
A description based on languages of the final
non-deterministic automaton

A. Ballester-Bolinches∗ E. Cosme-Llópez∗

R. Esteban-Romero∗†‡

1st June 2015

Abstract

The study of the behaviour of non-deterministic automata has tra-
ditionally focused on the languages which can be associated to the
different states. Under this interpretation, the different branches that
can be taken at every step are ignored. However, we can also take
into account the different decisions which can be made at every state,
that is, the branches that can be taken, and these decisions might
change the possible future behaviour. In this case, the behaviour of
the automata can be described with the help of the concept of bisimil-
arity. This is the kind of description that is usually obtained when the
automata are regarded as labelled transition systems or coalgebras.

Contrarily to what happens with deterministic automata, it is not
possible to describe the behaviour up to bisimilarity of states of a non-
deterministic automaton by considering just the languages associated
to them. In this paper we present a description of a final object for the
category of non-deterministic automata, regarded as labelled transition
systems, with the help of some structures defined in terms of languages.
As a consequence, we obtain a characterisation of bisimilarity of states
of automata in terms of languages and a method to minimise non-
deterministic automata with respect to bisimilarity of states. This
confirms that languages can be considered as the natural objects to
describe the behaviour of automata.
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1 Introduction
The aim of this paper is to present a description of the final object of the cat-
egory of non-deterministic automata, regarded as labelled transition systems,
by means of languages. Our description emphasises the role of languages as
natural objects to describe the behaviour of automata.

In this paper we will use the terminology of category theory. We will
assume the reader to be familiar with the basic concepts of category theory,
as categories, functors, and final or terminal objects. The reader is referred
to [20] for more information about category theory.

We can assign to every state of an automaton an associated language,
consisting of all words which send this state to a final or terminal state.
Traditionally, many authors have considered as the behaviour of a state of
an automaton simply its associated language. Under this point of view, the
different decisions that may be taken from each state are ignored. However,
we can take into account the different branches or decisions that may be taken
at every state. They might change the future behaviour of the automaton.
From this point of view, automata are regarded as labelled transition systems
or coalgebras for suitable endofunctors on the category Set. In this scope,
the idea of the behaviour of the states of the coalgebra is related to the notion
of bisimilarity, a concept originated in the field of concurrency (its precise
definition will be given in Section 2, see Definition 2.13). We can say that
two states have the same behaviour when they are bisimilar. Under very
general hypotheses, which hold for automata, when a category of coalgebras
possesses a final object, two states are bisimilar if and only if both states
have the same image by the unique homomorphism into the final object.
This motivates the interest in studying the final objects in some categories
of coalgebras, like automata.

Up to now, most known descriptions of final coalgebras are of a very
general theoretical nature or are given as a quotient of a coalgebra by the
bisimilarity relation. We will present some of them in Section 3. When they
are applied to the functor N = 2× Pω(Id)A associated to non-deterministic
automata, it seems that they do not give a clear idea of the role of lan-
guages, which are incontestably a central notion in this theory, in the final
automaton. Hence the question of whether languages can be used to describe
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the behaviour of non-deterministic automata as labelled transition systems
remains open. The aim of this paper is to give a positive answer to this ques-
tion. This also allows us to characterise bisimilarity of states of automata in
terms of languages, which has been a long-standing unsolved problem in this
theory.

We have done our best to keep our paper self-contained. Accordingly,
Section 2 covers several topics of formal languages, automata, and coalgeb-
ras. Our main result is presented in Section 3. We conclude the paper by
justifying why our description is the most natural one and by establishing
some questions for future research.

2 Automata and formal languages
An introduction to the classical theory of finite automata can be found in
[15]. Since our treatment of automata differs from the usual with respect to
the initial state, we have preferred to recall first some basic concepts:

Definition 2.1. An alphabet is a finite non-empty set, whose elements are
called letters.

Definition 2.2. A finite word over an alphabet A is either the empty word
ε or a sequence a1a2 . . . ar of letters of A. The set of all finite words over A
is denoted by A∗.

Note that A∗ can be regarded as the free monoid on the set A, where the
multiplication in A∗ is defined as the juxtaposition of words. In the rest of
the paper, we will only consider finite words.

Definition 2.3. A language (or formal language) over an alphabet A is a
subset of A∗, that is, a set of words over A.

Definition 2.4 (operations with languages). If L, L1, and L2 are languages,
we define:

1. the sum L1 + L2 = L1 ∪ L2 of L1 and L2, which coincides with the
set-theoretical union of L1 and L2,

2. the product L1L2 = {w1w2 | w1 ∈ L1, w2 ∈ L2} of L1 and L2, composed
by the words which are the result of concatenating one word of L1 and
one word of L2, and

3. the Kleene star L∗ =
⋃
n≥0 L

n of L, where L0 = {ε}, L1 = L and
Ln+1 = LnL for n ∈ N.
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Definition 2.5. The set of all regular languages R is the smallest set of
languages containing all finite languages and which is closed under taking
sums, products, and Kleene stars.

It is usual to identify a letter a with the language {a}. With this criterion,
we can identify the regular languages with the so-called regular expressions.

Regular languages are closely connected with finite automata. In this pa-
per we will deal with the next generalisations of the notion of finite automata,
in which infinite sets of states are allowed.

Definition 2.6. A non-deterministic automaton (respectively, a determ-
inistic automaton, a partial deterministic automaton) is a quadruple A =
(S,A, Sf , δ) in which S is a set (not necessarily finite) whose elements are
called states, A is an alphabet, Sf is a subset of S whose members will be
called final states or accepting states, and the function δ : S × A −→ Pω(S)
(respectively, the function δ : S×A −→ S or the partial function δ : S×A −⇀
S), called the transition function, assigns to each letter and to each state a
finite set of states (respectively, a state, at most one state). When the set of
states is finite we say that the corresponding automaton is finite.

Here Pω(S) denotes the set of all finite subsets of the set S. The finiteness
restriction on the set of possible transitions from a given state is imposed here
to ensure the existence of a final automaton.

It is also common to consider an initial state or a set of initial states in
the study of finite automata, but we will not need it in our development,
because eventually all states might play the role of the initial state. A de-
terministic automaton can be considered as a non-deterministic automaton
by identifying an image s′ of a state under the transition function with the
singleton {s′}. Hence, unless otherwise stated, the word automaton will be
used as a synonymous of non-deterministic automaton. We will represent
with an arrow s1

a //s2 the fact that s2 ∈ δ(s1, a).
The transition function of an automaton can be extended to a function

δ̂ : S × A∗ −→ Pω(S) in the usual way: δ̂(s, ε) = {s}, where ε is the empty
word; if w ∈ A∗ and a ∈ A, δ̂(s, wa) =

⋃
{δ(t, a) | t ∈ δ̂(s, w)}. In the case of

deterministic automata, the value of this function is always a singleton. We
generalise the notion of language accepted by an automaton with an initial
state in the following way:

Definition 2.7. Given an automaton A = (S,A, Sf , δ) and a state s ∈ S,
the set LA,s = {w ∈ A∗ | δ̂(w, s)∩ Sf 6= ∅} is called the language accepted or
recognised by the automaton A starting from the state s.
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We will write Ls instead of LA,s if A is understood. It is well-known
that the regular languages coincide with the languages recognised by finite
automata (either non-deterministic, deterministic, or partial deterministic).

All these types of automata and other labelled transition systems can
be considered as particular cases of a more general structure, F -coalgebras,
where F is an endofunctor of a category. We will recall here the basic con-
cepts of coalgebras. For a more detailed introduction to the theory of coalgeb-
ras, the reader is referred to the works of Adámek [2] or Rutten [21, 22]. We
will only consider endofunctors of the category Set of all sets and functions
between sets.

