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Previous studies reported “mode 1” Bacillus thuringiensis resistance in a colony of diamondback moths (NO-QA), and recently,
this resistance has been mapped to an ABC transporter (ABCC2) locus. We report the lack of binding of Cry1Fa to insects de-
rived from this colony and compare our data with those from other insects with ABCC2-associated resistance.

Although Bacillus thuringiensis has been used in foliar sprays
for more than 30 years, the commercialization in 1996 of the

first genetically modified crops protected against insects (Bt
crops) increased the importance of B. thuringiensis as a source of
insecticidal proteins for the control of insect pests. The extensive
use of B. thuringiensis proteins in sprays or in Bt crops has led to
the evolution of insect resistance in the field (6, 18). Field resis-
tance to B. thuringiensis sprays was first described in populations
of the diamondback moth, Plutella xylostella (5, 6, 12, 19). One of
the first resistant colonies (NO-QA) was derived from a Hawaiian
population that had evolved resistance to Dipel 2X (Abbott Lab-
oratories, North Chicago, IL) in the field and that was further
selected in the laboratory for additional resistance to the same
formulated product (20). NO-QA insects showed “mode 1” resis-
tance, which entails strong resistance to at least one Cry1A protein
(in this case, Cry1Aa, Cry1Ab and Cry1Ac, all three being found in
Dipel), little or nil cross-resistance to Cry1C, recessive inheri-
tance, and reduced binding of at least one Cry1A protein (16).
Further characterization showed that resistant insects were cross-
resistant to Cry1F and Cry1J (13, 17). Genetic studies indicated
that resistance to Cry1A and Cry1F proteins was determined by a
single autosomal locus (14) and that in a diet-adapted descendant
of NO-QA (NO-QAGE), the Cry1Ac resistance locus was geneti-
cally linked to a membrane transporter gene (ABCC2) (3).

For susceptible diamondback moths, an integrated model for
the binding sites of Cry1A and Cry1Fa proteins was proposed (2).
In this model, at least two binding sites are involved: one which is
shared by Cry1Aa, Cry1Ab, Cry1Ac, and Cry1Fa and a second
which is specific for Cry1Aa and apparently does not contribute to
its toxicity. Binding studies with NO-QA resistant larvae showed
extremely reduced binding of Cry1Ab and Cry1Ac but not of
Cry1Aa (15). Therefore, it was proposed that resistance in NO-QA
is due to a mutation that alters the common binding site for
Cry1Aa, Cry1Ab, Cry1Ac, and Cry1F.

The aim of the present study was to check whether binding of
Cry1Fa was indeed reduced in NO-QAGE insects and in this way
to confirm (or reject) the hypothesis that the multiple resistance in
this colony is due to an alteration of the shared binding site affect-
ing binding not only of the Cry1A proteins but of Cry1F as well. To
achieve this objective, Cry1Fa and Cry1Aa (as a control) were
labeled with 125I and biotin, respectively, and binding to brush

border membrane vesicles (BBMV) from susceptible (Lab-V) and
resistant (NO-QAGE) larvae was tested.

BBMV were prepared from whole last-instar larvae by the dif-
ferential magnesium precipitation method (23). For binding
studies, Cry1Fa and Cry1Aa proteins were obtained as protein
inclusions from recombinant B. thuringiensis and Escherichia coli
strains, respectively. Solubilized toxins were prepared as trypsin-
activated and chromatography-purified proteins (10). Bioassays
were performed using Cry1Fa protein inclusions. While all sus-
ceptible insects died at a dose of 10 �g/ml, NO-QAGE insects all
survived a dose of 200 �g/ml. Cry1Fa was labeled with 125I by the
chloramine-T method according to the conditions described by
Hernández-Rodríguez et al. (9), and the specific radioactivity ob-
tained was 0.5 �Ci/�g. To test total binding, increasing amounts
of BBMV from both colonies were incubated with 27 nM labeled
Cry1Fa, in a final volume of 0.1 ml of binding buffer (10 mM
Na2HPO4, 1 mM KH2PO4, 137 mM NaCl, 2.7 mM KCl, pH 7.4,
0.1% bovine serum albumin [BSA]) for 1 h at 25°C. An excess of
unlabeled toxin (15-fold) was used to determine the nonspecific
binding. After incubation, samples were centrifuged at 16,000 � g
for 10 min and the pellet was washed with cold binding buffer. The
results with 125I-Cry1Fa showed an increase in the specific binding
(obtained after subtracting nonspecific binding from the total
binding) when BBMV from susceptible insects were used (Fig.
1A), whereas no specific binding was observed with BBMV from
NO-QAGE insects (Fig. 1B).

