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Abstract: An extension of the adjoint SU(5) model with a flavour symmetry based

on the Z4 group is investigated. The Z4 symmetry is introduced with the aim of leading

the up- and down-quark mass matrices to the Nearest-Neighbour-Interaction form. As a

consequence of the discrete symmetry embedded in the SU(5) gauge group, the charged

lepton mass matrix also gets the same form. Within this model, light neutrinos get their

masses through type-I, type-III and one-loop radiative seesaw mechanisms, implemented,

respectively, via a singlet, a triplet and an octet from the adjoint fermionic 24 fields. It

is demonstrated that the neutrino phenomenology forces the introduction of at least three

24 fermionic multiplets. The symmetry SU(5) × Z4 allows only two viable zero textures

for the effective neutrino mass matrix. It is showed that one texture is only compatible

with normal hierarchy and the other with inverted hierarchy in the light neutrino mass

spectrum. Finally, it is also demonstrated that Z4 freezes out the possibility of proton

decay through exchange of colour Higgs triplets at tree-level.
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1 Introduction

Grand Unified Theories (GUT) are natural extensions of the Standard Model (SM) and

provide an appealing framework for the search of the theory of flavour. Most GUT models

try to unify the three gauge couplings of SM in a unique coupling within a simple group.

This is sustained by the fact that the SM gauge couplings seem to unify at high scale, Λ ≈
1015−17 GeV, when they evolve through the renormalisation group equations. In such GUT

constructions, not only the SM gauge coupling unify, but also the SM fermions are tight

in larger multiplets opening the possibility for the implementation of a flavour symmetry.

Another important signature of most GUTs is the prediction for proton decay [1], which

has not yet been observed and severely constrains these models.

The first GUT model was realisable within the SU(5) gauge group [2] in 1974. This

minimal model fits the fifteen SM fermionic degrees of freedom in two unique representa-

tions: 5∗ and 10 , per generation. It is well established that this model is ruled out, since

it does not reproduce the correct mass ratios among the charged leptons and down-type

quarks and also the particle content does not lead to an accurate gauge coupling unification.

During the last decades, many attempts have been proposed in the literature in order to

construct consistent GUT models [3–6] based on the SU(5) group. In particular, the mass

mismatch between the charged leptons and down-type quarks in the minimal SU(5) can be

easily corrected if one accepts higher dimension operators in the model without enlarging

the field content [3, 5]. Alternatively, one can build a non-renormalisable solution where

the mass mismatch is explained by adding an extra 45 Higgs multiplet [7, 8].
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Although GUT multiplets contain both quark and lepton fields this is not enough to

fully determine the properties of their observed masses and mixings. Indeed, GUT models

do not solve the “flavour puzzle” present in the SM, however the new GUT relations

among quark and lepton Yukawa matrices are an excellent starting point for building a

flavour symmetry. There have been many approaches to understand the intricate “flavour

puzzle” in the context of GUTs. An attractive possibility is to assume the vanishing of

some Yukawa interactions by the requirement of a discrete symmetry, so that new “texture

zeroes” appear in the Yukawa matrices [9–14]. Symmetries may predict new relations

among fermion masses and their mixings. Nevertheless, the opposite is not true in general,

because zeroes in the Yukawa matrices can also be obtained by performing some set of

transformations (weak basis transformations) leaving the gauge sector diagonal [15–17].

The Nearest-Neighbour-Interaction (NNI) is an example of a weak basis in which the

up- and down-quark mass matrices, Mu and Md, share the same texture-zero form:

Mu,d =

 0 Au,d 0

A′u,d 0 Bu,d
0 B′u,d Cu,d

 ,

where the constants Au,d , A′u,d , Bu,d , B′u,d and Cu,d are independent and complex. Since

this parallel structure is a weak basis, no physical predictions can be made unless further

assumptions are considered. This is the case of the Fritzsch Ansatz [18, 19] where, in

addition of the NNI structure, one requires Hermiticity for both Mu and Md, which cannot

be obtained through a weak basis transformation. It is well known that the Fritzsch

Ansatz can no longer accommodate the current experimental quark mixings. However, it

was shown in ref. [20] that deviations from the Hermiticity around 20% were compatible

with the experimental data.

It was shown in ref. [20] that it is possible to obtain up- and down-quark mass matrices

Mu and Md with the NNI structure through the implementation of an Abelian discrete

flavour symmetry in the context of the two Higgs doublet model (2HDM). In that context,

the minimal realisation is the group Z4. In a general 2HDM, a NNI form for each Yukawa

coupling matrices cannot be a weak basis choice. Indeed, the requirement of the Z4 sym-

metry does imply restrictions on the scalar couplings to the quarks, although one gets no

impact on the quark masses and the Cabibbo-Kobayashi-Maskawa matrix [21, 22].

The goal of this article is to study whether it is possible to implement a Z4 flavour

symmetry, as in refs. [20, 23], that leads to quark mass matrices Mu and Md with the

NNI form in the context of the adjoint-SU(5) Grand Unification [6]. The requirement of a

flavour symmetry that enforces a particular pattern in both up- and down-quark Yukawa

couplings has phenomenological implications for the leptonic sector. The adjoint-SU(5)

model strengths the weak points left in ref. [23], namely it improves the unification of the

gauge couplings, solves the mass mismatch between the charged leptons and down-type

quarks at renormalisable level, alleviates the constraint imposed by the proton lifetime and

introduces a richer mechanism to generate light neutrino masses.

The minimal version of the adjoint-SU(5) model [6] consists in adding to the minimal

SU(5) version a 45 Higgs representation, 45H , together with an adjoint fermionic field, ρ(24)
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to generate light neutrino masses. In this minimal setup one ρ(24) is enough to account

for the observed low-energy neutrino data compatible with a non-zero lightest neutrino

mass [24–27]. Nevertheless, the nature of the Z4 symmetry requires an extension of the

number of ρ(24) fields, n24 . The fermionic ρ(24) fields make possible the generation of

neutrino masses through the interaction with the 45H field, since gauge interactions forbid

a singlet right-handed neutrino to couple to 45H . Neutrino masses arise from three different

types of seesaw mechanisms: type-I [28–31], type-III [32, 33] and radiative seesaw [34–36].