Definition 2.8. Let F be an endofunctor of the category Set of all sets
and functions. An F-coalgebra or F-system is a pair (S, αS) consisting of a
set S and a function αS : S −→ FS. The set S is called the carrier of the
coalgebra and its elements are called states. The function αS receives the
name of F-transition structure of the system. When αS is understood, we
use S instead of (S, αS).

In the following, we will denote by 2 = {0, 1} a set of two elements and
by 1 = {∗} a singleton. The identity functor will be denoted by Id.

Examples 2.9 (see also [27]). A deterministic automaton (S,A, Sf , δ) can
be regarded as a D-coalgebra for the functor D = 2× IdA. Here

αS(s) = (oS(s), fS(s)),

where oS(s) = 1 if s ∈ Sf , oS(s) = 0 if s /∈ Sf , and fS(s) : A −→ S
is defined by fS(s)(a) = δ(s, a). In a similar way, a partial deterministic
automaton (S,A, Sf , δ) can be regarded as a G-coalgebra for the functor
G = 2 × (1 + Id)A, where αS(s) = (oS(s), fS(s)), with oS(s) = 1 if s ∈ Sf ,
oS(s) = 0 if s /∈ Sf , and fS(s) : A −→ 1 + S is defined by fS(s)(a) = δ(s, a)
if δ(s, a) is defined and fS(s)(a) = ∗ otherwise. Note that the functor used
here differs from the one used in [27], which is F = (1 + Id)A, because we are
using a slightly different definition of partial deterministic automata: theirs
do not have accepting states. However, our functor coincides with the functor
used in [26]. Finally, a non-deterministic automaton (S,A, Sf , δ) is an N -
coalgebra for the functor N = 2× (Pω(Id))A. The transition structure αS is
given by αS(s) = (oS(s), fS(s)), with oS(s) = 1 if s ∈ Sf , oS(s) = 0 if s /∈ Sf ,
and fS(s) : A −→ P(S) given by fS(s)(a) = δ(s, a).

Definition 2.10. Let (S, αS) and (T, αT ) be two F -coalgebras, where F is
an endofunctor of Set. A function f : S −→ T is a homomorphism of F -
coalgebras or an F -homomorphism if (Ff) ◦ αS = αT ◦ f , in other words,
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when the following diagram is commutative:

S
f //

αS

��

T

αT

��
FS

Ff
// FT

In order to make the notation lighter, we will follow the standard con-
vention of using the same symbol f to denote a homomorphism and its
underlying function.

We can consider the category of F -coalgebras, whose objects are F -
coalgebras and whose morphisms are F -coalgebra homomorphisms.

Example 2.11. A homomorphism between the automata (S,A, Sf , δ) and
(S ′, A, S ′f , δ

′) is defined by a function φ : S −→ S ′ such that s ∈ Sf if and
only if φ(s) ∈ S ′f and δ′(φ(s), a) = {φ(s′) | s′ ∈ δ(s, a)}. Hence we can
consider the category of automata over an alphabet A.

In this paper we will give a description of a final automaton in such a
way that the homomorphism from an automaton A to the final automaton
will be given in terms of some structures related to the languages associated
with each of the states of the automaton. These structures will be useful
to characterise bisimilarity, a concept originated from concurrency theory in
computer science and which is very relevant in the framework of coalgebras.

Definition 2.12. Let F be an endofunctor of Set. Let (S, αS) and (T, αT )
be two F -coalgebras. A subset Z ⊆ S×T of the cartesian product of S and T
is called an F-bisimulation if there exists a structure function γ : Z −→ FZ
such that the projections from Z to S and T are F -coalgebra homomorph-
isms. In other words, (Z, γ) makes the following diagram commute:

S

αS

��

Z
πSoo πT //

∃ γ
��

T

αT

��
FS FZ

FπS
oo

FπT
// FT

If (S, αS) and (T, αT ) are equal, we simply speak of a bisimulation on S.

Definition 2.13. Two states s ∈ S and t ∈ T are said to be bisimilar when
there exists a bisimulation R between S and T such that 〈s, t〉 ∈ R.

Example 2.14. Let A = (S,A, Sf , δ) and A′ = (T,A, Tf , δ
′) be two auto-

mata over the same alphabet A. A relation R ⊆ S × T is a bisimulation
between A and A′ if and only if for all 〈s, t〉 ∈ R, the following three condi-
tions are satisfied:
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1. s ∈ Sf if and only if t ∈ Tf ,

2. for all s′ ∈ S, if s′ ∈ δ′(s, a), then there exists t′ ∈ T such that t′ ∈
δ′(t, a) and 〈s′, t′〉 ∈ R, and

3. for all t′ ∈ T , if t′ ∈ δ′(t, a), then there exists s′ ∈ S such that s′ ∈
δ(s, a) and 〈s′, t′〉 ∈ R.

Intuitively, we can say that two states of two F -coalgebras are bisimilar
when they are not distinguishable from the observer point of view, in other
words, when the “observable behaviours” of both automata from both states
are the same. This can be used to introduce a semantics in F -coalgebras (see
[22, 23]). The notion of bisimulation has been studied from a more general
point of view in [17] with the help of open maps.

The following technical notion gives a condition which is satisfied by the
functors we are interested in. We present it because it is used in the proofs
of some of the theorems about bisimulations.

Definition 2.15. We say that a weak pullback of two functions f : X −→ Z
and g : Y −→ Z in Set is a triple (P, πX , πY ) such that P is a set, πX : P −→
X and πY : P −→ Y are functions such that f ◦πX = g◦πY and for each triple
(P ′, π′X , π

′
Y ) satisfying the previous conditions, there is a function p′ : P ′ −→

P , not necessarily unique, such that πX ◦ p′ = π′X and πY ◦ p′ = π′Y . If the
function p′ is unique, we speak of a pullback. A functor F : Set −→ Set
preserves (weak) pullbacks if for every (weak) pullback (P, πX , πY ) of (f, g),
the triple (FP,FπX ,FπY ) is a (weak) pullback of (Ff,Fg).

In the following, we will assume that F is an endofunctor of Set which
preserves weak pullbacks. This assumption holds for the functor F = N
corresponding to non-deterministic automata, as well as for all other functors
presented in this paper (see [22] for more details about this assumption).

The following result summarises some of the properties of bisimulations
between F -coalgebras (see [22]). The second statement depends on the fact
that F preserves weak pullbacks.

Theorem 2.16. Let (S, αS) and (T, αT ) be two F-coalgebras.

1. The union of a family of bisimulations between (S, αS) and (T, αT ) is
a bisimulation.

2. The relational composition of two bisimulations between (S, αS) and
(T, αT ) is a bisimulation.

3. The equality relation in (S, αS) is a bisimulation in (S, αS).
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4. The relational inverse of a bisimulation between (S, αS) and (T, αT ) is
a bisimulation between (T, αT ) and (S, αS).

As a consequence, there exists a largest bisimulation between two auto-
mata over the same alphabet, namely the union of all bisimulations between
them.

Theorem 2.17 (see [22, Theorem 2.5]). Let (S, αS) and (T, αT ) be two F-
coalgebras. A function f : S −→ T induces an F-homomorphism between
(S, αS) and (T, αT ) if and only if its graph G(f) = {〈s, f(s)〉 | s ∈ S} is a
bisimulation between (S, αS) and (T, αT ).

There has been a big interest in studying the existence and descriptions
of final F -coalgebras for a functor F . Let us recall some properties of final
coalgebras.