As a control, binding of biotin-labeled Cry1Aa was performed
with 0.2 mg/ml of BBMV proteins. As expected, biotinylated
Cry1Aa bound to BBMV from both susceptible and resistant in-
sects (Fig. 2). Addition of an excess of unlabeled Cry1Aa notably
reduced binding of biotinylated Cry1Aa in both cases, indicating
that most of the binding observed was specific.

Reduced binding has been described as a primary mechanism
of insect resistance to Cry1A family proteins in several insect spe-
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cies (6), to Cry1Fa in Heliothis virescens (11), and, more recently,
to Cry2A proteins in two Helicoverpa species (4). However, the
alteration of the target site for Cry1Fa was only indirectly pro-
posed for resistant colonies of diamondback moths based on the
heterologous competition of this protein with labeled Cry1A pro-
teins (2, 8). Mutations in the gene encoding ABCC2 have been
implicated in the Cry1Ac resistance of H. virescens, P. xylostella
(NO-QAGE), Trichoplusia ni, and Bombyx mori (1, 3, 7). A resis-
tant colony of H. virescens (YHD2), believed to carry mutations in
the genes for both cadherin and ABCC2, was cross-resistant to
Cry1Fa and lacked binding of Cry1Fa (11). However, neither tox-
icity nor binding of this protein has been reported for subsequent
colonies in which the two mutations were separated (7). The
Cry1Ac-resistant T. ni colony showed only weak cross-resistance
to Cry1Fa (22). In this colony, binding of Cry1Ab and Cry1Ac was
reduced (22), but no binding data for Cry1Fa were reported. In-
terestingly, in the B. mori Cry1Ab-resistant colony, no loss of
binding of Cry1Ab was observed; the effect of Cry1Fa was not
investigated (1). In the current study, we have looked at P. xylos-
tella, the other species in which resistance has been linked to
ABCC2. We have found a strong correlation between cross-resis-
tance and loss of binding for Cry1Fa, complementing previous
findings for Cry1Aa, Cry1Ab, and Cry1Ac. The lack of Cry1Fa
binding in this resistant strain supports the common binding site
for Cry1Ab, Cry1Ac, and Cry1Fa in the model proposed by Ball-
ester et al. (2). The T. ni and P. xylostella colonies show a different
cross-resistance pattern, despite their resistance phenotypes both
being linked to the same ABCC2 locus. This may represent differ-
ent mutations in ABCC2 affecting susceptibility to the toxins in a
different manner (for example, in different toxin binding sites),

although the lack of current evidence indicating the functionality
of ABCC2 as a binding site for B. thuringiensis toxins should be
noted. Alternatively, it is possible that mutations in ABCC2 affect
susceptibility to the toxins indirectly. It is noteworthy that in the
resistant T. ni colony, a reduction in the expression of aminopep-
tidase N (APN1), which is a known receptor for B. thuringiensis
toxins, was observed via a transregulatory mechanism (21). An
unknown, indirect effect may also be able to provide an explana-
tion for the differences in Cry1Ab binding observed with the T. ni,
P. xylostella, and B. mori resistant colonies. Thus, while mutations
in ABCC2 can confer resistance in a variety of insects, the effect
may be indirect and consequently the resistance phenotype may
reflect differences in physiology between the species.
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