) for 

unknown causes, it was difficult to obtain good-quality preparations with double 

immunohistochemistry for Prox1 and other markers for fluorescence microscopy; (2) with Thy1 

transgenic mice we could see only a proportion of the principal cells among which semilunar 

granule cells are included, but with the advantage that we could see the cells of interest in a 

golgi-like manner, helping us to distinguish the semilunar granule cells based on their 

morphological features.  

If all granule cells were Thy1-YFP-positive, the intense fluorescence from their somata and 

dendrites would make analysis impossible. But on the other hand, since not all the granule cells 

are Thy-1 positive, we present the data in this chapter referred to the number of Thy1-YFP-

positive cells, and not referred to the total number of cells present in each area. It is also worth 

noting that those cells whose cell body was located close to the border between the granule 

cell layer and the inner molecular layer presented similar morphological characteristics 

previously described for semilunar granule cells (Ramón y Cajal, 1911; Williams et al., 2007). 

Therefore, they were also included among the semilunar granule cells. 

3.1. CO-EXPRESSION OF GRANULE CELL MARKERS AND PRINCIPAL CELL MARKERS 

3.1.1. CAMKII 

YFP-positive cells (n=372) were analyzed in the inner molecular layer from three different 

animals, and all of them co-expressed the marker for mature excitatory neurons 

Ca2+/calmodulin-dependent protein kinase II (CAMKII). From the 47 YFP-positive cells analyzed 

in the outer molecular layer, only one was not CAMKII-positive. Therefore, virtually all the YFP-
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positive cells in the dentate gyrus of these animals correspond to excitatory cells. This fact 

makes YFP in combination with morphology a reliable marker for this subpopulation of 

semilunar granule cells (Figure II.6).  

3.1.2. PROX1 

We used Prox1 to determine whether the YFP-positive cells that we see in this transgenic strain 

corresponded with the “misplaced” granule cells located in the molecular layer, that we 

considered semilunar granule cells. 

From 360 YFP-positive cells analyzed in the inner molecular layer in three different animals, 

99.8 ± 0.4% colocalized with Prox1. In the outer molecular layer, 93.4 ± 7.2% of the 43 YFP-

positive cells analyzed colocalized with Prox1 (Figure II.7). Therefore, the majority of the Prox1 

cells in the inner molecular layer corresponded to granule cells. In the outer molecular layer 

there is a possibility that some of the principal cells located in this area do not correspond to 

granule cells, still the high colocalization suggests that all granule cells in this area express 

Prox1.  

A summary of the colocalization between YFP and the different markers for principal cells, in 

Thy1 transgenic mice, can be seen in Table II.1.  

3.2. CO-EXPRESSION OF CALCIUM BINDING PROTEINS 

Semilunar granule cells are known to present different intrinsic Ca+2 dynamics than typical 

granule cells (Williams et al., 2007). To assess if this difference could be underlined by a 

different buffering of Ca+2 in these cells, we examined the colocalization of Thy1 positive 

neurons with the three calcium binding proteins: parvalbumin, calretinin and calbindin.  

3.2.1. CALBINDIN 

The calbindin D-28k immunostaining observed in Thy1 mice was as previously described 

(Sloviter, 1989; Celio, 1990): granule cell somata and processes were labeled with calbindin, 

though not all of granule cells were labeled.  

YFP-positive cells were analyzed in the inner molecular layer (n=379) and outer molecular layer 

(n=44), in three different animals. In the inner molecular layer, 78.6% ± 10.4% of Thy1-postive 

cells were also positive for calbindin. In the outer molecular layer, however, 81% ± 7.8% of 



Results 

101 

Thy1-positive cells coexpressed calbindin (Figure II.8). Therefore calbindin is a maker for 

semilunar granule cells but it does not label all of them. 

3.2.2. PARVALBUMIN 

The immunostaining of parvalbumin in Thy1 mice also presented the expected pattern 

(Sloviter, 1989; Celio, 1990). The labelling corresponded to the somata of parvalbumin 

interneurons located in the granule cell layer, hilus and in the border of the inner molecular 

layer and granule cell layer. Positive dendrites were located both in the hilus and molecular 

layer, and we also observed axon terminals located in the granule cell layer with synaptic 

boutons surrounding granule cells. 

As expected, no colocalization of YFP-positive neurons and parvalbumin was observed (Figure 

II.9). On the other hand, we could find basket-like boutons surrounding many YFP-positive

somata in the inner and outer molecular layer. This means that semilunar granule cells are

probably perisomatically controlled by parvalbumin basket cells, in a similar way as granule

cells. This inhibitory innervation may come from local parvalbumin-positive basket cells, or, less

probably, from projecting parvalbumin interneurons.

3.2.3. CALRETININ 

The immunostaining of calretinin adjusted to the expected pattern in the mouse (Liu et al., 

1996; Blasco-Ibáñez and Freund, 1997; Fujise et al., 1997). Hilar mossy cells were 

immunoreactive, in an increasing number as we reached more ventral sections. There were 

also some immature granule cells in the subgranular zone. A few calretinin interneurons were 

present in the hilus and granule cell layer. We could also find some calretinin-positive cells in 

the molecular layer that probably correspond to interneurons as well as to Cajal-Retzius cells 

(Liu et al., 1996). The inner molecular layer was completely filled with calretinin neuropil 

coming from mossy cells (Blasco-Ibáñez and Freund, 1997; Fujise et al., 1997). 

Our slides showed no colocalization between YFP-positive neurons and calretinin in the inner 

or the outer molecular layer (Figure II.10). However, we could see calretinin-positive puncta 

resembling synaptic boutons in close apposition to some YFP-positive cell somata in both the 

inner molecular layer and the outer molecular layer. Due to the dense packing of the calretinin-

positive fibers in the inner molecular layer, it was expected to find calretinin-positive neuropile 
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close to our cells, leading to a false-positive colocalization in confocal microscopy. However, 

the presence of calretinin-positive puncta in apposition with YFP-positive somata in the outer 

molecular layer, where the calretinin-positive elements are more scattered, could mean that 

outer molecular layer ectopic granule cells specifically receive a calretinin-positive innervation 

and were suggestive of calretinin perisomatic innervation on the semilunar granule cells in the 

inner molecular layer. 

A summary of the colocalization between YFP and the different calcium binding proteins, in 

Thy1 transgenic mice, can be seen in Table II.1.  

iml oml 
Principal cell markers 

Prox1 99.8 ± 0.4% 93.4 ± 7.2% 
CAMKII 100.0 ± 0.0% 97.0 ± 5.3% 

Calcium Binding Proteins 
Parvalbumin 0% 0% 

Calretinin 0% 0% 
Calbindin 78.6 ±  10.4% 81.0 ± 7.8% 

Table II.1 - Colocalization of YFP-positive cells in the inner molecular layer and outer molecular layer with 
different principal cell markers and calcium binding proteins. Data are shown as mean ± SD of three different 
animals 

3.3. CART PEPTIDE EXPRESSION 

Cocaine- and amphetamine-regulated transcript (CART) peptide has been shown to be 

expressed by mossy cells in the human, and by a subpopulation of granule cells in the rat 

(Seress et al., 2004; Abrahám et al., 2007). This subpopulation is comprised by the granule cells 

located in the border between the molecular layer and the granule cell layer, and could be 

therefore similar to the subpopulation of granule cells that we are interested in. 

CART peptide has also been shown to be expressed by granule cells which are located in the 

border between the granule cell layer and the molecular layer in other rodent species, like the 

vole or the guinea pig (Hunter et al., 2005; Kolenkiewicz et al., 2009). Therefore it looked as a 

promising specific marker for semilunar granule cells. 

As it had been previously described that this antigen is degraded rapidly, at least in post-

mortem tissue (Seress et al., 2004), sections from fresh perfused animals were used for these 

experiments.  
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Expression of CART in the hypothalamus was similar to the labelling previously reported (Koylu 

et al., 1998). The antibody labeled, with an intense stain, the subpopulation of hypothalamic 

neurons that specifically express CART peptide. Thick CART peptide-positive fibers were found, 

though scarce, all over the telencephalon with a high degree of staining. 

When we tested this antibody in the mouse and rat hippocampus, the number of labeled cells 

was too low, even although we were able to find CART-positive neurons that resembled 

semilunar granule cells (Figure II.11). Other cell types, with different morphological 

characteristics than semilunar granule cells, were found in the molecular layer and in the hilus. 

These CART-positive cells may correspond to mossy cells or interneurons, but no further effort 

was performed to characterize them. CART-positive fibers were also present in the dentate 

molecular layer, mainly in the outer two thirds. Sometimes, these fibers travelled from the 

hippocampal fissure to the hilus, were they established collaterals (Figure II.11 B). These CART-

positive fibers were scarce, and exhibited several varicosities.  

CART peptide immunostaining was combined with a Timm staining in hippocampal sections 

from six recently perfused mice, to check whether the apparent Timm-positive fibers present 

in the granule cell layer could arise from CART-positive cells. When we found a CART-positive 

putative semilunar granule cell, we could usually observe a Timm-positive fiber close to the 

cell. This suggests that Timm-positive fibers may arise from CART-positive semilunar granule 

cells. However, as Timm staining only labels the boutons, and the axon in semilunar granule 

cells not always protrudes from the cell soma, we could not be certain that these Timm fibers 

did arise from the CART-positive cells. 

We also tested CART peptide immunostaining in tissue from recently perfused colchicine-

treated animals (n=3) in order to increase the immunoreactivity at the somata. CART 

immunostaining showed slightly more positive cells in colchicine treated animals than in 

control animals. However, the amount of positive-cells was still low, and not constrained to 

semilunar granule cells. 

Therefore, though promising, we had to discard this peptide as a marker for semilunar granule 

cells in our particular conditions. 
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3.4. SEMILUNAR GRANULE CELL ACTIVATION: EXPRESSION OF THE CELL ACTIVATION 

MARKER FOS 

Semilunar granule cells receive a stronger glutamatergic input than typical granule cells, 

partially coming from mossy cells (Williams et al., 2007). This, among other facts, ensure a 

physiological state that allows semilunar granule cells to trigger plateau potentials (Larimer and 

Strowbridge, 2010). Therefore, they are expected to be constitutively more active than typical 

granule cells, both in control conditions and after excitation.  

To verify this hypothesis, we studied the expression of the neuronal marker Fos in the dentate 

gyrus of adult mice, as it is extensively used as a marker for cell activity (Dragunow and Faull, 

1989). The expression of the c-fos gene is dependent on the presence of calcium as a second 

messenger (Sheng et al., 1990). Therefore, the presence of the c-Fos protein can be related to 

a high synaptic activity, as the intracellular calcium levels increase when the cell fires action 

potentials.  

In a first approach, we studied the colocalization of pan-fos with YFP-expressing cells in the 

inner and outer molecular layer of three Thy1 transgenic mice, to have and overall idea of the 

level of activity of this cell population. Our results show that the proportion of YFP-positive cells 

that colocalized with pan-Fos reached 83.9 ± 4.7% from 427 YFP-positive cells analyzed in the 

inner molecular layer, and 88.6 ± 10.9% from 45 YFP-positive cells in the outer molecular layer. 

In contrast, from a total of 806 YFP-positive randomly selected typical granule cells from 4 

different animals, only 12.9 ± 3,9% of the cells were considered also pan-Fos positive. From 

these data, we can assume a higher activity level for semilunar granule cells than for normal 

granule cells.  

However, considering that pan-Fos labels several proteins of the Fos family (c-Fos, Fra1, Fra2 

and FosB), the difference in this staining cannot fully correlate with cell activity, and other 

cellular mechanisms can be influencing our results. Therefore, the staining for c-Fos was 

preferred in further analysis, as it is temporally more accurate in terms of neuron activity. In 

this case, a big heterogeneity in the labeling pattern was observed in the different animals 

used, as well as in the dorso-ventral axis of each single animal. Therefore, no quantitative 

analysis was performed for this partial objective. 

A gradation in the staining intensity was obtained, and we considered only nuclei with 

moderate or high c-Fos labelling. In the dentate gyrus, c-Fos-positive nuclei were generally 
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located all along the granule cell layer. Very frequently, intensely labeled c-Fos nuclei were 

observed in the border between the granule cell layer and the inner molecular layer, and 

sometimes (though not so often) also in the outer molecular layer. Both weak and intense 

labeled nuclei were found among the typical granule cells and among the semilunar granule 

cells. 

However, considering the amount of c-Fos-positive nuclei in the inner molecular layer and in 

the granule cell layer, and the number of cells present in both laminae, semilunar granule cells 

seem to express c-Fos more frequently, and therefore they may be more active than typical 

granule cells. 

To rule out the possibility of having c-Fos positive elements that belong to interneurons instead 

to semilunar granule cells, a double immunostaining against Prox1 and c-Fos was performed in 

three adult animals. In the outer and inner molecular layer, c-Fos expression was almost always 

associated with Prox1-positive nuclei, and only once a c-Fos nucleus did not coexpress Prox1. 

Whenever a Prox1-positive nucleus was seen in the hilus, its c-Fos expression was also checked. 

In this regard, we found no colocalization between putative hilar ectopic granule cells and c-

Fos. The same absence of colocalization was observed for the scarce Prox1-positive nuclei 

found in the CA3 region of the hippocampus. 
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Figure II.6 – CAMKII and YFP-positive cells in Thy-transgenic mice colocalize in the molecular layer of the mouse 
dentate gyrus 
The YFP protein is expressed under the promoter of Thy1, and selectively labels principal cells. For clarity, YFP is 
visualized in red, and the term Thy1 was used instead of YFP to avoid further confusion with the color. 
All YFP-positive cells were also immunopositive for CAMKII, indicating that all the cells studied are principal cells. 
Note the presence of CAMKII-positive cells that are not positive for YFP.  
A) Colocalization of CAMKII and YFP (arrow) in the border between the granule cell layer and the inner molecular
layer.
B) Colocalization of CAMKII and YFP (arrows) in the border between the inner molecular layer and the outer
molecular layer.
C) Colocalization of CAMKII and YFP (arrow) in the outer molecular layer. In this region, the majority of YFP-cells
present their cell body with the long axis oriented perpendicularly to the granule cell layer.
gcl, granule cell layer; iml, inner molecular layer; oml, outer molecular layer. Scale bar for all images: 50 µm.
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Figure II.7 – Prox1 and YFP-positive cells colocalize in the molecular layer of the Thy1 transgenic mouse dentate 
gyrus 
The YFP protein is expressed under the promoter of Thy1, and selectively labels principal cells. For clarity, YFP is 
visualized in red, and the term Thy1 was used instead of YFP to avoid further confusion with the color. 
Almost all YFP-positive cells present Prox1-positive nuclei. Therefore, the vast majority of the principal cells 
present in the molecular layer correspond to semilunar granule cells and ectopic outer molecular layer cells. 
A) Colocalization of Prox1 and YFP (arrow) in the inner molecular layer, next to the border of the granule cell layer.
B) Colocalization of Prox1 and YFP (arrow) in the limit between the inner molecular layer and the outer molecular
layer.
C) Colocalization of Prox1 and YFP (arrow) in the outer molecular layer.
D) An example of the scarce YFP-positive cells not colocalizing Prox1 (arrowhead). These cells represent a low
proportion of the YFP population in the molecular layer. Note that the morphology of this cell does not correspond 
to the morphology of semilunar granule cells.
gcl, granule cell layer; iml, inner molecular layer; oml, outer molecular layer. Scale bar for all images: 50 µm.
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Figure II.8 – Calbindin and YFP-positive cells colocalize in the molecular layer of Thy-transgenic mice dentate 
gyrus. 
YFP protein is expressed under the promoter of Thy1, and selectively labels principal cells. For clarity, YFP is 
visualized in red, and the term Thy1 was used instead of YFP to avoid further confusion with the color. 
The majority of the YFP-positive cells, though not all, express the calcium binding protein calbindin. 
A) White arrows show one YFP-positive colocalizing calbindin (arrow), and one YFP-positive immunonegative for
calbindin (arrowhead) in the border between the inner molecular layer and the granule cell layer.
B) Colocalization of calbindin and YFP (arrow) in the inner molecular layer.
C) Colocalization of calbindin and YFP (arrow) in the outer molecular layer.
gcl, granule cell layer; iml, inner molecular layer; oml, outer molecular layer. Scale bar for all images: 50 µm.
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Figure II.9 – YFP-positive cells in Thy-transgenic mice are immunonegative for the calcium binding protein 
parvalbumin 
The YFP protein is expressed under the promoter of Thy1, and selectively labels principal cells. For clarity, YFP is 
visualized in red, and the term Thy1 was used instead of YFP to avoid further confusion with the color. 
A) No YFP-positive cells were found immunopositive for parvalbumin in the inner molecular layer. Example of an
YFP-positive cell negative for parvalbumin (arrow). Parvalbumin-positive puncta was found in apposition to cell
somata in the granule cell layer. YFP-positive cells in the inner molecular layer also presented parvalbumin-positive
puncta (arrows inside the inset) in apposition to the cell soma, indicating a putative perisomatic inhibitory
innervation from parvalbumin interneurons to semilunar granule cells.
B-C) No YFP-positive cells were found immunopositive for parvalbumin in different heights of the outer molecular
layer, but generally presented parvalbumin-positive puncta in apposition to the cell soma (arrows inside the inset),
indicating a putative perisomatic inhibitory innervation from parvalbumin interneurons to ectopic granule cells in
the molecular layer. In (C), a parvalbumin-positive profile from an interneuron is observed in the granule cell layer.
gcl, granule cell layer; iml, inner molecular layer; oml, outer molecular layer. Scale bar for all images: 50 µm.
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Figure II.10 – YFP-positive cells in Thy1 transgenic mice are immunonegative for the calcium binding protein 
calretinin 
The YFP protein is expressed under the promoter of Thy1, and selectively labels principal cells. For clarity, YFP is 
visualized in red, and the term Thy1 was used instead of YFP to avoid further confusion with the color. 
A) No YFP-positive cells were found immunopositive for calretinin in the inner molecular layer. Example of an YFP-
positive calretinin-negative cell (arrows). Note the high density of calretinin-positive puncta in the inner molecular
layer, due to the fibers and boutons of mossy cells.
B-C) No YFP-positive cells were found immunopositive for calretinin in different heights of the outer molecular
layer, as shown in these two examples of YFP-positive calretinin-negative cells ectopic granule cells (arrows). This
may also indicate that none of the semilunar granule cells and the outer molecular layer ectopic granule cells are
immature cells. Another example of a calretinin-immunonegative semilunar granule cell is depicted with an arrow 
in (C).
Scale bar for all images: 50 µm.
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Figure II.11 – CART peptide antigenicity in semilunar granule cells. 
CART peptide expression was scarce in the mouse dentate gyrus. It was not limited to semilunar granule cells, as 
some hilar neurons were also CART-positive (not shown). 
A) A more intense labelling of CART peptide was generally found in the cells of the most superficial part of the
granule cell layer, in its border with the inner molecular layer. The size and shape of the labeled cells (arrows) was
similar as the one expected for semilunar granule cells, and similar to the staining obtained with CAMKII.
B) CART-positive fibers were observed rarely in the dentate gyrus, entering via the hippocampal fissure and
travelling through the molecular (black arrowheads) and granule cell layer to the hilus (not shown). In their way,
several varicosities were observed.
C-E) Images from a CART peptide staining performed after a Timm staining, to check if Timm-positive fibers arise
from the vicinity of these cells. We could often see Timm-positive fibers (arrowheads) appearing close to the cell
bodies of CART peptide-positive cells (arrows). Due to the nature of the technique, that only labels the boutons,
we could not be absolutely certain that these Timm boutons did arise in every case from the labeled cell.
Scale bar: A-B, 100 µm; C-E, 50 µm.
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4. SYNAPTIC INPUT TO SEMILUNAR GRANULE CELLS

The study aiming the phenotypical characterization of semilunar granule cells gave us a clue 

that although they shared characteristics with typical granule cells, they could receive different 

drive due to their different location. 

To verify that the perisomatic innervation suggested by the preceding chapter was really 

present, and not just false-positive elements, the perisomatic innervation of semilunar granule 

cells was studied under the electron microscope. 

4.1. PERISOMATIC INHIBITORY INNERVATION 

No previous anatomical study has been made to identify the innervation that semilunar granule 

cells receive differently from typical granule cells. In this dissertation we have centered the 

study to the perisomatic innervation, using Prox1 and c-Fos as a marker for this cell population, 

and confirming its granule nature under the electron microscope. 

In the previous section, we showed that YFP-positive neurons in the molecular layer, 

corresponding to semilunar granule cells, presented parvalbumin-positive puncta surrounding 

their somata. In another immunostaining with VGAT and Prox1 (not shown) we confirmed that 

this cell population receives an important perisomatic inhibition. This perisomatic innervation 

extended also to cells located into the outer molecular layer. 

To confirm the existence of a perisomatic inhibitory drive to semilunar granule cells, two 

different sources were studied: (1) parvalbumin-positive boutons that correspond to 

perisomatic-targeting fast-spiking interneurons; and (2) CCK-positive boutons that correspond 

to perisomatic-targeting regular-spiking interneurons. 

4.1.1. PERISOMATIC INNERVATION FROM PARVALBUMIN BASKET CELLS 

First, we made a double immunostainig with DAB-Ni for parvalbumin and DAB for Prox1. We 

observed clear basket-like parvalbumin-positive arrangements around some Prox1-positive 

cells. Usually these boutons were intensely labeled, but we also found weak labeled terminals 

surrounding Prox1-positive nuclei, which could indicate a lower expression level of 

parvalbumin in those cases. Only rarely we found Prox1-positive cells that did not show any 

parvalbumin-positive puncta in apposition (Figure II.12). 
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To confirm that these boutons established synaptic contacts with semilunar granule cells, we 

checked them under the electron microscope. Parvalbumin-positive boutons were generally 

large, with flat vesicles and a large mitochondria almost always present. They established 

symmetric synaptic contacts with the targeted semilunar granule cell. Several parvalbumin-

positive boutons establishing synaptic contacts were seen in the same cell, indicating a strong 

inhibitory drive from parvalbumin interneurons. In addition, these boutons established 

sometimes more than one symmetric contact (Figure II.13). 