Theorem 2.18 ([16, Lemma 6.4]). Let F be an endofunctor on Set.

1. If there exist final F-coalgebras, then all of them are isomorphic.

2. (Lambek’s lemma [19]) If (T, αT ) is a final F-coalgebra, then the func-
tion αT : T −→ FT has an inverse, in other words, αT is an isomorph-
ism.

The last condition is sometimes expressed in the following terms: a final
F -coalgebra (T, αT ) is a fixed point for the functor F .

We cannot ensure the existence of final F -coalgebras for every possible
endofunctor of Set. For example, for the functor F = P defined by FS =
P(S), the set of all subsets of S, and for a function f : S −→ T , Ff(W ) =
{f(w) | w ∈ W} for every W ∈ P(S), there cannot be any final P-coalgebra:
by a well-known theorem of Cantor, the cardinal of S is strictly smaller than
the cardinal of P(S). This is the reason we are imposing the finiteness in the
set of transitions and we are working with Pω, for which all infinite sets are
fixed points.

Theorem 2.19 (Rutten and Turi [23], see [22, Theorem 9.2]). Every bisim-
ulation of a final F-coalgebra (T, αT ) is contained in the diagonal

∆T = {〈t, t〉 | t ∈ T}.

In other words, two bisimilar states are equal.

An F -coalgebra satisfying the above condition (two bisimilar states are
equal) is called simple.
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A way to check bisimilarity between two states of two F -coalgebras is
to check whether both states have the same images under the unique homo-
morphisms into the final F -coalgebra. This is a consequence of the following
result, which is in essence [22, Theorem 4.3] (see also [12, Theorem 5.1, (i)
implies (ii)]) and depends on the fact that the functor F preserves weak
pullbacks. We present a proof here for completeness.

Theorem 2.20. Let (T, αT ) be a final F-coalgebra. Two states s and s′ of
two F-coalgebras (S, αS) and (S ′, αS′), respectively, are bisimilar if and only
if they have the same image under the unique homomorphisms from (S, αS)
and (S ′, αS′) to (T, αT ).

Proof. Denote by ! and !′ the homomorphisms from S and S ′ to T , re-
spectively. Suppose that !(s) =!′(s′) = t, then 〈s, t〉 ∈ R = G(!) and
〈s′, t〉 ∈ R′ = G(!′), and G(!) and G(!′) are bisimulations by Theorem 2.17.
Hence 〈s, s′〉 belongs to the bisimulation (R′)−1 ◦R by Theorem 2.16 and so
s and s′ are bisimilar.

Conversely, suppose that s and s′ are bisimilar, that is, 〈s, s′〉 belongs to
a bisimulation V . Denote by R = G(!) and R′ = G(!′) the graphs of ! and !′,
respectively. By Theorem 2.17, R and R′ are bisimulations. Then 〈s, !(s)〉 ∈
R and 〈s′, !′(s′)〉 ∈ R′. Hence 〈!(s), !′(s′)〉 belongs to the bisimulation R′ ◦
V ◦ R−1 by Theorem 2.16 and so !(s) and !′(s′) are bisimilar. Theorem 2.19
shows that !(s) =!′(s′), as desired.

3 Final automata
In [21], the following description of a final deterministic automaton is presen-
ted, which is based on an algorithm of Brzozowski [8]. Let L = PA∗ be the
set of all languages over A. Given a word w ∈ A∗, the w-derivative or left
w-quotient of a language L is w−1L = {v ∈ A∗ | wv ∈ L}. A particular case
is the a-derivative a−1L = {v ∈ A∗ | av ∈ L} for a ∈ A, which can be used
to give L a structure of automaton in the following way: δ(L, a) = a−1L and
the language L is final if and only if the empty word ε belongs to L. The
language accepted by a state L is precisely L itself. This automaton, called
the language automaton, is final and the unique homomorphism from a given
automaton S into L is !(s) = Ls, the language accepted by the automaton S
when it starts from the state s. In particular, two states are bisimilar if and
only if the languages accepted by the automaton from these states coincide.

For partial deterministic automata, Silva, Bonchi et al. mention in [26]
that the images in the final object for this category of the states of a partial
deterministic automaton are pairs of prefix-closed languages 〈V,W 〉, where V
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contains all words labelling the paths leading to final states and W contains
the words labelling the paths leading to possible states, either final or non-
final.

Consider now non-deterministic automata. It is easy to see that bisim-
ilar states accept the same language: Suppose that s and s′ are bisim-
ilar states of the automata (S,A, δ, Sf ) and (S ′, A, δ′, S ′f ), respectively, and
w = a1a2 · · · an ∈ Ls, the language associated to s in the first automaton.
Then there exists a sequence of states

〈s0, s1, s2, . . . , , sn〉

such that s0 = s, si ∈ δ(si−1, ai) for 1 ≤ i ≤ n, and sn ∈ Sf . By bisimilarity,
there exists a sequence of states s′0, s′1, s′2, . . . , s′n such that s′0 = s′ and
s′i ∈ δ′(s′i−1, ai) such that si is bisimilar to s′i for 1 ≤ i ≤ n. By Example 2.14,
then either si and s′i are both final or none of them is final. Since sn ∈ Sf ,
it follows that s′n ∈ S ′f and so w ∈ L′s′ , the language associated to s in the
second automaton. Therefore Ls ⊆ L′s′ . A similar argument shows that
L′s′ ⊆ Ls and so Ls = L′s′ . However, this is not sufficient to identify bisimilar
states, as the following example shows.

Example 3.1. Consider the automaton given by S = {1, 2, 3, 4}, A = {a},
δ(1) = {1, 2, 3, 4}, δ(2) = {1, 2, 3}, δ(3) = {3, 4}, δ(4) = ∅, and Sf = {4}.
This automaton is represented in Figure 1.

1
a ++

a
��

a

��
a

��

2

a

tt

a

��

a
kk

4 3

a

TTa
oo

Figure 1: Automaton of Example 3.1

We can see that L1 = L3 = aa∗, L2 = a2a∗, and L4 = ε (we identify the
regular languages with their corresponding regular expressions). However,
1 and 3 are not bisimilar. To see this, we note that from 1 we can make a
transition to 2, with language a2a∗, but from 3 we can only make transitions
to 3 and 4, with respective languages aa∗ and ε. However, by the previous
remark, 2 cannot be bisimilar to neither 3 nor 4.

In the following paragraphs, we shall present some descriptions of final
coalgebras for some functors in the category Set. Bonsangue, Rutten, and
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Silva (see [7, 25, 27]) have considered categories of coalgebras for Kripke poly-
nomial functors in the category Set of sets and functions, which include auto-
mata, and have described the subcoalgebra of the final coalgebra containing
the images of the corresponding finite coalgebras. In their description, they
construct a set of expressions based on the elementary components of the
functor and an equivalence relation between these expressions. The quotient
set of these expressions modulo this equivalence relation admits a structure
of a coalgebra for this functor which turns out to be the subcoalgebra of the
final coalgebra containing the images of the finite coalgebras.