The radiative seesaw is realizable through the octet-doublet S(8,2) of the 45H multiplet at

the one-loop level.

This paper is organised as follows: in section 2 the SU(5) × Z4 model is described in

detail. Next, in section 3 we address the issues of the unification of the gauge couplings

as well as the phenomenology of proton decay in the model. The successful textures for

the effective neutrino mass matrix together with some comments on the generation of the

baryon asymmetry of the universe through leptogenesis are discussed in section 4. Then,

our numerical results showing the viability of the leptonic textures considered are sketched

in section 5. Finally, the conclusions are drawn in section 6.

2 The model

The adjoint-SU(5) model [6] contains three generations of 5∗ and 10 fermionic multiplets

which accommodate the SM fermion content. In addition one adjoint fermionic multiplet

ρ(24) is introduced for the purpose of generating the light neutrino masses and mixings. In

this minimal version, three non-vanishing light neutrino masses arise from three different

seesaw mechanisms, as it will become clear later. Since our aim is to enlarge the symmetry

of the Lagrangian with an extra Z4 symmetry it forces us to consider n24 copies of 24

fermionic field.

The Higgs sector is composed by an adjoint multiplet, Σ(24), a quintet 5H and one

45-dimensional representation 45H . Details of the SM fields contained in the GUT repre-

sentations are given in appendix A.

The adjoint field Σ has the usual role to break spontaneously the GUT gauge group

down to the SM group, i.e. SU(3)c × SU(2)l × U(1)y, through its vacuum expectation

value (VEV),

〈Σ〉 =
σ√
60

diag(2, 2, 2,−3,−3) . (2.1)

The Higgs quintet and the Higgs 45-plet give rise to two doublets, H1 ∈ 5H and H2 ∈ 45H ,

at low-energies and two massive SU(3) colour triplets, T1 ∈ 5H and T2 ∈ 45H . It is

essential that the triplets T1,2 have masses around the unification scale while the doublets

H1,2 should remain at the electroweak scale in order to prevent rapid proton decay - the

so called doublet-triplet splitting problem. The representations (3̄, 1, 4/3) and (3, 3,−1/3)

in 45H could also induce proton decay. However, it has been shown that the former

representation does not contribute at tree level to proton decay, while some states of the

latter representation contribute with a constraint milder than the one given by the triplet

T2 [37].
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Many mechanisms were proposed in order to avoid the doublet-triplet-splitting prob-

lem. One possibility that can be easily invoked within this framework is the missing partner

mechanism [38, 39], which consists in having the bosonic representations 50, 50∗ and 75

instead of the adjoint Σ to break the GUT group. In the missing partner mechanism the

scalar doublets are naturally massless.

The role of the scalar fields 5H and 45H is then to break the SM group to SU(3)c ×
U(1)e.m. through their VEVs

〈5H〉T = (0, 0, 0, 0, v5) , (2.2)

and 〈
45H

α5
β

〉
= v45

(
δβα − 4 δα4 δ

4
β

)
, α, β = 1, . . . , 4 , (2.3)

that are related as

v2 ≡ |v5|2 + 24 |v45|2 =
(√

2GF

)−1
= (246.2 GeV)2 , (2.4)

where GF is the Fermi constant.

Since all representations are well defined, we can specify the nontrivial transformations

of each bosonic/fermionic field R under the Z4 flavour symmetry as:

R −→ R′ = ei
2π
4
Q(R)R , Q(R) ∈ Z4 . (2.5)

The purpose of the discrete symmetry is to obtain the quark mass matrices, Mu, Md,

with the NNI form at low energy scales. In order to preserve the Z4 symmetry below the

unification scale it is required that Q(Σ) = 0. In order to implement the missing partner

mechanism, the extra bosonic fields, 50, 50∗ and 75 , must also be trivial under Z4 . Thus,

below the unification scale Λ the Z4 group is preserved in higher orders of perturbation

theory, provided that no Nambu-Goldstone boson appears at tree-level due to an accidental

global symmetry [40]. At low energies one obtains a two Higgs doublet model with extra

fermions invariant under Z4, which gets broken once the doublets acquire VEVs.

The Z4-charges are assigned as follows. First we make the choice that the 45H couples

to the bilinear 103 103 , which implies that

Q(45H) = −2Q(103) . (2.6)

This particular choice does not eliminate any texture on the leptonic sector obtained when

varying the fermionic Z4-charges. Thus, the most general fermionic Z4-charges that lead

to NNI for the quark mass matrices Mu,d are

Q(10i) = (3q3 + φ, −q3 − φ, q3) ,

Q(5∗i) = (q3 + 2φ, −3q3, −q3 + φ) ,
(2.7)

where φ ≡ Q(5H) and q3 ≡ Q(103). The charges for the n24 adjoint fermions are left free

and only some combination of them will lead to realistic effective neutrino mass matrices,

as we will see.
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In this model, the most general Yukawa interactions are given by the following terms:

−LY = εαβγδξ

[(
Γ1
u

)
ij
10αβi 10γδj (5H)ξ +

(
Γ2
u

)
ij
10αβi 10κγj (45H)δξκ

]
+
(
Γ1
d

)
ij
10αβi 5∗j α (5∗H)β +

(
Γ2
d

)
ij
10αβi 5∗j γ (45∗H)γαβ + Mkl Tr (ρk ρl)

+ λkl Tr (ρk ρl Σ) +
(
Γ1
ν

)
ik
5∗i α (ρk)

α
β (5H)β +

(
Γ2
ν

)
ik
5∗i α (ρk)

γ
β (45H)αβγ + H.c. ,

(2.8)

where α, β, · · · = 1, . . . , 5 are SU(5) indices, i, j are generation indices and k, l = 1, . . . , n24 .