4.1.2. PERISOMATIC INNERVATION FROM CCK BASKET CELLS 

Two approaches were used to study the perisomatic innervation on semilunar granule cells by 

CCK-positive interneurons.  

Our first approach was to use an antibody against CCK. In the mouse, this antibody labeled the 

inner molecular layer quite intensely, and also the mossy fibers. Positive cell bodies could also 

be detected, though they were clearer in CA1, where no mossy fibers were labeled. In CA1 

pyramidal layer, a clear pattern of perisomatic boutons was observed, but it was absent in the 

granule cell layer. Only seldom an intensely-labeled fiber crossed the granule cell layer. No 

evident difference between the dorsal and dentate gyrus was observed.  

Only in mice where a general intense staining was observed, perisomatic boutons in the outer 

two thirds of the molecular layer could be seen around Prox1-positive cells, but the labelling 

was not optimal to continue the study under electron microscopy. Therefore, we decided to 

study CCK immunoreactivity in the rat. Here, no staining from mossy fibers or mossy cells’ fibers 

was observed. The staining pattern was similar as the one expected according to the literature 

(Freund and Buzsáki, 1996; Hájos et al., 1996). CCK-positive cell bodies were found in the hilus 

and in the granule cell layer (Figure II.14 A), as well as in stratum radiatum and pyramidale 

from CA3 and CA1. 

In a double immunostaining with Prox1, perisomatic CCK-positive boutons were observed both 

in the inner molecular layer and the outer molecular layer. The amount of perisomatic boutons 

was heterogeneous, and cells with two or three CCK-positive boutons could be found together 

with cells that exhibit only one CCK-positive if any (Figure II.14). Although much better than in 

mice, this heterogeneity could be due to problems with the immunoreactivity of the antibody. 
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At the electron microscopy level, these boutons were confirmed to make symmetric contacts 

with the Prox1-positive cells they surrounded. We observed smaller boutons that made 

symmetric synapses, with slightly ovoid vesicles and sometimes one small mitochondria. We 

also analyzed larger invaginating boutons, with one big mitochondria at one side and slightly 

ovoid vesicles confronting the Prox1-positive postsynaptic cell (Figure II.15). These boutons 

also formed symmetric synapses and resembled the ones described as VGluT3-positive in the 

amygdala (Yoshida et al., 2011; Omiya et al., 2015). 

Since the staining against CCK was not completely satisfactory, the cannabionid receptor type 

1 (CB1R) was used to label CCK-positive fibers, as it has been previously shown that CB1R is co-

expressed with CCK in fibers emerging from CCK-positive interneurons, both in rat and mouse 

(Katona et al., 1999; Marsicano and Lutz, 1999). The staining pattern that we observed in the 

dentate gyrus was homogeneous. A dense plexus of fibers covered all the granule cell layer, 

molecular layer and hilus (Figure II.16). No evident difference was observed between the dorsal 

and ventral dentate gyrus, as well as in the infra- or suprapyramidal layer of the granule cell 

layer, although the clear basket arrangement of boutons around semilunar granule cells was 

highly suggestive. 

At the electron microscopy level, we confirmed that the CB1R-positive boutons that were in 

apposition with Prox1-positive cells were making synaptic contacts, both on the Prox1-positive 

cells in the inner molecular layer and in the outer molecular layer. CB1R-positive boutons were 

generally smaller compared to parvalbumin-positive boutons, and also established symmetric 

synapses (Figure II.17). If present, only one small mitochondria was observed. Their 

characteristics corresponded well with the CCK boutons but the labelling of the boutons was 

better and allowed us for a better estimation of the input relevance. 

4.2. SUPRAMAMMILLARY NUCLEI AFFERENTS ON SEMILUNAR GRANULE CELLS 

An important afferent system to the dentate gyrus is the supramammilary-hippocampal 

pathway. Calretinin has been shown to be expressed by excitatory cells in the supramammillary 

nuclei (Nitsch and Leranth, 1993), and supramammilary-hippocampal projection is mainly 

made by these cells.  

To assess whether semilunar granule cells could be a preferential target for fibers arising in the 

supramammilary nuclei, an immunostaining against calretinin was performed in the dentate 
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gyrus of rat brain sections (Figure II.18). We decided to use rats for this experiment since the 

intense labelling for mossy cell terminals in the inner molecular layer would have impeded the 

study of the supramammilary projection in the mouse using calretinin. In rats, in addition to a 

subpopulation of interneurons present in the hilar area and in the molecular layer of the 

dentate gyrus, there were also present boutons located mainly in the border between the 

granule cell layer and the inner molecular layer. As it has been previously confirmed that there 

is no staining of mossy cells with calretinin in the rat, we assumed that these boutons were 

either from local calretinin-positive interneurons, or that they came from the supramammilary 

nuclei. Therefore, it was necessary to analyze these boutons at the electron microscopy level, 

so that we could observe whether they established contacts and of which types they were.  

Under the electron microscope, we found calretinin-positive boutons establishing perisomatic 

asymmetric contacts onto granule cells located in the border between the granule cell layer 

and the inner molecular layer, which had the characteristics of semilunar granule cells (Figure 

II.18).

The morphological features of calretinin-positive boutons synapsing semilunar granule cells 

were the same as previously described by Maglóczky et al. (1994). All boutons analyzed were 

relatively small en passant boutons that made asymmetrical synapses, filled with round vesicles 

and one to two mitochondria.  

Studies using calretinin as a marker for supramammillary afferents have all been performed in 

the rat dentate gyrus, and no previous studies have reported the presence of calretinin in the 

boutons formed by supramammillary fibers in the mouse dentate gyrus. Another reliable 

marker for the supramammillary projection in the dentate gyrus is VGluT2 (Fremeau et al., 

2001; Soussi et al., 2010). To check whether there are differences in calretinin expression in the 

supramammilary afferents between both species, we performed a double immunostaining for 

VGluT2 and calretinin in the mouse dentate gyrus. An a visu study showed that, in contrast to 

what happens with the rat, VGluT2-positive boutons did not generally colocalize with calretinin 

in the mouse granule cell layer or inner molecular layer (Figure II.19). This suggests that neither 

mossy cell boutons are VGluT2-positive, nor that supramammillary afferents are calretinin-

positive in the mouse dentate gyrus. 

To extend the study of the supramammillary innervation on semilunar granule cells to mice, 

we made a double immunostaining with VGluT2 and Prox1. Virtually all semilunar granule cells 

analyzed presented VGluT2-positive boutons in apposition (Figure II.20). Though the presence 



Results 

118 

of VGluT2-positive boutons was constant, in some cases only one bouton was observed 

whereas in other cases a basket-like arrangement of VGluT2-positive boutons were found on 

semilunar granule cells. Surprisingly, outer molecular layer ectopic granule cells also presented 

VGluT2-positive boutons in apposition to their cell somata. It was necessary to confirm that this 

boutons were establishing synaptic contacts on semilunar granule cells. Therefore, we 

proceeded to study this innervation at the ultrastructural level.  

Under the electron microscope, VGluT2-positive boutons in apposition to semilunar granule 

cells established asymmetric synaptic contacts on them (Figure II.21). They were small and 

filled with round vesicles. In some occasions they found to establish synaptic contacts to more 

than one postsynaptic profile, as observed when we used calretinin for labelling the same 

boutons. 

Finally, to further prove this innervation, mice were injected with the anterograde tracer BDA 

10 KDa in the supramammilary nuclei. The injection site was checked in all the animals, and 

those which had a wrong injection site or such a big injection that could affect our analysis were 

immediately discarded. 

In the dentate gyrus, anterograde-labeled fibers were located mainly in the innermost part of 

the molecular layer, with some fibers entering in the granule cell layer, as previously described 

by Maglóczky et al. (1994). Also some axons were found in the hilar region, with a similar 

morphology.  

To check if the semilunar granule cells were innervated by supramammilary fibers, we made a 

double immunostaining for the anterograde labeled fibers (DAB-Ni) and Prox1 (DAB). 

Some Prox1-positive cells in the inner molecular layer were surrounded by BDA-filled fibers. 

We also found some Prox1-positive cells in the outer molecular layer that were innervated by 

anterograde-labeled axon terminals in a basket-like arrangement. We could find axon 

collaterals emerging from the main axonal branch and traveling a considerable distance straight 

to the target Prox1-positive cell. This indicates a target-specific distribution of supramammilary 

fibers. We also found some Prox1-positive cells in the hilus innervated in the same way (Figure 

II.22).

We checked some of the cells apparently contacted by the supramammillary fibers under 

electron microscopy to confirm that the fibers made synaptic contact and their ultrastructural 

features (Figure II.23). 
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The morphology of the analyzed boutons synapsing semilunar granule cells was similar to the 

ones observed with VGluT2 in mouse and calretinin in rat. They were en passant boutons, filled 

with round vesicles and one small mitochondria. Though the quality of the tissue was not 

generally good enough to clearly identify the postsynaptic density, we observed that not only 

asymmetric boutons but also symmetric could be found. 

In conclusion, semilunar granule cells receive a strong, mainly excitatory perisomatic input 

from supramammillary fibers in a target dependent manner. 
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Figure II.12 – Parvalbumin interneurons form baskets around semilunar granule cells in the mouse dentate gyrus 
Double immunostaining for parvalbumin (DAB-Ni) and Prox1 (DAB) shows that the majority of semilunar granule 
cells and ectopic outer molecular layer granule cells are innervated by parvalbumin-positive boutons. 
A) Panoramic view of a dentate gyrus with parvalbumin and Prox1 staining. Parvalbumin-positive boutons are
found in the whole thickness of the granule cell layer, but also some fibers can be seen in the inner molecular
layer.
B) Example of two semilunar granule cells found in the border between the inner molecular layer and the granule
cell layer. These cells receive putative contacts of parvalbumin boutons (arrows), shown more clearly in the cell
on the left (asterisk). As Prox1 is a nuclear marker, the presence of boutons surrounding the Prox1 profile are an
indicative of innervation, but electron microscopy is needed to confirm the presence of synaptic contacts.
C) Example of semilunar granule cell in the inner molecular layer, also showing parvalbumin-positive boutons
(arrows) in apposition (asterisk), in a basket-like arrangement.
D) Ectopic outer molecular layer granule cell (asterisk), showing several parvalbumin-positive boutons (arrows) in
a basket-like manner. The image is a Z-stack reconstruction of several focal planes, to better show the basket
arrangement. Note the weak staining of the nucleus with Prox1. This staining could be used to distinguish the cell
nuclei at the optical level, but generally a correlation optical-electron microscope was needed when studying this
connection at the ultrastructural level.
E) Example of a Prox1-positive cell that did not show any parvalbumin-positive boutons in the perisomatic region
(arrowhead). The black asterisk shows a profile, surrounded by parvalbumin boutons, that does not correspond
to semilunar granule cells.
gcl, granule cell layer; h, hilus; iml, inner molecular layer; oml, outer molecular layer. Scale bars:  A 200 µm; B-E,
10 µm.
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Figure II.13 – Electron microscopy study showing that semilunar granule cells in the inner molecular layer are 
innervated by parvalbumin interneurons 
In this case, to identify the postsynaptic cell under light microscopy, the nuclear marker c-Fos was used. In every 
case, the identity of the semilunar granule cell was confirmed by its ultrastructural features. Semilunar granule 
cells that were immunonegative presented similar connectivity. 
A) Example of three semilunar granule cell profiles in the inner molecular layer of the mouse dentate gyrus. They
were distinguished based on their morphology. Only cell 1 shows a high immunoreactivity for c-Fos.
B) Panoramic view of the cells shown in (A) at the electron microscopy level.
C) Parvalbumin-positive bouton in apposition to the cell 3, establishing a symmetric contact (arrow). The bouton
presents a high density of synaptic vesicles. The arrowhead shows a parvalbumin-negative bouton that, based on
the shape and disposition of the synaptic vesicles and on the postsynaptic density, it is establishing an asymmetric
synapse.
D) Example of a parvalbumin-positive bouton establishing a symmetric contact on the c-Fos positive semilunar
granule cell 1 shown in (A).
E) Examples of symmetric synapsis (arrows) established by parvalbumin-positive boutons on the semilunar granule
cell 3 shown in (A).
F) Example of a symmetric synapse by a parvalbumin-positive presynaptic bouton (arrow) in close vicinity with a
parvalbumin negative bouton that is establishing an asymmetric synapse (arrowhead), both on the semilunar
granule cell 3 shown in (A).
G) Example of a symmetric synapse (arrow) established by a parvalbumin-positive bouton on the semilunar

granule cell 2 shown in (A).
Scale bars: A, 10 µm; B, 5 µm; C-G, 500 nm.
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Figure II.14 – CCK boutons are found in apposition to semilunar granule cells and outer molecular layer ectopic 
granule cells in the rat dentate gyrus 
Double immunostaining for CCK (DAB-Ni) and Prox1 (DAB) shows that semilunar granule cells and ectopic outer 
molecular layer granule cells are surrounded by CCK-positive boutons. 
A) Panoramic view of a rat dentate gyrus with CCK staining. CCK-positive cells, corresponding to regular spiker
basket interneurons, are found in the hilar border of the granule cell layer.
B and C) Example of a Prox1-positive (asterisk) cell in the outer molecular layer, shown at higher magnification in
(C). This ectopic granule cell is receiving two CCK-positive boutons on the soma (arrows), probably arising from
the same fiber.
D-F) Example of semilunar granule cells (asterisks) sitting at two different depths of the inner molecular layer. In
(E), two examples of semilunar granule cells (asterisk) sitting in the border with the granule cell layer, that present
several CCK-positive boutons displayed in a basket-like arrangement (arrows). In (F), an example of a semilunar
granule cell (asterisk) sitting in the border with the outer molecular layer also has three CCK-positive boutons in
close apposition to the cell soma (arrows).
As Prox1 is a nuclear marker, a more in depth study in the electron microscopy is needed to confirm that this
putative boutons establish synapses with semilunar granule cell somata.
gcl, granule cell layer; h, hilus; iml, inner molecular layer; oml, outer molecular layer. Scale bars: A 200 µm; B and
D, 50 µm; C, E and F, 10 µm.
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Figure II.15 – Electron microscopy study showing that semilunar granule cells and outer molecular layer granule 
cells are perisomatically innervated by CCK interneurons 
A) Optical-electron microscopy correlation of a Prox1-positive outer molecular layer granule cell innervated by
CCK-positive boutons.
B and C) Synaptic boutons establishing symmetric synaptic contacts (black arrows) to the cell shown in (A). In (C),
two additional synaptic boutons immunonegative for CCK are shown to establish a symmetric synaptic contact
(white arrow) and an asymmetric contact (white arrowhead).
D) Panoramic view of a semilunar granule cell in the inner molecular layer.
E and F) CCK-positive synaptic boutons establishing symmetric synaptic contacts (black arrows) on the cell in (D).
Scale bar: A, D 2 µm; B-C, E-F, 500 nm.
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Figure II.16 – CB1R-positive boutons are found in close apposition to semilunar granule cells and outer 
molecular layer granule cells in the mouse dentate gyrus 
Double immunostaining for CB1R (DAB-Ni) and Prox1 (DAB) shows that semilunar granule cells and ectopic outer 
molecular layer granule cells are innervated by boutons that contain the endocannabinoid receptor, 
corresponding to CCK interneurons. 
A) Panoramic view of a dentate gyrus with CB1R and Prox1 staining. CB1R-positive fibers are found within the
whole dentate gyrus. In the inner molecular layer the background staining of the tissue is higher.
B) Low magnification of an area in the dentate gyrus showing several examples of semilunar granule cells (black
arrows) embedded in a dense plexus of CB1R fibers in the inner molecular layer.
C) Higher magnification of the box shown in (B). This image shows two semilunar granule cells (cells 1 and 2) sitting
in the border between the inner molecular layer and the granule cell layer, that display CB1R-positive boutons in
close apposition to the cell soma (arrows). Another semilunar granule cell (cell 3) in the inner molecular layer is
shown, also surrounded by CB1R-positive boutons (arrows).
D) Low magnification of an area in the dentate gyrus showing two examples of outer molecular layer ectopic
granule cells surrounded by a dense plexus of CB1R fibers.
E) Higher magnification of the box shown in (D). Outer molecular layer ectopic granule cells also present CB1R-
positive boutons in apposition to their cell somata arranged in a basket-like manner (arrows).
All these cells seemed contacted by CB1R boutons. However, electron microscopy was needed to confirm these
putative contacts.
gcl, granule cell layer; h, hilus; iml, inner molecular layer; oml, outer molecular layer. Scale bar: A, 200 µm; B and
D, 50 µm; C and E, 20 µm.
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Figure II.17 – Semilunar granule cells in the inner molecular layer and ectopic granule cells in the outer molecular 
layer are innervated by CB1R positive boutons under electron microscopy. 
Correlation between optical and electron microscopy from a double immunostaining of CB1R (DAB-Ni) and Prox1 
(DAB). Under the electron microscope, Prox1-positive nuclei are only slightly more electrondense than the 
negative profiles. For this reason the correlation was necessary. The electron microscopy confirmed the granule 
nature of the Prox1 studied cells. 
A) Optical-electron microscopy correlation of a semilunar granule cell in the inner molecular layer (asterisk). Two
boutons are found in apposition to the cell body and one on the proximal dendrite of this cell.
B-D) Higher magnification of the perisomatic boutons found in consecutive sections from the cell in (A) (asterisk).
DAB-Ni positive profiles, corresponding to CB1R-positive boutons, establish symmetric synaptic contacts (arrows)
with the soma of the semilunar granule cell. Among the CB1R-positive boutons, we found both big (C) and small
ones (B and D), in all cases filled with slightly oval vesicles. Other boutons, immunonegative for CB1R, making
symmetric synaptic contacts (arrowhead) were found on the same cell, with characteristics that resembled
parvalbumin boutons.
E) Optical-electron microscopy correlation of an ectopic granule cell (asterisk) in the outer molecular layer.
F-H) Higher magnification of the perisomatic boutons found in consecutive sections from the cell shown in (E).
CB1R-positive boutons established symmetric synaptic contacts (arrows) with the soma of the semilunar granule
cell (asterisk). The morphology of CB1R-positive boutons contacting ectopic granule cells was the same as the ones 
found in apposition to semilunar granule cells.
Scale bars: A and E, 5 µm; C, 400 nm; B, D, F-H, 500 nm.



