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Reticle aportó su gentileza
obrando con paciencia y una caña.
No, no es que me amansara (¡seria hazaña!)
pescando, sino a base de cerveza.

Para atender cualquiera de mis dramas
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se convierte, la tesis ya plasmada,
en tierra, en humo, en polvo, en sombra, en nada.
Cierro una etapa, escapa de mi mano.
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A Salvador Pérez Esteva y a los compañeros de la UNAM en general, su cuidado
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Resum

El text que es presenta a continuació tracta d’establir un marc teòric al que poder
desenvolupar dos nous conceptes (extensió d’altres ja coneguts): els multiplicadors
per coeficients a través d’una aplicació bilineal i el producte projectiu tensorial de
Hadamard. Ambdós espais es veuen sempre com espais de succesions a valors vectori-
als, és a dir, a un espai de Banach qualsevol. Posteriorment, s’estudia la relació entre
ells i s’aporten alguns exemples.

El punt de partida del projecte són les classes d’espais introdüıdes per O. Blasco i
M. Pavlović al treball “Coefficient multipliers on spaces of analytic functions” (Revista
Mat. Iberoamericana, 2011), on es formalitza el problema de multiplicadors i se’l rela-
ciona amb certs productes tensorials clàssics, definint les mı́nimes propietats en espais
de Banach de funcions anaĺıtiques per a poder desenvolupar la teoria de multiplicadors,
tenint com a objectiu donar la versió vectorial dels mateixos.

Amb aquest objetiu en ment, s’ha decidit dividir el treball en quatre caṕıtols difer-
enciats. Els tres primers fixen el context recalcant alguns dels aspectes que poden
donar al lector una idea més profona de l’ús i les aplicacions d’aquesta teoria. L’últim
caṕıtol és el colofó que uneix els tres anteriors, conferint un sentit únic al text.

De manera més espećıfica, al primer caṕıtol es donen els preliminars necessaris per
poder abordar el problema que ens ocupa. Es presenten les ferramentes precises per
comprendre l’escrit i els seus exemples: els espais de sucessions amb valors vectorials,
S(E), i els espais de funcions anaĺıtiques al disc, també amb valors vectorials, H(D, E).

Al segon caṕıtol es determinen les condicions mı́nimes que s’exigiràn als espais de
treball, anomenats espais S(E)−admissibles seguint la notació de [16]. Es dona el cas
concret dels multiplicadors amb valors a l’espai d’operadors, germe de l’espai de mul-
tiplicadors mitjançant una aplicació bilineal, B. Per posar de manifest l’importància
d’aquests espais, per una banda es dona la relació dels mateixos amb els espais sòlids
i per altra, es desenvolupa l’exemple dels espais de norma mixta generalitzats.

El tercer és un breu caṕıtol on es donen condicions espećıfiques per al cas en què els
espais de successions siguen una forma de representació d’espais de funcions anaĺıtiques
(a través dels seus coeficients de Taylor). De nou, seguint la notació introdüıda per
[16], aquests espais seran notats com a H(E)−admissibles. A més s’aporten nous
resultats que seràn aplicats a espais de funcions amb valors vectorials.

Per últim, al quart caṕıtol es detallen les dos construccions dalt mentades: els
multiplicadors a través d’una aplicació bilineal i el producte tensorial projectiu de
Hadamard. Es veu la relació que existeix entre les dos i finalment es mostren casos
particulars del còmput del producte tensorial projectiu de Hadamard i s’aplica al càlcul
de multiplicadors.

Com a conclusió podriem dir que el cas vectorial es troba lluny de derivar-se
de manera directa de l’escalar. No obstant això, aconseguim trobar els mecanismes
per salvar les diferències i relacionar els espais de multiplicadors a valors vectorials
amb el producte tensorial projectiu de Hadamard. Aix́ı, veiem com es pot resoldre un
problema complicat, dividint-lo en problemes més senzills o prenent camins alternatius,
sempre recolzats per un marc teòric que ens garantisca la veracitat de les nostres passes.

v



vi

La metodologia seguida durant la realització del treball ha sigut la següent: en
primer lloc es va procedir a l’estudi de distints espais i la seua teoria bàsica per mitjà
de la lectura de bibliografia de referència ja siguen els texts clàssics de Duren ([24]),
Zhu ([40]), Axler ([6]) com alguns dels últims anys ([27]).

Una vegada coneguts els espais clàssics, es va estudiar la teoria de funcions anaĺıtiques
vectorials desenvolupada al cas d’espais de Hardy i Bergman als treballs del director i
col·laboradors.

Finalment es va atacar l’estudi de les tècniques de l’article abans esmentat.

Universitat de València



Resumen

El texto que se presenta a continuación trata de establecer un marco teórico en
el que poder manejar dos nuevos conceptos (extensión de conceptos ya conocidos):
los multiplicadores por coeficientes a través de una aplicación bilineal y el producto
proyectivo tensorial de Hadamard. Ambos espacios se ven siempre como espacios de
sucesiones a valores vectoriales, esto es, en un espacio de Banach cualquiera. Posteri-
ormente, se estudia la relación entre ellos y se aportan algunos ejemplos.

El punto de partida del proyecto son las clases de espacios introducidas por O.Blasco
y M. Pavlović en el trabajo “Coefficient multipliers on spaces of analytic functions”
(Revista Mat. Iberoamericana, 2011) donde se formaliza el problema de multipli-
cadores y se relaciona con ciertos productos tensoriales clásicos, definiendo las mı́nimas
propiedades en espacios de Banach de funciones anaĺıticas para poder desarrollar la
teoŕıa de multiplicadores, teniendo como objetivo dar la versión vectorial de los mis-
mos.

Con este objetivo en mente, se ha decidido la división del trabajo en cuatro
caṕıtulos diferenciados. Los tres primeros fijan el contexto haciendo hincapié en ciertos
aspectos que pueden dar al lector una idea más profunda del uso y de las aplicaciones
de esta teoŕıa. El último caṕıtulo es el colofón que une los tres anteriores, confiriéndole
un sentido único al texto.

De manera más espećıfica, en el primer caṕıtulo se dan los preliminares necesarios
para poder abordar el problema que nos ocupa. Se presentan las herramientas pre-
cisas para comprender el escrito y sus ejemplos: los espacios de sucesiones con valores
vectoriales, S(E) y los espacios de funciones anaĺıticas en el disco, también con valores
vectoriales, H(D, E).

En el segunda caṕıtulo se determinan las condiciones mı́nimas que se van a exigir
a los espacios de trabajo, llamados espacios S(E)−admisibles siguiendo la notación
de [16]. Se da el caso concreto de los multiplicadores con valores en el espacio de
operadores, germen del espacio de multiplicadores mediante una aplicación bilineal,
B. Para poner de manifiesto la importancia de estos espacios, por un lado se da la
relación de los mismos con los espacios sólidos y, por otro, se desarrolla el ejemplo de
los espacios de norma mixta generalizados.

El tercero es un breve caṕıtulo donde se dan condiciones espećıficas para el caso
en el que los espacios de sucesiones sean una forma de representación de espacios de
funciones anaĺıticas (a través de sus coeficientes de Taylor). De nuevo, siguiendo la
notación introducida por [16], estos espacios serán notados como H(E)−admisibles.
Además se aportan nuevos resultados que serán aplicados a espacios de funciones con
valores vectoriales.

Por último, en el cuarto caṕıtulo se detallan las dos construcciones arriba men-
cionadas: los multiplicadores a través de una aplicación bilineal y el producto tensorial
proyectivo de Hadamard. Se ve la relación que existe entre ambas y finalmente se mues-
tran casos particulares del cómputo del producto tensorial proyectivo de Hadamard y
se aplica al cálculo de multiplicadores.
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A modo de conclusión podŕıamos decir que el caso vectorial está lejos de seguirse
de manera directa del escalar, sin embargo logramos encontrar los mecanismos para
salvar estas diferencias y relacionar los espacios de multiplicadores a valores vectoriales
con el producto tensorial proyectivo de Hadamard. Aśı, vemos cómo se puede resolver
un problema complicado, partiéndolo en problemas más simples o tomando caminos
alternativos, siempre respaladados por un marco teórico que nos asegure la veracidad
de nuestros pasos.

La metodoloǵıa seguida en la realización del trabajo ha sido la siguiente: en
primer lugar, se procedió al estudio de distintos espacios y su teoŕıa básica por medio
de la lectura de bibliograf́ıa de referencia como los textos clásicos de Duren ([24]), Zhu
([40]), Axler ([6]) y alguno de los últimos años ([27]).

Una vez conocidos los espacios clásicos, se estudió la teoŕıa de funciones anaĺıticas
vectoriales desarrollada en el caso de espacios de Hardy y Bergman en los trabajos del
director y colaboradores.

Finalmente se atacó el estudio de las técnicas del art́ıculo arriba mencionado.

Universitat de València



Introduction

From the beginning of the Fourier Analysis, mathematicians try to describe the
Fourier (or Taylor) coefficients of functions belonging to classical spaces of integrable
(or analytic) functions defined in the unit circle (or disc), and to determine conditions
on a sequence for the function with such a sequence of Fourier coefficients to belong
to a given space.

The simplest example is Plancherel’s Theorem, where the fact that the coefficients
are square-sumable is equivalent to the fact that the function is square-integrable.
Nevertheless, this complete description only holds for Hilbert spaces. In particular,
when the space L2 is replaced by Lp for p 6= 2, the situation changes and even though
one can obtain partial results (for instance using interpolation), it is known that be-
longing to the space Lp whenever p 6= 2 can not be described in terms of the size of the
coefficients. Other examples of interest, in which being an analytic function automat-
ically improves the conditions on the coefficients, are the so-called Hardy and Paley
inequalities, where it is stated that integrable functions in the torus whose Poisson in-
tegral on the disc is holomorphic (that is, in the current terminology, functions in the
Hardy space H1) have Fourier coefficients not only converging to zero (as Riemann-

Lebesgue’s Lemma says), but also verifying the stronger conditions
∑

n
|f̂(n)|
n+1 < ∞

(Hardy’s inequality) or
∑

k |f̂(2k)|2 <∞ (Paley’s inequality). These are two first ele-
mentary instances which nowadays are denoted as “multipliers” (sometimes “Fourier
multipliers”) acting on Hardy spaces. The first steps in this direction go back to the
work of Hardy, Littlewood, Paley and Flett among others.

From then on, describing the multiplier spaces between two function spaces has
become an interesting object of study for many researchers in Fourier Analysis and
Complex Variable. There are two different considerations in this kind of problems: On
one hand, given a sequence (λj)j of complex numbers and a function f with coefficients

f̂(j) (either the Fourier or the Taylor ones, in case f is analytic) belonging to a certain

space X, one can generate a new function g with coefficients λj f̂(j). The aim would be
to identify the space Y where this new function belongs to, using the known properties
of f and (λj)j . On the other hand, given two concrete Banach spaces X and Y , one
can try to characterize the sequences (λj)j that allow them to go from X to Y through
the Fourier multipliers.

On a more standard notation, given X and Y two Banach spaces contained con-
tinuously in the space S of all sequences, we want to describe the multipliers space

(X,Y ) = {(λj)j ∈ S : (λj f̂(j))j ∈ Y, for any f ∼ (f̂(j))j ∈ X}.

Taking a look at the previous examples from this perspective, we have
(L2(T), L2(T)) = `∞. Also Hardy’s inequality, which states that ( 1

n)n ∈ (H1(T), `1)

and Paley’s inequality, which says that the sequence (λj)j , defined as λj = 1 for j = 2k

for some k and λj = 0 otherwise, belongs to (H1(T), `2).
In our work, we restrict ourselves to the case of holomorphic functions where we

shall identify the function with its Taylor coefficients. However our study will be done
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for vector-valued holomorphic functions, meaning that we shall allow the abstract
situation of the coefficients belonging to another complex Banach space E.

The description of those spaces in the scalar context has been (and still is) an
object of desire of a large number of researchers. The historical situation on Hardy
spaces can be found in B. Osikiewicz’ work (see [36]) and a collection of results and
techniques to use on Bergman and mixed-norm spaces is gathered up in the works of
M. Jetvić and I. Jovanović (see [29]) and O. Blasco (see [11]).

One of the most important recent results in this area that is inspiration and mo-
tivation for our study, is the one obtained in Multipliers of Hp and BMO, by M.
Mateljevic̀ and M. Pavlović ([34]), where an identification between the multipliers
space (H1, BMOA) and the Bloch space, Bloch, is given. That is to say

(H1, BMOA) = Bloch.

This result was extended by O. Blasco in [11] and later an alternative proof for func-
tions taking values in a Banach space was also achieved in [12].

The interest on the study of the space of multipliers between spaces of vector-valued
sequences or functions appears closely related to the geometric properties of Banach
spaces. Several results on vector-valued multipliers and their connection with geometry
of Banach spaces and absolutely summing operators (see [21] for the definition) can
be found in [3, 4, 5, 15, 13, 14].

Let us formulate the general abstract situation we shall try to analyze. We use the
notation XE for certain space of analytic functions with values in a given complex Ba-
nach space E, regarded (via Taylor coefficients) as a subspace of the space of sequences
with values in E, to be denoted S(E). Now, given complex Banach spaces E and F ,
our purpose is to study the space of multipliers between XE and XF , understood as
a space of sequences with values in the space of bounded linear operators L(E,F )
defined by

(XE , XF ) = {(λj)j ∈ S(L(E,F )) : (λj(f̂(j)))j ∈ XF , for any f ∼ (f̂(j))j ∈ XE}.