Notice that the Yukawa matrix Γ1
u and λ as well as the mass matrix M are symmetric

while Γ2
u is antisymmetric. Taking into account the charges given in eq. (2.7), the Yukawa

coupling matrices Γ1,2
u,d are given by,

Γ1
u =

 0 0 0

0 0 bu
0 bu 0

 , Γ2
u =

 0 au 0

a′u 0 0

0 0 cu

 , (2.9a)

Γ1
d =

 0 ad 0

a′d 0 0

0 0 cd

 , Γ2
d =

 0 0 0

0 0 bd
0 b′d 0

 . (2.9b)

The up- and down-quark masses as well as the charged lepton masses are given by

Mu = 4 v5 Γ1
u + 8 v45 Γ2

u ,

Md = v∗5 Γ1
d + 2 v∗45 Γ2

d ,

Me = v∗5 Γ1
d
T − 6 v∗45 Γ2

d
T
.

(2.10)

Substituting the eqs. (2.9) in the mass matrices given in eqs. (2.10) one concludes that all

the matrices Mu,d,e share the NNI structure. The up-quark mass matrix Mu is no longer

symmetric and the mismatch between the down-type and charged lepton matrices is now

explained as:

Md −MT
e = 8 v∗45 Γ2

d . (2.11)

The mass matrices of the fermions ρ0, ρ3 and ρ8 arising from the fermionic-24 fields

are given by:

M0 =
1

4

(
M − σ√

30
λ

)
,

M3 =
1

4

(
M − 3σ√

30
λ

)
,

M8 =
1

4

(
M +

2σ√
30

λ

)
.

(2.12)

Due to the fact that the Higgs field Σ is trivial under Z4, the matrices M and λ share

the same form and this is also valid for the Majorana matrices M0,3,8. From the Yukawa

interactions written in eq. (2.8), one can infer the Yukawa couplings for the ρ0 , ρ3 and ρ8
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×νi νj

〈H〉〈H〉 〈H〉

ρ0k

(a) Type-I seesaw

×νi νj

〈H〉 〈H〉

ρ3k

(b) Type-III seesaw

×νi νj

〈H〉 〈H〉

ρ8k

S(8,2)

(c) Radiative seesaw at one-

loop level

Figure 1. Different seesaw mechanisms present in the model.

fermion fields, which are then given by

−LY =

√
15

2
√

2

[cosα

5

(
Γ1
ν

)
kl

+ sinα
(
Γ2
ν

)
kl

]
lTk iσ2 ρ0lH

+

√
15

2
√

2

[
−sinα

5

(
Γ1
ν

)
kl

+ cosα
(
Γ2
ν

)
kl

]
lTk iσ2 ρ0lH

′

+
1√
2

[
cosα

(
Γ1
ν

)
kl
− 3 sinα

(
Γ2
ν

)
kl

]
lTk iσ2 ρ3lH

− 1√
2

[
sinα

(
Γ1
ν

)
kl

+ 3 cosα
(
Γ2
ν

)
kl

]
lTk iσ2 ρ3lH

′

−
(
Γ2
ν

)
kl√

2
lTk iσ2 Tr

(
S(8,2)ρ8l

)
,

(2.13)

where S(8,2) is the scalar octet-doublet belonging to the 45H representation and the doublet

space (H1, H2)T has also been rotated in terms of new doublets (H,H ′)T such that 〈H〉 = v

and 〈H ′〉 = 0 by the appropriate transformation:

(
H

H ′

)
=

(
cosα sinα

− sinα cosα

)(
H1

H2

)
, (2.14)

with tanα ≡ v45/v5 .

Taking into account the Majorana mass matrices M0,3,8 and the Yukawa interactions

given by eq. (2.13) one can derive, through the seesaw mechanism, the effective neutrino

mass matrix mν which receives three different contributions, as drawn in figure 1. One has

type-I seesaw [28–31] mediated by the fermionic singlets ρ0k and type-III seesaw [32, 33] via

the exchange of the SU(2)-triplets ρ3k. There is still the possibility of generating neutrino

masses through the radiative seesaw [34, 35], that involves at 1-loop the fermionic ρ8k and

the scalar doublet-octet S(8,2) present in the 45H . The neutrino mass matrix obtained after
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integrating out the fields responsible for the seesaw mechanism reads as

(mν)ij = −
(
mD

0 M-1
0 m

D
0
T
)
ij
−
(
mD

3 M−1
3 mD

3
T
)
ij

− v2 ζ

8π2

n24∑
k=1

(
U8 Γ2

ν

)
ik

(
U8 Γ2

ν

)
jk

M̃8 k

F

[
MS(8,2)

M̃8 k

]
,

(2.15)

where mD
0 , mD

3 are given by

mD
0 =

√
15v

2
√

2

(cosα

5
Γ1
ν + sinαΓ2

ν

)
,

mD
3 =

v√
2

(
cosαΓ1

ν − 3 sinαΓ2
ν

)
,

(2.16)

and M̃8 k are simply the mass-eigenvalues of the Majorana matrix M8 . The unitary matrix

U8 does the rotation of the yukawa matrix Γ2
ν to the basis where the matrix M8 is diagonal.

The coefficient ζ is a linear combination of the coefficients in the Higgs potential terms

given in eqs. (B.2c) and (B.2f) in the appendix (B). The loop function F (x) is given by

F (x) ≡ x2 − 1− log x

(1− x2)2
. (2.17)

If one assumes M̃8 k � M̃0 k > M̃3 k then it suppresses the 1-loop radiative seesaw contri-

bution.

Before closing this section, it is important to comment about the Higgs potential. The

most general Higgs potential is given explicitly in the appendix (B). Notice that, terms

involving simultaneously the fields 5H , 24H and 45H are forbidden by the Z4 symmetry.

This gives rise to an accidental global continuous symmetry which, upon spontaneous

electroweak symmetry breaking, would lead to a massless Nambu-Goldstone boson at tree

level [41]. A simple way to cure this problem is by adding a complex SU(5) Higgs singlet

S non-trivially charged under Z4 , i.e. Q(S) = −2 q3 − φ , where its potential is given by

VS =
(
λsb 5

∗
α 24γβ 45αβγ S + H.c.

)
+

1

2
µ2
S |S|2 + λS |S|4 + λ′S (S4 + H.c.) , (2.18)

and leads at low-energy to an effective interaction, once the scalar S acquires vacuum

expectation value,

λsb σ 〈S〉H†1 H2 + H.c. , (2.19)

which softly breaks the symmetry Z4 .