Results 

131 



Results 

132 

Figure II.18 – Calretinin positive fibers from supramammillary nuclei establish perisomatic excitatory contacts 
on semilunar granule cells in the rat dentate gyrus 
Immunostaining for calretinin (DAB-Ni) in the rat dentate gyrus. 
A) Panoramic view of a rat dentate gyrus with calretinin staining. The calretinin-positive boutons corresponded to
the staining expected for supramammillary fibers.
B and C) Panoramic view of two semilunar granule cells (asterisks) in the inner molecular layer and in the border
between the inner molecular layer and granule cell layer respectively. The cells were identified by their
ultrastructural features (small cell somata with thin cytoplasm, semilunar like shape).
D) Higher magnification of the calretinin-positive synaptic bouton establishing an asymmetric synaptic contact
(arrow) on the cell shown in (B). A clear postsynaptic cleft and postsynaptic density is observed in two non-
consecutive sections of the same bouton. This bouton showed the morphological features expected for a
supramammillary bouton.
E and F) Calretinin positive synaptic boutons establishing asymmetric synaptic contacts (arrows) on the cell shown
in (C).
G and H) Additional examples found on semilunar granule cells of calretinin-positive boutons establishing
asymmetric synaptic contacts (arrows).
Scale bars: A 100 µm; B and C, 2 µm; D-H, 500 nm.
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Figure II.19 – Different expression of calretinin by supramammillary fibers in rat and mouse 
Double immunostaining showing VGluT2 (green) as a marker of supramammillary afferents to the dentate gyrus, 
and calretinin (red). 
A) Calretinin staining in the rat shows a high density of boutons in the border of the granule cell layer with the
inner molecular layer. VGluT2 staining shows the same pattern of innervation than calretinin, and both markers
highly colocalize in this region. This confirms that in the rat, supramammillary afferents can be labeled reliably
labeled both with VGluT2 and calretinin.
B) Calretinin staining in the mouse shows a high density of boutons in the inner molecular layer, but not in the
granule cell layer. Calretinin-positive element have been previously shown to represent boutons from hilar mossy
cells that highly innervate this area. VGluT2 staining shows the same pattern as in the rat, with a high density of
positive boutons found in the upper half of the granule cell layer. In this case, however, there is no colocalization
between calretinin-positive elements and VGluT2-positive elements, indicating that in our experimental
conditions calretinin is not a marker for supramammillary afferents in the mouse.
gcl, granule cell layer; h, hilus; iml, inner molecular layer. Scale bar for all images: 50 µm.
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Figure II.20 – VGluT2-positive boutons form baskets around semilunar granule cells and outer molecular layer 
ectopic granule cells in the mouse dentate gyrus 
Double immunostaining for VGluT2 (DAB-Ni) and Prox1 (DAB) shows that semilunar granule cells and ectopic outer 
molecular layer granule cells are surrounded by boutons from the supramammillary nuclei. 
A) Example of a semilunar granule cell in the border between the inner molecular layer and granule cell layer. The 
inset shows the cell of interest at higher magnification. It presents multiple VGluT2-positive boutons in apposition 
to its cell soma (arrowheads).
B) Example of a semilunar granule cell in the inner molecular layer which presents multiple VGluT2-positive 
boutons in apposition to the cell soma. The inset shows the cell of interest at higher magnification. Note that not 
all semilunar granule cells presented a similar amount of VGluT2-positive boutons in apposition, and a high 
variability was found. Next to the cell of interest in this panel, we find a semilunar granule cell (1) that is 
receiving no VGluT2-positive boutons, and also some cells with only one or two boutons (cells categorized as 2).
C) Example of a semilunar granule cell in the border between the inner molecular layer and outer molecular layer. 
The inset shows the cell of interest at higher magnification, with multiple VGluT2-positive boutons in apposition 
to the cell soma (arrowheads). This cell was located in the dentate apex, where the amount of VGluT2 boutons 
seemed to be apparently higher, as well as the presence of semilunar granule cells.
D) Example of an outer molecular layer ectopic granule cell. The inset shows the cell of interest at higher 
magnification. Here, a VGluT2-positive fiber is clearly distinguish, and several VGluT2-positive boutons are found 
in apposition to the soma (arrowheads) in a basket-like arrangement. This suggests that the innervation from 
supramammillary afferents is not only lamina dependent but also shows a target dependence, as we only found 
rarely VGluT2-positive boutons in the outer molecular layer.
gcl, granule cell layer; iml, inner molecular layer; oml, outer molecular layer. Scale bar for all images: 25 µm. 
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Figure II.21 – VGluT2-positive boutons establish synaptic contacts with the perisomatic region of semilunar 
granule cells in the mouse dentate gyrus 
Double immunostaining for VGluT2 (DAB-Ni) and Prox1 (DAB), as shown in Figure II.20. The cells studied were 
chosen by its Prox1 positivity when resectioned for electron microscopy, and were confirmed as semilunar granule 
cells by its granular morphology. 
A) Electron microscopy panoramic view of a semilunar granule cell in the inner molecular layer (sgc), in the border 
with the granule cell layer as shown by the presence of two typical granule cells (gc). In the boxed area, two
VGluT2-positive boutons (arrowheads) are found in apposition to the proximal dendrite of the semilunar granule
cell.
B-C) Higher magnification of the boutons in apposition to the proximal dendrite (d) shown in (A). These boutons
establish asymmetric synaptic contacts (arrows).
D-G) Examples of VGluT2-positive boutons from the cell shown in (A) and other semilunar granule cells in the
same area. VGluT2-positive boutons were generally small, and established asymmetric synaptic contacts with the
perisomatic region of semilunar granule cells (arrows). They were sometimes observed to establish synaptic
contacts to more than one postsynaptic target, as also shown in (E, black arrow).
d, dendrite; gc, granule cell; n, nucleus; sgc, semilunar granule cell. Scale bars: A, 5 µm; B-G, 500 nm.
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Figure II.22 – Fibers arising from the supramammillary nuclei establish putative baskets with semilunar granule 
cells in the inner molecular layer and with ectopic granule cells in the outer molecular layer  
A) The anterograde tracer BDA-10 KDa was injected in the medial supramammilary nucleus at bregma -2.80 mm.
B) Panoramic view of one of the injection sites that targeted the supramammillary nuclei. Big injections, centered
in the supramammillary nuclei, were needed to have enough labeled fibers in the dentate gyrus.
C-D) Innervation pattern of the fibers arising from the supramammillary nuclei. BDA-positive fibers are shown in
DAB-Ni. Sections were stained with toluidine blue to better delimit the injection site and fiber distribution. A high
density of fibers were found in the border between the granule cell layer and inner molecular layer, in both supra- 
and infrapyramidal granule cell layer (C). Almost no fibers were found in the hilus, and only some fibers appeared
in the outer molecular layer. As previously described, the CA2 region of the hippocampus presented also a high
density of labeled fibers (D).
E-H) Double immunostaining for BDA-positive fibers (DAB-Ni) and Prox1 (DAB). BDA-positive boutons were
frequently found in close apposition to Prox1-positive cells (arrows), in the inner molecular layer of dorsal (E) and
ventral (F) dentate gyrus, in the border between the granule cell layer and inner molecular layer (G), and in the
outer molecular layer (H). Insets show the cells marked with arrows at higher magnification. Usually two or more
boutons were found surrounding the cell body of the semilunar granule cells. However, as Prox1 is a nuclear
marker, the presence of synapses had to be further studied at the electron microscopy level.  Note in (H) that the
BDA-positive fiber, that establish a basket arrangement of boutons around the outer molecular layer ectopic
granule cell, travels from the inner molecular layer straight to its target. This suggests a target specific innervation
of granule cells by these fibers, rather than a layer specific innervation. (E-G) are focal planes, while (H) is a
reconstruction of three focal planes to be able to properly show the basket distribution of boutons on this cell.
DG, dentate gyrus; gcl, granule cell layer; iml, inner molecular layer; oml, outer molecular layer. Scale bars: B, 1
mm; C-D, 400 µm; E-H, 40 µm.
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Figure II.23 – Anterogradely labeled fibers from supramammillary nucleus establish perisomatic contacts on 
semilunar granule cells and outer molecular layer ectopic granule cells in the mouse dentate gyrus 
Double immunostaining for anterogradely labeled fibers from the supramammillary nucleus (DAB-Ni) and Prox1 
(DAB), as shown in figure II.22.  
A) Electron microscopy panoramic view of the yuxtagranular inner molecular layer. In the boxed area, a BDA-
positive bouton is found in apposition to two different granule cells and one semilunar granule cell (asterisk).
B) Higher magnification of the bouton shown in (A). This bouton presents the morphological characteristics
expected for a supramammillary bouton: it is filled with slightly flat vesicles and a small mitochondria, and
establishes synaptic contacts with multiple granule cell layer somata (arrows), either in this section or in
consecutive ones.
C) Example of a BDA-positive bouton in the border between the inner molecular layer and granule cell layer,
establishing an apparently symmetric synaptic contact with a granule cell soma (arrow) and an asymmetric
synaptic contact with a dendrite (arrowhead). However, the quality of the postsynaptic density staining does not
allow for an accurate description for the excitatory or inhibitory nature of the bouton.
D) BDA-positive bouton in the yuxtagranular inner molecular layer, establishing a synaptic contact with the soma
of a granule cell layer (arrow). Interestingly, this bouton is embracing a somatic spine.
E) Optical-electron microscopy correlation of the outer molecular layer ectopic granule cell shown in Figure II.22.
Adjacent to it, the cell body of a satellite glial cell (asterisk). The neuron is surrounded by BDA-positive boutons.
F-H) Higher magnification of BDA-positive boutons located in apposition to the cell soma of the outer molecular
layer ectopic granule cell shown in (E). They establish synaptic contacts (arrows) with the postsynaptic granule
cell. In (H), the synaptic bouton is also establishing a synaptic excitatory contact (arrowhead) with a spine profile.
Scale bars: A and E, 5 µm; B-D, F-G, 500 nm.
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RESULTS III: 
ROLE OF SEMILUNAR GRANULE CELLS AND 
PARVALBUMIN INTERNEURONS IN ANIMAL 
MODELS OF EPILEPSY  
The dentate gyrus is arguably the most common focus of seizures in temporal lobe epilepsy 

(Dudek and Sutula, 2007).  Therefore it has been extensively studied regarding this epileptic 

activity and several hypothesis have been postulated about the role of their different cell 

populations in the generation of epileptic activity, like the “Dormant basket cell” or the 

“Irritable mossy cells” hypotheses (Sloviter, 1992; Bernard et al., 1998; Santhakumar et al., 

2000, 2005; Ratzliff et al., 2002, 2004; Sloviter et al., 2003; Zhang and Buckmaster, 2009; Jinde 

et al., 2012, 2013). Since parvalbumin basket cells, mossy cells and semilunar granule cells seem 

to be in a key position to control the activity of the dentate gyrus, we decided to study how 

they are affected in different models of epilepsy.

For this task we used previous material generated in our laboratory, and generated new 

animals using a softer induction by chemical kindling using pentylenetetrazole. We studied the 

survival of these cells as well as their possible activation during the process. 

1. PENTYLENETETRAZOLE-INDUCED KINDLING MODEL OF EPILEPSY

Experimental animals were considered kindled when they reached stage 5 in Racine scale for 

four consecutive pentylenetetrazole injections at an initially subconvulsive dose. However, the 

nature of the seizures observed corresponded better to the stage 6 of an adaptation for 

pentylenetetrazole-induced seizures of the Racine scale, consisting of tonic-clonic convulsions 

while lying on the side (Racine, 1972; Lüttjohann et al., 2009).  

The subconvulsive dose of pentylenetetrazole used, 40 mg/Kg, caused the first stage 4-5 seizure 

after an average of 7 ± 2 injections. Only in one case this dose initially caused a stage 4-5 

seizure, and this animal was discarded and not further processed. 



Results 

146 

1.1. CHANGES IN CELL POPULATIONS AFTER KINDLING INDUCTION WITH 
PENTYLENETETRAZOLE 

1.1.1. PROX1 AND TIMM STAINING 

Prox1 immunostaining was performed to check if the amount of semilunar granule cells and 

ectopic granule cells had changed with the treatment. However, for technical reasons, the 

quality of the staining did not allow for a reliable quantification of the total number of Prox1-

positive cells, due to unspecific glia staining generally in the dorsal dentate gyrus. 

Although no quantification was made, it was evident that the semilunar granule cell population 

was not especially affected by the pentylenetetrazole-induced kindling procedure. The Prox1-

positive cells in the inner molecular layer and in the outer molecular layer remained after 

kindling. In both experimental cases and their controls, the amount of Prox1-positive nuclei 

seemed similar.  

In order to detect sprouting from the mossy fibers in the inner molecular layer and granule cell 

layer after pentylenetetrazole, Timm staining was performed in 3 treated and 1 control animal 

one month after being fully kindled. This long time was necessary since mossy fiber sprouting 

needs time to develop and be detected. No mossy fiber sprouting was observed in the inner 

molecular layer from treated animals, and no differences were observed with the control one, 

which in turn displayed the Timm-staining pattern previously observed in animals in which no 

experimental procedure was performed. 

1.1.2. CALRETININ 

Since hilar mossy cells are the most sensitive cell type in murine models of epilepsy, an 

estimation of the number of calretinin-positive mossy cells was performed in the hilar region 

of kindled animals, to check whether we could see cell death in this model of epilepsy. 

We analyzed the number of mossy cells in the dorsal dentate gyrus (around bregma -2.6 mm). 

The expression of calretinin is less abundant in more dorsal levels (Blasco-Ibáñez and Freund, 

1997), and changes are more easily detected at these levels that have shown to be specially 

sensitive to hilar cell death in other models (Nadler et al., 1980; Cavazos and Sutula, 1990; 

Cavazos et al., 1991; Longo et al., 2003). Calretinin-positive interneurons in the hilus, and 

immature granule cells were not taken into account, since they could be differentiated from 

mossy cells easily due to their morphology. 
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We found no statistical difference in the density of mossy cells between control (666.92 ± 93.55 

calretinin cells/mm2, n=5) and fully kindled animals (653.99 ± 63.02 calretinin cells/mm2, n=8; 

p=0.907). However, we found a statistically significant decrease in the density of mossy cells 

one month after kindling, between control (665.24 ± 66.93 calretinin cells/mm2, n=6) and fully 

kindled animals (488.22 ± 30.29 calretinin cells/mm2, n=5; p=0.031). These data is summarized 

in Graph III.1. 

These results suggest that there is a progressive loss of mossy cells in the dorsal hilus of fully 

kindled animals. This fact was confirmed by the presence of refractive shrunken cells in the 

hilus under bright illumination. By the time the animal was recently kindled, this loss had not 

begun, or was too low to be detected. Therefore, it seems to be a slow phenomenon that needs 

time to be observed.  

Graph III.1 - Density of mossy cells in dorsal dentate gyrus after kindling and one month after kindling. The 
density of mossy cells is not changed when the kindled status is reached, but there is a statistically significant 
decrease in the mossy cell density one month after kindling. * indicates statistically significant (p < 0.05) 
differences between groups after t-student test.  

1.1.3. PARVALBUMIN 

The total number of parvalbumin interneurons was counted in the whole dentate gyrus, from 

the most rostral to the most caudal section (including those sitting in the hilus), as no 

differences in their intensity expression have been reported. 
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After the kindled status had been reached, we found no statistical difference between the 

control group (1318 ± 109 parvalbumin cells, n=5) and pentylenetetrazole treated animals 

(1342 ± 60 parvalbumin cells, n=12; p=0.839). Unexpectedly, we observed a statistically 

significant increase in the number of parvalbumin-positive interneurons one month after the 

animals were fully kindled (1620 ± 67 parvalbumin cells, n=6) in comparison to control animals 

(1413 ± 21 parvalbumin cells, n=6; p=0.025). These data is summarized in Graph III.2. 

These data show an apparent increase in the expression of parvalbumin one month after the 

treatment. This increment is unlikely to come from generation of new cells and could be 

attributed to an increase of parvalbumin immunoreactivity or of the number of fast-spiking 

basket cells that express it. 

Graph III.2 - Changes in the total number of parvalbumin interneurons after kindling and one month after 
kindling. The total number of parvalbumin (PV) interneurons does not change when the kindled status is reached, 
but there is a statistically significant increase one month after kindling. * indicates statistically significant (p < 0.05) 
differences between groups after t-student test. 

1.1.4. SOMATOSTATIN 

Although it is not directly related to the circuitry that we are analyzing in this work, 

somatostatin-positive cell loss in the hilus has been reported in several models of epilepsy 

(Sloviter, 1987; Houser and Esclapez, 1996; Sun et al., 2007; Zhang et al., 2009), but not in all 

of them (Cardoso et al., 2010). To assess whether there is a change in the hilar somatostatin-

positive interneuron population in the pentylenetetrazole-induced kindling model of epilepsy, 

we decided to count the total number of somatostatin-positive interneurons in the whole 

dentate gyrus, also taking into account from the most rostral to the most caudal section. 
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We found no statistical difference after the kindling status between the control group (2078 ± 

167 somatostatin cells, n=6) and pentylenetetrazole treated animals (2044 ± 160 somatostatin 

cells, n=13; p=0.849), neither one month after kindling between the control (2094 ± 193 

somatostatin cells, n=5) and pentylenetetrazole treated animals (1935 ± 96 somatostatin cells, 

n=6; p=0.456). These data is summarized in Graph III.3. 

Therefore, under this experimental paradigm, somatostatin-positive interneurons are not 

affected in the pentylenetetrazole kindling model of epilepsy. 

Graph III-3 - The total number of hilar somatostatin interneurons is kept constant after kindling and one month 
after kindling. There is no statistical difference between pentylenetetrazole-treated and control groups either 
when the kindled status is reached or one month after kindling.  

In summary, by the time that the animal is kindled we could find no changes in the cell 

populations studied. However, after the animal is kindled there is a progressive loss of the 

number of mossy cells at dorsal levels, likely due to cell death. Simultaneously, there is an 

increase in the number of parvalbumin basket cells that probably represents an increment in 

the expression of this marker rather than a real increment in the number of cells. 
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1.2. EXPRESSION OF C-FOS AFTER MILD EXCITATION WITH PENTYLENETETRAZOLE 

The previous data show that in this model the cell changes are subtle, although they seem to 

begin by the weakest link in the chain that is the mossy cells. The nature of the study did not 

allow us to infer if the semilunar granule cells had any impact on it. 

We decided to check the activation of the dentate gyrus at short times after the administration 

of a unique dose of pentylenetetrazole at the subconvulsive dose used for kindling. The animals 

were injected one single injection of 40 mg/Kg and sacrificed at 2h, 4h and 8h respectively. 2 

hours after pentylenetetrazole injection, the whole brain showed an overall increment of c-Fos 

expression. In the dentate gyrus this increment included numerous nuclei in the molecular 

layer and in the juxtamolecular granule cell layer (Figure III.1 B). The activation of the dentate 

gyrus increased at 4 hours. The juxtamolecular half of the granule cell layer presented a high 

proportion of c-Fos nuclei, but most of the granule cell layer remained immunonegative with 

the exception of granule cells in the hilar border (Figure III.1 C). Finally, at 8 hours, c-Fos 

expression had almost reached the basal level again. In the dentate gyrus, the number of 

immunoreactive nuclei was clearly inferior to controls, though some regions like the CA3 

seemed slightly more active than controls (Figure III.1 D). 

Therefore, the subconvulsive dose used in this experiment was enough to produce an overall 

overexcitation in the treated animals that also affected the dentate gyrus. In this structure the 

overexcitation acted mainly on granule cells in the juxtamolecular granule cell layer. These 

results show that under these conditions granule cells in the juxtamolecular granule cell layer 

are more sensitive to overexcitation than typical granule cells. 
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Figure III.1 - General increase in c-Fos expression after pentylenetetrazole administration at a subconvulsive 
dose. 
A) Basal expression of c-Fos in the mouse hippocampus and cerebral cortex.
B) 2 hours after the injection of pentylenetetrazole, the cerebral cortex showed an overall increase in the number
of c-Fos labeled nuclei, which implied high cell activation at short term due to the injection. In the dentate gyrus
and hippocampus, the expression of c-Fos was increased.
C) 4 hours after the injection of pentylenetetrazole, c-Fos expression reaches its maximum in the dentate gyrus,
with a high number of juxtamolecular granule cells and typical granule cells in the hilar border positive for this
marker. The expression level in the cortex was still high compared to the control conditions, but the number of c-
Fos positive nuclei was starting to decrease.
D) c-Fos expression returned to a lower level at 8 hours after the pentylenetetrazole injection, both in the cortex
and in the dentate gyrus.
Scale bar 500 µm.
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2. KAINIC ACID AND DEDTC-INDUCED MODEL OF EPILEPSY 

2.1. FATE OF SEMILUNAR GRANULE CELLS IN THE KAININC ACID AND DEDTC MODEL OF 
EPILEPSY  

In the model of kainic acid and DEDTC used previously in our laboratory we did not find loss of  

granule cells or parvalbumin basket cells, although there was a fast and almost complete loss 

of mossy cells (Domínguez et al., 2006). Briefly, the administration of kainic acid and DEDTC led 

to a fast activation of mossy cells, shown by their expression of the Heat shock protein HSP72 

(Figure III.2 A), as a response to a situation of stress and injury after the seizure (Gass et al., 

1995; Planas et al., 1997). This was followed by a loss of mossy cells, as seen with a decreased 

number of calretinin-positive cells in the hilus and reduced calretinin immunoreactivity in the 

inner molecular layer (Figure III.2 B).  

A re-analysis of this material looking for loss of semilunar granule cells was performed, using 

the granule cell marker calbindin and the cell activation marker pan-Fos (Figure III.2 C and D). 

We observed that there was no apparent loss of semilunar granule cells at the times studied 

(up to 14 days). 

 

2.2. EXPRESSION OF C-FOS AFTER MILD EXCITATION WITH KAINIC ACID 

Since the model was studied for cell activation, we studied the timing of the hilar activation 

after kainic acid and DEDTC administration, joined and separately Kainic acid 10mg/Kgbw by 

itself produced overexcitation without cell loss. 

As previously shown in the second chapter of this thesis, in basal levels of c-Fos expression we 

found c-Fos positive nuclei preferentially in the upper half of the granule cell layer, and in the 

border between the granule cell layer and the inner molecular layer (Figure III.3A).  After the 

injection of kainic acid, virtually all granule cells were immunopositive for c-Fos, but this 

expression returned to basal levels 6 to 8 hours after the injection (Figure III.3B-D). As 

expected, the expression of c-Fos by granule cells was accompanied by the expression of c-Fos 

in hilar cells, probably mossy cells. After 8 hours, the expression of c-Fos by granule cells and 

semilunar granule cells was low, although some granule cells in the inner molecular layer and 

in the juxtamolecular granule cell layer still expressed c-Fos. C-Fos expression remained 

depressed for several days reaching again the basal level 14 days after the injection (Figure 

III.3E-H). 
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Kainic acid administration at subconvulsive levels produces a general overexcitation in all cell 

types and it is difficult to find a pattern in the c-Fos expression. But in the subsequent 

depression of c-Fos expression produced after 6 hours, putative semilunar cells in the dentate 

gyrus are among the most actively c-Fos expressing cells. 

2.3. EXPRESSION OF C-FOS AFTER MILD EXCITATION WITH DEDTC 

Administration of the zinc chelator DEDTC by itself has been proven to produce enough 

overexcitation to induce HSP72 in the mossy cells of the rat, at a dose of 500 mg/Kgbw  (Blasco-

Ibáñez et al., 2004). Although in the analyzed material DEDTC was used at a dose of 150mg/Kg, 

the overexcitation was enough to induce the expression of c-Fos in the hilus that lasted for 

several hours. 

In control animals, the expected pattern for c-Fos staining was observed. Briefly, c-Fos positive 

nuclei appeared more frequently in the border between the granule cell layer and the inner 

molecular layer (Figure III.4 A). Four to six hours after the administration of DEDTC, the number 

of c-Fos positive nuclei in the border between the granule cell layer and the inner molecular 

layer border seemed to increase. Interestingly, bigger nuclei in the granule cell layer were also 

positive for c-Fos, possibly corresponding to parvalbumin interneurons according to their 

location. A large number of positive nuclei were also found in the hilus, likely from mossy cells 

and interneurons. Faint astroglial cells were also present at Timm-positive areas as the hilus 

and the stratum lucidum (Figure III.4 B and C). From 8 to 12 hours, the expression of c-Fos 

decreased even below control levels for all cell types, but it began to recover 1 day after the 

DEDTC administration, and reached the basal levels four days (Figure III.4 D-H). 