Of course the vector-valued interpretation is far from being straightforward. To
realize the difference, it is enough to take a look at the results appearing in [7], where
the geometry of the underlying Banach space plays an important role for the classical
results to hold in the vector-valued setting, or to [12] where the expected extension of
the result (H1, BMOA) = Bloch, is shown not true in general. Actually the inclusion
(H1(E), BMOA(F )) ⊆ Bloch(L(E,F )) always holds but it is proved that only under
certain hypothesis over E and F (complex Banach spaces) it holds that

(0.1) (H1(E), BMOA(F )) = Bloch(L(E,F )).

Recently O. Blasco and M.Pavlović (see [16]) have tried to systematize the study
of multipliers between spaces of analytic functions (in the scalar-valued case) in an
abstract context and have used some techniques based upon the Hadamard tensor
product, which can be used for a big family of spaces. They introduce some classes
of spaces of sequences and of analytic functions where some multiplier results can be
shown (and which of course inlcude all the classical spaces such as Hardy, Bergman
or mixed-norm spaces). We recall here the notion of Hadamard tensor product which
was the main tool in such research. Given X and Y Banach spaces of power series we
denote by X ~ Y the space of functions f that can be represented as formal power
series of Hadamard products, that is f(z) =

∑
n xn ∗ yn(z) =

∑
n

∑
j xn(j)yn(j)zj ,

where (xn)n ⊆ X and (yn)n ⊆ Y , verifying
∑

n ‖xn‖X‖yn‖Y < ∞. This construction
is intimately connected to the multiplier space through the formula

(0.2) (X ~ Y,Z) = (X, (Y,Z)).

Universitat de València



0. Introduction 3

In this monograph we shall study the vector-valued analogue of such result, giv-
ing even a more general approach, where the notion of vector-valued multiplier as
a sequence of operators is extended to a general case where the action of operator
and vector is replaced by a general bilinear map, and also the classical convolution
and Hadamard tensor product is generalized for bilinear maps. Namely, given E,F,G
complex Banach spaces and B : E × F → G a bounded bilinear map, we consider a
new space

(XF , XG)B = {(λj)j ∈ S(E) : (B(λj , f̂(j)))j ∈ XG, for all f ∼ (f̂(j))j ∈ XF }.

Notice that for E = L(F,G) and B(λj , f̂(j)) = λj(f̂(j)), we recover the case of
operator-valued multipliers. This study represents an original approach that includes
the already known results on multiplier spaces and provides with some new applica-
tions.

Similarly one can generalize X ~ Y as follows: Given a bounded bilinear map
B : E × F → G, we define the B-convolution between f ∈ XE and g ∈ XF as

f ∗B g(z) =
∑
j

B(f̂(j), ĝ(j))zj .

Now, what we call the Hadamard projective tensor product XE ~B XF is defined
as the space of functions that can be represented as a formal sum of B- convolution
products, h(z) =

∑
n fn ∗B gn(z), where fn ∈ XE and gn ∈ XF for any n ∈ N, verifying∑

n ‖fn‖XE‖gn‖XF <∞.
Our aim is to show the use of these constructions, getting new results for both

sequence spaces and spaces of analytic functions (identified with sequence spaces) as
well as to show the extension of the formula (0.2)

(XE ~B1 XF , XG)B2 = (XE , (XF , XG)B3)B4

for bilinear maps Bi, i = 1, 2, 3, 4 that satisfy certain conditions (see Theorem 4.26).

The monograph is divided into four chapters. We are going to give some detail on
what the reader is going to find in each one of them.

The first one is of preliminary character. We simply introduce the space of vector-
valued sequences S(E) and the space of analytic functions on the disc which take
values in a Banach space E, H(D, E) and define the sequence spaces and function
spaces we are going to work with, both in their scalar and vector-valued version. As
particular cases to outline appear the mixed-norm sequence spaces considered with
values in a Banach space (a generalization of the mixed-norm spaces `(p, q) introduced
by Kellogg). We will give a first definition of these spaces that will be extended and
studied in the following chapter. We also consider the case of vector-valued functions
obtained from a sequence space with its own norm, that is

X[E] = {(xj)j≥0 ∈ S(E) : ‖(‖xj‖E)j‖X <∞}.

This space is specially interesting when we consider X a space of analytic functions
such as Hp(D) (Hardy) or Ap(D) (Bergman), with 1 ≤ p <∞, and we compare it with
the more natural vector-valued version of the space Hp(D, E) (resp. Ap(D, E))(see
page 23). We will prove that Hp(D)[E] and Ap(D)[E] need not to coincide with them
(see Proposition 1.38).

The second chapter is devoted to the notion of S(E)-admissiblility following the
notation introduced in [16]. This notion establishes the minimum conditions we need
to provide on the abstract spaces to be able to work with them in the setting of
multipliers. We consider the classical operator-valued case of multipliers with values

Universitat de València



4

in the space of linear bounded mappings, as well as the notion of “solid” spaces in the
vector-valued setting, meaning XE = XS

E , where

XS
E = {(xj)j ∈ S(E) : (αjxj)j ∈ XE , for all (αj)j ∈ `∞}.

Let us mention one nice connection discovered in Proposition 2.16, namely if X,Y are
solid spaces, then

(X[E], Y [F ]) = (X,Y )[L(E,F )].

In this chapter we also develop a new family of S(E)-admissible spaces: the gen-
eralized mixed-norm spaces, to be denoted `I(p, q, E). These are spaces of sequences
(ai)i∈ΛI , where the entries are in a Banach space and such that they verify

∑
j∈Ik

‖aj‖pE

1/p

k

∈ `q,

for 1 ≤ p, q ≤ ∞ and where I is a family of pairwise disjoint intervals contained in N0

with the notation Ik = N0 ∩ [nk, n
′
k) for nk < n′k ≤ nk+1 and ΛI = ∪k∈N0Ik. The weak

version `Iw(p, q, E) of these spaces, consisting on the sequences of elements in E such
that 

∑
j∈Ik

|〈a∗, aj〉|p
1/p


k

∈ `q

for any a∗ ∈ E∗ is also considered.
We close the chapter with a detailed study of the space of multipliers between

generalized mixed-norm spaces

(`I(p, q, E), `J (r, s, F )),

whenever ΛI = ΛJ for I, J two families of intervals in N0, 1 ≤ p, q, r, s ≤ ∞ and E,F
complex Banach spaces (Theorem 2.63) and an application of the resulting characteri-
zation to the space of multipliers between H(p, q, ρ) spaces, that is spaces of functions
such that

‖F‖H(p,q,ρ) =

(∫ 1

0
M q
p (F, r)

ρ(1− r2)

1− r2
rdr

)1/q

<∞

(see [8, Definition 2]).
The third one is a brief chapter where we focus on spaces of vector-valued analytic

functions. We introduce the notion ofH(E)−admissibility, again following the notation
on [16]. A Banach space XE of holomorphic functions from the unit disc into a Banach
space E is calledH(E)−admissible whenever it is continuously contained into the space
H(D, E) and the inclusion H(rD, E) (where rD stands for the disc of radius R) into
XE is also continuous for all R > 1. Most of the classical spaces are shown to be
H(E)−admissible. Some extra properties are also cosidered: In particular XE is said
to be “homogeneous” if it satisfies that

(i) if f ∈ XE and |z| = 1, then ‖fz‖XE = ‖f‖XE and
(ii) if 0 < r < 1, then sup|z|=r ‖fz‖XE ≤ K‖f‖XE where K is independent of f, r,

and fz(w) = f(zw).

A special class of homogeneous spaces are those which verify the Fatou property (FP ),
given by the condition that there exists A > 0 s.t. if (fn)n ∈ XE with supn ‖fn‖XE ≤ 1
verifying fn −→ f inH(D, E), then f ∈ XE with ‖f‖XE ≤ A. A particularly interesting

construction consists in defining X̃E as the space of functions in H(D, E) verifying
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0. Introduction 5

w 7→ fw ∈ H∞(rD, XE). This space turns out to be always homogeneous. We obtain
in Proposition 3.24

XE = X̃E with equivalent norms ⇔ XE is homogeneous with (FP ).

Finally, in the fourth chapter we deepen into the two constructions mentioned
above: multipliers through a bilinear map and Hadamard projective tensor prod-
uct. We will prove that, under certain conditions on the corresponding bilinear map,
both spaces keep the admissibility (either simply considered as spaces of sequences
-S(E)−admissibility- or as sequence spaces coming from a space of analytic functions
-H(E)−admissibility-). Furthermore, we analyze the relationship between the two of
them through the formula

(XE ~B1 XF , XG)B2 = (XE , (XF , XG)B3)B4 ,

where B1 : E × F → E⊗̂πF , B2 : L(E⊗̂πF,G)× E⊗̂πF → G, B3 : L(F,G)× F → G
and B4 : L(E,L(F,G))×E → L(F,G) and see the particular cases that arise whenever
we consider one of the Banach spaces E,F,G a field. We finish showing particular cases
of the computation of the Hadamard projective tensor product, such as

A1(D)~B0 H
1(D, E) = A1(D, E)

and
H1(D)~B0 H

1(D, Lp(µ)) = B1(D, Lp(µ))

for 1 ≤ p ≤ 2. If we consider p′ = p
p−1 , that is, the conjugate exponent of p, then the

last computation together with Proposition 4.38, which says

(H1(T, Lp(µ)), H∞(D))D = BMOA(T, Lp
′
(µ))

and
(D−1A1(D, E), H∞(D))D = Bloch(D, E∗),

where the D indicates we are using the map BD : E∗×E −→ K, (x∗, x) 7→ 〈x∗, x〉, lets
us recover results such as the one mentioned in (0.1).

The content related to the construction of new Kellogg’s type sequence spaces
(the scalar version) as well as the spaces of multipliers between them appear in the
published paper [17].

The results on Chapter 2 refering to solid spaces and Köthe duals as well as the first
section of Chapter 3 and almost the totality of Chapter 4 are submitted and accepted
for its publication in [18].
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CHAPTER 1

Preliminaries

1. Basic results on functional analysis

In order to make this text as self-contained as possible, this section is devoted to
some of the basic definitions and concepts needed in our work as well as to fix the
notation we will be using in the following.

For Z a locally convex space, we have that a collection Λ of zero neighbourhoods,
ε(0), is a fundamental system of zero neighbourhoods if ∀U ∈ ε(0) ∃V ∈ Λ and ε > 0
such that εV ⊆ U .
A family of seminorms, (pj)j∈N0 , is called a fundamental system of seminorms if sets
Uj := {f ∈ Z : pj(f) < 1} form a fundamental system of zero neighbourhoods.

We denote by S the space of sequences f = (αj)j∈N0 , where αj ∈ K, endowed with
the locally convex topology given by means of the seminorms pj(f) = |αj |, j ∈ N0,
where we use the notation N0 = N∪{0}. We shall think of f as a formal power series,

that is f(z) =
∑

j∈N0
αjz

j and most of the time we will write f̂(j) instead of αj and
then consider S as the space of all formal power series.
Any locally convex space with a countable fundamental system of zero neighbourhoods
is metrizable. In particular S is a complete metrizable space.

A sequence (fn)n ⊂ S converges to f ∈ S if and only if pj(f − fn) → 0 ∀j ≥ 0 as

n→∞, if and only if |f̂(j)− f̂n(j)| → 0 as n→∞ for all j ≥ 0. That is, convergence
in S is coordinatewise convergence.

Given X ⊂ S, we will write X0 for the closure of the polynomials in the X−norm.
Another interesting locally convex space to consider is H(D), the space of analytic

functions on the unit disc D ⊂ C, that is, functions f : D → C, f =
∑

j∈N0
f̂(j)ej ,

where ej(z) = zj , such that lim supj
j

√
|f̂(j)| ≤ 1. It can be regarded as a vector

subspace of S via the Taylor coefficients. Naturally, every sequence (αj)j ∈ S which

satisfies the condition lim supj
j
√
|αj | ≤ 1 can also be identified with an analytic func-

tion in D.
Let rD denote the open disc of radius R > 0 centered at zero (we put 1D =

D). We write H(rD) for the space of all functions analytic in rD endowed with the
‘H−topology’, i.e., the topology of uniform convergence on compact subsets of rD.
This topology can be described by the family of seminorms

M∞(r, f) = sup
|z|=r
|f(z)|,

0 < r < R. Therefore a Banach space X is continuously contained in H(rD), X ↪→
H(rD) if for any 0 < r < R there exists a constant Ar > 0 such that

M∞(r, f) ≤ Ar‖f‖X , f ∈ X.
Conversely, we will write H(rD) ↪→ X if there exists s ≤ R and Bs > 0 such that
H(rD) is continuously contained in X, that is

‖f‖X ≤ BsM∞(s, f)

for any f ∈ H(rD).

7



8 1. Basic results on functional analysis

Since H(rD) ⊂ S, we see that, formally, there are two topologies on H(rD), H−
and S−topology. However it is well known and easy to see that they coincide on
H(rD).

Recall that for X a normed space, the dual space X∗ is the set of all linear contin-
uous functionals from X into the base field K. It is a normed vector space by means
of

‖x∗‖ = sup
‖x‖X≤1

|〈x∗, x〉|,

where 〈x∗, x〉 = x∗(x). This norm gives rise to a new topology on X∗ under which the
space becomes a Banach space.