3 Unification and Proton Stability

According to the previous section, between the unification scale and MZ = 91.1876 ±
0.0021 GeV scale [38] one has a 2HDM with extra fermions, namely ρ0k , ρ3k , and ρ8k , and

the two scalars Σ3 and Σ8 that can have lower masses. The coulored triplets, T1 and T2 ,

and the other scalars contained in the 45H are set their masses arround the GUT scale. We

– 7 –



also assume MΣ3 'MΣ8 . The running of the three gauge coupling constants αi (i = 1, 2, 3)

in the 2HDM with extra particle content can be obtained easily at the one-loop level as

α−1
1 (µ) = α−1

1 (MZ)− b1
2π

log

(
µ

MZ

)
−
∑
I

bI1
2π

log

(
µ

MI

)
, (3.1a)

α−1
2 (µ) = α−1

2 (MZ)− b2
2π

log

(
µ

MZ

)
−
∑
I

bI2
2π

log

(
µ

MI

)
, (3.1b)

α−1
3 (µ) = α−1

3 (MZ)− b3
2π

log

(
µ

MZ

)
−
∑
I

bI3
2π

log

(
µ

MI

)
, (3.1c)

where α1 = 5/3αy, α2 = αw and α3 = αs; the bi constants are the usual one-loop beta

coefficients corresponding to the 2HDM, listed in section A. MI denotes an intermediate

energy scale for extra particle I between the electroweak scale MZ and the GUT scale Λ,

and the coefficients bIi account for the new contribution to the one-loop beta functions bi
above the threshold MI . At the unification scale Λ, the gauge couplings αi obey to the

relation

αU ≡ α1(Λ) = α2(Λ) = α3(Λ) . (3.2)

To get some insight into the unification in the one-loop approximation, let us define

the effective beta coefficients Bi [42],

Bi ≡ bi +
∑
I

bIi rI , (3.3)

where the ratios 0 ≤ rI ≤ 1 that takes into account the intermediate scales are given by

rI =
ln (Λ/MI)

ln (Λ/MZ)
. (3.4)

It is also convenient to introduce the differences Bij ≡ Bi −Bj , define as

Bij = B2HDM
ij +

∑
I

∆I
ijrI , (3.5)

where B2HDM
ij corresponds to the 2HDM particle contribution and

∆I
ij ≡ bIi − bIj . (3.6)

The following B-test is then obtained,

B ≡ B23

B12
=

sin2 θW −
α

αs
3

5
− 8

5
sin2 θW

, (3.7)

together with the GUT scale relation

B12 ln

(
Λ

MZ

)
=

2π

5α

(
3− 8 sin2 θW

)
. (3.8)
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Notice that the right-hand sides of eqs. (3.7) and (3.8) depend only on low-energy

electroweak data. using the following experimental values at MZ [38]

α−1 = 127.916± 0.015 , (3.9)

sin2 θW = 0.23116± 0.00012 , (3.10)

αs = 0.1184± 0.0007 , (3.11)

the above relations read as

B = 0.718± 0.003 ,

B12 ln

(
Λ

MZ

)
= 185.0± 0.2 .

(3.12)

The coefficients Bij that appear in the left-hand sides of eqs. (3.7) and (3.8) strongly

depend on the particle content of the theory. For instance, considering the SM particles

with nH light Higgs doublets, one has b1 = 20/5+nH/10, b2 = −10/3+nH/6 and b3 = −7,

so that these coefficients are given by

B12 = 36/5 , B23 = 4 . (3.13)

where nH = 2 is set and B = 5/9 is then not compatible with the calculated value in

eq. (3.12) and clearly, the B-test fails badly in the 2HDM case, so that extra particles are

needed. In table 1 we present the relevant contributions ∆ij to the Bij coefficients of our

setup which include, besides the 2HDM threshold, the fermions ρ0k , ρ3k , and ρ8k , and the

two scalars Σ3 and Σ8 are considered. For simplicity, we assume the remaining particles at

the unification scale and therefore they do not contribute to the gauge coupling running.

Table 1. The relevant ∆ij contributions to the Bij coefficients in the SU(5)× Z4 model.

2HDM ρ3 ρ8 Σ3 Σ8

∆12 36/5 -4/3 0 -2/3 0

∆23 4 4/3 -2 2/3 -1

Notice that eqs. (3.12) require ∆I
12 < 0 and ∆I

23 > 0, it becomes clear from table 1 all

extra particles considered in the running improve the unification. We have scanned different

ratios rI and we obtained a large range of solutions that lead to a perfect unification

within the experimental errors. The fact that more than one adjoint fermionic field ρk is

present, it improved the range of intermediate scales MI consistent with unification. It is

now difficult to find strong correlations among the intermediate scales MI . In addition,

the possible values for the unification scale Λ can vary many orders of magnitude. For

illustration, in figure 2 we have drawn the mass spectrum of the extra particles included

in the running. All the solution obtained are in agreement with a unified gauge coupling

gU =
√

4π/α−1
U < 1, where in our numerics we obtained α−1

U ≈ 37 .

Concerning the proton decay some comments are in order. In this model there are

mainly two different sources for proton decay, namely via the exchange of the lepto-quark
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Figure 2. Four illustrative examples showing the mass spectrum of the adjoint fermionic fields,

Σ3 and Σ8 for different unification scales Λ.

gauge bosons X,Y or via coulored Higgs triplets. Proton decay in both scenarios are

mediated four fermion interactions (dimension-six operators).

The gauge bosons X,Y become massive through the Higgs mechanism with a common

mass, MV ,

MV =
25

8
g2
Uσ

2 . (3.14)

To suppress the X,Y boson proton decay channels, one has necessarily that MV � mp

(the proton mass), that leads to the estimation of the proton decay width as [8]:

Γ ≈ α2
U

m5
p

M4
V

. (3.15)

Making use of the most restrictive constraints on the partial proton lifetime τ(p→ π0e+) >

8.2× 1033 years [38], one can derive a rough lower bound for the X,Y mass scale MV ,

MV > 4.1× 1015 GeV , (3.16)

which corresponds a α−1
U ≈ 37 . Since we assume for the unification scale Λ ∼ MV , the

constraint given by eq. (3.16) determines the scale where the gauge couplings should unify

(for a recent review see [1]).