The finite power-set functor Pω and other related functors on the cat-
egory Set have deserved special attention. A non-ordered finitely branching
tree is said to be extensional if subtrees rooted at distinct children are not
isomorphic. From one tree, it is possible to obtain an extensional quotient by
identifying two identical subtrees of nodes of the tree and repeating it for a
possibly transfinite number of steps. We say that two trees are extensionally
equivalent when they reduce to the same extensional tree, and are similar
when the trees of depth n obtained by truncation are extensionally equivalent
for all n. Barr [5] described the final Pω-coalgebra as the quotient coalgebra
of the coalgebra composed of all extensional finitely branching trees modulo
this relation of similarity. Another relevant description of the final coalgebra
for the power-set functor was given by Worrell in [29] (see also Adámek et al.
[4]). Let us call a tree t strongly extensional if for every n there exists m ≥ n
such that the truncation of depth n of t coincides with the truncation of
depth n of the result of taking the truncation of depth m of t and collapsing
it with respect to extensional equivalence. The set T of all finitely branching,
strongly extensional trees has a coalgebra structure α : T −→ Pω(T ) assign-
ing to every tree the set of all maximal proper subtrees. This Pω-coalgebra
is final.

Kozen [18] has presented a combinatorial description of final coalgebras
on Set. In his work, the role of the functor is played by what he calls
a type signature, which is a directed multigraph whose nodes are desig-
nated as universal or existential. Universal nodes, denoted by rectangles,
correspond to product constructors, while existential nodes, denoted by dia-
monds, correspond to coproduct constructors. If F is a type signature, an
F -realisation is a directed multigraph G together with a multigraph homo-
morphism l : G −→ F , called a typing, satisfying the following properties:

• If l(u) is existential, then there is exactly one edge of G with source u.

• If l(u) is universal, then l is a bijection between the edges of G with
source u and the edges of F with source l(u).
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A homomorphism of F -realisations is a multigraph homomorphism that com-
mutes with the types.

Let F be a type signature with nodes VF . An F -coalgebra is a VF -indexed
collection of pairs (As, αs), where the As are sets and the αs are set functions

αs : As −→
{ ∑

src e=sAtgt e, if s is existential,∏
src e=sAtgt e, if s is universal,

where src e and tgt e denote, respectively, the source and the target of the
arc e.

A morphism of F -coalgebras is a VF -indexed collection of set maps hs that
commute with the αs in the usual way. This corresponds to the traditional
definition of a coalgebra for an endofunctor on SetV . If the type signature is
accessible, that is every node is accessible from a fixed node, then it is possible
to find an endofunctor F on Set such that the categories of F -coalgebras and
F -coalgebras are naturally isomorphic.

Kozen showed the existence of a pair of functors between the category of
F -coalgebras and the category of F -realisations, one in each direction, that
are inverses up to natural isomorphisms. He proves that these two categories
are equivalent and, as a consequence, we can obtain a description of the final
F -coalgebra from the final F -realisation.

The final object for the category of F -realisations is showed to be the
realisation (RF , lF ) defined as follows. A node of RF is a set A of finite paths
in F such that:

1. A is non-empty and prefix-closed;

2. all paths in A have the same first node, called lF (A);

3. if p is a path in A of n and its tail node is existential, then there exists
exactly one path of length n+ 1 in A extending p;

4. if p is a path in A of length n and its tail node is universal, then all
paths of length n+ 1 extending p are in A.

The arcs of RF are defined as follows. Let A be a set of paths in F and e an
arc of F . The Brzozowski derivative of A with respect to e is the set De(A)
of paths obtained by removing the initial edge e from all paths in A starting
with that edge. If A is a node of Rf and De(A) is non-empty, we add exactly
one edge 〈A, e〉 from A to De(A) in RF and we make lF (〈A, e〉) = e. As
shown in [18, Theorem 3.2], this realisation is a final object in the category
of F -realisations.
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Figure 2: Graph of the type signature for non-deterministic automata

We have not found in [18] the description of a type signature correspond-
ing to non-deterministic automata. Nevertheless, from the examples in this
paper we see that a possible signature type for non-deterministic automata
is the graph drawn on Figure 2, where the nodes with label t, 0, 1, and xi,
i ∈ N∪{0}, are universal and the node labelled as 2 and the nodes wa, a ∈ A,
are existential; for every a ∈ A there exists an arc xa from t to wa and an
arc v from t to 2; there is an arc v0 from 2 to 0 and an arc v1 from 2 to 1;
from wa to xi, i ∈ N∪ {0}, there is an arc xai, and from xi to t, i ∈ N, there
are i arcs labelled as xaij, 1 ≤ j ≤ i.

In the following we will describe an automaton A as an F -realisation
(G, l). We introduce a procedure to construct a multigraph starting from
the graph of the automaton. To every state s in the graph, depending on its
nature, we will add the following multigraphs:

• If s is not a final state, we add:

s v // s2
v0 // 0

• If s is a final state, we add:

s v // s2
v0 // 1

• For every input letter a,

13



if s has n a-labelled outgoing arcs, we replace them by:

· · ·

s
sa // swa

san // swan

san1
88

san2

...
//

sann &&

· · ·

· · ·

if s has no a-labelled outgoing arcs, we add:

s
sa // swa

san // swa0

This procedure will give us a multigraph. To complete the description of
the ralisation we specify its typing l on the final realisation as follows:

swa 7−→ wa , s2 7−→ 2 , s 7−→ t ,

swan 7−→ xn , 1 7−→ 1 , 0 7−→ 0 .

Example 3.2. Let us exemplify the last procedure on the small automaton
A = (S,A, Sf , δ) with set of states S = {1, 2, 3}, alphabet A = {a}, set of
final states Sf = {3}, and transitions given by δ(1, a) = {2, 3}, δ(2, a) =
{2, 3}, δ(3, a) = ∅. This automaton and the result of this procedure are
represented in Figure 3.

The previous description of the final F -realisation applied to this signa-
ture type is the first description we know for the final object for the category
of non-deterministic automata that is not given in terms of equivalence classes
of a bisimilarity relation, in the sense that in the final automaton, bisimilar-
ity is just a set equality. Kozen also shows at the end of the paper [18] how
to characterise the elements of the final realisation as labelled trees.

A slight modification of this type signature, drawn on Figure 4, gives the
type signature corresponding to the Pω-coalgebras, where Pω is the finite
power-set functor. Its final realisation can be obtained from the strongly
extensional trees of Worrell [29] by replacing the edges of the form s −→ s′

by a path t −→ xi −→ t, where i is the number of children of s, and a leaf
s is replaced by a path t −→ x0. Hence the strongly extensional trees are
recovered with this description.

Some recent descriptions of minimisations of non-deterministic automata
have been presented by Brzozowski and Tamm [9] and Adámek, Bonchi et
al. [3]. We mention them here because they are based on the languages as-
sociated to every state of the automaton. However, their way of minimising
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Figure 4: Graph of the type signature for the finite power-set functor
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automata differs from ours, since they only pay attention to the languages
associated to every state instead of bisimilarity, as we do. We present them
here in order to show the differences with our approach. The problem con-
sidered there is the following. Given a regular language L over an alphabet
A, minimal deterministic automata can be considered as canonical acceptors
of the given language L. The question is whether it is possible to find an
analogous canonical non-deterministic automaton. In [9], the quotients L1,
L2, . . . , Ln of the form w−1L of a given regular language L are considered.
The non-empty intersections of languages of the form L̂1∩ · · ·∩ L̂n such that
L̂i is equal to Li or to its complement Li in which at least one of the Li is not
complemented are called the atoms of L. The non-deterministic automaton
having the atoms of L as languages as states is called the átomaton of L. For
a non-deterministic finite automaton, its determinisation is the deterministic
finite automaton obtained by the well-known subset construction, where only
subsets (including the empty subset) reachable from the initial state of A are
used. In [9], the authors show that the determinisation of the átomaton of
a regular language L coincides with the minimal deterministic automaton
associated to this language.