Also recall that on each Banach space X there exists a weak topology usually
denoted by w. For each point x0 ∈ X its basis of neighbourhoods is defined as

U(x0; ε, x∗1, · · · , x∗n) =
{
x∗ ∈ X∗ : |〈x∗j , x− x0〉| < ε for j = 1, · · · , n

}
where x∗1, · · · , x∗n is an arbitrary finite set in X∗ and ε is an arbitrary positive number.
Obviously this defines a locally convex topology on X. It is the coarsest topology that
makes a linear map from X into K remain continuous and it is characterized by the
condition that a sequence (xn)n converges to x ∈ X in the w−topology iff 〈x∗, xn〉
converges to 〈x∗, x〉 for every x∗ ∈ X∗.

The dual space X∗ can as well be endowed with the so-called weak-star topology,
to be denoted w∗, that is the topology induced by the embedding X ⊆ X∗∗. For each
point x∗0 ∈ X∗ its basis of neighbourhoods is defined as

U(x∗0; ε, x1, · · · , xn) = {x ∈ X : |〈x∗ − x∗0, xj〉| < ε for j = 1, · · · , n}

where x1, · · · , xn is an arbitrary finite set in X and ε is an arbitrary positive number.
Clearly this also defines a locally convex topology onX∗. This topology is characterized
by the condition that a sequence (x∗n)n converges to x∗ ∈ X∗ in the w∗−topology iff
〈x∗n, x〉 converges to 〈x∗, x〉 for every x ∈ X.

Of course w-convergence implies w∗-convergence and, in case X is reflexive (X =
X∗∗), the converse direction holds.

We now list some other classical results of functional analysis to be used in our
work. Most of them have many different (and sometimes more general) versions, but
for our purposes it is enough to consider them as below.

Theorem. A (Alaoglu) (see [37])
The closed unit ball BX∗ of X∗ is compact in the w∗−topology.

The following theorems can be found in [23].

Theorem. B (Open Mapping Theorem)
Let X,Y be Banach spaces and T : X → Y a linear bounded operator such that
T (X) = Y . Then T is an open map, i.e. the image of an open set is an open set.

As a consequence we have

Theorem. C (Closed Graph Theorem)
Given T : X → Y a linear map between Banach spaces, the set

Graph(T ) := {(x, T (x)) : x ∈ X}

is closed in the product topology of X × Y if and only if T is continuous.

Theorem. D (Banach-Steinhaus)
Consider (Tn)n∈N a family of linear operators between Banach spaces, Tn : X → Y .
Assume that for every x ∈ X supn ‖Tn(x)‖Y <∞. Then supn ‖Tn‖ <∞.
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1. Preliminaries 9

In particular we get that the pointwise limit of a sequence of linear operators (if it
exists everywhere) is a linear operator.

Theorem. E (Hahn-Banach)
Let X be a Banach space and Y ⊆ X. Consider y∗ ∈ Y ∗. Then there exists x∗ ∈ X∗
such that ‖x∗‖ = ‖y∗‖ and x∗(y) = y∗(y) for every y ∈ Y. In particular we get

‖x‖ = sup
‖x∗‖≤1

|〈x∗, x〉|

for x ∈ X.

2. Multipliers and tensors: the scalar-valued case

The aim of this section is to motivate the results presented in the foregoing chapters
and to provide further on some additional information.

A theory requires and feeds on its examples. Thus, let’s start bringing back to our
memory the most well-known sequence spaces and spaces of analytic functions. It is
convenient to define them right here so as to have sufficiently many examples which
will be considered in abstract terms in the following chapters. Some definitions and
basic properties will be reviewed later in the appropiate sections.

Consider 0 < p ≤ ∞. The most famous sequence space might be the `p space,
consisting on those sequences a = (an)n∈N0 ∈ S verifying

‖a‖p =

(∑
n

|an|p
)1/p

<∞

if p <∞, and
‖an‖∞ = sup

n
|an|.

This is nothing but a generalization of the Euclidean norm. Indeed, it defines a norm
for 1 ≤ p ≤ ∞ and the space `p becomes a Banach space. For 0 < p < 1 it doesn’t
define a norm, but rather a metric, d(x, y) = ‖x− y‖pp.

The following inequality, called Hölder’s inequality, is of fundamental impor-
tance in our work.

For 1 ≤ p ≤ ∞ define p′ to be the so-called conjugate exponent of p, that is, let p′

be such that it verifies 1
p + 1

p′ = 1, with the convention 1′ =∞ and ∞′ = 1. Then for

(an)n, (bn)n ∈ S it is verified

∑
n

|anbn| ≤

(∑
n

|an|p
)1/p(∑

n

|bn|p
′

)1/p′

,

with the natural modifications for p =∞ or p′ =∞.
Let us introduce some notation before going on.

Remark 1.1. Given 0 < u, v ≤ ∞ we denote

u	 v =


uv
u−v , if v < u <∞;

v, if u =∞;
∞, if u ≤ v.

This notation was introduced in [20].

The inequality can be generalized by taking 1 ≤ p, r ≤ ∞, 1
p + 1

p	r < 1(∑
n

|anbn|r
)1/r

≤

(∑
n

|an|p
)1/p(∑

n

|bn|p	r
)1/p	r

.
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10 2. Multipliers and tensors: the scalar-valued case

It can be proved that (`p)∗ = `p
′

for 1 < p <∞. Moreover, the space `p is reflexive,
i.e., (`p)∗∗ = `p.

Another natural sequence space to consider is c0, defined as the space of all se-
quences converging to zero, with norm identical to ‖ · ‖∞. It is a closed subspace of
`∞, hence a Banach space. The dual of c0 is `1 and the dual of `1 is `∞.
The space c00 is the space of all sequences finitely non-zero, that is, a ∈ `∞ such that
an = 0 for almost every n ∈ N. It is a dense space in c0 with respect to ‖.‖∞. Then,
of course, its dual is `1.

The following order relationship is verified

c00 ⊂ `1 ⊂ `2 ⊂ · · · ⊂ c0 ⊂ `∞.
We can go one step further and consider the following spaces, defined by Kellogg.

Definition 1.2. (Mixed-norm sequence spaces) The space of mixed-norm
sequences consists of the space of sequences (an)n∈N verifying

∑
j∈Ik

|aj |p
1/p


k

∈ `q,

under the norm

‖a‖p,q =

 ∞∑
k=0

∑
j∈Ik

|aj |p
q/p


1/q

with the obvious modifications for p = ∞ or q = ∞. We will write `(p, q) for this
space, where 1 ≤ p, q ≤ ∞ and I is a collection of disjoint intervals in N0, say Ik =
[2k, 2k+1) ∪ N0. Of course `(p, p) = `p.

As expected
(`(p, q))∗ = `(p′, q′)

for 1 ≤ p, q <∞ (see [32]).
As for the spaces of analytic functions, recall that if Σ is a σ−algebra over a set Ω,

then a function µ : Σ→ R is called a finite measure if it satisfies that 0 ≤ µ(A) <∞ for
A ∈ Σ non-empty, µ(∅) = 0 and is countable additive,that is µ(∪i∈NAi) =

∑
i∈N µ(Ai)

for a collection of pairwise disjoint sets (Ai)i∈N ⊂ Σ. The triple (Ω,Σ, µ) is called a
measure space.

Given a measure space (Ω,Σ, µ) we define Lp(Ω, dµ) , (0 < p <∞), as the space of
(equivalent classes of) p-integrable functions over the set Ω with respect to the measure
µ, i.e., such that

‖f‖p =

(∫
Ω
|f(ω)|pdµ(ω)

)1/p

<∞.

In case p =∞, L∞(Ω, dµ) is the space of functions such that

‖f‖∞ = sup
ω∈Ω
|f(ω)|.

We are mostly going to work with Lebesgue spaces on the unit disc, noted Lp(D, dA)
or simply Lp(D), consisting on the p−integrable functions with respect to the normal-
ized area function (dA(z) = rdr dθ2π , z = reiθ ∈ D), and with the spaces Lp(T, dσ) =
Lp(T), where T stands for the unit circle and dσ(θ) = dθ/2π for the normalized arc-
length measure.
Since the following properties hold for every Lp(Ω, µ), we will simply write Lp and ‖·‖p
and we will specify Lp(D) or Lp(T) whenever is necessary. It is known that Lp ⊂ Lq

for p > q.
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1. Preliminaries 11

For 1 ≤ p ≤ ∞ they are Banach spaces. If 0 < p < 1, the triangle inequality is not
satisfied, although it can be replaced by ‖f + g‖pp ≤ ‖f‖pp + ‖g‖pp and the space is
complete considering the metric given by d(f, g) = ‖f − g‖pp.

Hölder’s inequality also holds for integrable functions. Given any two functions
f, g, 1 ≤ p ≤ ∞ and p′ its conjugate exponent,

‖fg‖1 ≤ ‖f‖p‖g‖p′ .

This result helps us to prove that (Lp)∗ = Lp
′

for 1 < p <∞.
Again, taking 1 ≤ p, r ≤ ∞, one gets a generalized version

‖fg‖r ≤ ‖f‖p‖g‖p	r.
Many problems of analysis center upon analytic functions with restricted growth

near the boundary. Thus, given a function f analytic in the unit disc D, it is natural
to consider the integral means defined as

Mp(r, f) :=

(
1

2π

∫ 2π

0
|f(reiθ)|pdθ

)1/p

for 0 < p <∞, and
M∞(r, f) = sup

|z|=r
|f(z)|

in case p = ∞. It is known that the integral means are no decreasing functions of r
(see [24]).
We will say that f ∈ H∞ if f is in H(D) and

sup
|z|<1
|f(z)| <∞,

that is to say H∞ is the space of all bounded analytic functions in D. If among those
functions, we consider those that are continuous in the torus, we will be talking of the
disc algebra, A(D). Obviously A(D) ⊆ H∞.

In the case 0 < p <∞, if Mp(r, f) stays bounded as r → 1, then f is said to belong
to the Hardy space Hp(D), shortly Hp.
Each Hp class is a linear space, preserved under addition and scalar multiplication.
The quantity

‖f‖Hp = lim
r→1

Mp(r, f)

is called the norm of f and it is a true norm if 1 ≤ p <∞ under which Hp becomes a
Banach space.
If we consider the boundary function f(eiθ) = limr→1 f(reiθ), the norm of f in Hp

can be identified with the norm of the boundary function in Lp(T). Thus, Hp can be
identified with the closed subspace of Lp(T), consisting of those functions that verify

f̂(n) = 0, n < 0, where f̂(n) = 1
2π

∫
T f(einθ)e−inθdθ.

Each function in Hp can be approximated in norm by polynomials. Thus Hp is char-
acterized as the closure of polynomials in the space Lp(T). An equivalent statement is
that the dilations fr(z) = f(rz) tend to f in Hp−norm as r increases to 1.
Of course Hq ⊆ Hp for 0 < p < q ≤ ∞.

The Bergman space Ap(D) (shortly, Ap) consists of all functions f analytic on the
unit disc for which

‖f‖Ap =

(∫
D
|f(z)|pdA(z)

)1/p

<∞,

0 < p <∞. The quantity ‖f‖Ap is called the norm of f although it is a true norm only
for 1 ≤ p. As in the Lebesgue spaces, for 0 < p < 1 the triangle inequality is replaced
by ‖f+g‖pAp ≤ ‖f‖

p
Ap+‖g‖pAp and the space is complete considering d(f, g) = ‖f−g‖pAp .
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12 2. Multipliers and tensors: the scalar-valued case

For p ≥ 1, the space Ap is a closed subspace of Lp and therefore a Banach space.
Notice that functions in these spaces cannot grow too rapidly near the boundary. It
is also a remarkable fact that, in Bergman spaces, norm convergence implies locally
uniform convergence. In other words, Ap ⊂ H(D), so if fn, f are in Ap and ‖fn −
f‖Ap → 0 as n→∞, then fn(z)→ f(z) on each compact subset of D.

Considering the limiting cases as p→∞ on Bergman and Hardy spaces, we come
to Bloch and BMOA spaces, respectively. An analytic function in D, f , is said to
belong to the Bloch space, to be denoted Bloch, if

‖f‖B = sup
z∈D

(1− |z|2)|f ′(z)| <∞.

Equivalently, f ∈ Bloch if
sup
z∈D

(1− |z|)|f ′(z)| <∞.

This quantity however is not a true norm, since it identifies functions that differ by a
constant. Hence we define the norm on this space to be ‖f‖Bloch = ‖f‖B + |f(0)|. The
Bloch space becomes a Banach space under this norm.

The condition ‖f‖B <∞ (or its equivalent) can be replaced by

sup
z∈D

(1− |z|)|Df(z)| <∞,

where Df(z) = zf ′(z) + f(z) =
∑

n (n+ 1)f̂(n)zn, for f(z) =
∑

n f̂(n)zn. Indeed, if f
verifies that ‖f‖B <∞, taking into account that

f(z)− f(0) =

∫ z

0
f ′(t)dt,

with the change t = zs we obtain the inequality

M∞(r, f) ≤ |f(0)|+ rM∞(r, f ′)

and thus

M∞(r,Df) = M∞(r, zf ′(z) + f(z)) ≤ rM∞(r, f ′) +M∞(r, f) ≤ 2rM∞(r, f ′) + |f(0)|.
On the other hand, if f is such that supz∈D (1− |z|)|Df(z)| <∞, considering the fact
that Df(z) = (zf(z))′ we obtain

f(z) =

∫ 1

0
Df(zs)ds,

therefore
M∞(r, f) ≤M∞(r,Df)

and

M∞(r, f ′) =
1

r
M∞(r,Df − f) ≤ 2

r
M∞(r,Df).