The proton decay through the exchange of Higgs colour triplets T1, T2 is very sup-

pressed, since their suppression is proportional to products of Yukawa couplings, and
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therefore they are much smaller than the gauge couplings. Indeed the contribution of these

dimension-six operators vanishes at tree-level when the Z4 symmetry is exact [23]. The

dimension-six operators contributing to the proton decay via the colour triplet exchange

are given at tree-level by:∑
n=1,2

(Γnu)ij (Γnd )kl
M2
Tn

[
1

2
(QiQj)(QkLl) + (ucie

c
j)(u

c
kd
c
l )

]
. (3.17)

It is then clear from the pattern of the Yukawa coupling matrices Γ1
u and Γ2

d given in

eqs. (2.9) that the only possible non-vanishing contribution of the dimension-six operators

given in eq. (3.17) involve necessarily fermions of the third generation. One concludes that

at tree-level the proton does not decay through the four-fermion interactions described by

the operators given in eq. (3.17).

4 Effective Neutrino Textures

The flavour symmetry present in our model constrains the charges of the fermion fields

to be of the form in eq. (2.7). Such charge assignment does not imply any restriction in

the neutrino sector. Hence the charges of the 24 dimensional fermionic representations

responsible for the neutrino masses are free. In order to analyse the possible patterns for

the effective neutrino mass matrices, mν , we have considered all the possible values for the

Z4 charges of the adjoint fermionic fields.

Searching for the minimal SU(5)× Z4 model, i.e. the model with the minimal matter

content, we have started by the possibility of having only one extra 24 fermionic repre-

sentation, as in the SU(5) adjoint original model [6]. However, given the particularities

of the Z4 symmetry, the neutrino mixing pattern that emerges from this picture is now

not consistent with the experimental neutrino data [43]. Adding a second 24 fermionic

representation does not solve the problem and again the predicted neutrino mixing angles

are not in agreement with neutrino oscillations.

The situation changes when we consider three 24 fermionic representations. In this

case we obtain different possibilities for the light neutrino mass matrix mν that coincide

with the matrices found in ref. [23], where a similar Z4 flavour symmetry was imposed in

the context of three right-handed neutrinos. From the various textures for the effective

neutrino mass matrix mν found in the scan, only two solutions can account successfully

for the low-energy neutrino data, namely

mA
ν =

 0 ∗ 0

∗ ∗ ∗
0 ∗ ∗

 and m
A(12)
ν =

 ∗ ∗ ∗∗ 0 0

∗ 0 ∗

 , (4.1)

where the index (12) refers to the fact that texture-A(12) is a permutated form of the

texture-A through the permutation matrix P(12) ,

P(12) =

 0 1 0

1 0 0

0 0 1

 , (4.2)
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isomorphic to the symmetric group S3. Thus, the effective mass matrices mA
ν and m

A(12)
ν

are related by:

m
A(12)
ν = P(12)m

A
ν P

T
(12) . (4.3)

The compatibility of the above textures with the experimental neutrino data has been

analyzed in detail in ref. [23] where it was found that just the two-zero textures in A and

A(12) are phenomenologically viable. An important result is that texture A is compatible

only with normal hierarchy (NH) while texture A12 turns to be compatible only with

inverted hierarchy (IH) in the light neutrino mass spectrum.

At this point, we would like to remark that the textures given in eq. (4.1) have also been

studied in the literature previuosly. According to the standard terminology [44], our allowed

matrices A and A(12) would correspond to the ones labelled as A2 and D1, respectively.

Texture D1 has been shown to be either disallowed [44–46] or very marginally allowed [47].

However, all of these previous works assume a diagonal charged lepton mass matrix while

here we are considering a charged lepton mass matrix with NNI form. Therefore the results

in the literature do not strictly apply to our case.

Up to here we have only considered the Z4 charges for the 24 fermionic fields such

as the matrices M and λ are non-singular, i.e., |M| 6= 0 and |λ| 6= 0 and therefore the

Majorana matrices Mx, x = 0, 3, 8 are non-singular as well. This condition is mandatory

in order to derive the effective neutrino mass matrix using the seesaw formula in eq. (2.15).

However, given the flavour symmetry present in our model, among all the possible config-

urations one can have |Mx| = 0. In these cases M−1
x is not defined and therefore we can

not use the standard seesaw formula, but instead we should consider the singular seesaw

mechanism. The singular seesaw, first suggested in the context of a GUT framework [48],

has been considered in relation to different anomalies in neutrino physics such as the Simp-

son neutrino [49–51] or the LSND signal [52–55]. In both cases the modified seesaw scheme

has been used to obtain a neutrino mass spectrum with a singlet/sterile neutrino in the

energy range between light neutrino masses below the eV and the heavy neutrinos at the

seesaw scale.

Here we have analysed the neutrino mass spectrum that emerges from the singular

seesaw mechanism with two and three 24 fermionic representations. According to our

calculations, it is not possible to obtain an effective neutrino mass matrix compatible with

experimental data in any of the cases, since we always get too few light neutrino states.

In summary, our analysis shows that the symmetry requires the presence of at least

three fermionic 24 representations and no singular seesaw, i.e., |Mx| 6= 0. Since the param-

eters of the last matrix depend on the Z4 neutrino charges Q(24i), we can conclude that

the neutrino phenomenology has an impact on the Z4 neutrino charges.

We present in table 2 the Z4 charge assignment for the fermionic fields that leads to

the successful textures for the effective neutrino mass matrix A and A(12), discussed above.