In [3], a coalgebraic point of view of this kind of description is presented.
However, non-deterministic automata are considered there as coalgebras for
the functor A × Id + 1: Rel −→ Rel, where Rel denotes the category of
sets and relations. The final object in this category is A∗, and the unique
morphism is the relation which assigns to each state all the words sending
this state to an accepting state. Under this interpretation, bisimilarity is
just language equality. This point of view is different from the one used in
this paper. Equivalent descriptions of this automaton can be found in both
papers and in the references inside them.

For the case of automata, regarded as labelled transition systems, the
previous descriptions do not give, in our opinion, a clear idea of the role
of languages in the final automaton. It seems desirable to find, like in the
case of deterministic automata, a description which emphasises the role of
languages as natural objects to describe the behaviour of automata. This is
the aim of the present paper. Our description needs the following concepts.

Definition 3.3. A language sequence over an alphabet A is a finite sequence
of the form

〈L0, a1, L1, a2, L2, . . . , Lr−1, ar, Lr〉
where Li are languages, that is, elements of P(A∗) for 0 ≤ i ≤ r, ai ∈ A for
1 ≤ i ≤ r, and aiLi ⊆ Li−1 for 1 ≤ i ≤ r. The number r is called the length
of the language sequence. A sequence formed by a unique language L0 will
be called a language sequence of length zero.
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Definition 3.4. A language sequence 〈L0, a1, L1, . . . , Lr−1, ar, Lr〉 over A is
said to be a prefix of the language sequence 〈M0, b1,M1, . . . ,Ms−1, bs,Ms〉
over the same alphabet A when r ≤ s and Lj = Mj for 0 ≤ j ≤ r and
aj = bj for 1 ≤ j ≤ r.

Definition 3.5. A language tree is a (possibly empty) set of language se-
quences T satisfying the following conditions:

1. Every prefix of a language sequence in T belongs to T .

2. Given a language sequence

s = 〈L0, a1, L1, . . . , Lk−1, ak, Lk〉 ∈ T,

the set

Ns = {z ∈ T | z is of length k + 1 and s is a prefix of z}

is finite and

Lk \ {ε} =
⋃
{ak+1Lk+1 | 〈L0, a1, L1, . . . , Lk, ak+1, Lk+1〉 ∈ Ns}. (1)

When Ns = ∅, this union is understood to be ∅, and so Lk = {ε} or
Lk = ∅.

3. If T is not empty, then there is a unique language sequence 〈L0〉 in T
of length zero. The language L0 is called the initial language of the
language tree.

Definition 3.6. A chain of language trees over an alphabet A is a finite
sequence

〈T0, a0, T1, a1, T2, . . . , Tr−1, ar, Tr〉

in which Ti is a non-empty language tree over A for 0 ≤ i ≤ r, ai ∈ A for
1 ≤ i ≤ r such that {〈L0, a0, L1, . . . , Lt〉 | 〈L1, . . . , Lt〉 ∈ T1} ⊆ T0. The
initial language of a chain of language trees 〈T0, a0, T1, . . . , Tr〉 is the initial
language of the first language tree T0. The number r is called the length of
the chain of language trees. The sequence T0 of a single non-empty language
tree over A will be considered a chain of language trees of length zero.

Definition 3.7. A chain of language trees 〈T0, a1, T1, . . . , Tr−1, ar, Tr〉 over A
is said to be a prefix of the chain of language trees 〈U0, b1, U1, . . . , Us−1, bs, Us〉
over the same alphabet A when r ≤ s and Tj = Uj for 0 ≤ j ≤ r and aj = bj
for 1 ≤ j ≤ r.
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Now we are in a position to define the states of the final automaton.

Definition 3.8. A tree of chains of language trees over an alphabet A is a
set of chains of language trees T satisfying:

1. Every prefix of a chain of language trees in T is also in T .

2. Given a chain of language trees

U = 〈T0, a1, T1, . . . , Tk−1, ak, Tk〉 ∈ T ,

the set

NU = {V ∈ T | V is of length k + 1 and U is a prefix of V }

is finite and

Tk =
⋃
{c(Lk, ak+1, Tk+1) | 〈T0, a1, T1, . . . , Tk, ak+1, Tk+1〉 ∈ NU}

where Lk is the initial language of Tk and

c(Lk, ak+1, Tk+1) = {〈Lk, ak+1,M0, b0,M1, . . . ,Mr〉 |
〈M0, b0,M1, . . . ,Mr〉 ∈ Tk+1}.

3. There is a unique chain of language trees in T of length zero. Its initial
language is called the initial language of T and denoted by Init(T ).

Definition 3.9. The language tree automaton over the alphabet A is

L = (SL, A, SL,f , δL)

such that:

1. SL is the set of all possible trees of chains of language trees over A,

2. a tree of chains of language trees T belongs to the set SL,f of final
states if and only if the empty word ε belongs to Init(T ), and

3. given a tree of chains of language trees T and a1 ∈ A, δL(T , a1) consists
of all trees U of chains of language trees of the form

U = {〈T1, a2, T2, . . . , Tk−1, ak, Tk〉 |
〈T0, a1, T1, a2, T2 . . . , Tk−1, ak, Tk〉 ∈ T },

where all chains of language trees of T begin with the language tree T0.
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Our next goal is to show that the language tree automaton over the
alphabet A is a final object for the category of automata over the alphabet
A. This will require checking that given an automaton A, there exists a
unique homomorphism between A and L. We begin by introducing this
homomorphism.

Definition 3.10. Let A = (S,A, Sf , δ) be an automaton. Let q0 ∈ S. A
sequence

〈q0, a1, q1, a2, q2, . . . , qr−1, ar, qr〉
with qi ∈ S, 0 ≤ i ≤ r, ai ∈ A, 1 ≤ i ≤ r, and qi ∈ δ(qi−1, ai) for 1 ≤ i ≤ r
will be called a state sequence in A.
Description 3.11. Let A = (S,A, Sf , δ) be an automaton. For each state
s ∈ S, let Ls denote the language accepted by A when it starts from s. For
each state sequence

〈q0, a1, q1, a2, q2, . . . , qr−1, ar, qr〉,

consider the language sequence 〈Lq0 , a1, Lq1 , a2, Lq2 , . . . , Lqr−1 , ar, Lqr〉. Let
Tq0 be the set of all possible sequences which can be obtained in this way
from all sequences of states starting with q0. Note that Tq0 is a language
tree because Lq \ {ε} =

⋃
{aLq′ | q′ ∈ δ(q, a), a ∈ A} in an automaton for

every state q. Now for each state sequence 〈q0, a1, q1, a2, q2, . . . , qr−1, ar, qr〉
we consider

〈Tq0 , a1, Tq1 , a2, Tq2 , . . . , Tqr−1 , ar, Tqr〉,
which is a chain of language trees. Then the set Qq0 of all chains of language
trees which can be obtained from all possible state sequences starting with
q0 is a tree of chains of language trees.

Theorem 3.12. Let A = (S,A, Sf , δ) be an automaton. The function
φ : S −→ SL which assigns to each state s ∈ S the tree of chains of lan-
guage trees Qs of Description 3.11 induces a homomorphism of automata
between A and L.
Proof. It is clear that if s′ ∈ δ(s, a), then Qs′ ∈ δL(Qs, a). Conversely,
suppose that U ∈ δL(Qs, a). Then U is a tree of chains of language trees
that has been obtained by removing the first element and a in all language
sequences in the chains of language trees in Qs which begin with 〈Tq0 , a〉.
But then we get that U is one of the trees of chains of language trees Qs′
with s′ ∈ δ(s, a). Therefore the function φ respects the transitions. Now
assume that q0 ∈ Sf . Then ε ∈ Lq0 . Moreover Init(Qq0) = Lq0 and since ε is
one of the elements of this language, Qq0 ∈ SL,f . On the other hand, if Qs
is a final state, then ε ∈ Init(Qs). Hence ε is in the language accepted by A
when it starts from s and so s ∈ Sf .
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Theorem 3.13. Let ψ be a homomorphism between an automaton A =
(S,A, Sf , δ) and L. Then ψ coincides with the homomorphism φ of The-
orem 3.12. As a consequence, L is a final object in the category of automata
over the alphabet A.