In conclusion, the mild excitation produced by DEDTC induced first c-Fos expression mainly in 

semilunar granule cells located close to the border between the granule cell layer and the inner 

molecular layer, likely activating both mossy cells and interneurons. It is interesting to note that 

a general activation of typical granule cells was not induced. After overexcitation, a transient 

silent period for c-Fos expression was observed in the hilus for all cell types, followed by a slow 

recovery. This could be possibly generated by an inhibitory compensation to previous 

overexcitation. 
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Figure III.2 - Semilunar granule cells are preserved in the kainic acid-DEDTC model of epilepsy. 
A) Twenty four hours after kainic acid administration the only dentate gyrus cells expressing HSP72 are the hilar
neurons (arrows). Neither semilunar cells nor granule cell layer interneurons express HSP72 at any time.
B) Fourteen days after kainic acid administration, immunoreactivity for calretinin shows the complete
disappearance of mossy cells in this animal and the presence of abundant calretinin immunoreactive immature
granule cells (arrows) in the base of the granule cell layer.
C) Most granule cells, including those in the molecular layer, are weakly calbindin immunoreactive (arrows).
D) c-Fos immunoreactivity is present in almost all mature granule cells including those in the molecular layer
(arrows).
B-D images belonged to the same animal. gcl, granule cell layer; h, hilus; iml, inner molecular layer; oml, outer
molecular layer. Scale bar 50 μm.
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Figure III.3 - c-Fos detected cell activation in the dentate gyrus after Kainic Acid administration at a 
subconvulsive dose 
A) In control animals, c-Fos labelled a scattered population of granule cells. Intensely labeled granule cells
appeared more frequently in upper layers of the granule cell layer, including cells in the inner molecular layer
border (arrows).
B) Four hours after Kainic Acid administration, all granule cells seemed to express c-Fos. In the hilus, mossy cells
(arrowheads) as well as hilar interneurons also expressed c-Fos.
C) C-Fos immunoreactivity in the granule cells proved to be transitory, and after 6 hours it remitted. Mossy cells
in the hilus were still immunoreactive, although fainter than at 4 hours. The number of hilar immunoreactive cells
was highly reduced.
D) After 8 hours, c-Fos immunoreactivity was limited to some granule cells, including those sited in the inner
molecular border.
E) At 12 hours, the low number of immunoreactive granule cells remained. On the other hand, there was a weak
expression of c-Fos by glial cells in all layers of the dentate gyrus.
F and G) From day 1 to day 4, the number of labeled granule cells remained low.
H) Only by day 14, the pattern and number of immunoreactive granule cells was similar to controls.
gcl, granule cell layer; h, hilus; ml, molecular layer. Scale bar 50 μm.
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Figure III.4 – c-Fos detected cell activation in the dentate gyrus after DEDTC injection 
A) In control animals c-Fos labeled a scattered population of granule cells. Intensely immunoreactive granule cells
seemed to be more abundant in upper layers of the granule cell layer, including cells in the inner molecular layer
border (arrows).
B) Four hours after DEDTC administration, the number of c-Fos positive granule cells in the inner molecular border
increased (arrows). On the contrary, granule cells inside the granule cell layer were scarce and faintly stained. In
the hilar border of the granule cell layer we found large nuclei corresponding to putative pyramidal basket
interneurons (open arrows). In the hilus a high level of immunoreactivity was induced. Among them, by their
nuclear size and location inside the hilus, we recognized hilar mossy cells (arrowhead) and numerous faint glial
cells.
C) After 6 hours, c-Fos immunoreactivity in granule cells was limited to the border with the inner molecular layer.
Interneurons in the infragranular area and mossy cells in the hilus were becoming faint. Additionally, there was
an increment of immunoreactivity in the hilar glial cells.
D) After 8 hours there was an attenuation of c-Fos immunoreactivity in all cells.
E) At 12 hours the loss of c-Fos immunoreactivity was almost complete in the dentate gyrus, including granule
cells, mossy cells, interneurons and glia.
F) Immunoreactivity began to recover 1 day after DEDTC administration. There were only few immunoreactive
granule cells located at any level, including the inner molecular layer.
G, H) By day 4 the dentate gyrus recovered the usual pattern of c-Fos immunoreactivity, including cells in the inner
molecular border. By day 14 the pattern of immunoreactivity still kept similar to controls, but the increment of
granule cells present by day 4 persisted.
gcl, granule cell layer; h, hilus; ml, molecular layer. Scale bar 50 μm.
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3. SURVIVAL OF SEMILUNAR GRANULE CELLS IN THE PILOCARPINE
MODEL OF EPILEPSY

We also studied the survival of semilunar granule cells in a pilocarpine model of epilepsy in the 

mouse. For further details of the experimental procedure, see (Marqués-Marí et al., 2007). 

Briefly, adult mice were injected intraperitoneally with pilocarpine at a convulsive dose of 300 

mg/Kgbw, and perfused at different times after the administration of pilocarpine. This dose 

was enough to produce lesion in the treated animals. The control group was injected with saline 

solution instead. The nature of the study did not allow us to analyze cell activation but we could 

study cell survival since survival times up to 5 months after pilocarpine were used. 

We checked the animal for different stainings that allowed us to determine the possible fate 

of semilunar granule cells: (1) toluidine blue was used to analyze the lesion and the presence 

of granule-like cells in the molecular layer; (2) calretinin staining, to evaluate the quality of the 

lesion obtained, as a correlation with the loss of mossy cells; (3) calbindin, used as a granule 

cell marker; and (4) Timm staining, to evaluate the extent of the mossy fiber sprouting. 

No apparent loss of semilunar granule cells was observed in the pilocarpine model after lesion, 

neither with toluidine blue nor with calbindin, as calbindin-positive cells were still present in 

the inner molecular layer (Figure III.5 A). The loss of mossy cells, instead, was severe as seen 

with calretinin (Figure III.5 B). Timm staining was well developed in the inner molecular layer 

60 days after pilocarpine administration. Still Timm stained fibers could be observed in the 

granule cell layer following putative dendrites of basket cells (Figure III.5 C). 

Therefore, there is no loss of granule cells that could correspond to semilunar granule cells at 

long times in this model of epilepsy, neither there is any indication that this loss is produced in 

the other models analyzed. We should conclude that semilunar granule cells as well as 

parvalbumin basket cells are resilient to damage in this models whereas mossy cells are greatly 

affected by cell death. 
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Figure III.5- Semilunar granule cells are preserved in the pilocarpine model of epilepsy. 
All images are taken from the same animal.  
A) 60 days after pilocarpine administration the expression of calbindin in the dentate gyrus remained altered.
Calbindin was expressed mainly by granule cells in the lower half of the granule cell layer, whereas in the upper
half granule cells were not immunoreactive. Nevertheless, granule cells inside or in the border of the molecular
layer were calbindin immunoreactive (arrows).
B) Calretinin immunoreactivity in these animals showed a disappearance of calretinin immunoreactive mossy cells
in the hilus and a strong expression by immature granule cells (arrows).
C) Timm staining for vesicular zinc showed a strong sprouting from the mossy fibers, filling the inner molecular
layer. Presumptive interneurons and somata of granule cell layer interneurons were densely covered by Timm-
positive boutons (arrows).
gcl, granule cell layer; h, hilus; iml, inner molecular layer; oml, outer molecular layer. Scale bar 50 μm.
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In this work we have studied the connectivity of parvalbumin basket cells and semilunar 

granule cells, to try to understand how this connection could influence the dentate gyrus in 

normal and pathologic conditions. 

1. PERISOMATIC INNERVATION ON PARVALBUMIN BASKET CELLS IN
THE MOUSE DENTATE GYRUS

Parvalbumin-positive cells in the granule cell layer represent two different types of fast-spiking 

perisomatic-innervating interneurons: the most abundant are basket cells, whereas the rest 

correspond to axo-axonic cells (Kosaka et al., 1987; Soriano and Frotscher, 1989; Nitsch et al., 

1990; Soriano et al., 1990; Howard et al., 2005; Freund and Katona, 2007). Previous data show 

that axo-axonic interneurons mainly sit in the border between the granule cell layer and the 

inner molecular layer (Soriano and Frotscher, 1989; Soriano et al., 1990), and no further effort 

has been made in this thesis to distinguish one subpopulation from the other. Although we are 

aware that an identification of the target profiles is needed to define the basket or axo-axonic 

nature of parvalbumin interneurons, we will use the term “parvalbumin basket cells” in the 

discussion, as the study was centered in those parvalbumin cells sitting in the granule cell layer, 

unless indicated otherwise.  

In the first part of the results we studied the origin of the excitatory perisomatic innervation on 

parvalbumin basket cells. The concept of “perisomatic region” has been generally applied in 

the literature to principal cells, in which a clearer different synaptic input and physiological 

function of this region can be observed if compared to spiny dendrites (Megıás et al., 2001; 

Papp et al., 2001). However, there is a lack of information regarding the description of a 

“perisomatic region” in interneurons, focusing on their physiological function. In this work, we 

considered that the term “perisomatic region” should include both soma and the most 

proximal part of the dendritic trunk of the parvalbumin basket cells, up to the point where it 

branches; i.e. while it is still inside the granule cell layer. This is a common opinion, since there 

is generally a gradual transition between the cell body and the principal dendrite, and in this 

case the dendrite caliber is large enough to share common features with the soma. 

Our first approach to understand the importance of this excitatory innervation was made by 

comparing it with the inhibitory one, using Gephyrin and PSD95 as postsynaptic markers (Lin 

et al., 2004; Fritschy et al., 2008; Jackson and Nicoll, 2011). Our data reported that both 
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excitatory and inhibitory perisomatic input on basket cells are at least equally important. This 

is in agreement with previous results obtained from parvalbumin interneurons in the CA1 

region of the hippocampus, in which the density of somatic excitatory input was higher than 

the inhibitory (Gulyás et al., 1999). On the other hand, we found no differences among 

parvalbumin basket cells located differently in the dentate gyrus. Therefore, the excitatory 

drive on the somata is a common characteristic shared by them. 

Although Gephyrin and PSD95 only label the postsynaptic density and do not allow us to 

visualize the boutons, the use of generalist presynaptic markers, such as VGAT or VGluT1, 

would have not been adequate by themselves. Since the parvalbumin basket cells under study 

are located in the granule cell layer, where cell bodies and dendrites of granule cells are tightly 

packed, a presynaptic marker could have introduced many false-positives if not coupled in a 

determinant manner with a postsynaptic density element, which would be the decisive 

element to consider it a putative contact. 

Disregarding technical considerations, it is clear that there is an important excitatory input to 

parvalbumin interneurons which cannot be obviated when exploring the dentate gyrus 

function. 

Previous knowledge related to the excitatory innervation that dentate parvalbumin cells 

receive can be summarized as follows: they receive excitatory contacts from the entorhinal 

cortex via the perforant path in the outer two thirds of the molecular layer (Zipp et al., 1989), 

as well as from fibers from mossy cells in the inner molecular layer (Seress and Ribak, 1984). 

The latter described a frequent perisomatic innervation from degenerated commissural fibers 

(likely from mossy cells) on one type of parvalbumin interneuron: the molecular layer type. 

However, in the particular case of perisomatic interneurons, they state neither the symmetric 

nor the asymmetric nature of such innervation. These degenerated axons could originate from 

hilar interneurons. On the other hand, the molecular layer type parvalbumin-containing 

interneuron has been generally considered as axo-axonic (Soriano and Frotscher, 1989; Soriano 

et al., 1990), and only one synaptic contact was observed by the authors in the other types of 

parvalbumin interneurons. Therefore, although it has been suggested that commissural 

boutons could synapse on the somata of parvalbumin basket cells, it has not been undoubtedly 

proved. 

Other excitatory input to consider is the subcortical drive to parvalbumin interneurons coming 

from supramammillary fibers (Leranth and Nitsch, 1994; Nitsch and Leranth, 1994). However, 
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these authors showed in the monkey that not all parvalbumin interneurons are targeted by 

substance P-positive supramammillary boutons, but only a small fraction of them that are 

located in the upper half of the granule cell layer. Therefore, this innervation cannot explain by 

itself the perisomatic excitatory input that all parvalbumin interneurons in the dentate gyrus 

receive, as it skips the parvalbumin basket cells sitting in the hilar border with the granule cell 

layer. 

On the other hand, it has been shown that parvalbumin basket cell somata receive a high 

number of Timm-positive boutons that make asymmetric contacts on them (Blasco-Ibáñez et 

al., 2000; Seress et al., 2001; Frotscher et al., 2006). Timm-positive boutons concentrate in the 

hilus and stratum lucidum, where they correspond to mossy fibers. In the granule cell layer, 

only a few collaterals can be detected. These collaterals have been described to originate from 

granule cells, however, no definitive proof has been provided. Other glutamatergic sources of 

boutons that contain zinc have been described in this area, such as the mossy cells and the 

entorhinal cortex pyramidal cells (Pérez-Clausell and Danscher, 1985; Valente et al., 2002; 

Paoletti et al., 2009), and although their level of Timm staining is considerably lower, they 

cannot be discarded. 

Since the different excitatory inputs onto parvalbumin basket cells are not randomly 

distributed, the location of these inputs would play an important role in the modulation and 

triggering of action potentials. Innervation located in distal dendrites is usually considered to 

modulate the firing response, whereas innervation in proximal dendrites, or even better at the 

cell body, is more important to actually control the capability of the cell to fire somatic action 

potentials (Cobb et al., 1995; Miles et al., 1996).  

Excitatory perisomatic drive of parvalbumin basket cells by local principal cells has been 

previously studied in different brain areas such as the visual cortex (Buhl et al., 1997), the 

hippocampus and the amygdala (Sik et al., 1993; McDonald et al., 2005). In the dentate gyrus, 

perisomatic excitatory input has been also studied in both control and epileptic animals (Ribak 

and Peterson, 1991; Kotti et al., 1997; Blasco-Ibáñez et al., 2000). The presence of this 

regulatory system in other cortical structures suggests a general control mechanism in all brain 

areas. 

To better understand the function of the excitatory perisomatic input on the parvalbumin 

basket cells of the dentate gyrus, we aimed to analyze the origins of this input. 
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1.1. PERISOMATIC EXCITATORY INNERVATION FROM MOSSY CELLS ON PARVALBUMIN 

BASKET CELLS IN THE GRANULE CELL LAYER 

Our data at the confocal microscopy level show that there may be a few perisomatic synaptic 

contacts from mossy cells in parvalbumin-containing basket cells, both on the soma and on the 

apical dendritic trunk. However, puncta in close apposition at the confocal level is no guarantee 

that there is an actual synaptic contact, and no previous studies have shown these contacts at 

the electron microscopy level. 

In our correlated optical-electron microscopy study, no clear synaptic contacts from mossy cells 

could be found in the perisomatic region of parvalbumin basket cells with somata located in 

the granule cell layer. We found instead some questionable ones, and many calretinin-positive 

elements that passed close to parvalbumin interneurons but did not make synaptic contacts. 

These calretinin-elements could come from different sources: (1) they could be axons from the 

mossy cells, that pass close to parvalbumin-positive interneurons through the granule cell 

layer, and present varicosities that can be observed as puncta, but make no contacts on their 

way; (2) boutons coming from the supramammilary nuclei (Maglóczky et al., 1994); (3) boutons 

from IS-1 calretinin-positive interneurons that pass nearby (Freund and Buzsáki, 1996). 

We cannot completely rule out the possibility that some of the scarce and testimonial 

calretinin-positive elements that we see are not coming from supramammilary fibers, since 

they present a similar morphology and also establish asymmetric synapses. The possibility of 

having calretinin-positive elements that establish symmetric contacts is also low, as IS-1 

calretinin fibers generally avoid parvalbumin basket cells (Gulyás et al., 1996; Blasco-Ibáñez et 

al., 1998). 

In summary, our results show that the main, and almost exclusive, source of perisomatic 

excitatory innervation onto parvalbumin-positive basket cells are the Timm-positive boutons, 

as only rare questionable examples of calretinin-positive synapses have been found. However, 

excitatory synapses that shared the characteristics of en passant boutons from mossy fibers 

were relatively easily found. These results indicate that the general idea that mossy cells exert 

an important excitatory drive to parvalbumin basket cells on the soma is mistaken, and its 

influence is restricted to parvalbumin-positive dendrites in the inner molecular layer. 
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1.2. PERISOMATIC EXCITATORY INNERVATION FROM GRANULE CELLS AND SEMILUNAR 

GRANULE CELLS ON PARVALBUMIN BASKET CELLS IN THE GRANULE CELL LAYER 

Previous studies have shown that parvalbumin-positive interneurons are innervated by Timm-

positive fibers, which contain high levels of Zn+2 (Ribak and Peterson, 1991; Blasco-Ibáñez et al., 

2000; Seress et al., 2001; Frotscher et al., 2006). These Timm-positive fibers have been 

presumed to arise from granule cells, and to be therefore mossy fibers. Ultrastructural features 

of these boutons are similar to those of mossy fiber contacting hilar interneurons, with small 

round and a few dense-core vesicles (Claiborne et al., 1986; Acsády et al., 1998). Still no 

definitive proof has been provided that granule cells are the origin of the Timm-positive fibers 

on the parvalbumin basket cells. In fact, the number of fibers is quite low in relation with the 

total number of cells. Therefore, even if they come from granule cells, this population of 

granule cells must be quite a restricted one (Blasco-Ibáñez et al., 2000). On the other hand, 

another origin cannot be discarded. 

Although difficult to evaluate, if we admit a number of parvalbumin-positive interneurons 

about 1000 per dentate gyrus (data from the control group in the pentylenetetrazole-induced 

kindling experiment, shown in chapter Results III, Section 1 in this thesis) and we admit a media 

of 4 Timm-positive fibers on one of them, even if each collateral arises from a different cell, the 

cell population that would generate this innervation should be limited to 4000 cells, and that 

number is likely an overestimation. As the number of granule cells in the mouse dentate gyrus 

has been estimated to approximately 500.000 cells (Amrein et al., 2004), if these fibers arose 

from granule cells, less than 1% of granule cells would be in charge of this innervation. 

The entorhinal cortex afferents also present synaptic zinc in their terminals, as do many other 

glutamatergic cells (Pérez-Clausell and Danscher, 1985; Valente et al., 2002; Paoletti et al., 

2009), but the Timm staining for these fibers is low, and the perisomatic puncta obtained do 

not correspond to their innervation pattern. Therefore, it is unlikely that entorhinal fibers are 

the source of this innervation on the perisomatic region of parvalbumin basket cells. However, 

there is evidence in the literature of entorhinal fibers entering in the hilus through the granule 

cell layer (Deller et al., 1996), and we cannot rule out the possibility that a small, specialized 

population of entorhinal cells could participate in it.  

It is also very unlikely that supramammillary afferents are zincergic, as previous studies 

regarding the staining of thalamic and hypothalamic subnuclei with the Timm method do not 

show any evidence of it (Mengual et al., 2001; Hamani et al., 2005). In addition, the Timm-
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positive fibers observed in the dentate gyrus do not follow the pattern that would be expected 

if they arouse from these systems.  

In any case, although mossy fibers are the most probable source of the Timm-positive 

innervation of the perisomatic region of parvalbumin interneurons in the dentate gyrus, it was 

necessary to prove it, and to isolate that subpopulation. 

To determine the origin of the Timm-positive fibers that innervate parvalbumin basket cells in 

the dentate gyrus unmistakably it is necessary to visualize the axons of identified cells. Although 

granule cells in rodents have been analyzed as a homogeneous population, in recent years 

semilunar granule cells have been proven to have special characteristics (Williams et al., 2007; 

Larimer and Strowbridge, 2010; Gupta et al., 2012). The location of these cells in the dentate 

gyrus makes them a suitable source for the perisomatic excitatory innervation on parvalbumin 

basket cells.  

To study the innervation from typical and semilunar granule cells to parvalbumin interneurons, 

completely filled (axon included) cells were needed. For this purpose, as there are no markers 

available and the granule cells are densely packed, the best tool that we could use was the 

intracellular injection via whole-cell patch clamp. This technique allowed us to fill almost all the 

dendritic tree of typical and semilunar granule cells, and even more important, the main axon 

and axon collaterals.  

Golgi staining could have allowed us to fill cell bodies and their axons as well. However, with 

this technique cells are randomly filled, good examples are hard to find, and further anatomical 

studies are not possible or become very difficult in this type of material. Nevertheless, we were 

provided with some suggestive examples by Professor Carlos López García, showing the 

presence of collaterals in the granule cell layer that could correspond to the boutons making 

asymmetric contacts on parvalbumin basket cells.  

The study of intracellularly filled typical granule cells did not provide any indication that the 

Timm-positive collaterals may arise from them. The granule cell axon always raised from the 

basal pole of the cell and traveled directly through the granule cell layer to the hilus, where it 

ramified. In addition, no varicosities were observed in their way through the granule cell layer. 

Although intracellular injection only allows us to fill the part of the axonic arbor present in the 

slice, it is unlikely that typical granule cells contribute to this innervation. Otherwise, mossy 

fibers collaterals in the granule cell layer should originate from the hilus and make their way 
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up through the granule cell layer. However, this phenomenon has only been described in 

pathological situations such as epilepsy (Kotti et al., 1997; Kobayashi and Buckmaster, 2003), 

but not in control conditions. 

According to our material, the presence of axon collaterals from typical granule cells is unlikely 

to explain the innervation of parvalbumin basket cells. Still, since only a small proportion of 

granule cells would be necessary to produce this innervation according to our calculation 

above, we cannot completely rule out that some of them may contribute to it. 