The textures for the matrices Mx and mD
0,3 are also shown. The charges for the fermionic

fields 10 and 5∗ as well as the Higgs fields 5H and 45H follow the relations in eqs. (2.6)

and (2.7). It is worth pointing out that all Dirac neutrino matrices mD
0,3 obtained through

the scan have four texture zeroes.
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Table 2. The Z4 fermionic field charges for phenomenologically viable effective neutrino textures.

mν M0,3,8 Q(24i) mD
0,3 Q(5∗) Q(10i) Q(5H) Q(45H)

0 ∗ 0

∗ ∗ ∗
0 ∗ ∗



0 0 ∗
0 ∗ 0

∗ 0 0


(1,2,3)

0 0 ∗
∗ ∗ 0

0 ∗ ∗

 (3,1,0) (0,2,1) 1 2

∗ 0 0

0 ∗ ∗
∗ ∗ 0

 (1,3,0) (0,2,3) 3 2

∗ 0 0

0 0 ∗
0 ∗ 0


(0,1,3)

0 ∗ 0

∗ 0 ∗
∗ ∗ 0

 (1,3,2) (2,0,3) 1 2

0 0 ∗
∗ ∗ 0

∗ 0 ∗

 (3,1,2) (2,0,1) 3 2

∗ ∗ ∗∗ 0 0

∗ 0 ∗



0 0 ∗
0 ∗ 0

∗ 0 0


(1,2,3)

∗ ∗ 0

0 0 ∗
0 ∗ ∗

 (2,0,1) (1,3,0) 1 0

0 ∗ ∗
∗ 0 0

∗ ∗ 0

 (2,0,3) (3,1,0) 3 0

∗ 0 0

0 0 ∗
0 ∗ 0


(0,1,3)

∗ 0 ∗
0 ∗ 0

∗ ∗ 0

 (0,2,3) (3,1,2) 1 0

∗ ∗ 0

0 0 ∗
∗ 0 ∗

 (0,2,1) (1,3,2) 3 0

Leptogenesis

In this section we would like to briefly comment about the possibility of having leptogenesis

in our model.

As already discussed in refs. [26, 27], the out-of-equilibrium decays of the fermionic

fields ρ0 and ρ3 in the 24 fermionic representation may generate an asymmetry in the

leptonic content of the universe. In the presence of sphaleron processes this leptonic asym-

metry would be partially converted into a baryon asymmetry, explaining the observed

matter-antimatter asymmetry of the universe. Depending on the mass hierarchy among ρ0

and ρ3, the main contribution to the leptonic asymmtery will be dominated by the decays

of one of them. In principle, our model has enough freedom to have different mass spectra
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for the fermionic fields and therefore, in contrast to the results shown in refs. [26, 27], in

our case the leptonic asymmetry may be generated by the decay of ρ0 (ε0) or ρ3 (ε3). In

both cases, the expression for the generated CP asymmetry would be proportional to:

ε3 ∝
∑
j 6=1

Im

[(
mD†

3 mD
3

)2

1j

]
, (4.4a)

ε0 ∝
∑
j 6=1

Im

[(
mD†

0 mD
0

)2

1j

]
. (4.4b)

Despite the specific flavour structure of the mD
i matrices, induced by the Z4 symmetry

(see eq. (2.16)), we have checked that in principle there are no cancelations in the terms

above and therefore the leptonic asymmetry generated by ρ0 and ρ3 can be different from

zero. It is clear that more accurate predictions about leptogenesis would require further

calculations, considering the effect of the washout over the initial leptonic asymmetry as

well as the dynamical evolution of the asymmetry with the solution of Boltzmann equations.

For the moment, however, our goal is just to show that the model presented here has enough

freedom in the choice of masses and couplings so in principle it is possible to accommodate

the CP asymmetry. Further considerations as, for instance, the constraints on the model

coming from the requirement of a baryon asymmetry consistent with the observations will

be discussed elsewhere.

5 Numerical Results

In this section we analyse the phenomenological implications of the effective neutrino mass

matrices mA
ν and m

A(12)
ν in eq. (4.1). Since the flavour symmetry is valid under perturbative

corrections until the breaking of the electroweak gauge symmetry, the form of the Yukawa

matrices Γ1,2
d , Γ1,2

ν and the Majorana mass matrices M0,3,8 remains unchanged. Thus, one

can extract the predictions for Me and mν and confront them with the observed neutrino

data atMZ energy scale. The effective neutrino mass matrices obtainedm
A/A(12)
ν , as already

mentioned, are the same as those analysed in ref. [23]. However, the new measurements of

the reactor mixing angle θ13 [56] have changed the theoretical picture of the light neutrino

mixings since then. Therefore, it is worth to revisit the previous analysis in ref. [23] to take

into account these new bounds.

Without loss of generality one can write the charged lepton mass matrix, Me, and the

effective neutrino mass matrices, m
(g)
ν as:

Me = Ke

 0 Ae 0

A′e 0 Be
0 B′e Ce

 , (5.1a)

mg
ν = Pg

 0 Aν 0

Aν Bν Cν
0 Cν Dν e

iϕ

PT
g , (5.1b)
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where the permutation g = e or (12) according to the table 2 and the constantsAe,ν , Be,ν , A
′
e, B

′
e, Ce,ν , Dν

are taken real and positive. The diagonal phase matrix Ke can be parameterised as

Ke = diag(eiκ1 , eiκ2 , 1) , (5.2)

and the phase ϕ in eq. (5.1b) cannot be removed by any field redefinition.

Although the number of the parameters encoded in the pair Me,mν is 12, as the

number of independent physical parameters experimentally observed at low energy, the

zero pattern exhibited in eqs. (5.1) does imply new constraints among the independent

physical parameters, as it will be shown. The PMNS matrix U is given by

U = OT
e K

†
e Pg Uν , (5.3)

where the orthogonal matrix Oe is the one that diagonalises MeM
†
e as

(KeOe)
†MeM

†
e (KeOe) = diag(me ,mµ ,mτ ) , (5.4)

while the unitary matrix Uν diagonalises mν as

(Pg Uν)T mg
ν (Pg Uν) = diag(m1 ,m2 ,m3) . (5.5)

The knowledge of the low-energy neutrino mixings appears in the literature in terms

of the parameters θ12 , θ13 , θ23 and δ of the Standard Parametrisation (SP) [38], defined

in terms of PMNS matrix U invariants as

sin θ12 ≡
|Ue2|2√

1− |Ue3|2
,

sin θ13 ≡ |Ue3| ,

sin θ23 ≡
|Uµ3|2√

1− |Ue3|2
,

(5.6)

and the phase δ is given by the Dirac-phase invariant, I,

I ≡ Im
(
Uµ3U

∗
e3Ue2U

∗
µ2

)
=

1

8
cos θ13 sin 2θ12 sin 2θ23 sin 2θ13 sin δ . (5.7)