Proof. The proof will consist of checking that for every state q0 ∈ S, Lq0 =
Init(Q0), where Lq0 is the language accepted by A starting from q0 and
Q0 = ψ(q0). This will be used later to prove that ψ and φ coincide. For the
reader’s convenience, we break the proof into separately stated steps.

1. Let q0 ∈ S. Then Lq0 ⊆ Init(Q0).

Let w be a word in Lq0 . If w = ε, then q0 is a final state and so ψ(q0)
is also a final state; in particular, ε ∈ Init(Q0) where Q0 = ψ(q0).
Suppose that w = a1a2 . . . ar. Then there exists a state sequence

〈q0, a1, q1, a2, q2, . . . , qr−1, ar, qr〉

such that qr ∈ Sf . Then 〈Q0, a1,Q1, a2,Q2, . . . ,Qr−1, ar,Qr〉, where
Qi = ψ(qi), 0 ≤ i ≤ r, is a state sequence in L and Qr ∈ SL,f is
final. Hence ε ∈ Init(Qr) and so ar ∈ Init(Qr−1), ar−1ar ∈ Init(Qr−2),
and, by induction, we see that w = a1a2 . . . ar ∈ Init(Q0). Therefore
Lq0 ⊆ Init(Q0).

2. Conversely, Init(Q0) ⊆ Lq0 .

Consider w ∈ Init(Q0). If w = ε, then Q0 ∈ SL,f is final and so
q0 ∈ Sf is final. Therefore ε ∈ Lq0 . Suppose now that w = a1a2 . . . ar.
Note that Q0 is a tree of language trees and so Q0 is composed of
chains of language trees 〈T0, b1, T1, . . . , Ts−1, bs, Ts〉 satisfying the con-
ditions of Definition 3.8. Now each Ti is a language tree and so it
is composed by language sequences 〈L0, c1, L1, . . . , Lt−1, ct, Lt−1〉 sat-
isfying the conditions of Definition 3.6. Let T0 be the unique prefix
of length zero of all chains of language trees of Q0 and let L0 be the
unique prefix of length zero of T0. By the condition of Equation (1)
in Definition 3.5, there exists a language L1 such that a2 . . . ar ∈ L1,
and the language sequence 〈L0, a1, L1〉 is in T0, there exists a language
L2 such that a3 . . . ar ∈ L2 and 〈L0, a1, L1, a2, L2〉 ∈ T0, and, by in-
duction, we see that there exists a language Lr such that the empty
word ε is in Lr and 〈L0, a1, L1, a2, L2, . . . , Lr−1, ar, Lr〉 ∈ T0. By Defini-
tion 3.8 (2), we obtain that there exists a language tree T1 such that the
language sequence 〈L1, a2, L2, . . . , Lr−1, ar, Lr〉 is in T1 and 〈T0, a1, T1〉
is a chain of language trees in Q0, and, once again by induction, we
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find that there exists a language tree Tr such that the language se-
quence 〈Lr〉 belongs to Tr and 〈T0, a1, T1, a2, T2, . . . , Tr−1, ar, Tr〉 is a
chain of language trees in Q0. By Definition 3.9 (3), there exists a tree
of chains of language trees Q1 such that 〈T1, a2, T2, . . . , Tr−1, ar, Tr〉 is
a tree of chain of language trees in Q1 and 〈Q0, a1,Q1〉 is a state se-
quence in L, and so on, with another inductive argument, we find the
existence of a tree of chains of language trees Qr such that 〈Tr〉 ∈ Qr
and 〈Q0, a1,Q1, . . . ,Qr−1, ar,Qr〉 is a state sequence in L. The state
Qr is final, because ε ∈ Lr = Init(Qr). Since ψ is a homomorphism of
automata, there exists a state sequence 〈q0, a1, q1, . . . , qr−1, ar, qr〉 in A
such that ψ(qi) = Qi for 1 ≤ i ≤ r and qr is final, because Qr is final.
It follows that w ∈ Lq0 . This shows that Init(Q0) ≤ Lq0 for all q0 ∈ S.

3. The homomorphism ψ coincides with φ.

Now let 〈q0, a1, q1, . . . , qr−1, ar, qr〉 be a state sequence in A. Since ψ is
a homomorphism of automata, 〈ψ(q0), a1, ψ(q1), . . . , ψ(qr−1), ar, ψ(qr)〉
is a state sequence in L. By using an argument similar to the one
used in the previous paragraph and the fact that the initial language
of ψ(q) is Lq, we see that the tree of language sequences T0 of the
prefix of length zero of Q0 = ψ(q0) contains the language sequence
〈Lq0 , a1, Lq1 , . . . , Lqr−1 , ar, Lqr〉. Now let 〈L0, a1, L1, . . . , Lr−1, ar, Lr〉 be
a language sequence in the tree of language sequences T0 of the prefix
of length zero of ψ(q0). The ideas of the previous paragraph show that
there is a chain of trees of language trees 〈T0, a1, T1, . . . , Tr−1, ar, Tr〉 in
which the initial language of Ti is Li for 0 ≤ i ≤ r, and that there
exists a state sequence in L of the form 〈Q0, a1,Q1, . . . ,Qr−1, ar,Qr〉
with Init(Qi) = Li for 0 ≤ i ≤ r. The fact that ψ is a homomorphism
implies that there exists a state sequence

〈q0, a1, q1, . . . , qr−1, ar, qr〉

in A with Qi = ψ(qi) and so the language sequence

〈L0, a1, L1, . . . , Lr−1, ar, Lr〉

coincides with
〈Lq0 , a1, Lq1 , . . . , Lqr−1 , ar, Lqr〉.

It follows that ψ = φ.

Theorems 2.20 and 3.13 yield the following result:

21



Corollary 3.14. Given two automata (S,A, Sf , δ) and (S ′, A, S ′f , δ) over the
same alphabet A, two states s ∈ S and s′ ∈ S ′ are bisimilar if and only if
the trees of chains of language trees obtained from s and s′ according to
Description 3.11 coincide.

Example 3.15. Consider the automaton of Example 3.1. We can represent
the corresponding trees of language sequences in Figure 5. Intuitively, what
we do to obtain the images in L of each state is to substitute each element
of the tree by the complete tree which can be formed from this element. We
show it in Figure 6. The fact that the states 1 and 3 are not bisimilar is shown
by the fact that Q1 and Q3 are different (in fact, T1 and T3 are different).
We note that the set of all language sequences obtained from the state 3
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T4 : ε

Figure 5: Language trees of the automaton of Example 3.15

is a subset of the set of all language sequences obtained from the state 1.
This is the reason we see in T1 only three children aa∗, a2a∗ and ε and in
T2 only two children aa∗ and a2a∗. However, we cannot determine from the
chain of languages 〈aa∗, a, aa∗, a, aa∗, . . . , aa∗, a, aa∗〉 whether it corresponds
to the state sequence 〈1, a, 1, a, 1, . . . , 1, a, 1〉, to 〈1, a, 1, a, 1, . . . , 1, a, 3〉, . . . ,
or to 〈3, a, 3, a, 3, . . . , 3, a, 3〉. This distinction appears in the children of the
roots of Q1 and Q2.