Granule cell collateral entering the granule cell layer in epilepsy 
Modified from Kobayashi et al, 2003 

On the other hand, our results indicate that semilunar granule cells could be the origin of this 

innervation, at least of most of it. Semilunar granule cell axons emerge in the inner molecular 

layer where they often run parallel to the lamination before entering the granule cell layer, and 

generate collaterals that also enter the granule cell layer (Williams et al., 2007). These 

collaterals are in an ideal location to contact parvalbumin-positive cell bodies and dendrites 

from the parvalbumin interneurons in their way to the hilus. Moreover, while their axons travel 

through the granule cell layer, they present varicosities that could perfectly be synaptic 

boutons. 

Combining the intracellular tracer with an immunostaining for parvalbumin we found clear 

examples that semilunar granule cells do innervate perisomatically parvalbumin basket cells. 

Although often we could not find contacts of these cells on parvalbumin cells, it should be taken 

into account several technical considerations that could have influenced these results: (1) an 

incomplete filling of the axon; (2) dead or degenerating target parvalbumin cells in the slice 

that lose the antigenicity for the antibody. In fact, even in slices with a large number of surviving 

cells, many cells including parvalbumin interneurons are dead. Parvalbumin dead cells in acute 

slices seem to lose immunoreactivity quickly. Possibly the use of other markers for parvalbumin 

basket cells such as Kv3.1 (Chow et al., 1999) could have help to improve the results.  
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It was necessary to check under the electron microscope if the axons of semilunar granule cells 

make synaptic contact on parvalbumin basket cells. The electron microscopy confirmed this 

hypothesis. In fact, the ultrastructure of the boutons corresponded to the descriptions for the 

Timm-positive boutons already published (Blasco-Ibáñez et al., 2000), confirming that the 

Timm-positive innervation on parvalbumin cells comes from semilunar granule cells. 

Interestingly, boutons from the same fiber continued on the parvalbumin dendrites present in 

hilus, also presumably from the parvalbumin basket cells.  

Innervation of Timm-positive boutons on hilar parvalbumin cells has been described previously 

(Seress et al., 2001). Further studies will be necessary to understand the relevance of typical 

and semilunar granule cells in the innervation of hilar parvalbumin interneurons.   

Nevertheless, even if we make allowances for the limitation of the technique, it is likely that 

semilunar granule cells are not a homogeneous population, and that not all but only a 

subpopulation of semilunar granule cells are responsible for the innervation onto parvalbumin 

basket cells, (i.e. parvalbumin interneuron selective semilunar granule cells) that should be 

better described. This fact could possibly be extended to the cells involved in the hilar up states 

described by Larimer and Strowbridge (2010). Based on their original paper, there is no 

evidence that only a subset of semilunar granule cells are responsible for the generation of 

hilar up-states. However, a sampling bias can be the underlying reason for this, and additional 

studies should be performed to answer the question whether semilunar granule cells that 

contact parvalbumin basket cells also participate in the hilar up-states generation.  

 

1.3. DIFFERENCES IN THE INNERVATION OF THE MORPHOLOGICALLY DIFFERENT 

PARVALBUMIN BASKET CELL TYPES  

Parvalbumin cells in the granule cell layer of the dentate gyrus have been differentiated into 

different types considering their morphology (Ribak and Seress, 1983). There are some clues 

suggesting that this could be reflected in different function, although all of them are fast-

spiking and, with the exception of the axo-axonic cells, they innervate the somata of granule 

cells. In fact, the location of the cell body and dendrites is crucial to determine the inputs 

parvalbumin interneurons are going to receive, and to understand the strength of these inputs 

and the signal integration that would determine the interneuron firing. 
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In our study we only had access to morphological considerations, but we realized that there 

are differences between the different types. Unfortunately, we could not find many differences 

at the level of perisomatic input using the generalist markers studied in this thesis, but we 

found clear differences in the intensity of the Timm-positive staining on the different cell types. 

While some subtypes are massively surrounded by Timm-positive boutons (horizontal and 

pyramidal types), others are weakly innervated (molecular type, inverted fusiform type). For 

example, molecular layer parvalbumin-positive cells are thought to be axoaxonic cells (Soriano 

and Frotscher, 1989; Soriano et al., 1990), and they are weakly innervated by Timm-positive 

boutons in the soma. Further studies are needed to clarify whether this differential innervation 

may be translated in a different physiological function. 

If this phenomenon turned to be true also at a physiological level, basket cells and axoaxonic 

cells would receive different perisomatic input, which could determine different functions 

under physiological and pathological conditions. Further research will be necessary to test the 

differences among the different types of parvalbumin cells respective to their innervation by 

semilunar granule cells. 

On the other hand, although this work is centered on parvalbumin cells of the granule cell layer, 

we have to take into consideration the presence of parvalbumin-positive cells in the hilus, 

especially at ventral levels. These cells have been shown to be somatically and dendritically 

innervated by mossy fibers (Acsády et al., 1998). We confirmed that they also receive input 

from semilunar granule cells, but we cannot weight it against innervation from normal granule 

cells. 

Although the firing of the semilunar granule cells is likely to facilitate the firing of the 

parvalbumin interneurons in the hilus and granule cell layer, its influence is probably higher in 

those cells that are highly innervated at a perisomatic level than in those that are weakly 

innervated or are only innervated at a dendritic level.  

2. CHARACTERIZATION OF SEMILUNAR GRANULE CELLS

2.1. ON THE TERM “SEMILUNAR GRANULE CELL” IN THIS THESIS 

An important decision that we had to face when working in this thesis was to select a name for 

the subpopulation of granule cells that we were to study. Different names have been given to 

these cells along time, according to different criteria. Ramón y Cajal was the first to describe 
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this cell population, and termed them “semilunar granule cells” due to their semilunar 

morphology (Ramón y Cajal, 1911). The term “semilunar” is a morphological concept also used 

for non-granule cells in other brain areas (Gómez-Climent et al., 2008).  

The other term used habitually to define non-standard granule cells is “ectopic granule cell”. 

Ectopic granule cell includes all granule cells located outside the granule cell layer disregarding 

any morphological or functional criteria. However, the term “ectopic granule cell” is generally 

associated to the appearance of misplaced granule cells in the molecular layer, hilus or even 

the CA3 after seizures (Scharfman et al., 2000; Shapiro and Ribak, 2005; Muramatsu et al., 

2008; Scharfman and Pierce, 2012). Our study, on the contrary, tries to focus on granule cells 

present in control conditions and that are a feature of the dentate gyrus circuitry. 

Although both terms partially overlap, they are not synonymous. It is not known whether all 

the ectopic cells are semilunar granule cells, nor if all the semilunar granule cells can be 

considered ectopic. “Ectopic cells” is a less compromising term since it makes no preconception 

about morphology or function. On the other hand in recent years important literature on the 

granule cells in the inner molecular layer has been published characterizing this population and 

using the term “semilunar granule cell” to define them. 

In this thesis, we chose the term semilunar granule cell since these studies have used the term 

to name a population of granule cells located in the inner molecular layer with special 

characteristics. The location of these cells and their differential characteristics in axon 

localization or physiology suggested that they could in addition be suitable candidates to 

innervate parvalbumin basket cell somata. On the other hand, we wanted a term that did not 

involve hilar ectopic granule cells, or ectopic granule cells that could appear in a pathological 

situation. 

A detailed systematic description of semilunar granule cell’s morphology is missing in the 

literature. The lack of a specific marker for semilunar granule cells made their characterization 

difficult. Martí-Subirana and colleagues already showed that the population of molecular layer 

ectopic granule cells in young control rats is heterogeneous (Martí-Subirana et al., 1986). The 

different morphologies and location of the semilunar granule cells of the inner molecular layer 

suggest that they can fulfill different functions, since their synaptic input will be different. 

However, no functional examination has been previously performed. 

Based on the previous literature we chose to include in the definition of semilunar granule cells 

those granule cells located in the border between the granule cell layer and inner molecular 
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layer and that could not be aptly named ectopic cells. Three important facts support this 

decision: 

- From the morphological point of view, these cells can also be considered as “semilunar”, as

they present a wider dendritic arbor in comparison with their lower neighbors. This

dendritic orientation, in which two primary dendrites arise from opposite poles of the cell,

shapes the cell body in a more triangular or semilunar way instead of ovoid.

- From the phenotypical point of view, these cells express some markers in a different extent

than middle layer-granule cells. For example, these cells show a distinct expression of

markers such as CART peptide (Seress et al., 2004; Hunter et al., 2005; Abrahám et al., 2007;

Kolenkiewicz et al., 2009), and in an excited brain state, c-Fos.

- They receive similar input than the cells in the inner molecular layer. These cells are

innervated by fibers coming from the supramammilary nucleus in a higher extent than rest

of the cells in the granule cell layer. In addition, they may receive a stronger excitatory input

from mossy cells, as their proximal dendrites are already in the molecular layer (in

opposition to the lower granule cells, which present an apical dendrite that must travel

some microns to reach the inner molecular layer, therefore receiving less excitatory input).

However, the election of a name is a tool, and should be reconsidered on the light of further 

data that could redefine the population. To delimit this population clearly it will be necessary 

to find a cell marker that could actually discriminate semilunar granule cells from typical 

granule cells or ectopic granule cells. 

2.2. TECHNICAL CONSIDERATIONS 

Due to the lack of specific markers for this subpopulation, the remaining techniques available 

for this study were three: (1) intracellular injection via whole-cell patch clamp; (2) transgenic 

Thy1 mice; (3) immunohistochemistry for Prox1.  

We discarded the Golgi technique, although there are previous studies that have used it to 

study the cell population of the molecular layer in the rat brain (Martí-Subirana et al., 1986) 

and in the rabbit brain (Sancho-Bielsa et al., 2012), where a morphological description is carried 

out. In addition, this technique is whimsical and makes difficult further analysis, since 

immunohistochemistry for putative targets is not easily combined.  
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On the other hand, intracellular injection via whole-cell patch clamp allowed us to target the 

cells that we thought were better candidates for innervating parvalbumin basket cells. Their 

dendritic arbor could be filled and compared, as well as their main axonal branch and 

collaterals. One of the problems associated with this technique is that it is labor intensive, and 

therefore cannot produce a very large number of samples. Therefore we had to select the most 

promising neurons introducing a subjective criterion. Additionally, when making the acute 

slices, some of the granule cells and parvalbumin basket cells degenerate. To reduce cell 

degeneration these studies are usually performed in young mice. These problems can interfere 

with the study, since the susceptibility of the different cell types can be different and the cell 

types can also be not fully mature. As an additional disadvantage, the acute slices can only be 

fixed by immersion after several hours of study, and the quality of the tissue for optical and 

ultrastructural analysis is affected. 

Thy1 transgenic mice allowed us to focus on excitatory cells located in the molecular layer and 

the border with the granule cell layer. Its use allowed us to study their general morphology, 

cell body shape and proximal dendrites. Therefore we could identify semilunar granule cells 

clearly. It had the advantage that only principal cells expressed the fluorescent protein YFP, and 

in a Golgi-like manner, but not all of them expressed it. Therefore we could single out semilunar 

granule cells, but we could not see all of them in a given section. There is a chance that all the 

different types are not labeled randomly. In addition, although the quality of the genetically 

encoded fluorescence was optimal, the number of cells labeled simultaneously did not allow 

for complete reconstruction of the dendritic arbor. However, it allowed us to make a 

phenotypic study in which the possible differences could be associated with the semilunar 

morphology. 

Finally, Prox1 has been widely accepted as a granule cell marker (Lavado and Oliver, 2007; 

Lavado et al., 2010; Iwano et al., 2012), and even used to confirm that semilunar granule cells 

are a subpopulation of granule cells (Gupta et al., 2012). It has the advantage of staining all of 

the granule cells, but only the nuclei. This gave us a tool for studying the incoming innervation 

on granule cells that by their size and position we considered semilunar granule cells. However, 

due to its nuclear nature, we could only focus the study in the perisomatic region. The antibody 

for Prox1 also presented several difficulties, mainly related to the fixation. First, it was very 

sensitive to the quality of the fixation, and microglia appeared as background staining when 

the fixation was not optimal. Second, the staining that we got was in all cases weak, enough to 
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be distinguished at the optical level, but hard to see its nuclear staining in the electron 

microscope, which forced us to work with correlated optical-electron microscopy. In addition, 

GA based fixatives decreased the intensity of the staining, already weak per se, and acrolein-

based fixatives had to be used instead. 

2.3. DISTRIBUTION AND NUMBER OF SEMILUNAR GRANULE CELLS 

Due to the small number of semilunar granule cells, or ectopic granule cells located in the outer 

molecular layer of the dentate gyrus, no quantitative studies have been performed previously. 

We used Prox1 to label the granule cells. Although it only labels the nucleus of the granule cells, 

it labels all of them and allowed us to calculate the size of the population of granule cells in the 

molecular layer. Our estimation showed that the studied animals present a relatively similar 

number of Prox1-positive cells in this area, and that they are more abundant in the inner 

molecular layer than in the outer molecular layer.  In addition, we found Prox1-positive cells in 

the molecular layer are present in two different strains (C57BL/6J and CD-1), and in Wistar rats. 

Therefore, this cell population cannot be considered either as a curiosity or due to a 

pathological condition.  

There are studies that report an increase in the number of ectopic granule cells after seizure 

(Scharfman et al., 2000; McCloskey et al., 2006; Pierce et al., 2007). In fact many of the 

morphological features previously described for ectopic granule cells correspond to these 

seizure-induced newly-formed ectopic granule cells, or for granule cell dispersion and 

migration to the molecular layer (Murphy and Danzer, 2011). These cells should not be 

confused with normal ectopic granule cells and their features characteristics cannot be 

translated to them. 

Prox1 has also been described as a marker for a subpopulation of interneurons that originate 

in the lateral/caudal ganglionic eminence and preoptic area during development (Rubin and 

Kessaris, 2013). In that paper they skip the study of the presence of Prox1 interneurons in the 

dentate gyrus. On the other hand, it is unlikely that the interneuron population that originates 

in the lateral/caudal ganglionic eminence (VIP- or Reelin-positive, but not parvalbumin- or 

somatostatin-positive) could affect much our study (for review, see Wonders and Anderson, 

2005; Hernández-Miranda et al., 2010), considering the low frequency at which they are found 

in the molecular layer. In addition, semilunar and ectopic granule cells present in Thy1 animals 
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have Prox1 nuclei with shape and size similar to all of the Prox1 nuclei in the molecular layer, 

and that are smaller than interneuron nuclei. We also found that Thy1-positive cells in this 

region have the same distribution and are Prox1-positive. Finally, our analysis at the electron 

microscope showed granule-like features for Prox1-positive cells in the molecular layer. 

Therefore, although we cannot absolutely discard the presence of a few Prox1-positive 

interneurons in the molecular layer of the dentate gyrus, on the whole, we can consider Prox1 

as a selective marker for granule cells for the present study. 

The number of Prox1 nuclei in the inner molecular layer is not high (around 1200 cells per 

hemisphere), corresponding to less than 1% of the granule cells, and therefore similar to the 

number of parvalbumin basket cells or mossy cells. The distribution of these cells is more 

abundant in the suprapyramidal layer than in the infrapyramidal layer. This fact is in agreement 

with the density of Timm-positive fibers on parvalbumin basket cells. 

We cannot compare the amount of Prox1 nuclei in the molecular layer with other studies in 

normal animals, but Golgi studies have reported the presence of ectopic granule cells in the 

whole molecular layer, with more cells being stained in the suprapyramidal than in the 

infrapyramidal blade (Martí-Subirana et al., 1986), which is in accordance with our results.  

2.4. ORIGIN OF SEMILUNAR GRANULE CELLS 

We decided to study the postnatal development of the dentate gyrus to understand if 

semilunar granule cells are an intrinsically different type of granule cells or if they are different 

because of their time of origin and location. Since during young adult age and even adulthood, 

newly formed granule cells are being generated (for a review see Kempermann et al., 2004; 

Mongiat and Schinder, 2011), and they incorporate in the subgranular zone next to the hilus, it 

has been assumed that the cells close to the molecular layer are older. We used semithin 

sections with calretinin as a marker for immature granule cells in mice (Liu et al., 1996; Brandt 

et al., 2003), and calbindin as a marker for more mature and integrated granule cells (Sloviter, 

1989). 

Our study confirm that the first granule cells to mature (expressing calbindin by day 7) are those 

cells that correspond by localization to semilunar granule cells. By day 10 the circuitry is 

beginning to mature, as seen by calretinin expression in the mossy cell axons in the inner 

molecular layer. By day 14, the dentate gyrus is reaching normality. 
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In rats, dentate gyrus formation and granule cell differentiation follow a gradient from the 

external dentate limb to the internal dentate limb (Altman and Bayer, 1990). This is also 

observed in the calbindin staining by day 10 in our preparations. It is interesting that the first 

areas of the dentate gyrus to form and mature are those where more abundant are semilunar 

granule cells during adulthood.  

Dentate GABAergic neurons originate in the subventricular zone of the medial and lateral 

ganglionic eminences (Bayer, 1980a; b; Pleasure et al., 2000), and are generated earlier than 

granule cells (Lübbers et al., 1985). However, maturation of the dendritic and axonal arbor may 

take place in the postnatal life, probably influenced by interactions with their synaptic partners 

(Seress et al., 1989; Seress and Ribak, 1990).  

We hypothesize that semilunar granule cells are originated from the first population of 

hippocampal granule precursors described by Altman and Bayer (1990). This area, designed as 

the secondary dentate matrix, dissolves by day P5 in rat and becomes the outer shell of the 

granule cell layer. Therefore, this early generated granule cells are in a privileged position to 

establish synaptic contacts with parvalbumin basket cells and mossy cells. Their expression of 

calbindin is an indicative of their integration in the circuitry (Sloviter, 1989). Once the 

perisomatic synaptic places in the parvalbumin interneuron are no longer available for the new 

generated granule cells, the next generations of granule cells, originating from the tertiary 

dentate matrix, will have no opportunity to contact the parvalbumin cells in the granule cell 

layer.  

Since axon collaterals from semilunar granule cells also contact parvalbumin cells in the hilus, 

there is a possibility that this preponderance of contacts on parvalbumin cells extends to the 

hilus, although probably in a less absolute manner. 

In addition, the fact that we found more Prox1-positive nuclei in the inner molecular layer in 

ventral levels than in dorsal levels of the dentate gyrus is in agreement with the fact that more 

Timm-positive fibers are found there, more parvalbumin interneurons and more mossy cells. 

2.5. MORPHOLOGICAL CHARACTERIZATION OF SEMILUNAR GRANULE CELLS 

Although granule cells in rodents are usually considered as a homogeneous population (Lindsay 

and Scheibel, 1981; Seress and Pokorny, 1981; Desmond and Levy, 1982; Claiborne et al., 1990), 

some works have found differences in granule cell morphology  and size in rat (Yan et al., 2001), 
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and in other species. In the red fox, large granule cells represent 17% approximately of the total 

number of granule cells, and are characterized by a bigger cell body and nucleus, different 

orientation of the axon hillock and stronger expression of NeuN (Amrein and Slomianka, 2010), 

which can be due to a different physiological state as hypothesized by Mullen et al (1992). 

Seress and Ribak compared granule cells from rat and primates, and they found that in primates 

axo-somatic synapses, somatic spines and infolded nuclei were common, although these 

characteristics were rare in the rat (Seress and Ribak, 1992). They attribute these differences 

to lower GABAergic inhibition since the soma is a preferred location for GABAergic synapses 

and therefore they propose that primate granule cells are physiologically more active than rat 

granule cells. These features are in accordance with our results for semilunar granule cells in 

mouse and rat. 

Axon originating from a dendrite 

We found that a frequent feature of semilunar granule cells is that the axon arises from the 

dendrite. This is not a characteristic unique to semilunar granule cells. Several interneuron 

populations, such as dentate basket cells, present the axon in a main order dendrite (Ribak and 

Seress, 1983). Glutamatergic pyramidal cells from CA1, CA3 and subiculum have also been 

shown to present axon-carrying dendrites (Kaifosh and Losonczy, 2014; Thome et al., 2014). 

However, it is widely accepted that typical dentate granule cells present an axon originating in 

the basal pole of their cell body, and only some reports of its emergence from a dendrite are 

found in the literature, and were generally considered as an anomaly (Seress and Pokorny, 

1981). 

The fact that the axon may arise from a primary order dendrite, which in many physiological 

cases could be considered within the perisomatic region, could have important implications in 

the function of these cells, related to the action potential generation. Some studies have shown 

that the location of the axon initial segment respective to the soma may help the neurons to 

modify their excitability (Grubb et al., 2011; Baranauskas et al., 2013).  

Interestingly, it has been shown that in dissociated hippocampal cultures, chronic 

depolarization leads the axon initial segment to move further away from the soma in a 

reversible way to reduce their excitability (Grubb and Burrone, 2010). Therefore, this 

characteristic could be indicative of a functional difference with normal granule cells and points 

towards a higher level of activity.  
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Basal dendrites entering the hilus 

We found that 21% of the biocytin-filled analyzed cells presented an axonal branch traveling 

through the granule cell layer and entering the hilus. Hilar basal dendrites are common during 

postnatal development, but they eventually disappear (Lübbers and Frotscher, 1988; Jones et 

al., 2003; Shapiro and Ribak, 2005). An unlikely hypothesis will be that they represent a stage 

in which the granule cell was still migrating in a radial way. However, nothing in the cells from 

our preparations indicated that the cells were immature. In fact, their fully developed dendritic 

tree with mature spines, and axon already in the CA3, suggested that they were not immature 

granule cells.  