For each m ∈ N it is easy to see that f ∈ Bloch iff zmf ∈ Bloch and the fact that we can
work with f (m) instead of f ′, namely f ∈ Bloch iff sup0<r<1 (1− r)mM∞(r, f (m)) <∞.
Now define

(1.1) Dmf(z) =
∑
n

(n+m) · ... · (n+ 1)f̂(n)zn = (zmf(z))(m).

Therefore f ∈ Bloch iff sup0<r<1 (1− r)mM∞(r,Dmf) <∞.
The Bloch space is the dual space of A1, which can be identified as well with

the dual of the little Bloch space, Bloch0, (in the usual notation, (A1)∗ = Bloch and
A1 = (Bloch0)∗) defined as the subspace of Bloch consisting of functions with the
property that

lim
|z|→1−

(1− |z|2)|f ′(z)| = 0.
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1. Preliminaries 13

In our notation we have that that Bloch0 = Bloch0, i.e., it is the closure of the
polynomials in the Bloch norm. It is a closed subspace, thus a Banach space.

The BMOA space, is the space consisting of analytic functions of bounded mean
oscillation. The mean oscillation is defined to be

1

|I|

∫
I
|f(eiθ)− fI |

dθ

2π

where I is an interval I ⊆ [0, 2π), |I| is its normalized Lebesgue measure and fI =
1
|I|
∫
I f(eiθ) dθ2π . The space BMOA is the space of integrable functions in the torus, with

Fourier coefficients f̂(n) = 0 for n < 0 and such that

‖f‖BMOA = |f(0)|+ sup
I⊆[0,2π)

1

|I|

∫
I
|f(eiθ)− fI |

dθ

2π
<∞.

As in the Bloch space, we have added a constant to obtain a true norm so that it
becomes a Banach space. It is known, by Fefferman’s duality result, that (H1)∗ =
BMOA.

Finally, the space of analytic functions of vanishing mean oscillation VMOA is a
separable subspace of BMOA, which is the closure in BMOA of the set of polynomials,
VMOA = (BMOA)0. We say that a function f ∈ L1(T) is in the space VMOA if it
is analytic and

lim
|I|→0

sup
I⊆[0,2π)

1

|I|

∫
I
|f(eiθ)− fI |

dθ

2π
= 0.

The dual space of VMOA can be identified with H1. Thus, BMOA can be identified
with the second dual of VMOA.

The reader is referred to [24, 25, 28] for more information on these spaces.
As we said, all of them can be regarded as subspaces of S (in the case of function
spaces, via their Fourier or Taylor coefficients).

To develop a general theory of analytic functions, several authors have formulated
some natural conditions which hold in most classical spaces, but are too restrictive to
include many other interesting spaces. That is the reason why we will focus on the
conditions proposed by O. Blasco and M. Pavlović in [16].

Definition 1.3. (S−admissibility)(see [16])A Banach space X ⊂ S is said to
be S-admissible if P ⊆ X, for P the space of all polynomials, and X ↪→ S, i.e., ∀j ∃Cj
s.t. |f̂(j)| ≤ Cj‖f‖X ∀f ∈ X.

Remark 1.4. Of course if X is a S−admissible space, then the closure of polyno-
mials in the X-norm, X0, and its dual ,(X0)∗, are also admissible ([16]).

Example 1.5. Some examples of S-admissible spaces are `p for 1 ≤ p ≤ ∞, c0 and
the space `(p, q), 1 ≤ p, q ≤ ∞.

The spaces of holomorphic functions considered as sequence spaces such as Hardy
spaces, Bergman spaces, Bloch function spaces and so on, are S-admissible as well.

Definition 1.6. (H−admissibility)(see [16])A Banach space X ⊂ S will be
called H-admissible if X ⊂ H(D) with continuous inclusion, H(rD) ⊂ X for all R > 1
and the map f 7→ f |D is continuous from H(rD) to X.

Clearly H−admissible spaces are also S−admissible.
This class of Banach spaces not only covers many of the classical function spaces, but
is also well-adapted to the study of multipliers.

There are several common interpretations of the coefficient multipliers. One can
see them as diagonal operators, relate them to a convolution product or to a Hadamard
product. We will consider the third option.
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14 2. Multipliers and tensors: the scalar-valued case

Definition 1.7. (Hadamard product) Let f, g be in H(D). Then

f ∗ g(z) :=
∑
j

f̂(j)ĝ(j)zj

is called the Hadamard product of f and g.

Definition 1.8. (Multipliers) Given two S−admissible spaces, X and Y , λ ∈ S
is said to be a (coefficient) multiplier from X to Y if

λ ∗ f :=
∑
j

λj f̂(j)ej ∈ Y for each f ∈ X.

We denote the set of all multipliers from X to Y by (X,Y ) and define

‖λ‖(X,Y ) = sup{‖λ ∗ f‖Y : ‖f‖X ≤ 1}.

This space considered with the operator norm is an S−admissible Banach space
(see [16]).

Example 1.9. For 1 ≤ p, r ≤ ∞ we have

(1.2) (`p, `r) = `p	r.

This idea can be generalized for mixed-norm sequence spaces. Given 1 ≤ p, q, r, s ≤
∞,

(1.3) (`(p, q), `(r, s)) = `(p	 r, q 	 s).
The proof of (1.3) is based on the proof of (1.2) and it can be found in [32].

In Chapter 2 we will deepen into the study of multipliers between a generalized
version of mixed-norm sequence spaces, considered with values in a Banach space.

Other well-known examples of multiplier spaces are multipliers related to Hardy
spaces such as

(Hp, H∞) = Hp′ ,

where 1/p+ 1/p′ = 1, 1 < p <∞(see [36, 31]) or

(Hp, Hu) = `∞

for 0 ≤ u ≤ 2 ≤ p ≤ ∞ (see [31]).
Also, multipliers related to Bloch spaces

(H1, BMOA) = (H1,Bloch) = Bloch
([34, 31]).

It is still an open problem to characterize the space (Hp, Hu) for some values of
u, p, for example 0 < u ≤ p < 1 or (Hp, Hp) for 1 < p < 2. A great survey on this
topic can be found in [31].

Example 1.10. The Köthe dual of X ⊂ S is defined to be

XK =
{

(yj)j ∈ S :
∑
j

|yjxj | <∞,∀(xj)j ∈ X
}
.

Thus, it can be regarded as the multiplier space (X, `1).

The concept of solid space was introduced and studied by Anderson and Shields
([2]). Let us mention some trivial facts about it related to multipliers and Hadamard
tensor products.

Definition 1.11. (Solid space) A set A ⊆ S is said to be solid if for any f ∈ A
and g ∈ S with |ĝ(j)| ≤ |f̂(j)|, j ≥ 0 implies that g ∈ A.
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1. Preliminaries 15

Note that, in terms of multipliers, an S−admissible space X is said to be solid iff
`∞ ⊆ (X,X).
The spaces `p and `(p, q) spaces (1 ≤ p, q ≤ ∞) are solid.

Proposition 1.12. (See [16]) If X or Y are solid S−admissible Banach spaces,
then so it is (X,Y ).

Proposition 1.13. (See [2],[16]) If X is an S−admissible space, then there is a
largest solid admissible space s(X) ⊂ X. Moreover, s(X) is the largest solid subset of
X and we have

s(X) = (`∞, X).

Definition 1.14. (Hadamard tensor product) The Hadamard tensor product
is defined to be the space of linear combinations of Hadamard products, i.e.

X ~ Y = {h ∈ S : h(z) =
∑
n

fn ∗ gn(z) with
∑
n

‖fn‖X‖gn‖Y <∞},

where fn ∈ X, gn ∈ Y and the convergence is considered in S.

This space considered with the norm given by

‖h‖ = inf
∑
n

‖fn‖X‖gn‖Y ,

where the infimum is taken over all possible representations, is an admissible Banach
space.

Example 1.15. For 1 ≤ p, r ≤ ∞ we have `p ~ `p	r = `r.
For 1 ≤ p ≤ 2 one has (see [16], Corollary 8.1) H1~`p = `(p, 1) and H1~Hp = Bp,1

where Bp,1 stands for the space of functions f ∈ H(D) such that

‖f‖Bp,1 = |f(0)|+
∫ 1

0
Mp(r,Df)rdr <∞.

Proposition 1.16. (See [16]) If X or Y are solid S−admissible Banach spaces,
then so it is X ~ Y.

Proposition 1.17. (See [2], [20], [16]) If X ⊂ S, then there is a smallest solid
superset S(X) ⊃ X. Furthermore

S(X) = `∞ ∗X := {α ∗ f : α ∈ `∞, f ∈ X}
and

S(X) = {g ∈ S : ∃f ∈ X such that |f̂(j)| ≥ |ĝ(j)| for all j}.

Denote SB(X) = `∞ ~X. Then of course S(X) ⊂ SB(X).

Proposition 1.18. (See [16], Theorem 6.1) Let X be an S−admissible Banach
space. Then SB(X) is the smallest solid Banach space containing X. More precisely,
if Y is a solid Banach space containing X, then SB(X) ⊂ Y with continuity.

A basic formula connecting tensors and multipliers is given in [16] (Theorem 2.3)
and states that, given X,Y, Z three S−admissible Banach spaces,

(1.4) (X ~ Y,Z) = (X, (Y,Z)).

The previous equality is used to characterize new multiplier spaces, such as (Hp, BMOA)
for 1 ≤ p ≤ 2, identified with certain class of Bloch spaces (see [16, 35, 39]) or
(`p, BMOA) = `(p′,∞) again with 1 ≤ p ≤ 2.

We include in this section a result regarding this topic that we have not found in
the literature.
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16 2. Multipliers and tensors: the scalar-valued case

Consider the differential operator

(1.5) Dmg =
∑
n

(n+ 1)mĝ(n)en

for g =
∑

n ĝ(n)en, en(z) = zn . Of course considering the operator defined in (1.1)
it is clear that D1 = D1. In this case we will write simply D. Denote by D−m the
preimage of this differential operator, that is

D−mY =
{
f = (f̂(n)) ∈ S : Dmf ∈ Y

}
=

{
f = (f̂(n)) ∈ S :

∑
n

(n+ 1)mf̂(n)en ∈ Y

}
.

Notice that D−1f(z) =
∑

n
f̂(n)
n+1 z

n = 1
z

∫ z
0 f(w)dw.

Lemma 1.19. (Theorem 2.1, [9], with ρ(t) = t) Given a Banach space X, T : A1 →
X is continuous iff D2(Tu) is an X-valued function satisfying

‖D2(Tu)(z)‖X = O

(
1

1− |z|

)
(|z| → 1),

where Tu =
∑

n T (un)en for a basis of X, u = (un)n.

Remark 1.20. Note that

M∞(r,D2f) = O

(
1

1− r

)
⇔M∞(r,D2f) = O

(
1

1− r

)
,

as r → 1.
Indeed, from the definition of D2 and D2 one gets D2 = DD −D = D2 −D.
Consider M∞(r,D2f) = O( 1

1−r ). Then M∞(r,D2f) = M∞(r,D2f − Df) ≤
M∞(r,D2f) +M∞(r,Df) = O

(
1

1−r

)
+O

(
log
(

1
1−r

))
.

For the reverse direction, assume M∞(r,D2f) = O
(

1
1−r

)
. Then M∞(r,D2f) =

M∞(r,D2f +Df) ≤M∞(r,D2f) +M∞(r,Df). Now notice that z2Df = zD2f − z2f ,
thus

r2M∞(r,Df) ≤ rM∞(r,D2f) +M∞(r, z2f)

≤ rM∞(r,D2f) + rM∞(r, (z2f)′),

which, together with the fact that (z2f)′ ∈ Bloch by hypothesis, gives

M∞(r,Df) ≤ 1

r
M∞(r,D2f) +

1

r
O

(
log

(
1

1− r

))
.

Lemma 1.21. Let X,Y be H-admissible spaces. Then

(X,D−1Y ) = D−1(X,Y ).

Proof. Let λ = (λj)j ∈ (X,D−1Y ). Then λ ∗ x =
∑

j λjxjej ∈ D−1Y for all

x = (xj)j ∈ X. Thus D(λ ∗ x) =
∑

j (j + 1)λjxjej ∈ Y for all x ∈ X, which implies

Dλ ∈ (X,Y ).
Conversely, if λ ∈ D−1(X,Y ), apply the same argument to prove that Dλ ∗ x ∈ Y for
all x ∈ X is equivalent to λ ∗ x ∈ D−1Y for all x ∈ X. �

Lemma 1.22. Let f ∈ H(D). Then

f ∈ Bloch⇔ sup
0<r,s<1

(1− r)(1− s)M∞(rs,D2f) <∞
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1. Preliminaries 17

Proof. Consider f an analytic function such that

sup
0<r,s<1

(1− r)(1− s)M∞(rs,D2f) <∞.

In particular, for r = s

sup
0<r<1

(1− r)2M∞(r2, D2f) <∞.

That is saying thatM∞(r,D2f) = O( 1
(1−r)2 ). Integrating usingD−1, that isD−1f(z) =∫ 1

0 f(zs)ds, we obtain M∞(r,Df) = O( 1
1−r ). Thus, f ∈ Bloch.