Due to the fact that the PMNS matrix is not rephasing invariant on the right, one defines

the Majorana-type phases, ϕαij , free of any kind of parametrisation as [57]:

ϕαij ≡ arg
(
Uαi U

∗
αj

)
. (5.8)

It has been shown in ref. [57] that the PMNS matrix can be fully reconstructed by six

independent Majorana-type phases from eq. (5.8) taking into account that U is a uni-

tary matrix. The Dirac-type phase δ can therefore be expressed as the difference of two

Majorana-type phases:

I = |Uµ3| |Uµ2| |Ue3| |Ue2| sin (ϕe23 − ϕµ23) . (5.9)

In what follows we will use the three Majorana-type phases ϕe23 , ϕµ23 and ϕτ23 .
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Table 3. Neutrino oscillation parameter summary from ref. [43]. For ∆m2
31, sin2 θ23, sin2 θ13, and

δ the upper (lower) row corresponds to normal (inverted) neutrino mass hierarchy.

parameter best fit 3σ range

∆m2
21

[
10−5 eV

]
7.62 7.12− 8.20

|∆m2
31|
[
10−3 eV

] 2.55

2.43

2.31− 2.74

2.21− 2.64

sin2 θ12 0.320 0.27− 0.37

sin2 θ23
0.613 (0.427)

0.600

0.36− 0.68

0.37− 0.67

sin2 θ13
0.0246

0.0250
0.017− 0.033

δ
0.80π

−0.03π
0− 2π

In our analysis we have calculated Oe numerically using the charged lepton masses

given at MZ scale in the MS scheme at 1-loop [58, 59] as

me = 0.486661305± 0.000000056 MeV , (5.10a)

mµ = 102.728989± 0.000013 MeV , (5.10b)

mτ = 1746.28± 0.16 MeV . (5.10c)

Concerning the neutrino sector we have used the most recent three neutrino data from the

global fit of neutrino oscillations in ref. [43]. The best fit values and 3σ ranges for the

neutrino parameters are presented in table 3.

As in ref. [23], here we have varied all the experimental charged lepton masses and

neutrino mass differences within their allowed range given in eq. (5.10) and Table 3, re-

spectively. The mass of the lightest neutrino (m1 in NH or m3 in IH) was scanned for

different magnitudes below 1 eV. To reconstruct the PMNS matrix, we have also scanned

the free parameters Ae , Be , Dν and the phases κ1, κ2, ϕ, defined in eq. (5.1). All the

remaining parameters are calculated in terms of the former ones. The restriction in this

scan was to accept only the input values which correspond to a reconstructed PMNS ma-

trix U that naturally leads to the mixing angles θ12 , θ23 and θ13 within their experimental

bounds presented in Table 3.

From our scan we have found that the mass matrix A in eq. (4.1) is compatible with

a neutrino mass spectrum with normal hierarchy while the texture A(12) is compatible

with inverted hierarchy. The allowed ranges for the lightest neutrino masses are m1 =

[0.353, 20.884]× 10−3 eV for NH and m3 = [2.575, 15.335]× 10−3 eV for IH. The presence

of a massless neutrino as well as a quasi-degenerate neutrino mass spectrum are excluded

in both cases. For the texture A we have found no significant correlations between sin2 θ13
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Figure 3. Plot of sin2 θ13 as a function of m3 (left panel) and sin2 θ23 as a function of sin2 θ12

(right) in the case of texture m
A(12)
ν and inverted hierarchy.

and sin2 θ23 as a function of m1, while in the case of texture A(12) some correlations are

found, as shown in figure 3. In fact, this correlation is behind the narrower m3 allowed

range for IH in comparison with the allowed m1 range for NH. We have also verified that

textures A and A(12) are not compatible with inverted and normal hierarchies, respectively,

even when the new limits on sin2 θ13 are considered.

In figure 4 we plot the effective Majorana neutrino mass characterizing the neutrinoless

double beta decay amplitude mee with respect to the lightest neutrino mass, m1 in the

case of mA
ν and normal hierarchy or m3 in the case of m

A(12)
ν and inverted hierarchy. The

shadowed bands correspond to the generic predictions formee according to the experimental

neutrino data at 3σ, without any further assumption concerning the origin of neutrino

masses. If we now restrict our calculations to the adjoint SU(5)×Z4 model presented in this

article, the allowed regions are reduced to the darker pointed regions. The horizontal lines

in figure 4 correspond to the mee sensitivity that will be reached by the next generation of

neutrinoless double beta decay experiments (see for instance ref. [60]). There we see that,

even if a part of the inverse hierarchy band will be experimentally covered in the next years,

a sensitivity of around 10-30 meV will be needed in order to probe the effective Majorana

mass predicted by our model. Accessing to the predicted region for normal hierarchy will

be even tougher, since a sensitivity of the order of 1 meV would be required, far away from

the more optimistic scenarios.

6 Conclusions

In this work we have studied the adjoint-SU(5)×Z4 model. The flavour symmetry imposed

in the Lagrangian has the purpose to force the quark mass matricesMu, Md to have the NNI

form after the spontaneous electroweak symmetry breaking [20, 23]. Due to the fermion

content of the adjoint-SU(5), the charged lepton mass matrix Me has automatically NNI

form. In this model the light neutrinos get their masses through type-I, type-III and one-

loop radiative seesaw mechanisms, implemented, respectively, via a singlet, a triplet and
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Figure 4. Effective Majorana neutrino mass mee as a function of the lightest neutrino mass m

for normal and inverted neutrino hierarchy, as indicated. The upper band shows the experimental

sensitivity to be achieved in the next years.

an octet from the adjoint fermionic fields. The SU(5)× Z4 symmetry does not impose any

constraint on the adjoint fermionic fields.

We have shown that the model proposed is in agreement with the current experimental

data. Neutrino mixings and mass splittings as well as the masses of the charged leptons have

been used to constrain the possible textures of the effective light neutrino mass matrix. We

have demonstrated that at least three copies of the 24 are needed in order to fully implement

the Z4 flavour symmetry and simultaneously account for the experimental neutrino data.