The presence of hilar basal dendrites in the rodent has been reported mainly in pathological 

conditions, such as ischemia or epilepsy (Spigelman et al., 1998; Ribak et al., 2000; Díaz-Cintra 

et al., 2009). These hilar basal dendrites were postsynaptic to mossy fibers, probably 

participating in an excitatory recurrent circuit. It has been previously shown that hilar basal 

dendrites that appear normally during development are maintained under hyperactivity 

conditions (Hara et al., 2006). 

On the other hand, the presence of these “hilar dendrites” may be due to technical issues. The 

acute slices for this studies had to be obtained from intracellularly filled cells in postnatal P15-

P23 mice.  Although the general dentate gyrus structure at this age is similar to adults, many 

newly generated granule cells are still being generated and maturing, a process that takes 

between 7 and 21 days (Marqués-Marí et al., 2007). 

Somatic spines 

Our data show a relatively high incidence in somatic spines in semilunar granule cells, and even 

higher in outer molecular layer ectopic granule cells when compared to normal granule cells, 

in which are practically absent.  

The presence of somatic spines has been previously reported in granule cell somata in vivo in 

the adult rat (Kosaka et al., 1984; Deller et al., 1996a) and primate dentate gyrus (Seress and 

Ribak, 1992), though with a very low frequency in adult rats. However, somatic spines in 

granule cells somata have been described in neurodevelopment, in dentate slices prepared in 

vitro, and in pathological conditions such as the reeler mice or seizure-induced mice (Stirling 
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and Bliss, 1978; Martí-Subirana et al., 1986; Bundman and Gall, 1994; Bundman et al., 1994; 

Wenzel et al., 1994). It is important to remark that previous anatomical studies have focused 

on granule cells located in the granule cell layer and not in the molecular layer. 

No somatic spines have been described in other principal cell populations within the 

hippocampus, even in the pathological or experimental situations described above. This fact 

may reflect that the formation of somatic spines is an intrinsic property of granule cells in 

response to external stimuli. 

Therefore, considering the morphological and physiological different features between typical 

granule cells and semilunar granule cells, the high incidence of somatic spines in semilunar 

granule cells, and even higher in the outer molecular layer ectopic granule cells, could be 

explained by the following reasons: 

• A higher activity of this cell subpopulation could imply a higher calcium inward current (such 

as that observed in seizure-induced situations in granule cells). A high intracellular Ca+2 level

had been previously hypothesized as a possible cause for the formation of somatic spines

(Wenzel et al., 1994). This is also possibly the case with semilunar granule cells during the

plateau potentials. This influx of calcium could also relate with a higher expression of cell

activity markers as we will comment below.

• The location of semilunar granule cells in the molecular layer, with a higher probability of

receiving asymmetric perisomatic synaptic contacts from supramammillary fibers or mossy

cells, could explain the increase in the intracellular somatic calcium levels, and therefore

the higher incidence of somatic spines. Still in the inner molecular layer we could not

observe that mossy cells boutons contacted usually the somata of semilunar cells. Even

when surrounded by them, the somata received perisomatic symmetric and asymmetric

synapses from other sources.

The presence of somatic spines in semilunar granule cells may be triggered by the same 

mechanisms of structural plasticity than dendritic spines, i.e. an increase in the cell activity for 

a review, see (Nikonenko et al., 2002; Sala and Segal, 2014). In addition, our observations are 

in agreement with Wenzel et al. work  (1994), who described that only 20% of the new-formed 

somatic spines in vitro found a postsynaptic partner. Under electron microscopy from our fixed 

in vivo preparations, we observed that these somatic spines from semilunar granule cells 

usually lacked a presynaptic element, and could be considered only as protrusions from the cell 
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soma. However, we also found some somatic spines that presented an associated presynaptic 

element with a postsynaptic density characteristic of active excitatory synapses.  

Dendritic arborization 

We performed a Sholl analysis on the injected cells to test for differences in dendritic 

innervation that could explain the difference between the different types of granule cells. The 

sholl analysis showed that there is no difference in the arborization of semilunar granule cells 

and typical granule cells, except in proximal dendrites. This suggests that only the innervation 

pattern that they receive in the inner molecular layer is affected. Mossy cells innervate densely 

the inner molecular layer (Blasco-Ibáñez and Freund, 1997), and semilunar granule cells extend 

the most proximal dendrites in this region, which may be translated in a more important drive 

from mossy cells than in typical granule cells. In addition, for semilunar granule cells the 

synaptic contacts from mossy cells are located closer to the cell body and would be 

comparatively more important for the generation of action potentials. 

Our results showed that semilunar granule cells followed the same dendritic pattern as granule 

cells. There were differences due to their position above the granule cell layer.  The dendritic 

cone was wider the higher the granule cells were in the cell layer, in agreement with former 

descriptions of these cells morphology (Claiborne et al., 1990), and this was also true for 

semilunar granule cells.  

Ours and other studies on semilunar cell morphology suffer from the bias introduced by the 

decision on what to consider a semilunar granule cell. Those cells that did not resemble 

semilunar granule cells, or that were damaged during the experimentation, were discarded. 

This problem will persist until a specific marker for these cells is found. 

2.6. NEUROCHEMICAL CHARACTERIZATION OF SEMILUNAR GRANULE CELLS 

Since semilunar granule cells had special characteristics regarding origin, connectivity and 

physiology, we tried to find a neurochemical marker that allowed us to study them without 

resorting to morphology. We used the transgenic mouse line Thy1-YFP, to be able to correlate 

markers with morphology, as principal cells in these animals strongly expresses YFP in a Golgi-

like manner that allows further anatomical studies. 
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Principal cell and granule cell marker expression 

All YFP-positive semilunar granule cells were CAMKII-positive, and the vast majority of them 

were also Prox1-positive, and therefore granule cells. These results were as expected, and 

confirmed that the cells that we considered semilunar granule cells based on their morpholy, 

were in fact principal cells and granule cells. No interneurons in this area interfere with our 

results, and the vast majority of the principal cells present in the molecular layer are semilunar 

granule cells. 

However, there are a small number of principal cells located in the molecular layer, which could 

not be semilunar granule cells. This may be probably due to lack of staining for Prox1, although 

neighbor cells were well labeled in the same level of the sections. As a possible explanation, 

they could represent a second glutamatergic cell type, that have been previously described in 

the rabbit molecular layer and that was called “Sarmentous” (Sancho-Bielsa et al., 2012). But 

considering the similarities in shape and size, and the morphological diversity of semilunar 

granule cells, could also be semilunar granule cells presenting a low level of Prox1 

immunoreactivity masked by the strong YFP-fluorescence. 

YFP-positive cells also expressed calbindin in a high proportion. This result corresponds to the 

one expected for typical granule cells. This fact indicates that semilunar granule cells express 

the same principal and granule cell markers than the ones used for typical granule cells. 

Calcium binding proteins expression 

Calcium binding proteins are in charge of chelating the excess of intracellular calcium that can 

come in the cell after continuous spike discharges. In the mouse and other animals calretinin is 

a good marker for mossy cells possibly due to higher activity, and changes in calcium binding 

proteins are observed in the dentate gyrus and other areas in response to a physiological 

alteration, such as epilepsy (Maglóczky et al., 1997; Carter et al., 2008). It has been reported 

that semilunar granule cells present different functional properties in comparison with typical 

granule cells, like a difference in the spike frequency adaptation in long duration current steps, 

which have been attributed to distinct calcium dynamics (Williams et al., 2007). 

In any case, semilunar granule cells acted similarly to normal granule cells. They expressed 

calbindin consistently, but they expressed neither calretinin nor parvalbumin. 
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c-Fos expression

Since semilunar granule cells seem to be more active than typical granule cells, we used the 

early gene c-Fos protein family to analyze the activity of this cell population. Intense labeled c-

Fos nuclei were more common in the inner molecular layer and in the juxtamolecular granule 

cell layer, than in the granule cell layer. When combined with Thy1 immunostaining, many of 

the pan-Fos nuclei corresponded to semilunar granule cells. On the other hand, c-Fos 

expression is rare in interneurons during normal conditions. 

Larimer and Strowbridge (2010) showed that semilunar granule cells participate in hilar up-

states. After perforant path stimulation, a plateau potential could be evoked in semilunar 

granule cells in a NMDA, L-type and T-type voltage gated calcium channel dependent manner. 

As a result, semilunar granule cells could discharge for prolonged periods of time and activate 

cell assemblies of both mossy cells and hilar interneurons, creating the so-called hilar up-states 

(Larimer and Strowbridge, 2010). This fact, together with the higher innervation that they 

receive from mossy cells (Williams et al., 2007), made us assume that these cells were 

constitutively more activated than typical granule cells, and should express the c-Fos marker 

more frequently.  

Unfortunately although the expression of c-Fos is rarer in normal granule cells than in semilunar 

granule cells, the high number of granule cells makes c-Fos an unselective maker for labelling 

semilunar granule cells by itself, although it is useful in combination with location and other 

labels. 

CART peptide expression 

CART peptide labels a subpopulation of granule cells in the rat that largely overlaps in number 

and location with the semilunar granule cell population (Seress et al., 2004; Abrahám et al., 

2007). However, our test with this antibody did not provide the expected results, as we only 

found a few scattered CART immunoreactive cells in the dentate gyrus. Although some of them 

could correspond to semilunar granule cells because of their location, CART peptide was not a 

good marker for these cells in our experiments, either in mouse or in rat. We tried different 

fixatives and protocols with no better success. On the other hand, CART cells and fibers were 

well marked in the hypothalamus and other areas in which are more abundant. Also, the few 

cells present in the dentate gyrus were well labeled. 
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One possible explanation is that the antibody used by Seress et al. (2004). was noncommercial 

and directed towards the peptide fragment 41-89, whereas the available commercial 

antibodies against CART were generally directed towards the fragment 61-102. However, this 

last antibody was shown to be also expressed in the granule cells of the border between the 

inner molecular layer and the granule cell layer in other rodents such as voles (Hunter et al., 

2005) and guinea pigs (Kolenkiewicz et al., 2009). A difference in the post-translational 

processing of the CART peptide, or species-variations may be the reason for our different 

results. Therefore CART seems a promising candidate as specific marker for semilunar granule 

cells in other species, but was not useful in our conditions. 

CART peptide gene transcription is dependent on the intracellular calcium levels and 

phosphorylated CREB via cAMP (Barrett et al., 2002; Jones et al., 2009). More specifically, an 

increase in the intracellular Ca+2 led to an increase in the CART peptide mRNA, which was 

attenuated by the inhibition of CAM or CAMKII, both implicated in the Ca+2-dependent 

phosphorylation of CREB. Therefore, an increase in the intracellular Ca+2 in semilunar granule 

cells, due to a higher activity rate, could lead to the increase in the CART transcript levels.  

3. SYNAPTIC INNERVATION ON SEMILUNAR GRANULE CELLS

We decided to study the innervation on semilunar granule cells to check whether they are 

innervated differently from normal granule cells in a way that could be relevant for their 

function. Unfortunately, technical limitation prohibited us to study the innervation on 

dendrites, so we had to center on perisomatic innervation. In fact, supramammillary 

innervation has been described to focus in this area (Segal and Landis, 1974; Segal, 1979; 

Maglóczky et al., 1994). It has also been suggested that they could be void of perisomatic 

inhibition from basket cells, since they are out of the granule cell layer (Gupta et al., 2012).  

We analyzed different subcortical monoamine afferences on this area combining tracing or 

immunocytochemistry with granule cell markers. We found no evidences of basket 

arrangement of serotonergic fibers (in a double immunostaining with 5-HT and Prox1 in both 

rat and mouse, not shown), dopaminergic fibers (in a double immunostaining with TH and 

Prox1 in both rat and mouse, not shown) or the noradrenergic fibers (in a double 

immunostaining with DβH and Prox1 in both rat and mouse, not shown).  
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The septal GABAergic and cholinergic innervation was also studied (not shown in results). 

Though cholinergic fibers were everywhere in the molecular layer and could have potentially 

innervated semilunar granule cells perisomatically, at the electron microscopy level we found 

no synaptic contacts from VAChT-positive boutons onto the somata of semilunar granule cells. 

In addition, the GABAergic innervation was also studied by an anterograde tracer injection in 

the medial septum, and rare examples of basket-like arrangement of fibers resembling 

GABAergic due to their morphology were found on Prox1-positive cells (not shown in the 

results). Though some putative contacts were checked at the electron microscopy level and 

recognized as inhibitory synapses, the number of such septal basket-like arrangements, and 

the fact that they were only found in ventral levels lead us to the conclusion that this 

innervation was not extended enough to play a main role in the function of semilunar granule 

cells. 

It must be taken into account, however, that the previous studies were focused on the 

innervation in the somata of semilunar granule cells. Therefore, we cannot discard that the 

aforementioned monoaminergic and septal systems exert an important role in the function of 

semilunar granule cells by the innervation of their dendrites. 

However, we had evidence of GABAergic perisomatic puncta on semilunar granule cells, and 

we decided to study if this inhibition came from fast-spiking or regular-spiking interneurons. 

We had previously observed in Thy1 transgenic mice that YFP-positive somata were 

surrounded by parvalbumin-positive boutons. To validate this observation, double stainings for 

parvalbumin and Prox1 showed that almost all Prox1 cells were surrounded by strongly labeled 

parvalbumin boutons. The staining intensity of the fibers was not homogeneous, and we also 

observed some cells that presented weak labeled fibers in apposition. Though we also found 

some nuclei that were not surrounded by parvalbumin boutons. This happened very rarely and 

may be probably due to false negatives. We confirmed this innervation under electron 

microscopy. All boutons labeled for parvalbumin were those typical of fast spiking basket cells, 

presenting large boutons with large mitochondria, ovoid clear vesicles and symmetric synaptic 

contacts (Ribak and Seress, 1983; Halasy and Somogyi, 1993). About half of the boutons making 

symmetrical contact on semilunar cells were labeled for parvalbumin. 

The fact that semilunar granule cells are innervated by parvalbumin basket cells was discussed 

and discarded by Gupta et al. (2012), as their cell somata are located away from the granule 

cell layer and the basket interneuron axonal plexus would not reach that far. However, it had 
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been previously shown that it exists a high variability in the pyramidal-shaped basket cells of 

the granule cell layer, and that some of their axons even reach the outer molecular layer 

(Scharfman, 1995). 

As stated above, the innervation of medial septum on semilunar granule cells was negligible. 

For this reason, we discard a subcortical origin for the vast majority of parvalbumin boutons 

innervating semilunar granule cells. Therefore, we propose a local origin for the boutons, which 

are likely the same basket cells contacting granule cells in the granule cell layer. 

Since we observed parvalbumin-negative boutons that established symmetric synapses on 

semilunar granule cell somata, we decided to check whether the latter were also controlled by 

the other basket interneuron in the dentate gyrus: CCK interneurons. 

We first attempted to detect CCK boutons on semilunar granule cells in the mouse dentate 

gyrus. Using a CCK antibody we obtained a labeling pattern in the CA1 that was consistent with 

previous descriptions (Freund and Buzsáki, 1996; Hájos et al., 1996. For a review, see Freund 

and Buzsáki, 1996). However, in the dentate gyrus we only detected occasional strongly labeled 

CCK fibers, and we could even observe some putative baskets on Prox1-positive cells in the 

outer molecular layer. Unfortunately, this antibody also labeled mossy cell fibers, resulting in a 

densely stained inner molecular layer. This fact complicated the study of the CCK innervation 

on semilunar granule cell somata, since it made the optical-electron microscopy correlation 

technically challenging. Therefore, we decided to use a different strategy. With the same CCK 

antibody, we obtained in rat a labeling pattern that suited better our purposes. The staining 

pattern was also in agreement with previous descriptions, but we avoided the labelling of 

mossy cell fibers in the inner molecular layer.  

Double immunostaining for CCK and Prox1 allowed us to observe baskets on granule-like cells 

in the inner and outer molecular layer. Some of the Prox1-positive cells were abundantly 

contacted by CCK boutons whereas others were only occasionally contacted by one or two 

boutons. Although the quality of the immunostaining was good for CCK standards, we could 

not discard that not all the boutons from regular-spiking basket cells were labeled. 

Next, we confirmed under the electron microscope that these boutons made symmetric 

contacts with the Prox1-positive cells they surrounded. We found two types of boutons, both 

making symmetric synapses: one type was comprised of boutons with slightly ovoid vesicles 

and sometimes one small mitochondria, as we expected from CCK interneurons present in the 
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dentate gyrus (Leranth and Frotscher, 1986); the second type was formed by larger, more 

boutons making symmetric synapses that were suggestive of a VGluT3-positive bouton 

(Somogyi et at, 2004; Omiya et al, 2015).  

Although the data were enough to confirm that semilunar granule cells received contacts from 

CCK regular-spiking basket cells, it was not satisfactory enough to reveal the relevance of this 

projection. Therefore, we decided to use antibodies against CB1R, since it is coexpressed with 

CCK in fibers emerging from CCK-positive interneurons, both in the rat and in the mouse 

(Katona et al., 1999; Marsicano and Lutz, 1999). The antibody labeled intensely fibers and 

boutons that seemed to fill the dentate gyrus. Under higher magnification, clear baskets of 

CB1R-positive boutons could be found around semilunar granule cells. 

When we studied some of these cells under electron microscopy, we confirmed that the CB1R-

positive boutons in apposition with Prox1-positive cells were making symmetric synaptic 

contacts, both in the inner molecular layer and in the outer molecular layer. Their 

characteristics were similar to the ones that we described in the rats stained for CCK, but their 

frequency was higher. That confirmed our belief that we were not observing all CCK boutons. 

These CCK boutons would account for the other half of the boutons making symmetrical 

perisomatic contact on semilunar granule cells. 

On the whole, the study of the perisomatic inhibition on semilunar granule cells showed that 

they were innervated by basket interneurons, similarly to normal granule cells. Therefore, both 

types of granule cells would be subjected to similar control mechanisms and would be 

synchronized by their activity. On the other hand, the perisomatic innervation is higher on 

semilunar basket cells than on normal granule cells. This higher inhibition would be in 

accordance with the higher excitability that they would have due to their dendritic disposition 

and short distance from the excitatory input to the axon hillock.  

In addition to the inhibitory perisomatic innervation, we have also shown that semilunar 

granule cells and outer molecular layer ectopic granule cells are innervated by 

supramammillary fibers. This has been demonstrated by three different experiments: (1) using 

calretinin as a marker for supramammillary afferents in rat (Nitsch and Leranth, 1993); (2) using 

VGluT2 as a marker for supramammillary boutons in mice (Fremeau et al., 2001; Boulland et 

al., 2009; Soussi et al., 2010); (3), by stereotaxic injection of the anterograde tracer BDA 10 KDa 



Discussion 

189 

in mice. Our results in all cases point to an important, mainly excitatory innervation on 

semilunar granule cells and ectopic outer molecular layer granule cells. This observation is in 

agreement with the asymmetric nature of the innervation described in the literature (Nitsch 

and Leranth, 1993; Maglóczky et al., 1994). However, our results point to a target-selective 

innervation of these cell populations, as the main axonal plexus of supramammillary fibers are 

located just in the juxtamolecular granule cell layer (Segal and Landis, 1974; Segal, 1979; Nitsch 

and Leranth, 1993; Maglóczky et al., 1994), and both semilunar granule cells and outer 

molecular layer ectopic granule cells are frequently separated from the juxtamolecular granule 

cell layer. 

Although some authors have proposed that the supramammilary-hippocampal projection is 

inhibitory in nature (Segal, 1979), supramammillary innervation is likely excitatory since the 

boutons establish asymmetrical synaptic contacts (Nitsch and Leranth, 1993; Maglóczky et al., 

1994). This hypothesis is supported by the fact that supramammilary innervation enhances 

perforant-path elicited population spikes (Mizumori et al., 1989). That observation is consistent 

with the excitation of semilunar granule cells by this projection and the facilitation of hilar up 

states. Perisomatic excitatory innervation on principal cells is an uncommon event. It would 

represent a subcortical control of cortical activity via principal cell amplification, rather than 

the disinhibition mechanism described for the basal forebrain on interneurons (Freund and 

Antal, 1988; Tóth et al., 1993).  

An important issue, which is generally obviated in both electrophysiological and anatomical 

studies, is the huge variations between dorsal and ventral dentate gyrus. While most 

anatomical studies center in coronal sections of the dorsal dentate gyrus, most 

electrophysiological studies use ventral horizontal dentate slices. Projections from 

supramammillary nuclei also differ in the dorso-ventral axis (Soussi et al., 2010), as septal 

projections do (Amaral and Kurz, 1985; Nyakas et al., 1987; Gaykema et al., 1990). Different 

subcortical drive should lead to different function of semilunar granule cells located in the 

dorsal dentate gyrus and semilunar granule cells located in the ventral dentate gyrus. In fact, 

we show that the number of these cells varies also along the dorso-ventral axis, being more 

abundant at ventral levels. 
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Figure 1.  Semilunar granule cells in the dentate gyrus circuitry 
Parvalbumin basket cells (red) receive excitatory input from the perforant pathway (PPth) in distal dendrites, from 
mossy cells in dendrites located in the inner molecular layer, and from semilunar granule cells in the perisomatic 
region. Parvalbumin basket cells innervate the perisomatic region of granule cell. Mossy cells receive excitatory 
innervation from semilunar granule cells, as well as from typical granule cells. Semilunar granule cells receive 
perisomatic excitatory afferents from supramammillary (SuM) fibers. Both semilunar granule cells and typical 
granule cells receive input from entorhinal fibers in the distal dendrites. In this figure, the perisomatic inhibitory 
innervation on semilunar granule cells is not shown. Supramammillary fibers are in an ideal position to influence 
the activity of the dentate gyrus. Gcl, granule cell layer; h, hilus; iml, inner molecular layer; oml, outer molecular 
layer; PPth, perforant pathway; SuM, supramammillary nuclei. 