Now let f ∈ Bloch. Then M∞(r,Df) = O( 1
1−r ) and derivating using D, and the

known fact that M∞(r, f ′) ≤ CM∞(r,f)
1−r , one concludes that

M∞(r,Df) = M∞(r, (zf)′) ≤ CM∞(r2, f)

1− r
.

Thus M∞(rs,D2f) = O
(

1
(1−rs)2

)
and as for 0 < r, s < 1 one has that rs < r and

rs < s,
1

(1− rs)2
<

1

(1− r)(1− s)
and the result follows. �

Let us now present the following new result.

Proposition 1.23.

(A1 ~A1, H∞) = D−2Bloch

Proof. The formula (1.4) gives (A1 ~ A1, H∞) = (A1, (A1, H∞)). We will prove
then (A1, (A1, H∞)) = D−2Bloch

Let us first prove that (A1, H∞) = D−1Bloch. By Lemma 1.19, given g an analytic
function, g ∈ (A1, H∞) is equivalent to

‖
∑
n

(n+ 2)(n+ 1)ĝ(n)znen‖H∞ = O

(
1

1− |z|

)
, (|z| → 1).

That is to say, using Remark 1.20 supw∈D |D2gz(w)| = O
(

1
1−|z|

)
or equivalently

supw∈D |D2g(rw)| = O
(

1
1−r

)
. This is also equivalent to M∞(r,D2g) = O

(
1

1−r

)
iff Dg ∈ Bloch, i.e., if and only if g ∈ D−1Bloch.

Then we have reduced the problem to prove (A1, D−1Bloch) = D−2Bloch. Lemma
1.21 gives (A1, D−1Bloch) = D−1(A1,Bloch), thus what we actually need to prove is
(A1,Bloch) = D−1Bloch.

Again let g be an analytic function. Then applying Lemma 1.19, g ∈ (A1,Bloch)
if and only if

‖D2gz(w)‖Bloch = O

(
1

1− |z|

)
, (|z| → 1).

Using Remark 1.20, supw∈D |D3gz(w)|(1− |w|) = O
(

1
1−|z|

)
if and only if

M∞(rs,D3g) ≤ K
(1−r)(1−s) for 0 < r, s < 1. By Lemma 1.22, this inequality holds if

and only if Dg ∈ Bloch, that is, if and only if g ∈ D−1Bloch, and the proposition is
proved. �
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18 3. Spaces of vector-valued sequences

3. Spaces of vector-valued sequences

In this section we develop some necessary background material in order to make
the text accessible to anyone interested in the topic and give examples of spaces of
vector-valued sequences to be used later on. From now on, the letter E will be used
for Banach spaces.

Following the notation introduced in the scalar case, S(E) will be used to denote
the space of sequences f = (xj)j≥0, xj ∈ E, endowed with the locally convex topology
given by the seminorms pj(f) = ‖xj‖E , j ≥ 0. As in the scalar case, we shall think of
f as a formal power series with coefficients in E, that is f(z) =

∑
j≥0 xjz

j and most

of the time we will write f̂(j) instead of xj .
A sequence (fn)n ⊂ S(E) converges to f ∈ S(E) if and only if pj(f−fn)→ 0 ∀j ≥ 0

if and only if ‖f̂(j) − f̂n(j)‖E → 0 as n → ∞ for all j ≥ 0. That is, convergence in
S(E) is coordinatewise convergence.
S(E) is a metrizable and complete space. For the completeness, take (fn)n ⊆ S(E)

a Cauchy sequence. Then (f̂n(j))n is Cauchy for any j ∈ N and since E is Banach, it

converges to some f̂(j). Defining f = (f̂(j))j we have fn → f ∈ S(E).
Recall the notation ej(z) = zj for each j ≥ 0 and write P(E) for the vector space

of the analytic polynomials with coefficients in E, that is
∑N

j xjej , where xj ∈ E.
Tensor product will play an important role in the exposition. We recall the defi-

nition and some properties before going on. For basic information concerning tensor
products one can take a look at [38, 22, 21].

Definition 1.24. (Tensor product.) The algebraic tensor product between two
vector spaces U, V can be seen as a linear form space over the bilinear continuous
mappings from U × V into K, B(U, V ). Given u ∈ U, v ∈ V ,

u⊗ v(F ) = 〈F, u⊗ v〉 = F (u, v).

The tensor product U ⊗ V is the subspace of the algebraic dual of B(U, V ) generated
by these elements. Hence, an element of U ⊗ V can be written as

x =

n∑
i=1

αiui ⊗ vi

where n ∈ N, αi ∈ K, ui ∈ U, vi ∈ V .

The representation of the element x is not necessarily unique, though. In fact,
α(u⊗ v) = (αu)⊗ v = u⊗ (αv). This allows us to write

x =
n∑
i=1

ui ⊗ vi.

Therefore we can define the following norm.

Definition 1.25. (Projective norm.) Given x ∈ U ⊗V , we define its projective
norm by

π(x) = inf
∑
i

‖ui‖U‖vi‖V ,

where the infimum is taken over all possible representations and the series converges
in the sense of bilinear forms. The notation for the space U ⊗ V endowed with this
norm will be U ⊗π V .

The space U⊗V equipped with the projective norm might not be a complete space.
Its completion is the so-called projective tensor product. We will write U⊗̂πV .

The following theorem may be helpful to identify the elements of these spaces.
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Theorem 1.26. Let X,Y, Z be Banach spaces and B : X × Y −→ Z a continuous
bilinear form. There exists a unique operator B̃ : X⊗̂πY −→ Z satisfying

B̃(x⊗ y) = B(x, y),

x ∈ X, y ∈ Y.
This correspondence gives us an isometric isomorphism between the Banach spaces

B(X × Y,Z) = L(X⊗̂πY,Z) = L(X,L(Y,Z)).

Recall that for two given Banach spaces, X and Y , the space of continuous linear
operators L(X,Y ) endowed with the norm

‖T‖ = sup
‖x‖X≤1

‖T (x)‖Y

is a Banach space. Unless otherwise indicated, the convergence of operators will be
understood in this norm.

We are now in conditions to list some ways of generating different vector-valued
sequence spaces.

Definition 1.27. Given X ⊆ S and E a Banach space, we denote

X⊗̂πE
the tensor space previously described,

X[E] = {(xj)j≥0 ∈ S(E) : ‖(‖xj‖E)j‖X <∞}
and

Xweak(E) =
{

(xj)j≥0 ∈ S(E) : ‖(xj)j‖Xweak(E) = sup
‖x∗‖E∗=1

‖(〈xj , x∗〉)j‖X <∞
}
.

Example 1.28. For 1 ≤ p ≤ ∞, we consider

`p⊗̂πE
the projective tensor product space between `p and E and

`p[E] =
{

(xn)n≥0 : ‖(xn)‖`p(E) =
( ∞∑
n=0

‖xn‖pE
)1/p

<∞
}

which is usually denoted `p(E).
Then, in connection with Theorem 1.26, the space E⊗`1 may be seen as sequences

with values in E via the identification x ⊗ a 7→ (xan)n, where a = (an)n. Since∑
n ‖xan‖E ≤ ‖x‖E

∑
n |an|, the series is absolutely convergent. Therefore x ⊗ a ∈

`1(E), the space of E-absolutely convergent series where the norm is defined to be
‖y‖1 =

∑
n ‖yn‖E . If we extend the map

J : E⊗̂π`1 −→ `1(E)
x⊗ a 7→ (xan)n

to an isometric isomorphism, we have an identification between both spaces (for the
complete proof see [22]).

Following with the list of examples, we consider

`pweak(E) =
{

(xn)n≥0 : ‖(xn)‖`pweak(E) = sup
‖x∗‖E∗=1

( ∞∑
n=0

|〈xn, x∗〉|p
)1/p

<∞
}
,

with the obvious modifications for p =∞.
In particular, c0(E) = (`∞(E))0 and

UC(E) = (`1weak)
0(E) =

{
(xn)n≥0 ∈ `1weak(E);

∑
n

xn converges unconditionally
}
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20 3. Spaces of vector-valued sequences

We also have a vector-valued version for Kellogg’s spaces `(p, q).

Definition 1.29. (Vector-valued mixed-norm sequence spaces) We denote
by `(p, q, E), 1 ≤ p, q ≤ ∞, the vector-valued mixed-norm space of sequences (aj)j∈N
in S(E) verifying 

∑
j∈Ik

‖aj‖pE

1/p

k∈N0

∈ `q,

under the norm

‖a‖p,q,E =

 ∞∑
k=0

∑
j∈Ik

‖aj‖pE

q/p


1/q

where I = {Ik = [2k, 2k+1) ∩ N0, k ∈ N0} and with the obvious modifications for
p =∞ or q =∞. Of course `(p, p, E) = `p(E) and `(p, q, E)∗ = `(p′, q′, E∗).

In Chapter 2 we will extend this version to more general families of intervals in N0.
Another space not coming from the above constructions is the vector-valued version

of the Rad space, which hangs on the remarkable Rademacher functions. We will now
give the basic notions to get an understanding of this space. More information on this
topic can be found in [21].

Definition 1.30. (Rademacher function) The Rademacher functions rn : [0, 1]→
R, n ∈ N are defined by setting

rn(t) := sign(sin(2nπt)).

It will be convenient to refer to the constant one function as the zero’th Rademacher
function, r0.

To grasp how Rademacher functions work, we have pictured the graphs of three of
them.

Figure 1. r1(t), r2(t), r3(t)

The most important feature of the Rademacher functions is that they have nice
orthogonality properties. If 0 < n1 < n2 < ... < nk and p1, . . . , pk ≥ 0 are integers,
then it can be easily seen from the pictures that∫ 1

0
rp1
n1
· · · · · rpknkdt =

{
1 if each pj is even;
0 otherwise.

An immediate consequence is that the Rademacher functions form an orthonormal
sequence in L2([0, 1]) and so∫ 1

0
|
∑

anrn(t)|2dt =
∑
|an|2
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for all (an)n ∈ `2. Be aware they do not form an orthonormal basis. For example,
cos(2πt) is orthogonal to all the rn’s.

The main result about the Rademacher functions is a powerful inequality.

Theorem. F (Kitchin’s inequality) (see [21]) For any 0 < p < ∞, there are
positive constants Ap, Bp such that regardless of the scalar sequence (an)n ∈ `2 we have

Ap

(∑
n

|an|2
)1/2

≤
(∫ 1

0
|
∑

anrn(t)|pdt
)1/p

≤ Bp

(∑
n

|an|2
)1/2

.

Notice that the statement can be rephrased to say that on the span of the Rademacher
functions all the Lp metrics are equivalent. The Radp space is defined to be this closed
linear span. We will focus our attention only on Rad2, which will be noted simply by
Rad.

Then the vector-valued version will be

Rad(E) =

(xj)j≥0 : sup
N

∫ 1

0
‖

N∑
j=0

xjrj(t)‖2Edt

1/2

<∞


It is well known (see [21]) that

`1weak(E) ⊂ Rad(E) ⊂ `2weak(E)

with continuous embeddings. Let us mention the interplay with the geometry of Ba-
nach spaces when comparing the space Rad(E) and Rad[E]. We need a “Kitchin’s-
type” inequality for the vector valued case.

Remark 1.31. (Kahane’s inequality) (see [21])
Let 0 < p, q <∞. Then there is a constant K(p, q) > 0 for which∫ 1

0
‖
∑
k≤n

rk(t)xk‖qdt

1/q

≤ K(p, q)

∫ 1

0
‖
∑
k≤n

rk(t)xk‖pdt

1/p

regardless of the choice of the Banach space X and the vectors xk ∈ X.

Unlinke the situation with Kitchin’s Inequality, in general infinite dimensional Ba-
nach spaces none of these quantities can be compared with (

∑
k≤n ‖xk‖2)1/2 in a uni-

form way.

Definition 1.32. (Type) A Banach space X has type p if there is a constant C
such that, however we choose finitely many vectors xk ∈ X, k = 1, · · · , n,(∫ 1

0
‖

n∑
k=1

rk(t)xk‖2dt

)1/2

≤ C

(
n∑
k=1

‖xk‖pdt

)1/p

.

Definition 1.33. (Cotype) A Banach space X has cotype q if there is a constant
K ≥ 0 such that no matter how we select finitely many vectors xk ∈ X, k = 1, · · · , n,(

n∑
k=1

‖xk‖qdt

)1/q

≤ K

(∫ 1

0
‖

n∑
k=1

rk(t)xk‖2dt

)1/2

.

To cover the case q =∞, the left hand side should be replaced by maxk≤n ‖xk‖.
An interesting corollary following from Kwapien’s theorem (every operator from X to
Y factors through a Hilbert space, [21]) tells us that the only Banach spaces which
simultaneously have type and cotype 2 are the isomorphic copies of Hilbert spaces.
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22 4. Spaces of vector-valued integrable and analytic functions

Notice that the notions of type 2 and cotype 2 correspond to `2(E) ⊂ Rad(E) and
Rad(E) ⊂ `2(E), respectively.

Proposition 1.34. Let E be a Banach space.
(i) Rad(E) = Rad[E] if and only if E is isomorphic to a Hilbert space.
(ii) Radweak(E) = Rad[E] if and only if E is finite dimensional.