As shown in table 2 only two zero-textures persist: A and A(12), which are compatible with

normal and inverted hierarchies, respectively.

One of the main phenomenological implications of the model studied is the prediction

of a hierarchical neutrino mass spectrum not compatible with a massless neutrino. This

result is particularly important since the neutrino mass spectrum predicted can be used to

prove or disprove the model in the near future. At present our results are in agreement

with the constraints coming from neutrinoless double beta decay [60] and tritium β decay

searches [61] as well as with the cosmological bound on the sum of light neutrino masses [62].

However, a positive signal of neutrinoless double beta decay in the next years as well as

a cosmological measurement of the sum of neutrino masses of the order of 0.1 eV would

certainly rule out this type of model. Therefore, future experimental improvements in the

neutrino physics will be decisive for testing the viability of the SU(5)× Z4 model.
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A Matter and Higgs representations

Fermionic representations

The fermionic fields in the model decompose in terms of the SM gauge quantum numbers

as:
5∗ = dc ⊕ L ,

10 = Q ⊕ uc ⊕ ec ,

24 = ρ8 ⊕ ρ3 ⊕ ρ(3,2) ⊕ ρ(3,2) ⊕ ρ0 .

(A.1)

The fermionic representations 5∗ and 10 can be written as

5∗α = (dc)α , 5∗i = εijl
j , (A.2)

and

10αβ =
1√
2
εαβγ(uc)γ , 10αi = − 1√

2
qαi, 10ij =

1√
2
εijec , (A.3)

where α, β, γ = 1, 2, 3 and i, j = 4, 5. The fermionic field ρ3, triplet of SU(2), belonging to

the adjoint representation can be written as,

ρ3 =
1

2

(
ρ3

0
√

2ρ3
+

√
2ρ3
− −ρ3

0

)
, (A.4)

where

ρ3
± =

ρ1
3 ∓ iρ2

3√
2

, ρ3
0 = ρ3

3 . (A.5)

Higgs representations

The Higgs content of the model decomposes as

5H = T1 ⊕ H1 ,

24H = Σ8 ⊕ Σ3 ⊕ Σ(3,2) ⊕ Σ(3,2) ⊕ Σ0 ,

45H = S(8,2) 3
10

⊕ S(6̄,1)− 1
5

⊕ S(3,3)− 1
5

⊕ S(3̄,2)− 7
10

⊕ S(3̄,1) 4
5

⊕ T2 ⊕ H2 ,

(A.6)
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where we have included for completeness the hypercharged properly normalised. The H1

and H2 are the usual Higgs doublets and T1 and T2 are the colour triplets. The 45 Higgs

representation, which the explicit decomposition is given in ref. [27], obeys to the following

relations,

45ijk = −45jik and

5∑
j=1

45ijj = 0 , (A.7)

The different contributions for the beta coefficients bi of each extra particle besides the

2HDM content are given in table 4.

Table 4. Summary of the bi constants for relevant particles in the model.

2HDM ρ3 ρ8 ρ(3,2) T1,2 Σ3 Σ8 S(8,2)

b1 21/5 0 0 5
3

1
15 0 0 4

5

b2 -3 4
3 0 1 0 2

3 0 4
3

b3 -7 0 2 2
3

1
6 0 1 2

B The Potential

In this section we give explicitly the terms of the Higgs potential. Notice that index H on

the Higgs fields is dropped in the following expressions. The potential V is divided into six

parts as follows:

V (5, 24, 45) =V1 (5) + V2 (24) + V3 (45) + V4 (24, 45)

+V5 (5, 24) + V6 (5, 45) ,
(B.1)

where each parcell are given by:

V1 (5) = −µ
2
5

2
5α 5∗α +

λ1

4
(5α 5∗α)2 , (B.2a)

V2 (24) =− µ2
24

2
24αβ 24

β
α +

λ2

2

(
24αβ 24

β
α

)2
+
a1

3
24αβ 24

β
γ 24

γ
α

+
λ3

2
24αβ 24

β
γ 24

γ
δ 24

δ
α ,

(B.2b)
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V3 (45) =− µ2
45

2
45αβγ 45∗γαβ + λ4

(
45αβγ 45∗γαβ

)2

+λ545
αβ
γ 45∗δαβ45

κλ
δ 45∗γκλ + λ645

αβ
γ 45∗δαβ45

κγ
λ 45∗λκδ

+λ745
αδ
β 45∗βαγ45

κγ
λ 45∗λκδ + λ845

αγ
δ 45∗βγε45

κδ
α 45∗εκβ

+λ945
αγ
δ 45∗βγε45

κε
α 45∗δκβ + λ1045

αγ
δ 45∗βγε45

κδ
β 45∗εκα

+λ1145
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δ 45∗βγε45

κε
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(B.2c)

V4 (24, 45) =a2 45
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γ 24γδ45
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αβ + λ12 45

αβ
γ 45∗γαβ 24

δ
ε24

ε
δ

+λ13 45
αβ
γ 24δα24

ε
β45
∗γ
δε + λ14 45

αβ
γ 24γβ24

δ
ε45
∗ε
αδ

+λ15 45
αβ
γ 24γε 24

δ
β45
∗ε
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γ 24κα24

λ
κ45
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+λ17 45
αβ
γ 24γκ24

κ
λ45
∗λ
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(B.2d)

V5 (5, 24) = a3 5
∗
α24

α
β5

β + λ18 5
∗
α5

α24βγ24
γ
β + λ19 5

∗
α24

α
β24

β
γ5

γ , (B.2e)

and

V6 (5, 45) = λ20 45
αβ
γ 45∗γαβ5

∗
δ5
δ + λ21 45

αβ
δ 5∗γ45

∗γ
αβ5

δ + λ22 45
αβ
γ 45∗γαδ5

∗
β5

δ . (B.2f)

References
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transformations, Phys. Lett. B 477 (2000) 147–155, [hep-ph/9911418].

[16] G. C. Branco, D. Emmanuel-Costa, R. González Felipe, and H. Serôdio, Weak Basis
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