4. SEMILUNAR GRANULE CELLS AND EPILEPSY MODELS

The dentate gyrus is a common focus of epileptic activity in the nervous system. Therefore, it 

has been extensively studied and several hypotheses have been postulated about the role of 

its different cell population in the generation of epileptic activity. For a review, see (Sloviter et 

al., 2012). Since parvalbumin basket cells, mossy cells and semilunar granule cells seem to be 

in a key position to control the activity of the dentate gyrus, we decided to study how they 

were affected in different models of epilepsy. 

Loss of granule cells has been only very rarely reported in animal models of epilepsy, and only 

for newly generated granule cells (Walter et al., 2007). Although semilunar granule cells 
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represent a small proportion of granule cells, their distinct location in the molecular layer would 

make their loss detectable.   

To check how these cells were affected in epilepsy we decided to test three different models. 

For two of the models we used previous material generated in our laboratory: DEDTC-kainic 

acid model and pilocarpine epilepsy model in mouse.  

In the DEDTC-kainic acid model of kainic acid and DEDTC used previously in our laboratory we 

did not find loss of  granule cells or parvalbumin basket cells, although there was a fast and 

almost complete loss of mossy cells (Domínguez et al., 2006). We reanalyzed this material to 

check whether there is a loss of semilunar granule cells. The labeling for the granule cell marker 

calbindin and the cell activation marker c-Fos suggested that these cells were resistant to cell 

death in this model. 

The Pilocarpine epilepsy model in mouse, when combined with scopolamine and finalized 90 

min after onset by diazepam injection, usually produced animals with loss of hilar mossy cells. 

Otherwise, the other cell populations in the dentate gyrus and Cornu Ammonis remained 

generally undamaged (Marqués-Marí et al., 2007). The analysis of the dentate gyrus from 

pilocarpine-induced epileptic animals suggested that semilunar granule cells were not lost in 

those animals, though the expression of calbindin changed in those animals and sometimes 

affected semilunar granule cells. When analyzing sections stained for neo-Timm, axons 

delineating the shape of parvalbumin basket cells could be detected, also suggesting the 

persistence of the semilunar granule cells. Therefore, there is no loss of granule cells that could 

correspond to semilunar granule cells at long times in this model of epilepsy, neither there is 

any indication that this loss is produced in the other models analyzed.  

We should conclude that semilunar granule cells as well as parvalbumin basket cells are 

resilient to damage in these models, whereas mossy cells are greatly affected by cell death. 

Further studies should address the question whether semilunar granule cells present axonal 

sprouting as typical granule cells (which probably do), and if the increase in Timm-positive 

innervation on parvalbumin cells (Kotti et al., 1997; Frotscher et al., 2006; Sloviter et al., 2006) 

is due to the sprouting of semilunar granule cells and/or the sprouting of typical granule cells. 

We also questioned the role that semilunar granule cells may play in the process leading to cell 

damage. The two models that we had analyzed were too drastic for it, although in the DEDTC-

kainic acid model, control animals for kainic acid and DEDTC could be analyzed in terms of cell 
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activation. Therefore, we decided to generate epileptic animals using a softer induction of 

overexcitation leading to epilepsy using chemical kindling with subconvulsive doses of 

pentylenetetrazole.  

4.1. EXPERIMENTAL CONSIDERATIONS IN PENTYLENETETRAZOLE-INDUCED KINDLING 

MODEL OF EPILEPSY 

In the experimental design of the kindling status, and considering the interindividual variability, 

there were two different options. First, we could use the same number of subconvulsive 

injections, independently of the number of seizures that the animal presented (as not all 

animals reacted in the same way to the drug). Alternatively, we could use behavioral criteria as 

the end point of the experiment for the kindling status achievement, based in the evolution of 

the nature of the seizures throughout the Racine scale.  

Both possibilities have their own complications: in the first case, we could end up comparing 

animals with changes due to the addition effect of more seizures once reached the kindling 

status, instead of the kindling evolution per se. In the second case, we could end up comparing 

animals with different ages and final cumulative doses of pentylenetetrazole. Considering the 

goal of this study - to dilucidate the neurochemical evolution of the dentate gyrus due to a mild 

model of epilepsy such as pentylenetetrazole-induced kindling– and the implications of both 

possibilities, we decided that the best choice was using the behavioral achievement of the 

kindling status. 

The slight difference in the age in which animals were sacrificed constitutes a minor objection 

to this choice, as no more than one month passed between the first animals and the last animal 

that reached the kindled status. There have been reported differences in the kindling 

achievement (Grecksch et al., 1997) throughout age, but not in this time window of 3-4 month 

old animals.  

However, the different amount of pentylenetetrazole used in each animal introduces an 

uncontrolled variable to the study. However, this error is not of different nature to the one 

introduced when, in classical experiments regarding epilepsy, the same dose of any convulsant 

drug is used to produce seizures in different animals, as not all of them respond in the same 

way or suffer the induced seizures with the same severity.  
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In our particular paradigm, previous studies have solved this problem by using a rather high 

(50-100 mg/Kg) dose of pentylenetetrazole (Przewłocki et al., 1995; Stringer, 1995; Park et al., 

2006), ensuring that all animals would reach the kindling status in the same number of 

injections. Those doses can be useful when the aim of the study is to analyze the effects of 

pentylenetetrazole fast-induced kindling, but not to study the evolution of the kindling 

achievement.  

 

4.2. DENTATE CIRCUITRY IN THE PENTYLENETETRAZOLE-MODEL OF EPILEPSY 

Our results in the experimental paradigm chosen for pentylenetetrazole-induced kindling 

model of epilepsy indicate that the dentate circuitry cell population change, but only on long 

term. Right after the animals were kindled, we observed no changes in the populations of 

mossy cells, parvalbumin interneurons or somatostatin interneurons.  

Although at the end of the kindling process we observed no quantifiable alterations in the 

number of cells, one month after the animals had reached the kindled status, we observed a 

decrease in the density of the hilar mossy cells, and an increase in the number of parvalbumin 

cells. We performed Timm-staining in some animals to check if an increment of sprouting was 

responsible for the progression of the kindling overexcitation, and we found no differences 

with controls. This suggest that the sprouting of the mossy fibers is due to the loss of mossy 

cells, as other studies have suggested (Cavazos and Sutula, 1990; Houser et al., 1990; Cavazos 

et al., 1991). Our results are in agreement with previous studies with pentylenetetrazole-

induced kindling, in which it has not been observed cell death or mossy fiber sprouting in the 

inner molecular layer during and right after the kindling procedure (Tian et al., 2009). 

As interneurons are not newly generated in the adult dentate gyrus, the increase in the number 

of parvalbumin-positive interneurons may be correlated with an increase in the expression of 

this protein, which could make that more parvalbumin interneurons reach the detection 

threshold. Donato et al. (2013) described different parvalbumin network configurations in the 

hippocampus. These network configurations changed from low to high expression of 

parvalbumin in fear conditioning, when high excitatory/inhibitory ratios were observed on 

parvalbumin interneurons. In our case, we may be observing an increase in the excitation on 

parvalbumin interneurons, which would increase their activity and increase inhibition on the 

population of granule cells.  
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The number of mossy cells decreased one month after pentylenetetrazole-induced kindling. 

Since we used calretinin to detect mossy cells in mouse, there is a possibility that we are 

observing a decrease in calretinin expression instead of cell loss. On the other hand, the 

presence of refractive shrunken somata on the hilus under bright illumination confirmed that 

cell loss is present in the hilus. Although a loss of somatostatin interneurons is frequently 

observed in animal models of epilepsy (Sloviter, 1987; Houser and Esclapez, 1996; Sun et al., 

2007), we did not observe loss of somatostatin cells either at kindled state or one month 

afterwards, which confirms that refractive cells correspond to mossy cells. These results 

suggest that mossy cells loss, in this model, is a progressive slow phenomenon that needs time 

to be detected.  

Mossy cells are known to be more sensitive to overexcitation than granule cells. Although they 

are innervated by parvalbumin interneurons, this innervation is weaker than in granule cells 

(Acsády et al., 2000). In addition, mossy cells would be recruited in hilar up-states by active 

semilunar granule cells. This suggests that the dentate gyrus circuitry is altered during the 

kindling and the process continues inducing the loss of mossy cells.  

Unfortunately we could not make a quantification of the number of semilunar granule cells. 

We tried using Prox1 as maker, but under this condition unspecific glial staining was too 

intense. In any case, there were Prox1 nuclei in the inner and outer molecular layer, therefore 

it seems that semilunar granule cells are not lost.  

The previous data show that in this model the cell changes are subtle. Semilunar granule cells 

are in an optimal position to overexcite mossy cells and the parvalbumin basket cells 

simultaneously.  Mossy cells seem to be the weakest link in this circuitry. Unfortunately the 

nature of the study did not allow us to infer if the semilunar granule cells had any impact on it. 

4.3. EXPRESSION OF C-FOS AFTER MILD EXCITATION WITH KAINIC ACID 

Since it seemed that a subconvulsive dose of pentylenetetrazole was able to preferentially 

activate semilunar granule cells, we decided to check this hypothesis by studying c-Fos 

expression in the animals injected with a subconvulsive dose of DEDTC combined with Kainic 

acid that by itself produced overexcitation without cell loss (10 mg/Kgbw).  
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In control saline animals, semilunar granule cells were easily found in an activated state, since 

the expression of c-Fos in these cells was relatively higher than in granule cells if we consider 

the cell numbers for both types.  

Figure 2. Dentate gyrus circuitry after status epilepticus. 
Mossy cells die but semilunar granule cells and parvalbumin cells are preserved. The loss of the mossy cells greatly 
reduces the activation of the granule cells via semilunar granule cell activation, whereas recurrent inhibition is 
preserved. Granule cells compensate for the loss of recurrent excitatory activation by sprouting of the mossy 
fibers. This monosynaptic recurrent excitation is not coupled to recurrent inhibition, leading to a progressive over-
excitation of the granule cells. Gcl, granule cell layer; h, hilus; iml, inner molecular layer; oml, outer molecular 
layer; PPth, perforant pathway; SuM, supramammillary nuclei. 

At short times there was a general activation of the granule cells and hilar cells. Hilar mossy 

cells presented a high level of immunoreactivity that outlasted c-Fos expression in the granule 

cells. These results suggest a sequence of activation from granule cells to hilar mossy cells. 

These may reflect the hilar up-states described by Larimer, in which semilunar granule cells and 

hilar cells would recruit themselves and remain active (Larimer and Strowbridge, 2010) while 

the rest of the dentate is silent. It also proved that after a brief activation of the granule cells, 

the dentate gyrus activity remained under basal level for several days until recovering 

normality. During that low activity period semilunar granule cells are among the most active. 

Although this alteration caused by the overexcitation is not permanent, it persists for days. 

SuM 
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4.4. EXPRESSION OF C-FOS AFTER MILD EXCITATION WITH DEDTC 

The use of the zinc chelator DEDTC by itself would seem an inefficient source of dentate gyrus 

activation, but it has been proven to produce enough overexcitation to induce HSP72 in the 

mossy cells of the rat (Domínguez et al., 2003b, 2006; Blasco-Ibáñez et al., 2004).  

In this model, DEDTC induced expression of c-Fos in the hilus that lasted for several hours. This 

was probably a very mild overexcitation, since the dose was low and it was not able to induce 

a general c-Fos expression in the normal granule cells. It was, however, able to induce 

expression of c-Fos in large nuclei in the hilus, most likely corresponding to mossy cells, and in 

large nuclei in the subgranular zone consistent with parvalbumin basket cells. This expression 

was transitory but linked the activation of semilunar granule cells, parvalbumin basket cells and 

mossy cells, suggesting that they interrelate as a recurrent circuit subjacent to the dentate 

gyrus structure. 

There was also some expression of c-Fos in glia, but that can be easily expected since they are 

responsible for cleaning the zinc chelate. In fact, this transitory glial expression is generally 

limited to the hilus were vesicular zinc rich mossy fibers are present, being absent in other 

areas.  

The overactivation of the dentate gyrus went under basal level after 6 hours of DEDTC 

administration, and needed 4 days to recover normality. This seems to be a common feature 

of dentate gyrus after overactivation, and probably underlines a compensatory increment of 

inhibition. 
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Figure 3. Mild transient overexcitation preferentially activates semilunar granule cells, mossy cells and 
parvalbumin basket cells. 
Hilar mossy cells and semilunar granule cells are recurrently connected and have a tendency to fire together during 
hilar up-states. The recurrent activation of semilunar granule cells would activate parvalbumin basket cells. During 
this period of high activity granule cells will be simultaneously activated by excitatory input from the mossy fibers 
in the inner molecular layer and somatic inhibition via parvalbumin cells. Gcl, granule cell layer; h, hilus; iml, inner 
molecular layer; oml, outer molecular layer; PPth, perforant pathway; SuM, supramammillary nuclei. 

The next goal was to check the cell activation in the dentate gyrus at short times after the 

administration of a unique dose of pentylenetetrazole at the subconvulsive dose used for 

kindling. At shorter times the effect of pentylenetetrazole in the dentate gyrus was first present 

on nuclei in the molecular and juxtamolecular layers. By 4 hours c-Fos immunoreactivity 

extended to other granule cells. This expression reverted to basal by 8 hours. The subconvulsive 

dose used in this experiment was enough to produce a transitory overexcitation that also 

affected the dentate gyrus, in agreement with previous literature (Szyndler et al., 2009). 

Semilunar granule cells in the border between the inner molecular layer and granule cell layer 

seem to be more sensitive to overexcitation than typical granule cells. Their continuous 

activation may affect their circuit with the mossy cells. 

SuM 
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4.5. RELEVANCE OF THE SEMILUNAR GRANULE CELLS IN THE DENTATE GYRUS 
CIRCUITRY AND FUNCTION 

The fact that not all the granule cells are equivalent has consequences in our understanding of 

the circuitry of the dentate gyrus. We began our study searching for the source of the 

perisomatic asymmetric boutons on parvalbumin basket cells in the granule cell layer, and 

concluded that the overwhelming majority came from granule cells, whereas other possible 

sources of asymmetric innervation were negligible. We then succeeded in finding that those 

granule cells located in the inner molecular layer and juxtamolecular border of the granule cell 

layer were the main source of this innervation. We used the term “semilunar granule cell” 

through this thesis to denominate them, since this classic morphological name has been used 

in recent works for a population of granule cells that largely overlaps with our cells. 

Semilunar granule cells share many characteristics with common granule cells but they 

probably originate earlier from a separate migration of precursors (Altman and Bayer, 1990) 

and have special physiological properties (Williams et al., 2007; Larimer and Strowbridge, 2010) 

that enhance their ability to fire longer than normal granule cells. Parvalbumin basket cells are 

contacted by semilunar granule cells mossy fibers in their way to the hilus. These fibers usually 

made several contacts on the somata and proximal dendrites of basket cells, and they probably 

continue on basal dendrites in the hilus.  

Parvalbumin basket cells can sustain a high frequency train of action potentials under 

stimulation. We hypothesize that, during hilar up-states, repeated firing of semilunar granule 

cells and mossy cells would reliably recruit parvalbumin basket cells. Whereas hilar up-states 

may contribute to recruit more granule cells in their progression. The activation of the 

parvalbumin basket cells would contribute to synchronize the whole population of granule 

cells. 

Semilunar granule cells are in an ideal position to be excited by mossy cells axons, since their 

input is closer to the soma. In fact, excitatory input from mossy cells has been shown to be 

stronger in semilunar granule cells than in typical granule cells (Williams et al., 2007).  

Our results indicate that subcortical innervation from supramammilary nuclei has a preference 

for semilunar granule cells. It could be argued that this preference is due to the layer 

distribution of supramammillary fibers. However, our results suggest an additional target 
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component of this innervation, since we found collaterals from the supramammillary nuclei 

purposely target also semilunar granule cells that were out from this area. 

In summary, semilunar granule cells receive a stronger excitatory input from mossy cells, and 

a preferential excitatory input from supramammillary fibers than typical granule cells. This fact 

could be translated in a higher excitability in semilunar granule cells than in typical granule 

cells, which could also explain the apparently higher amount of perisomatic inhibitory terminals 

found on them. 

Subcortical control of cortical areas has been described for many brain regions, including the 

hippocampus. The most common mechanism for subcortical control is via disinhibition: 

inhibitory afferents targeting interneurons, e.g. the GABAergic septo-hippocampal projection 

(Freund and Antal, 1988; Gulyás et al., 1990; Miettinen and Freund, 1992a; b; Acsády et al., 

1993). This is an interesting amplification mechanism that allows a comparatively scarce 

inhibitory projection to exert its effect on a large population of principal cells. Other subcortical 

connections that are not clearly inhibitory can target synaptically some neurons but their action 

is mainly through metabotropic receptors. Although the projection from the supramammillary 

nuclei on granule cells is well known (Maglóczky et al., 1994), the fact that concentrates on a 

special type of granule cells can offer an explanation of the results described by Mizumori et 

al. (1989), indicating that supramammilary innervation enhances perforant-path elicited 

population spikes in the dentate gyrus and therefore facilitate information flow in the rat 

dentate gyrus. The reality is more complex, since at the same time the activation of the 

semilunar granule cells will produce the firing of parvalbumin basket cells causing inhibition, 

but this inhibition will induce synchronization and should coordinate with perisomatic 

inhibition on dentate interneurons coming from the septum that will silent them. The 

subcortical innervation coming from the septum can be coordinated with the supramammillary 

nucleus since there is a projection from supramammillary to septum (Borhegyi and Freund, 

1998; Kiss et al., 2000). 

Exciting a few granule cells that are located in a prevalent position in the dentate gyrus circuitry 

can be an efficient way of amplification. The same number of boutons from the 

supramammillary nucleus distributed uniformly all over the population of granule cells would 

have a comparatively small effect on the dentate gyrus circuitry when compared with the 

formation of excitatory baskets concentrated on semilunar granule cells that are situated in a 

privileged position in the dentate gyrus. The fact that semilunar granule cells contact 
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parvalbumin basket cells and hilar mossy cells in their way to CA3 helps in this purpose. These 

two latter cell types have large axonic arbors containing thousands of boutons that extend 

widely in the dentate gyrus. They are also highly excitable, mossy cells presenting 

comparatively poor perisomatic inhibition (Livsey and Vicini, 1992; Scharfman, 1992, 1993). 

Therefore, although both typical and semilunar granule cells have very restricted axonic arbors 

contacting rather few cells, the innervation of a few mossy cells and a few parvalbumin basket 

cells by a semilunar granule cell can control the activity of large numbers of typical granule 

cells, and produce as a result a widespread effect in the dentate gyrus. Considering that the 

firing ratio of granule cells under physiological conditions is low but effective (Staley et al., 

1992; Penttonen et al., 1997; Henze et al., 2002), this mechanism could control the firing of 

certain granule cells and filter the information that reaches the CA3. On the whole, these data 

suggest that the supramammillary can control dentate gyrus activity in a feedforward manner 

via semilunar granule cells. 

Functional differences among the principal cells of an hippocampal area has been proved 

recently in the CA1 (Lee et al., 2014). These authors demonstrate the presence of distinct 

pyramidal cell populations that show different interactions with local parvalbumin-positive 

basket cells. Interestingly, they found that pyramidal cells located in the superficial layer of 

stratum pyramidale established excitatory inputs to parvalbumin-positive basket cells more 

frequently than pyramidal cells located in deeper layers of stratum pyramidale.  

The control of the dentate gyrus activity can have relevance in the development of epilepsy. 

Semilunar granule cells, as common granule cells and parvalbumin basket cells, are resilient to 

damage, whereas mossy cells are highly sensitive to cell death. Overexcitation of the dentate 

gyrus will often produce loss of mossy cells with little or no loss of the other cell types. Under 

these conditions the activation of semilunar granule cells will not induce recurrent activation 

of the circuitry via mossy cells but will still induce inhibition via parvalbumin basket cells. This 

could be the underlying circuitry under the silent period observed after the loss of mossy cells 

and previous to the development of substantial mossy fiber sprouting on granule cells. 

Although it has been postulated that after dentate gyrus overexcitation the parvalbumin basket 

cells become silent causing an overexcitation leading to epilepsy (Sloviter, 1991; Sloviter et al., 

2003), there are proof that in fact the parvalbumin basket cells become more active (for a 

review see Bernard et al., 1998). The dormant basket cells hypothesis does not fit well with the 

silent period that has been described after induction of status epilepticus. 
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The excess of inhibition may activate compensatory mechanisms, leading granule cells into the 

acquisition of new routes of activation via sprouting. Some authors have tried to block the 

generation of sprouting as a demonstration of its relevance in the induction of epileptic crisis, 

and as a possible way to avoid the generation of epilepsy after dentate damage (Buckmaster, 

2004; Toyoda and Buckmaster, 2005). The blocking of the supramammillary-hippocampus 

pathway offers a vehicle to try to suppress the generation of sprouting by avoiding the 

overactivation of parvalbumin basket cells. 
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1. Parvalbumin basket cells receive an important perisomatic excitatory input, similar to the

inhibitory input, as shown by the expression of post-synaptic markers PSD95 and Gephyrin.

2. Perisomatic innervation on parvalbumin basket cells by mossy cells is negligible.

3. The main excitatory perisomatic input onto parvalbumin basket cells in the dentate gyrus

is made by Timm-positive fibers.

4. Parvalbumin basket cells with somata located in the border between the granule cell layer

and hilus receive more Timm-positive perisomatic input than parvalbumin interneurons

with their somata sitting in the upper half of the granule cell layer, or in the inner molecular

layer.