Proof. Note that, using the orthonormality of rn, Plancherel’s theorem gives that
Rad[E] = `2(E) and Radweak(E) = `2weak(E) . Of course if E is a Hilbert space then
Rad(E) = `2(E) and for finite dimensional spaces Radweak(E) = `2weak(E) = `2(E).

On the other hand, clearly Rad[E] ⊂ Rad(E) if and only if E has type 2 and
Rad(E) ⊂ Rad[E] if and only if E has cotype 2 . Now use the mentioned corollary
from Kwapien’s theorem (see [21], 12.20, p.246) to conclude (i).

To see the direct implication in (ii), simply use that if dim(E) =∞ then `2(E) (
`2weak(E) (see [21] 2.18, p.50). �

4. Spaces of vector-valued integrable and analytic functions

This section is devoted to gather the vector-valued version of some of the function
spaces mentioned above and to take a look at its most basic properties. The defini-
tions and basic properties of integrals of vector-valued functions with respect to scalar
measures will be given.

Consider (Ω,Σ, µ)a finite measure space.

Definition 1.35. (Simple and µ−measurable function) A function f : Ω→ E
is called simple if there exist x1, ..., xn ∈ E and A1, · · · , An ∈ Σ such that

f =
n∑
i=1

xiχAi ,

where χAi(ω) = 1 in case ω ∈ Ai and equals to zero otherwise.
A function f : Ω → E is called µ−measurable if there exists a sequence of simple

functions (fn)n with limn ‖fn − f‖ = 0 µ−almost everywhere.

Definition 1.36. (Bochner integral) A µ−measurable function is called Bochner
integrable if there exists a sequence of simple functions (fn)n such that

lim
n

∫
Ω
‖fn − f‖dµ = 0.

In this case,
∫
A fdµ is defined for each A ∈ Σ by∫

A
fdµ = lim

n

∫
A
fndµ.

If 1 ≤ p ≤ ∞, then Lp(µ,E) stands for the space of all (equivalence classes of)
E−valued Bochner integrable functions f defined on Ω with∫

Ω
‖f‖pdµ <∞.

The norm is defined by

‖f‖p =

(∫
Ω
‖f(ω)‖pEdµ(ω)

)1/p

, f ∈ Lp(µ,E).

Routine computations show that Lp(µ,E) is a Banach space under ‖ · ‖p. In addi-
tion, simple functions are dense in Lp(µ,E) for 1 ≤ p < ∞. For p = ∞ the symbol
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L∞(µ,E) stands for the space of all (equivalence classes of) E−valued Bochner inte-
grable functions defined on Ω that are essentially bounded, i.e., such that

‖f‖∞ = ess sup {‖f(ω)‖ : ω ∈ Ω} <∞.
The space is also a Banach space under the norm ‖ · ‖∞ and the countably valued

functions in L∞(µ,E) are dense in it. It is known that Lp(µ,E) ⊆ Lq(µ,E) whenever
p > q.

For 1 ≤ p <∞ it is not difficult to recognize Lp
′
(µ,E∗) isometrically as a subspace

of (Lp(µ,E))∗. The equality holds if and only if E∗ has the Radon-Nikodym property
with respect to µ, that is to say that for each µ−continuous vector measure G : Σ→ E
of bounded variation there exists g ∈ L1(µ,E) such that G(A) =

∫
A gdµ for all A ∈ Σ.

Example 1.37. In a similar way we did in the Example 1.28, we can identify
isometrically the spaces E⊗̂πL1(µ) and L1(µ,E) for any measure space (Ω,Σ, µ). The
proof can be found in [24].

Running parallel to the scalar-valued case, consider H(rD, E) to be the space of
E-valued analytic functions on rD ⊂ C for R > 0. That is, functions f : rD → E,

f(z) =
∑

j∈N0
f̂(j)zj such that lim supj

j

√
‖f̂(j)‖E ≤ R. It can be regarded as a vec-

tor subspace of S(E) via the Taylor coefficients f̂(j) ∈ E. Of course every sequence

(xj)j ∈ S(E) which satisfies the condition lim supj
j
√
‖xj‖E ≤ R can also be identified

with an E−valued analytic function in rD.
We endow this space with the ‘H(E)−topology’, i.e., the topology of uniform conver-
gence on compact subsets of rD. This topology can be described by the family of
seminorms

M∞(r, f) = sup
|z|=r
‖f(z)‖E ,

0 < r < R. Therefore, we will say a Banach space X is continuously contained in
H(rD, E) if for any 0 < r < R there exists a constant Ar > 0 such that

M∞(r, f) ≤ Ar‖f‖X , f ∈ X.
Conversely, we will write H(rD, E) ⊂ X if there exists s ≤ R and Bs > 0 such that

‖f‖X ≤ BsM∞(s, f)

for any f ∈ H(rD, E).Notice that H(rD, E) ⊆ S(E).
The vector-valued disc algebra and the bounded analytic functions will be denoted

A(D, E) = {f ∈ H(D, E), f ∈ C(D, E)}
and

H∞(D, E) =
{
f ∈ H(D, E), sup

|z|<1
‖f(z)‖E <∞

}
respectively, where we define

‖f‖A(D,E) = sup
|z|=1
‖f(z)‖E , ‖f‖H∞(D,E) = sup

|z|<1
‖f(z)‖E .

It is easy to see that (H∞(D, E))0 = A(D, E).
The E−valued Hardy space Hp(D, E) is defined as the space of E−valued analytic

functions on the unit disc such that

‖f‖Hp(D,E) = sup
0<r<1

Mp(r, f) <∞,

where now

Mp(r, f) =

(
1

2π

∫ 2π

0
‖f(reiθ)‖pEdθ

)1/p

.
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24 4. Spaces of vector-valued integrable and analytic functions

Also in the vector-valued case the integral means are increasing functions of r.
Therefore Hp(D, E) ⊆ Hq(D, E) whenever p > q.

We also have the space defined at the boundary

Hp(T, E) =

{
f ∈ Lp(T, E) : f̂(n) =

∫ 2π

0
f(eiθ)e−inθ

dθ

2π
= 0, n ≤ 0

}
.

It is not difficult to see that Hp(T, E) = (Hp(D, E))0. Although we do not en-
ter into this, the property ARNP is the one needed for the coincidence Hp(T, E) =
Hp(D, E) (see [7]).

Given 1 ≤ p < ∞, the E-valued Bergman space Ap(D, E) is defined as the space
of E- valued analytic functions on the unit disc such that

‖f‖Ap(D,E) =

(∫
D
‖f(z)‖pEdA(z)

)1/p

=

(∫ 1

0
Mp(f, r)

prdr

)1/p

<∞.

It is also well-known that, for 1 ≤ p <∞,

A(D, E) ⊂ H∞(D, E) ⊂ Hp(D, E) ⊂ Ap(D, E) ⊆ A1(D, E)

with continuous inclusions.

We define the E−valued Bloch space, Bloch(D, E), to be the set of E-valued holo-
morphic functions on the disc that verify

sup
z∈D

(1− |z|2)‖f ′(z)‖E <∞

or, equivalently,

sup
z∈D

(1− |z|)‖f ′(z)‖E <∞,

or

sup
z∈D

(1− |z|)‖Df(z)‖E <∞.

It is a Banach space under the norm

‖f‖Bloch(D,E) = ‖f(0)‖E + sup
z∈D

(1− |z|)‖f ′(z)‖E .

The little Bloch space Bloch0(D, E) is defined to be the subset of f ∈ Bloch(D, E)
such that

lim
|z|→1−

sup
z∈D

(1− |z|2)‖f ′(z)‖E = 0

and turns out to be the closure of the E−valued polynomials in the Bloch norm.
We will denote by BMOA(T, E) the space of functions in L1(T, E) with Fourier

coefficients f̂(n) = 0 for n < 0 and such that

sup
1

|I|

∫
I
‖f(eiθ)− fI‖E

dθ

2π
<∞

where the supremum is taken over all intervals I ⊆ [0, 2π), |I| is normalized I’s
Lebesgue measure and fI = 1

|I|
∫
I f(eiθ) dθ2π . It becomes a Banach space under the

norm

‖f‖BMOA(T,E) = ‖f(0)‖E + sup
1

|I|

∫
I
‖f(eiθ)− fI‖E

dθ

2π
.

Finally, the space of E-valued analytic functions of vanishing mean oscillation
VMOA(T, E) is the closure in BMOA(T, E) of the set of polynomials in the
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BMOA(T, E) norm. We say that a function f ∈ L1(T, E) is in the space VMOA(T, E)
if it is analytic and

lim
|I|→0

sup
I⊆[0,2π)

1

|I|

∫
I
‖f(eiθ)− fI‖E

dθ

2π
= 0.

We have the inclusions

H∞(D, E) ⊂ BMOA(T, E) ⊂ Bloch(D, E),

A(D, E) ⊂ VMOA(T, E) ⊂ Bloch0(D, E)

and trivially the identification Bloch(D, E) = Blochweak(D, E).

Let us finish this section with a new result that shows that the spaces Ap(D, E),
Hp(D, E) and the vector-valued version X[E] for X = Ap(D), Hp(D) are different for
the particular case E = c0 (see [18]).

Proposition 1.38. The spaces Ap(D, c0), Hp(D, c0) and the vector-valued version
X[c0] for X = Ap(D), Hp(D) don’t coincide.

Proof. Let (en)n be the canonical basis in c0. Consider the functions fN (z) =∑N
n=0 enz

n.
Let us analyze its norm in Hp(D, E) and Hp(D)[E]. We have

‖fN‖Hp(D,c0) ≤ ‖fN‖H∞(D,c0) = 1, p ≥ 1.

However
‖fN‖H∞(D)[c0] = N + 1,

‖fN‖Hp(D)[c0] ≥ ‖fN‖H2(D)[c0] = (N + 1)1/2, 2 ≤ p <∞,
and, using Hardy’s inequality for functions in H1 (see [24]),

‖fN‖Hp(D)[c0] ≥ ‖fN‖H1(D)[c0] ≥ C
N∑
n=0

1

n+ 1
≥ C log(N + 1), 1 ≤ p < 2.

Similarly

A2(D)[E] =

(xj)j ∈ S(E) :
∞∑
j=0

‖xj‖2

j + 1
<∞


and then for p ≥ 2

‖fN‖Ap(D,c0) ≤ 1, ‖fN‖Ap(D)[c0] ≥ C(log(N + 1))1/2,

which exhibits the difference between the spaces above and the vector-valued interpre-
tation X[E]. �
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CHAPTER 2

New results on vector-valued sequence spaces.

We recall the reader that, during the whole text, the letter E will denote a Banach
space (also when written with some natural subindex) and XE will denote a subspace
of S(E).

1. S(E)−admissibility

We introduce now the basic notion which plays a fundamental role in what follows.

Definition 2.1. (S(E)-admissibility) Let E be a Banach space and let XE be a
subspace of S(E). We will say that XE is S(E)−admissible (or simply admissible) if

(i) (XE , ‖ · ‖XE ) is a Banach space,

(ii) the projection πj : XE −→ E, f 7→ f̂(j), is continuous and
(iii) the inclusion ij : E −→ XE , x 7→ xej is continuous.

Here the notation ej is used to denote a sequence where ej(i) = 0 for i 6= j and
ej(j) = 1. Hence for each j ≥ 0 we have

‖f̂(j)‖E ≤ ‖πj‖‖f‖XE , f ∈ XE

‖xej‖XE ≤ ‖ij‖‖x‖E , x ∈ E.
To avoid misunderstandings, we will write ‖ij‖XE = ‖ij‖ and ‖πj‖XE = ‖πj‖ when we
are dealing with more than one space.

Note that the third condition is the same as saying that the E−valued polynomials,
P(E) are continuously embedded in the space XE .

In the case E = C we would be talking of S-admissibility, as expected.

Remark 2.2. Let XE2 be S(E2)−admissible and let E1 be isomorphic to a closed
subspace of E2, say I(E1). Define

XE1 = {(xj)j ∈ S(E1) : xj ∈ E1, (I(xj))j ∈ XE2}

and the norm

‖(xj)j‖XE1
= ‖(I(xj))j‖XE2

.

Then XE1 is S(E1)−admissible.
Also, if Z is a Banach space and XE ⊂ Z ⊂ YE , where XE and YE are S(E)-

admissible, then Z is S(E)-admissible.

Let us give a method to generate S(E)−admissible spaces.

Proposition 2.3. Let E be a Banach space and let X be S−admissible. Then
X⊗̂πE,X[E] and Xweak(E) are S(E)−admissible.

Proof. Clearly Xweak(E) = L(E∗, X) and X⊗̂πE have complete norms.
Due to the continuous embeddings

X⊗̂πE ⊂ X[E] ⊂ Xweak(E)

27
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we only need to see that P(E) ⊂ X⊗̂πE with continuous injections ij for j ≥ 0 and
that Xweak(E) ⊂ S(E) with continuity. Both assertions follow trivially from the facts

‖xej‖X⊗̂πE = ‖x‖E‖ej‖X ≤ ‖ij‖X‖x‖E

and

‖xj‖E = sup
‖x∗‖E∗=1

|〈xj , x∗〉| ≤ ‖πj‖X‖(xk)k‖Xweak(E),

where the admissibility of X has been used in both inequalities. �

Example 2.4. Some examples of S(E)−admissible spaces are `p(E), `pweak(E),

`(p, q, E) and `p⊗̂πE for 1 ≤ p, q ≤ ∞. In particular, c0(E) and UC(E) are S(E)−admissible
spaces.