Example 3.16. One might think the final automaton could be described
in an easier way by means of the trees of language sequences. In order to
show that this is false, we can consider the automaton A = (S,A, Sf , δ),
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Figure 6: Images of the states in the final automaton L of the automaton of
Example 3.15
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with S = {1, 2, . . . , 11}, A = {a, b}, Sf = {4, 6}, δ(1, a) = {8}, δ(1, b) =
{2, 8}, δ(2, a) = {3, 5}, δ(2, b) = {5}, δ(3, a) = {2}, δ(3, b) = {4}, δ(4, a) =
{4}, δ(4, b) = ∅, δ(5, a) = {2}, δ(5, b) = {4, 6}, δ(6, a) = {6}, δ(6, b) = ∅,
δ(7, a) = δ(7, b) = {8}, δ(8, a) = {4, 8}, δ(8, b) = {6, 8, 9}, δ(9, a) = {10, 11},
δ(9, b) = ∅, δ(10, a) = {10}, δ(10, b) = δ(11, a) = δ(11, b) = ∅. A graphical
representation of this automaton appears in Figure 7.
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Figure 7: Automaton of Example 3.16

We can use the Automata package [10] of the computer algebra system
GAP [11] to check that the languages associated with each of the states are

L1 = L7 = (a+ b)2(a+ b)∗,

L2 = ((a+ b)a)∗(a+ b)ba∗,

L3 = L5 = (a(a+ b))∗ba∗,

L4 = L6 = a∗,

L8 = (a+ b)(a+ b)∗,

L9 = L10 = L11 = ∅.

The trees of language sequences corresponding to each state are repres-
ented in Figure 8 and Figure 9. A branch labelled with more than one letter

like L2
a,b

L3 is abbreviation of the multiple branch

L3

L2

a

b
L3
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. . .

L4

a

L4

a

. . .

L4

a

L4

a

L3

b

a
L3

b

a
. . .

L2

a,b

L2

a,b

L2

a,b

T1 : L1

b

a,b
L8

a,b

b

L4
b
L4

a
L4

a
L4

a
. . .

∅
a
∅

a
∅

a
∅

a
. . .

. . .

L4

a

L4

a

. . .

L4

a

L4

a

L3

b

a
L3

b

a
. . .

T2 : L2

a,b

L2

a,b

L2

a,b

. . .

L4

a

L4

a

. . .

L4

a

L4

a

T3 = T5 : L3

b

a
L3

b

a
. . .

L2

a,b

L2

a,b

T4 = T6 : L4
a

L4
a

L4
a

L4
a

L4
a

. . .

Figure 8: Language sequences of Example 3.16
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. . .

L8

a,b

b

a,b

L8

a,b

b

a,b

. . .

. . .

L8

a,b

b

a,b

L4
a

L4
a

L4
a

. . .

∅ a ∅ a ∅ a
. . .

T7 : L1
a,b

L8

a,b

b

a,b

L4
a

L4
a

L4
a

L4
a

. . .

∅ a ∅ a ∅ a ∅ a
. . .

L4
a

L4
a

L4
a

L4
a

L4
a

. . .

∅ a ∅ a ∅ a ∅ a ∅ a
. . .

. . .

L8

a,b

b

a,b

L8

a,b

b

a,b

. . .

. . .

L8

a,b

b

a,b

L4
a

L4
a

L4
a

. . .

∅ a ∅ a ∅ a
. . .

T8 : L8

a,b

b

a,b

L4
a

L4
a

L4
a

L4
a

. . .

∅ a ∅ a ∅ a ∅ a
. . .

L4
a

L4
a

L4
a

L4
a

L4
a

. . .

∅ a ∅ a ∅ a ∅ a ∅ a
. . .

T9 = T10 : ∅ a ∅ a ∅ a ∅ a ∅ a ∅ a
. . .

T11 : ∅

Figure 9: Language sequences of Example 3.16 (continued)
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Although the language sequences reachable from the states 9 and 10 are
the same, these two states cannot be bisimilar, because from 9 we can make
a transition with a to the state 11, which has no transitions, but from 10,
the only state we can reach is 10, which has a transition labelled with a to
this state. This distinction appears when we consider the trees of chains of
language trees, which appear in Figures 10, 11, and 12.

The image of A in the final automaton is represented in Figure 13 (the
states which are not image of any state of A are not shown). Note that the
only final state is Q4, because the only language containing ε was L4, the
initial language of Q4. Of course, this also follows from the fact that the final
states of A, 4 and 6, are mapped into Q4. The automaton shown in Figure 13
can be regarded as the smallest simple automaton showing the same state
behaviour as A.

Of course, the subautomaton of A composed by the states 9, 10 and
11 and the corresponding transitions is enough to show that the trees of
language sequences are not enough to describe the final automaton. We
have presented this more complicated example to show how to work with
alphabets consisting of more than one letter.

Example 3.17. Consider now the automaton given by S = {1, 2, 3, 4},
A = {a}, δ(1) = {1, 2, 3, 4}, δ(2) = {1, 2, 3}, δ(3) = {3, 4}, δ(4) = ∅, and
Sf = ∅. This automaton is like the one in Example 3.1, but with no final
states. Obviously, all states have associated the empty language ∅. The trees
of languages associated to this automaton are like the ones represented in
Figure 5, but with all languages replaced by ∅. In this case, only the branch-
ing information of the automaton is used. The corresponding images in the
final automaton look like the ones represented in Figure 6 with the trees Ti
coming from the ones of Figure 5. The automaton is also simple.

This technique of considering non-deterministic automata for a language
of one letter and no final states can be used to simulate coalgebras for the
finite power-set functor Pω. Since all languages are empty, the languages
turn out to be irrelevant in our discussion for this kind of automata. This
can be compared with the description of infinite trees modulo bisimilarity
presented by Barr in [5] or the strongly extensional trees of Worrell in [29],
which are recovered with our description.

Remark 3.18. As we have mentioned in Section 3, automata can be re-
garded as F -realisations in the sense of Kozen [18] for the type signature F
of Figure 2. We now outline how to pass from Kozen’s description to our de-
scription and vice versa. The nodes of the final F -realisation can be regarded
as trees like in the example of Figure 14, which corresponds to the image in
the final automaton for the alphabet A = {a, b, c} of a final state with two
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. . .

T4

a

T4

a

. . .

T4

a

T4

a

T3

b

a
T3

b

a
. . .

T2

a,b

T2

a,b

T2

a,b

Q1 : T1

b

a,b
T8

a,b

b

T4
b

T4
a

T4
a

T4
a

. . .

T9

a

a
T9 a

T9 a
T9 a

. . .

T11

. . .

T4

a

T4

a

. . .

T4

a

T4

a

T3

b

a
T3

b

a
. . .

Q2 : T2

a,b

T2

a,b

T2

a,b

. . .

T4

a

T4

a

. . .

T4

a

T4

a

Q3 = Q5 : T3

b

a
T3

b

a
. . .

T2

a,b

T2

a,b

Q4 = Q6 : T4
a

T4
a

T4
a

T4
a

T4
a

. . .

Figure 10: Trees of chains of trees of languages of Example 3.16
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. . .

T8

a,b

b

a,b

. . .

T8

a,b

b

a,b

. . .

T4
a

T4
a

T4
a

. . .

T8

a,b

b

a,b

T9
a

a
T9

a
T9

a
. . .

T11

T4
a

T4
a

T4
a

T4
a

. . .