5. Semilunar granule cells are the origin of the Timm-positive innervation of parvalbumin

interneurons in the dentate gyrus.

6. Semilunar granule cells present morphological characteristics that differentiates them from

typical granule cells: their somata is located in the inner molecular layer and spread their

dendrites in a wider region of the molecular layer. Some of them present dendrites entering

the hilus, axons originating from dendrites and somatic spines. Their axon travel through

the inner molecular layer and sends collaterals into the granule cell layer.

7. Semilunar granule cells represent less than 1% of the total granule cells in the dentate gyrus

and are located in the inner molecular layer and juxtamolecular border with the granule

cell layer. They are more frequent in ventral levels, and in the apex of the dentate gyrus.

8. Semilunar granule cells express cell markers for principal cells (CAMKII) and adult granule

cells (calbindin, Prox1). They do not express calretinin or parvalbumin, and only rarely the

CART peptide.

9. Semilunar granule cells in the border between the inner molecular layer and granule cell

layer express more often cell activity markers c-Fos and pan-Fos than typical granule cells.

10. Semilunar granule cells receive abundant inhibitory perisomatic innervation from

parvalbumin and cholecystokinin-positive interneurons.

11. Fibers arising from the supramammillary nuclei innervate semilunar granule cells and outer

molecular layer granule cells on the perisomatic region. This excitatory innervation on

semilunar granule cells is target-specific.

12. Low transient overexcitation of the dentate gyrus using Zn2+ quelator DEDTC induces c-Fos

expression in semilunar granule cells without general induction of the granule cells. This

induction is coupled with c-Fos expression in mossy cells and dentate interneurons.
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13. Semilunar granule cells and parvalbumin basket cells are resilient to cell damage in the

kainic acid, pilocarpine and pentylenetetrazole models of epilepsy.

14. Changes in the dentate gyrus cell populations is a slow process in the pentylenetetrazole-

induced kindling model of epilepsy. Loss of mossy cells and an increase in the expression of

parvalbumin by the basket cells is observed one month after kindling. Somatostatin cell

population is not changed in this epilepsy model.
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INTRODUCCIÓN 

El giro dentado es una estructura cortical que cumple una importante función en la 

consolidación de la memoria espacial y el aprendizaje. Ha sido objeto de numerosos estudios, 

debido a su especial susceptibilidad de ser dañado en procesos como epilepsia de lóbulo 

temporal o isquemia (para una revisión: Amaral et al., 2007). Ampliar el conocimiento de su 

circuitería local, así como de su modulación, es esencial para poder entender con más claridad 

por qué es una región tan susceptible de convertirse en foco de crisis epilépticas, así como de 

las consecuencias de este fenómeno. 

Se sabe que las interneuronas basket parvalbúmina tienen un papel esencial en la regulación 

del correcto funcionamiento del giro dentado. Al inervar de forma perisomática a las células 

granulares y presentar un umbral de disparo bastante bajo, son capaces de mantener inhibidas 

a una población amplia de células granulares y sincronizar su disparo.  

Las células granulares, células principales del giro dentado, juegan un papel muy importante 

en la patogénesis de la epilepsia del lóbulo temporal (Houser, 1992). Aunque en la mayoría de 

modelos experimentales de epilepsia estas células no sufren daño celular, sí participan en la 

remodelación de la circuitería local derivada de una crisis epiléptica. Los axones de las células 

granulares – las llamadas fibras musgosas – generan colaterales axónicas que proyectan de 

forma aberrante a la capa molecular interna del giro dentado, fenómeno conocido como 

“sprouting”. En condiciones normales, las células granulares reciben contactos sinápticos por 

parte de otra población de células glutamatérgicas presentes en el hilus, las células musgosas. 

Una de las hipótesis más aceptada para explicar la remodelación de la circuitería local del giro 

dentado sugeriría que la pérdida de las células musgosas (muy susceptibles de sufrir daño 

celular tras crisis epiléptica) y la consecuente pérdida de su inervación excitadora sobre las 

células granulares en la región de la capa molecular interna, favorecería el establecimiento de 

nuevas conexiones sinápticas entre las colaterales aberrantes de las fibras musgosas y las 

dendritas de las propias células granulares. De este modo, se generaría un circuito excitador 

recurrente difícil de controlar por el sistema inhibidor local. 

Por otra parte, otra de las hipótesis comúnmente aceptadas para explicar el hecho de que el 

giro dentado se convierta con tanta facilidad en foco de nuevas crisis epilépticas es la conocida 

como “hipótesis de las dormant basket cells” (Sloviter, 1991). En ella se postula que aunque en 

la mayoría de los modelos de epilepsia experimental no parece haber una reducción del 
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número de interneuronas basket parvalbúmina, sí se produce una pérdida de su capacidad 

inhibidora debido a la pérdida del input excitador recibido de las células musgosas. Este hecho 

daría lugar a un fallo en la inhibición del circuito excitador recurrente de las células granulares, 

y por tanto facilitaría que el giro dentado se convirtiese en foco epiléptico. Sin embargo, este 

fenómeno no se cumple en todos los modelos de epilepsia experimental (Buckmaster et al., 

2000).  

Se ha demostrado que esta población de interneuronas basket parvalbúmina está inervada en 

animales control por fibras Timm-positivas pertenecientes posiblemente a las células 

granulares (Blasco-Ibáñez et al., 2000), y que esta inervación aumenta en situación de epilepsia 

experimental (Kotti et al., 1997), por lo que no habría motivo a priori para que disminuya su 

función inhibidora. Una mejor comprensión de la importancia relativa de cada uno de los dos 

inputs excitadores que reciben las interneuronas basket parvalbúmina (de las células musgosas 

y de las células granulares) sería esencial para poder interpretar el funcionamiento del giro 

dentado en situación normal y tras las alteraciones producidas tras status epilepticus. 

Recientemente ha sido caracterizado con mayor detalle un tipo de célula granular que ya fue 

descrito originalmente por Ramón y Cajal (1911). Estas células granulares, denominadas 

semilunares (Williams et al., 2007; Larimer and Strowbridge, 2010), se sitúan en el borde entre 

el estrato molecular interno y externo, y presentan colaterales en la capa granular, como las 

granulares que inervan a las células parvalbúmina. Sus dendritas en la capa molecular externa 

son más extensas que las de las células granulares típicas. Aunque son también glutamatérgicas 

y excitan monosinápticamente a interneuronas del hilus y a las células musgosas, sus 

características electrofisiológicas son diferentes de las células granulares típicas. El número y 

localización de estas células las convertirían en un candidato plausible a ser el tipo de célula 

granular que inerva las células parvalbúmina.  

OBJETIVOS 

De acuerdo a lo expuesto anteriormente, establecemos como hipótesis de trabajo que las 

células granulares semilunares son las encargadas del control perisomático de las 

interneuronas parvalbúmina del giro dentado. Por tanto, nuestro objetivo principal es estudiar 

los diferentes inputs excitadores perisomáticos sobre interneuronas parvalbúmina en el giro 
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dentado, y confirmar el origen de esta inervación por parte de las células granulares 

semilunares. En segundo lugar, nos propusimos integrar a las células granulares semilunares 

en la circuitería local desde un punto de vista anatómico. Finalmente, estudiamos las posibles 

implicaciones de esta inervación en diferentes modelos de epilepsia animal.  

Los objetivos parciales de esta tesis son: 

- Estudio del input excitador sobre las interneuronas parvalbúmina del giro dentado. 

Análisis cuantitativo mediante microscopía confocal del número de especializaciones 

postsinápticas excitadoras e inhibidoras en la región perisomática de las interneuronas 

parvalbúmina del giro dentado. 

- Estudio del input perisomático por parte de las células musgosas sobre las interneuronas 

parvalbúmina en el giro dentado a nivel de microscopía confocal y electrónica. 

- Estudio del input perisomático excitador por parte de las células granulares típicas y 

semilunares a nivel de microscopía óptica y electrónica. 

- Estudio del número de células granulares ectópicas y semilunares, y estudio de su 

presencia durante el desarrollo postnatal. 

- Caracterización morfológica de las células granulares semilunares del giro dentado. 

- Caracterización neuroquímica de las células granulares semilunares y las células 

granulares ectópicas mediante estudios de colocalización de diferentes marcadores en 

animales transgénicos con expresión de la proteína YFP por parte de células excitadoras. 

- Estudio del input excitador e inhibidor que reciben las células granulares semilunares, a 

nivel de microscopía óptica y electrónica. 

- Estudio de la supervivencia y actividad de las células granulares semilunares, células 

musgosas e interneuronas parvalbúmina en tres modelos diferentes de epilepsia 

experimental: kindling inducido con pentylenetetrazole, status epilepticus inducido con 

ácido kaínico y DEDTC, y status epilepticus inducido con pilocarpina. 
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DESARROLLO EXPERIMENTAL Y RESULTADOS 

En primer lugar se estudió la inervación perisomática excitadora sobre las interneuronas 

parvalbúmina, primero en comparación con la inhibidora, y seguidamente por parte de dos 

posibles candidatos expuestos anteriormente: las células musgosas del hilus y las células 

granulares localizadas en la capa molecular interna del giro dentado y que por su morfología 

se han denominado “células granulares semilunares”. Para cumplir este objetivo parcial, se 

llevó a cabo un estudio del input sináptico que reciben las interneuronas basket parvalbúmina 

a nivel de microscopía confocal y, para evitar posibles confusiones debidas a falsos positivos, a 

nivel de microscopía electrónica. Nuestros resultados indican que las interneuronas 

parvalbúmina-positivas reciben contactos sinápticos en la capa molecular interna por parte de 

las células musgosas, pero no en la región perisomática. Sin embargo, sí encontramos que una 

misma célula granular semilunar establecía múltiples contactos sinápticos en las dendritas de 

la capa molecular interna y tronco dendrítico de las interneuronas parvalbúmina-positivas, lo 

que parece corroborar que el principal control excitador perisomático sobre esta población de 

interneuronas es establecido por células granulares, y más concretamente, por una 

subpoblación de éstas: las células granulares semilunares.  

Una vez hallada esta inervación, nuestro siguiente objetivo fue caracterizar a esta población de 

células granulares semilunares, utilizando para ello diferentes aproximaciones. En primer lugar, 

llevamos a cabo un estudio de sus características morfológicas. Nuestros resultados indican 

que las células granulares semilunares forman una población heterogénea a pesar de que 

comparten un patrón de arborización dendrítica mucho más extenso que las granulares típicas. 

Las características morfológicas más llamativas son: (1) del cuerpo celular salen varias dendritas 

principales, en lugar de una sola dendrita apical como es el caso de las granulares típicas; (2) 

las dendritas se extienden en paralelo a la capa de células granulares hasta que empiezan a 

dirigirse hacia la fisura hipocámpica; (3) algunas dendritas atraviesan el estrato granular; y (4) 

el segmento inicial del axón sale en ocasiones de una de las dendritas en lugar del soma (hecho 

muy poco frecuente en las granulares típicas). Sin embargo, ninguna de estas características 

parecía ser identificativa de las células granulares semilunares encargadas de la inervación de 

las interneuronas basket parvalbúmina. 

Un análisis de Sholl de células semilunares llenadas intracelularmente muestra un patrón de 

arborización muy diferente al de las células granulares típicas, como era de esperar. Sin 
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embargo, no hemos encontrado mediante esta técnica ningún patrón que permita diferenciar 

inequívocamente diferentes subpoblaciones dentro de las células granulares semilunares. 

El estudio de estas células a nivel de microscopía electrónica no reveló ninguna diferencia 

significativa a nivel cualitativo respecto a los orgánulos intracelulares, si bien una mayor 

presencia de aparato de Golgi. Sin embargo, sí observamos la presencia puntual de pequeñas 

protrusiones somáticas similares a espinas, pero que sólo en un muy bajo porcentaje reciben 

sinapsis excitadoras. La presencia de protrusiones somáticas similares a espinas también se 

observó en células llenadas intracelularmente.  

La siguiente aproximación, dado que el análisis morfológico no había sido concluyente para 

distinguir la subpoblación de células semilunares de nuestro interés, fue un estudio fenotípico 

de estas células. Para ello, utilizamos un animal transgénico en el que la proteína YFP se expresa 

bajo el promotor Thy1, resultando en un marcaje específico de neuronas principales, incluidas 

las semilunares. El análisis de colocalización a nivel de microscopía confocal de las células 

semilunares YFP-positivas con marcadores de células principales (CAMKII), células granulares 

(Prox1), y dada su diferente dinámica del calcio respecto a las granulares típicas, con proteínas 

ligantes de calcio (PV, CB y CR) tampoco nos permitió una distinción inequívoca de esta 

población de células. El péptido CART tampoco nos permitió definir la población de células 

granulares semilunares.  

A continuación, dado que se ha descrito que las células granulares semilunares reciben mayor 

inervación por parte de las células musgosas, comprobamos si este hecho se traduce en una 

mayor expresión del marcador de actividad celular pan-Fos en condiciones normales. Nuestros 

resultados indican que hay una mayor proporción de células semilunares c-Fos-positivas 

respecto al total de semilunares, que células granulares típicas c-Fos positivas respecto al total 

de células granulares. 

La presencia de botones perisomáticos parvalbúmina-positivos sobre las células granulares 

semilunares nos hicieron establecer como nuevo objetivo el estudio de la inervación 

perisomática que éstas reciben. Para ello, combinamos estudios a nivel de microscopía óptica, 

confocal y electrónica, así como trazado de conexiones mediante la inyección intracraneal del 

trazador anterógrado BDA10KDa. Nuestros resultados indican que hay una inervación 

perisomática inhibidora sobre las células granulares semilunares por parte de las interneuronas 
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parvalbúmina y CCK, así como una inervación perisomática excitadora por fibras procedentes 

principalmente de los núcleos supramamilares.  

Dada la elevada expresión de c-Fos por parte de las células granulares semilunares, y la 

inervación perisomática excitadora que reciben, planteamos si  después de una sobreexcitación 

moderada se produce una activación selectiva de la población de células granulares 

semilunares. Para ello, analizamos de forma separada la acción de diferentes fármacos pro-

convulsivos a dosis subconvulsivas: pentylenetetrazole, DEDTC y ácido kaínico. Nuestros 

resultados indican que hay una inducción de la expresión de c-Fos en las células semilunares 

en condiciones de excitación moderada.  

Otro de los objetivos parciales planteados inicialmente en el proyecto de tesis era estudiar el 

comportamiento de las interneuronas parvalbúmina, células musgosas y células granulares 

semilunares en modelo de epilepsia experimental. Para ello, estudiamos la supervivencia de 

estas poblaciones celulares mediante los siguientes modelos de epilepsia experimental: status 

epilepticus inducido por ácido kaínico, status epilepticus inducido por pilocarpina, y modelo de 

kindling inducido por pentylenetetrazole. Los resultados obtenidos indican que hay una 

pérdida de células musgosas (pequeña y progresiva en el caso de kindling mediante 

pentylenetetrazole), pero no de células granulares semilunares ni de interneuronas 

parvalbúmina.  

DISCUSIÓN 

El presente trabajo intenta profundizar en los conocimientos existentes de la circuitería local 

del giro dentado. Ya existían datos previos de la existencia de una inervación sobre las 

interneuronas basket parvalbúmina por parte de fibras zincérgicas (Blasco-Ibáñez et al., 2000). 

Sin embargo, en el presente estudio se ha caracterizado por primera vez la fuente de esta 

inervación, que corresponde a las células granulares semilunares.  

Dado su escaso número y su localización ectópica, las células granulares semilunares han sido 

obviadas en la mayor parte de estudios anatómicos y funcionales del giro dentado. 

Recientemente  han aparecido estudios centrados en sus propiedades fisiológicas (Williams et 

al., 2007; Larimer and Strowbridge, 2010). Estos trabajos permiten entender la implicación de 

las células semilunares en la circuitería local del giro dentado, resaltando que son capaces de 

mantener su frecuencia de disparo durante largos periodos de tiempo, induciendo estados 
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activados del hilus y aumentando la excitación de las células musgosas (Larimer and 

Strowbridge, 2010). Además se ha comprobado que durante estos estados también ocurre una 

inhibición persistente en las células granulares, pero no hay datos relativos a la posible 

circuitería responsable de este hecho.   

Nuestros resultados evidencian a nivel anatómico que las células granulares semilunares 

controlan perisomáticamente a la población de interneuronas basket parvalbúmina del estrato 

granular. Esta inervación podría ser la responsable de la inhibición persistente encontrada en 

las células granulares. Además, el control de las interneuronas basket parvalbúmina del giro 

dentado también tendría como consecuencia la regulación del disparo de las células granulares 

y por tanto del primer paso en la vía trisináptica del hipocampo.  

La supervivencia de las células semilunares en modelo de epilepsia, junto con la muerte de las 

células musgosas, implicaría que las células granulares perderían el circuito excitador 

establecido con las células musgosas, pero no el circuito inhibitorio debido a las células basket 

parvalbúmina (mediada por las células semilunares). De este modo, en estadíos iniciales tras 

status epilepticus, el giro dentado permanecería silente.  Solo cuando aparece el fenómeno de 

sprouting, el circuito inhibidor local perdería su capacidad de controlar el loop excitador 

recurrente y el giro dentado acabaría convirtiéndose en foco epiléptico. 

De forma paralela, nuestros datos indican que las células granulares semilunares reciben una 

inervación perisomática diferente a las células granulares típicas. La inervación aferente de 

otras estructuras corticales, como es el caso de los núcleos supramamilares, de forma selectiva 

sobre subpoblaciones de células semilunares, parece estar relacionada con una función 

diferente de las células semilunares respecto a las granulares. Las células semilunares se 

encuentran, por tanto, en una ubicación única para regular el correcto funcionamiento del giro 

dentado, modulando los circuitos feed-back y feed-forward que se establecen. 

Nuestro intento por dilucidar si todas las células semilunares participan en el control excitador 

de las interneuronas parvalbúmina, o bien si solo una pequeña subpoblación de células 

semilunares es la encargada de establecer esta inervación, ha resultado infructuoso. Las 

técnicas de que disponemos no nos han permitido distinguir inequívocamente diferente 

subpoblaciones dentro de las células semilunares. La inexistencia de un marcador característico 

conocido para esta subpoblación de células dificulta su estudio, así como las conclusiones que 

podemos extraer de los resultados obtenidos. Sin embargo, sí hemos logrado obtener una 
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caracterización morfológica y fenotípica general, así como una primera piedra en su integración 

en la circuitería del giro dentado. 

CONCLUSIONES 

Las conclusiones derivadas de la tesis se resumen en: 

1. Las interneuronas parvalbúmina reciben un input perisomático excitador importante a

nivel cuantitativo.

2. La inervación perisomática excitadora sobre las interneuronas parvalbúmina por parte

de las células musgosas es despreciable en comparación con el input perisomático

excitador total que reciben.

3. El input excitador mayoritario sobre interneuronas parvalbúmina en el giro dentado

proviene de fibras Timm-positivas.

4. Las células parvalbúmina situadas en el estrato granular reciben mayor inervación Timm

positiva que las situadas en el estrato molecular.

5. Las células granulares semilunares son la fuente de la inervación Timm-positiva sobre

las interneuronas parvalbúmina del giro dentado.

6. Las células granulares semilunares presentes en la capa molecular interna y en el borde

con la capa granular representan aproximadamente un 2% de la población total de

células granulares del giro dentado. Son más frecuentes en el ápex del giro dentado, así

como a medida que avanzamos a niveles más ventrales. Además, dentro de un mismo

nivel, son más abundantes en la capa suprapiramidal respecto a la infrapiramidal.

7. Las células granulares semilunares presentan características morfológicas que las

diferencian de las células granulares típicas: su cuerpo celular se encuentra en la capa

molecular interna, y extienden sus dendritas ocupando una región más amplia en la

capa molecular. Sus axones viajan a través de la capa molecular interna, en paralelo al

estrato de somas hasta que lo atraviesan hasta llegar al hilus, donde establecen varias

colaterales axónicas en su camino al estrato lucido de CA3. Presentan además

colaterales axónicas en la capa granular. Una subpoblación de células granulares

presentan dendritas que atraviesan el hilus, en otras ocasiones el axón parte de una

dendrita principal, y en general presentan espinas somáticas con mayor frecuencia que

las granulares típicas.



Resumen 

217 

8. Las células granulares semilunares expresan marcadores de células principales (CAMKII)

y de células granulares maduras (calbindina y Prox1). No expresan selectivamente CART

o proteínas ligantes de calcio como parvalbúmina o calretinina.

9. Las células granulares semilunares están más activas en general, según muestran

marcadores de actividad celular c-Fos y pan-Fos.

10. Las células granulares semilunares reciben inervación inhibidora de las dos poblaciones

de interneuronas cuya diana es la región perisomática: parvalbúmina y CCK.

11. Las fibras procedentes de los núcleos supramamilares, inervan a las células granulares

semilunares de forma selectiva, independientemente de su situación en la capa

molecular.

12. La inducción de sobreexcitación moderada en el giro dentado mediante el quelante de

Zn+2 DEDTC induce la expresión de c-Fos por parte de las células granulares semilunares

sin inducir de modo generalizado la  activación de las células granulares.

13. Las células granulares semilunares y las interneuronas parvalbúmina son resistentes al

daño celular en modelos de epilepsia inducidos por pilocarpina, ácido kaínico o

pentylenetetrazole.

14. Los cambios observados en el modelo de kindling inducido con pentylenetetrazole son

lentos y progresivos. Se produce una pérdida de células musgosas, y un aumento de la

expresión de parvalbúmina por parte de las interneuronas de los cestos. La población

de interneuronas somatostatina no se ve afectada en estas condiciones.
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