Recall that

`1weak(E) ⊂ Rad(E) ⊂ `2weak(E)

with continuous embeddings and therefore Rad(E) is S(E)-admissible.

Definition 2.5. Let XE be S(E)- admissible. We define

XK
E =

{
f = (x∗j )j ∈ S(E∗) :

∑
j

|〈x∗j , xj〉| <∞, ∀(xj)j ∈ XE

}
.

We denote XKK
E = (XK

E )K .
The space XK

E is nothing but the so-called Köthe dual of the space XE .

Remark 2.6. The space XK
E is S(E∗)−admissible.

The proof is standard, taking into account the S(E)− admissibility of the space XE

and considering the norm defined by ‖f‖XK
E

= supx∈XE
∑

j |〈x∗j , xj〉| for f = (x∗j )j ∈
XK
E .

Some well-known Köthe duals are `1(E)K = `∞(E∗), `∞(E)K = `1(E∗) and
c0(E)K = `1(E∗).

Definition 2.7. (Minimal space) Let XE be S(E)−admissible and recall the

notation X0
E = P(E)

XE
. We say that XE is minimal whenever P(E) is dense in XE ,

that is to say X0
E = XE .

Of course X0
E is S(E)−admissible whenever XE is.

Proposition 2.8. Let XE be S(E)−admissible and let F be a Banach space. Then
L(XE , F ) is S(L(E,F ))−admissible.
In particular (XE)∗ and (X0

E)∗ are S(E∗)−admissible.

Proof. Identifying each T ∈ L(XE , F ) with the sequence (T̂ (j))j ∈ S(L(E,F ))

given by T̂ (j)(x) = T (xej), we have that L(XE , F ) ↪→ S(L(E,F )). Moreover

‖πj‖L(XE ,F ) ≤ ‖ij‖XE due to the estimate ‖T̂ (j)‖L(E,F ) ≤ ‖ij‖XE‖T‖L(XE ,F ).
To show P(L(E,F )) ⊂ L(XE , F ) with continuity, we use that, for each j ≥ 0 and

S ∈ L(E,F ), Sej defines an operator in L(XE , F ) by means of

Sej(f) = S(xj), f = (xj)j ∈ XE .

Moreover ‖ij‖L(E,F ) ≤ ‖πj‖XE because ‖Sej‖L(XE ,F ) ≤ ‖πj‖XE‖S‖L(E,F ). �
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2. New results on vector-valued sequence spaces. 29

2. Operator-valued multipliers

Recall that, given two S−admissible Banach spaces X and Y , a coefficient mul-
tiplier λ ∈ (X,Y ) is a sequence whose coefficients lay in K, where we have an inner
product. Now we are dealing with spaces which have coefficients on different Banach
spaces. This leads us to a change of perspective: the coefficients λj must “transform”
coefficients in E1 into coefficients in E2. Thus, the most natural definition one can
think of is the following.

Definition 2.9. (Operator-valued multipliers) LetXE1 , XE2 be Banach spaces.
We define the multipliers space between XE1 and XE2 as

(XE1 , XE2) = {λ ∈ S(L(E1, E2)) : λ ∗L f ∈ XE2 ∀f ∈ XE1},

where

λ ∗L f =
∑
j

λj(f̂(j))ej .

We can endow this space with the norm

‖λ‖(XE1
,XE2

) = sup
‖f‖XE1

<1
‖λ ∗L f‖XE2

and it becomes a Banach space.
Two particular cases worth mentioning are, on one hand, the case E1 = K . In

this case λ ∈ S and we will write λ ∗B0 f =
∑

j λj f̂(j)ej and (X,XE)B0 for the space

of multipliers. On the other hand, the case E2 = K, where λ ∈ S(E∗) and naturally

λj(f̂(j)) = 〈λj , f̂(j)〉. Here we will write λ ∗D f for the product and (XE , X)D for the
space of multipliers.

The notation might seem a bit strange, but we will keep it to be coherent with the
following chapters.

Theorem 2.10. If XE1 and XE2 are S(E1), S(E2)−admissible Banach spaces
respectively, then (XE1 , XE2) is S(L(E1, E2))−admissible.

Proof. Let λ = (Tj)j ∈ (XE1 , XE2) and j ≥ 0. For each x ∈ E1, using the
admissibility of XE1 and XE2 , we have

‖Tj(x)‖E2 ≤ ‖πj‖XE2‖Tj(x)ej‖XE2

= ‖πj‖XE2‖λ ∗L xej‖XE2

≤ ‖πj‖XE2‖λ‖(XE1
,XE2

)‖xej‖XE1

≤ ‖πj‖XE2‖ij‖XE1‖λ‖(XE1
,XE2

)‖x‖E1 .

This gives ‖πj‖(XE1
,XE2

) ≤ ‖πj‖XE2‖ij‖XE1 and (XE1 , XE2) ↪→ S(L(E1, E2)) with
continuity.

On the other hand if p ∈ P(L(E1, E2)) and f ∈ XE1 we have p∗Lf ∈ P(E2) ⊂ XE2 .
Hence p ∈ (XE1 , XE2). For each j ≥ 0 and T ∈ L(E1, E2), we have to show that
‖Tej‖(XE1

,XE2
) ≤ Cj‖T‖. Now given f ∈ XE1 , again by the admissibility of XE1 and

XE2 ,

‖Tej ∗L f‖XE2
= ‖T (f̂(j))ej‖XE2

≤ ‖ij‖XE2‖T (f̂(j))‖E2

≤ ‖ij‖XE2‖T‖‖f̂(j)‖E1

≤ ‖ij‖XE2‖πj‖XE1‖T‖‖f‖XE1
.
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30 2. Operator-valued multipliers

Therefore ‖ij‖(XE1
,XE2

) ≤ ‖ij‖XE2‖πj‖XE1 .
Let us now show the completeness of (XE1 , XE2). Let (λn)n ⊂ (XE1 , XE2) be a

Cauchy sequence of multipliers. Since the sequence of operators Λn(f) = λn ∗L f is
a Cauchy sequence in L(XE1 , XE2) we define Λ ∈ L(XE1 , XE2) to be its limit in the
norm. Therefore

‖Λ− Λn‖ → 0 ⇒ ‖Λ(f)− Λn(f)‖XE2
→ 0 ⇒ λn ∗L f → Λ(f) ∈ S(E2).

On the other hand, we know (XE1 , XE2) ↪→ S(L(E1, E2)) and then there exists λ ∈
S(L(E1, E2)) such that

λn ∗L f → λ ∗L f
in S(L(E1, E2)). Hence necessarily Λ(f) = λ ∗L f . �

We find a particular case of operator valued multipliers in solid spaces.

Definition 2.11. Let XE be S(E)−admissible. We define

XS
E = {f = (xj)j ∈ S(E) : (αjxj)j ∈ XE ,∀(αj)j ∈ `∞}

In general we have
XS
E ⊆ XE ⊆ XKK

E .

Remark 2.12. The space XS
E is S(E)−admissible.

The proof is standard, taking into account the S(E)− admissibility of the space
XE .

Definition 2.13. (Solid space) We say that a Banach space, XE ⊂ S(E),
is S(E)−solid (or simply solid) whenever XE is a S(E)−admissible space verifying

(αj f̂(j))j ∈ XE for f ∈ XE and (αj)j ∈ `∞, that is to say XE = XS
E .

As in the scalar case, XE is solid iff `∞ ⊆ (XE , XE)

Proposition 2.14. Let XE be an S(E)−admissible space. The largest solid subset
of XE exists and is s(XE) = (`∞, XE)B0 .

Proof. Since `∞ is a solid space and (`∞, XE)B0 is an S(E)−admissible Banach
space (see Theorem 2.10), it is straightforward that (`∞, XE)B0 is a solid subspace of
XE . Now let YE be another solid subset of XE . If g ∈ YE , given α ∈ `∞ we have
g ∗B0 α ∈ YE ⊂ XE . �

Remark 2.15. (a) X[E], Xweak(E) and X⊗̂πE are S(E)−solid iff X is a solid
space. The proofs are quite easy taking into account the characterization `∞ ⊆ (Y, Y )
with the corresponding space Y on each case.
In particular, `p(E), `pweak(E) and `p⊗̂πE are S(E)-solid for 1 ≤ p ≤ ∞.

(b) Rad(E) is a S(E)-solid space. (This follows from Kahane’s contraction princi-
ple).

(c) Neither Hp(D, E) nor Ap(D, E) are S(E)-solid unless p = 2.
Assuming that they are S(E)-solid, and restricting to φ(z)x for φ ∈ H(D) and

x ∈ E, we will have that also Hp or Ap must be solid for p 6= 2, which is not the case.

Proposition 2.16. Let X,Y be a solid spaces. Then

(X[E1], Y [E2]) = (X,Y )[L(E1, E2)].

Proof. Given λ = (λj)j ∈ (X,Y )[L(E1, E2)], note that for x = (xj)j ∈ X[E1],

‖λj(xj)‖E2 ≤ ‖λj‖‖xj‖E1 .

Then it is clear that λ ∈ (X[E1], Y [E2]).
For the reverse inclusion, given λ = (λj)j ∈ (X[E1], Y [E2]), consider α = (αj)j ∈ X

and take (εj)j ∈ (X,Y ) such that εj > 0, j ∈ N0. The existence of such a sequence is
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guaranteed by the fact that (X,Y ) is solid, since X is solid. We can find (xj)j ⊂ E1,
‖xj‖E1 = 1, such that

‖λj(αjxj)‖ ≥ αj‖λj‖ − εjαj .
By construction, the sequence (αjxj)j ∈ S(E1) is such that (‖αjxj‖E1)j = (|αj |)j and
since X is solid and α ∈ X, we get to (|αj |)j ∈ X. Thus, (αjxj)j ∈ X[E1]. Now use
the fact that λ ∈ (X[E1], Y [E2]) to obtain (‖λj(αjxj)‖E2)j ∈ Y .
Notice that, by the choice of (εj)j , we get (εjαj)j ∈ Y . This together with the fact
that ‖λj‖αj ≤ ‖λj(αjxj)‖E2 + εjαj and that Y is solid, gives (‖λj‖αj)j ∈ Y . �

Making use of Remark 2.15 and Proposition 2.16,

(2.1) (`p(E1), `r(E2)) = `q(L(E1, E2))

where 1 ≤ p, q ≤ ∞ and q = p	 r.
In a similar way, for 1 ≤ p, q, u, v ≤ ∞

(`(p, q, E1), `(u, v, E2)) = `(p	 u, q 	 v,L(E1, E2)),

(see [32]).

Corollary 2.17. Given X,Y solid spaces, we have (X[E], Y )D = (X,Y )[E∗]. In
particular (X[E])K = XK [E∗].

Therefore, for 1 ≤ p ≤ ∞ and p′ its conjugate exponent,

(`p(E))K = (`p(E), `1)D = (`p, `1)[E∗] = `p
′
(E∗)

and
(`p(E))KK = ((`p(E))K , `1)D = (`p

′
[E∗], `1) = (`p

′
, `1)[E∗] = `p(E∗∗).

Proposition 2.18. Let X be S−solid and E a Banach space. Then

(X⊗̂πE)K = (XK)weak(E
∗).

Proof. We first claim that (x∗j )j ∈ (XK)weak(E
∗) if and only if

(
〈x∗j , x〉

)
j
∈ XK

for all x ∈ E. We only need to see that if

sup
‖x‖E=1

‖
(
〈x∗j , x〉

)
j
‖XK <∞

then
(
〈x∗∗, x∗j 〉

)
j
∈ XK for x∗∗ ∈ E∗∗.

Let x∗∗ ∈ E∗∗. For each (αj)j ∈ X with ‖(αj)j‖X ≤ 1 and N ∈ N, there are εj
with |εj | = 1,

N∑
j=0

|〈x∗∗, x∗j 〉αj | = |
N∑
j=0

〈x∗∗, x∗j 〉αjεj |

= |〈x∗∗,
N∑
j=0

x∗jαjεj〉|

≤ ‖x∗∗‖E∗∗‖
N∑
j=0

x∗jαjεj‖E∗

≤ ‖x∗∗‖E∗∗ sup
‖x‖E=1

N∑
j=0

|〈x∗j , x〉αj |

≤ ‖x∗∗‖E∗∗ sup
‖x‖E=1

‖
(
〈x∗j , x〉

)
j
‖XK .

This concludes the claim.
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We show first (X⊗̂πE)K ⊆ (XK)weak(E
∗). Take λ = (x∗j )j ∈ (X⊗̂πE)K , x ∈ E

and (αj)j ∈ X. Note that

(2.2)
(
〈x∗j , x〉αj

)
j
∈ `1

and then we obtain that (x∗j )j ∈ (XK)weak(E
∗) with ‖(x∗j )j‖(XK)weak(E∗) ≤ ‖λ‖ from

the previous result.
Assume now that λ = (x∗j )j ∈ (XK)weak(E

∗) and let us show that λ ∈ (X⊗̂πE)K .

If ε > 0 and f =
∑

n fn ⊗ xn ∈ X⊗̂πE with f̂n(j) = αnj and
∑

n ‖fn‖X‖xn‖E <

‖f‖X⊗̂πE + ε we have∑
j

|〈x∗j ,
∑
n

αnj xn〉| ≤
∑
j

∑
n

|〈x∗j , xn〉αnj |

=
∑
n

∑
j

|〈x∗j , xn〉αnj |

≤
∑
n

‖xn‖E‖
(
〈x∗j ,

xn
‖xn‖E

〉
)
j
‖XK‖fn‖X

≤ ‖(x∗j )j‖(XK)weak(E∗)(
∑
n

‖xn‖E‖fn‖X)

≤ ‖(x∗j )j‖(XK)weak(E∗)(‖f‖X⊗̂πE + ε).