Q7 : T1
a,b

T8

a,b

b

a,b

T9
a

a
T9

a
T9

a
T9

a
. . .

T11

T4
a

T4
a

T4
a

T4
a

T4
a

. . .

T9
a

a
T9

a
T9

a
T9

a
T9

a
. . .

T11

Figure 11: Trees of chains of trees of languages of Example 3.16 (continued)
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. . .

T8

a,b

b

a,b

. . .

T8

a,b

b

a,b

. . .

T4
a

T4
a

T4
a

. . .

T8

a,b

b

a,b

T9
a

a
T9

a
T9

a
. . .

T11

T4
a

T4
a

T4
a

T4
a

. . .

Q8 : T8

a,b

b

a,b

T9
a

a
T9

a
T9

a
T9

a
. . .

T11

T4
a

T4
a

T4
a

T4
a

T4
a

. . .

T9
a

a
T9

a
T9

a
T9

a
T9

a
. . .

T11

Q9 : T9
a

a
T9

a
T9

a
T9

a
T9

a
T9

a
. . .

T11

Q10 : T9
a

T9
a

T9
a

T9
a

T9
a

T9
a

. . .

Q11 : T11

Figure 12: Trees of chains of trees of languages of Example 3.16 (continued)
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Q1
b //

a,b
  

Q2

a,b
++ Q3

a
kk

b // Q4 a
nn

Q7 a,b
// Q8 b

//

a,b

66

a,b

LL
Q9 a

//

a

��

Q10 a
hh

Q11

Figure 13: Image of the automaton of Example 3.16 in the final automaton
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xc0
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2 v1
1

Figure 14: Example of a node of the final realisation for an automaton
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transitions labelled by a, a transition labelled by b and no transitions labelled
by c. We can associate to this state the language corresponding to all words
a1 . . . ak such that there exists a path starting with t whose edges are labelled

〈xa1 , xa1i1 , xa1i1j1 , . . . , xak , xakik , xakikjk , v, v1〉.

We can generate the corresponding language tree by replacing each t by the
corresponding language, the path composed by three edges 〈xa, xai, xaij〉 by
a and by deleting the paths composed by the edges 〈v, v0〉 or 〈v, v1〉, as well
as the paths composed by the edges 〈xa, xa0〉. By substituting each state t by
the corresponding language tree, we get the tree of chains of language trees
of our construction. Conversely, given a state of the language tree automaton
and a letter a ∈ A, we can associate to it the following paths:

• First, the path composed by 〈v, v1〉 if ε belongs to its initial language
and 〈v, v0〉 otherwise.

• Let a ∈ A.

– If there are no transitions labelled with a from this state, we simply
add the path 〈xa, xa0〉.

– If there are i transitions labelled with a from this state, we assign
the paths whose edges have the labels 〈xa, xai, xaij〉, for 1 ≤ j ≤ i,
followed by all paths corresponding to the images of the transition
of this state by a obtained with this method.

The coinduction principle (see Rutten [22]) guarantees that this construction
is possible.

4 Discussion and future work
We have obtained a description for the final object in the category of non-
deterministic automata in terms of languages. We have also proved that the
observational behaviour of an automaton (bisimilarity) can be described in
terms of the languages accepted from each state. In our approach, it is just
an equality of sets obtained from the languages associated with the states of
the automaton. This generalises a known fact for deterministic automata, as
the language automaton introduced in the beginning of Section 3 shows, but
which did not seem evident for non-deterministic automata as we have seen
in Example 3.1. Our structures derive from the branching information of
the automata, with the states substituted by their corresponding languages
and, in some sense, follow the same ideas of Barr [5] and Worrell [29] about
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the branching information. However, even some natural candidates for the
states of the final non-deterministic automaton, as the one presented in Ex-
ample 3.15, based only on the branching information of the automata with
the states replaced by their corresponding languages, are not good enough
for our purposes.

As we have mentioned, Barr [5] and Worrell [29] have presented a de-
scription of final objects in Pω-coalgebras by means of suitable infinite trees
modulo bisimilarity, which exploit their branching information. However, if
we want to describe bisimilarity by means of the final object, this approach
is not sufficient, because it could be like a petitio principii. A precise descrip-
tion of the relation is achieved in this paper by means of the description of the
language tree automaton and the homomorphism from a given automaton
to the language tree automaton. Nevertheless, as we have mentioned in the
previous section, we obtain trees isomorphic to the strongly extensional trees
of Worrell [29] when we use automata to simulate Pω-coalgebras.

The description of the language tree automaton is indeed a generalisa-
tion of the description of the language automaton. In the case of a determ-
inistic automaton, for each state s and each letter a ∈ A, there exists a
unique transition s

a //t and the corresponding languages satisfy the rela-
tion Lt = a−1Ls. This property also holds in the language automaton, in
which the transitions have the form L

a //a−1L . This implies that the lan-
guage sequences associated to state sequences in a deterministic automaton
are uniquely determined by their initial languages. The same can be affirmed
about language trees, chains of language trees, and trees of chains of language
trees associated to state sequences of deterministic automata, which are also
uniquely determined by their initial languages.

The computation of the image of a non-deterministic automaton in the
language tree automaton solves a problem of minimisation of automata by
Corollary 3.14. The image of a given automaton is a simple automaton,
that is, given two different states, they are not bisimilar. The corresponding
minimisation problem for deterministic automata is solved by means of the
equality of the languages recognised from the states. Other known algorithms
are available to identify bisimilarity and so to construct this image into the
final automaton, like state partition algorithms (see, for instance, [1]).

We must observe that our automata are not necessarily finite. In fact, the
final automaton is infinite. The same thing happens with the final determin-
istic automaton, whose states are all languages: it is infinite and non-regular
languages can appear as states. However, the set of all states reachable from
one state by the action of one letter is kept finite in order to make sure that
the states of the final object form a set.
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A future research line in this subject could be to apply these techniques to
study final coalgebras for other structures which can have languages associ-
ated with the states in a natural way. This could be an alternative approach
to the descriptions of [5, 6, 7, 18, 25, 27, 29]. For instance, the ideas of Ex-
ample 3.17 show a possible way to construct the final object for the category
of all coalgebras associated with the finite power-set functor.

Another possible future research line could be finding alternative se-
mantics for other structures admitting a coalgebra structure. As an ex-
ample of what we mean, we might consider the Hennessy-Milner logic. Let
A = (S,A, Sf , δ) be a non-deterministic automaton. We can define a multi-
modal logic M = MA with an atomic proposition p whose semantics is given
by set of formulas L defined by the grammar

φ ::= tt | ¬φ | φ1 ∧ φ2 | ♦aφ | p

where a varies over A. This logic is called Hennessy-Milner logic because it
was introduced by Hennessy and Milner in [13, 14] (see also [28] for more
details). The usual interpretation of the formulas is given by the modelling
relation |= ⊆ S × L defined by

• s |= tt,

• s |= φ1 ∧ φ2 if and only if s |= φ1 and s |= φ2,

• s |= ¬φ if and only if ¬(s |= φ),

• s |= ♦aφ if and only if there exists s′ ∈ δ(s, a) such that s′ |= φ,

• s |= p if and only if s ∈ Sf ,

The extension of the Hennessy-Milner logic with fixed point operators is
the modal µ-calculus. A detailed study of the Hennessy-Milner logic and the
modal µ-calculus, as well as bisimilarity and different semantics for them, can
be found in [28]. The trees of chains of language trees over A defined from
the underlying automaton A could be used to give an alternative semantics
for the Hennessy-Milner logic. We defer the details to a future work.
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