�

Remark 2.19. In general XK⊗̂πE∗ ⊆ (Xweak(E))K .
Indeed, for each g = (βj)j ∈ XK , x∗ ∈ E∗ and f = (xj)j ∈ Xweak(E), we have

that ∑
j

|〈x∗, xj〉βj | ≤ ‖g‖XK‖x∗‖E∗‖f‖Xweak(E)

and then

‖g ⊗ x∗‖(Xweak(E))K ≤ ‖g‖XK‖x∗‖E∗

Now we extend using linearity and density to obtain XK⊗̂πE∗ ⊆ (Xweak(E))K .
For the case X = `p, 1 < p <∞, it was shown (see [19, 26, 5]) that

(`pweak(E))K = `p
′⊗̂πE∗.

3. Generalized mixed-norm spaces

During the following sections the inclusion E1 ⊂ E2 will be considered a continuous
inclusion.

We define now a vector-valued version of the spaces `(p, q) presented in Definition
1.2 with some modifications on the support of the sequence and the way one takes the
intervals:

Definition 2.20. (Generalized vector-valued mixed-norm spaces) Let 1 ≤
p, q ≤ ∞ and let I be a collection of disjoint intervals in N0, say Ik = N0 ∩ [nk, n

′
k)

where nk < n′k ≤ nk+1. We set ΛI = ∪k∈N0Ik. We write `I(p, q, E) for the space of
sequences (aj)j∈ΛI ∈ S(E) verifying

∑
j∈Ik

‖aj‖pE

1/p

k

∈ `q.
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This space becomes a Banach space under the norm

‖a‖Ip,q,E =

 ∞∑
k=0

∑
j∈Ik

‖aj‖pE

q/p


1/q

with the obvious modifications for p =∞ or q =∞.
We will simply write `I(p, q) for the scalar case and ‖ · ‖Ip,q either for the scalar case
or for the case in which there is no possible confusion with the Banach space.

We can define the weak version as well: we will say (an)n∈ΛI ∈ `Iweak(p, q, E)

(shorter, `Iw(p, q, E)) if 
∑
j∈Ik

|〈a∗, aj〉|p
1/p


k

∈ `q

for every a∗ ∈ E∗. This space also becomes a Banach space under the norm

‖a‖I,wp,q,E = sup
a∗∈BE∗

 ∞∑
k=0

∑
j∈Ik

|〈a∗, aj〉|p
q/p


1/q

with the obvious modifications for p =∞ or q =∞.

Remark 2.21. Of course

`I(p, p, E) = {(an)n∈ΛI ∈ S(E) : (
∑
n

‖an‖pE)1/p <∞}

and
`Iw(p, p, E) = {(an)n∈ΛI ∈ S(E) : sup

a∗∈BE∗
(
∑
n

|〈a∗, an〉|p)1/p <∞}.

In particular

`I(p, p, E) = `p(E) :=

{
(xk)k ∈ S(E);

(∑
k

‖xk‖pE
)1/p

<∞

}
and

`Iw(p, p, E) = `pweak(E) :=

{
(xk)k ∈ S(E); sup

a∗∈BE∗
‖(〈a∗, xk〉)k‖`p <∞

}
whenever ΛI = N0.

Both spaces `I(p, q, E) and `Iw(p, q, E) are S(E)−admissible with ‖ij‖ = ‖πj‖ = 1.

Proposition 2.22. For 1 ≤ p, q <∞ and 1/p+ 1/p′ = 1/q + 1/q′ = 1

`I(p, q, E)∗ = `I(p′, q′, E∗).

Therefore, `I(p, q, E)∗ is an S(E∗)−admissible space

Proof. Let x∗ = (x∗n)n∈Λ ∈ `I(p′, q′, E∗) and define φx∗ : `I(p, q, E)→ C, φ(x) :=∑
n 〈x∗n, xn〉. Using Hölder’s inequality twice,∑

n

|〈x∗n, xn〉| =
∑
k

∑
n∈Ik

|〈x∗n, xn〉| ≤ ‖x∗‖Ip′,q′,E∗‖x‖Ip,q,E

and so φx∗ is well-defined. It is also clear that φx∗ is a linear continuous map.
For the reverse inclusion, consider φ ∈ `I(p, q, E)∗ and define x∗n : E → C, x∗n(a) :=
φ(aen). Then aen ∈ `I(p, q, E) because it is finitely supported. Thus the map is well
defined.
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Now consider x∗ = (x∗n)n∈ΛI and let ε > 0. Using duality in `q we can find a sequence
β ∈ `q such that ‖β‖q = 1 supported in Λ verifying

‖x∗‖Ip′,q′,E∗ =

∑
k∈Λ

∑
n∈Ik

‖x∗n‖
p′

E∗

q′/p′


1/q′

=
∑
k∈Λ

β(k)

∑
n∈Ik

‖x∗n‖
p′

E∗

1/p′

.

Then, for a fixed k ∈ N0, we take αk ∈ `p supported in Λ such that ‖αk‖p = 1 and(∑
n∈Ik ‖x

∗
n‖

p′

E∗

)1/p′

=
∑

n∈Ik αk(n)‖x∗n‖E∗ , and let ak = 1
β(k)q−1

∑
n∈Ik αk(n). We

can find a sequence (xn)n ⊂ E, with ‖xn‖E = 1 for any n and such that ‖x∗n‖E∗ =
φ(xnen) + ε

ak
. Thus

‖x∗‖ =
∑
k∈Λ

β(k)
∑
n∈Ik

αk(n)‖x∗n‖E∗

=
∑
k∈Λ

β(k)
∑
n∈Ik

αk(n)
(
φ(xnen) +

ε

ak

)
≤
∑
k∈Λ

β(k)
∑
n∈Ik

αk(n)φ(xnen) +
∑
k∈Λ

β(k)
∑
n∈Ik

αk(n)
ε

ak

=
∑
k∈Λ

β(k)
∑
n∈Ik

αk(n)φ(xnen) + ε
∑
k∈Λ

β(k)q

≤
∑
k∈Λ

β(k)
∑
n∈Ik

αk(n)φ(xnen) + ε.

If n ∈ Ik, name γ(n) = β(k)αk(n). Now notice that for N,M ∈ Λ, there exist
N1,M1 ∈ N such that N ∈ IN1 and M ∈ IM1 , therefore

‖
M∑
n=N

γ(n)xnen‖p,q,E ≤ ‖
M1∑
k=N1

β(k)
∑
n∈Ik

αk(n)xnen‖p,q,E

≤

 M1∑
k=N1

|β(k)|q
∑
n∈Ik

|αk(n)|p‖xn‖pE

q/p


1/q

≤

 M1∑
k=N1

|β(k)|q
1/q

which tends to zero as N,M →∞. This together with the fact that φ is a continuous
linear map, allow us to write

‖x∗‖ ≤ φ
(∑

k

β(k)
∑
n∈Ik

αk(n)xnen
)

+ ε ≤ ‖φ‖‖(γ(n)xn)n‖p,q,E + ε = ‖φ‖+ ε,

by the choice of αk, β and (xn)n. This completes the proof. �

Remark 2.23. It is clear that (aj)j ∈ `I(p, q, E)⇔ (apj )j ∈ `I(1, q/p,E) in the case

p < q and also (aj)j ∈ `I(p, q, E) ⇔ (aqj)j ∈ `I(
p
q , 1, E) in the case p > q. Moreover,

for ap = (apj )j ,

(2.3) ‖a‖Ip,q =
(
‖ap‖I1,q/p

)1/p
=
(
‖aq‖Ip/q,1

)1/q

There is an analogous result for `Iw(p, q, E).
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Remark 2.24. Let a ∈ `I(p, q, E).

(i) If I ′ is a sub-collection of intervals in I then ‖a‖I′p,q ≤ ‖a‖Ip,q and ‖a‖I
′,w
p,q ≤

‖a‖I,wp,q .
(ii) If I = I ′ ∪ I ′′ for two disjoint collections I ′ and I ′′ then

‖a‖Ip,q =
(

(‖a‖I′p,q)q + (‖a‖I′′p,q)q
)1/q

and

‖a‖I,wp,q = sup
a∗∈BE∗

(
(‖(〈a∗, aj〉)j‖I

′
p,q)

q + (‖(〈a∗, aj〉)j‖I
′′
p,q)

q
)1/q

.

We would like to analyze the embedding between `I(p1, q1, E) and `I(p2, q2, E) and
`Iw(p1, q1, E) and `Iw(p2, q2, E).

Proposition 2.25. Let I be a collection of disjoint intervals in N0 and let 1 ≤
p1, p2, q ≤ ∞ with p1 6= p2. Then `I(p1, q, E) = `I(p2, q, E) (with equivalent norms) if
and only if

(2.4) sup
k∈N0

#Ik <∞.

In particular if supk∈N0
#Ik <∞ then

`I(p, q, E) =

(an)n∈ΛI :

(∑
n

‖an‖qE

)1/q

<∞

 .

Proof. =⇒) Assume, for instance, p1 < p2 and that ‖a‖Ip1,q ≈ ‖a‖
I
p2,q for all a

supported in ΛI . Hence taking aχIk where ‖ai‖E = 1 ∀i ∈ Ik one concludes that

(n′k − nk)1/p1−1/p2 ≤ C for any k. Hence supk #Ik <∞.
⇐=) Note that #Ik = (n′k − nk) and assume M = supk(n

′
k − nk). Then

‖a‖Ip1,q =

 ∞∑
k=0

∑
j∈Ik

‖aj‖p1

E

q/p1


1/q

≈

 ∞∑
k=0

∑
j∈Ik

‖aj‖p2

E

q/p2


1/q

= ‖a‖Ip2,q

since ‖ · ‖p1 ≈ ‖ · ‖p2 in CM .
�

Remark 2.26. In the same conditions of Proposition 2.25, the proof may be
adapted for the weak case, that is, `Iw(p1, q, E) = `Iw(p2, q, E) (with equivalent norms)
if and only if supk∈N0

#Ik <∞.

Proposition 2.27. Let 1 ≤ p1, q1, p2, q2 ≤ ∞ and let I be a collection of disjoint
intervals in N0 with supk#Ik =∞.
Then `I(p1, q1) ⊆ `I(p2, q2) if and only if p1 ≤ p2 and q1 ≤ q2.

Proof. =⇒) Assume that there exists C > 0 such that ‖a‖Ip2,q2 ≤ C‖a‖Ip1,q1
for all a supported in ΛI . Hence taking k ∈ N0 and a = χIk one concludes that

(#Ik)
1/p2−1/p1 ≤ C. Hence p1 ≤ p2. Let N ∈ N0 and consider a =

∑N
k=1 χnk .

Applying the above inequality we obtain N1/q2−1/q1 ≤ C. Therefore q1 ≤ q2.
⇐=) Let us denote

`q(`p) =

(xk)k∈N0 : xk ∈ `p,

( ∞∑
k=0

‖xk‖q`p

)1/q

<∞

 .
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Hence the mapping
(an)n∈ΛI → ((aj)j∈Ik)k∈N0

is an isometric embedding from `I(p, q) into `q(`p). Notice that the index that don’t
belong to ΛI are not considered in any case. Taking into account that `r1(E) ⊆ `r2(E)
for any Banach space E and r1 ≤ r2 we conclude that

`I(p, q1) ⊆ `I(p, q2) and `I(p1, q) ⊆ `I(p2, q).

Therefore
`I(p1, q1) ⊆ `I(p2, q1) ⊆ `I(p2, q2).

�

Corollary 2.28. Let 1 ≤ p1, q1, p2, q2 ≤ ∞, E1, E2 be Banach spaces and let I be
a collection of disjoint intervals in N0 with supk#Ik =∞.
Then `I(p1, q1, E1) ⊆ `I(p2, q2, E2) if and only if p1 ≤ p2, q1 ≤ q2 and E1 ⊆ E2.

Proof. =⇒) Let us start proving that E1 ⊆ E2 with continuity. Consider x ∈ E1

and take the sequence xen for some n ∈ ΛI . It is straightforward to see that xen ∈
`I(p1, q1, E1) ⊆ `I(p2, q2, E2) and ‖x‖E2 = ‖xen‖Ip2,q2 ≤ ‖xen‖

I
p1,q1 = ‖x‖E1 . Now

for the condition on pi, qi (i = 1, 2) take (αix)i ∈ `I(p1, q1, E1) for a fixed x ∈ E1.
Then ‖(αix)i‖Ip2,q2,E2

= ‖(αi)i‖Ip2,q2‖x‖E2 ≤ ‖(αix)i‖Ip1,q1,E1
= ‖(αi)i‖Ip1,q1‖x‖E1 and

the result follows from the scalar case.
⇐=) Let us denote

`q(`p(E)) =

(xk)k∈N0 ∈ S(E) : xk ∈ `p(E),

( ∞∑
k=0

‖xk‖q`p(E)

)1/q

<∞

 .

Hence the mapping
(an)n∈ΛI → ((aj)j∈Ik)k∈N0

is an isometric embedding from `I(p, q, E) into `q(`p(E)). Now use the fact that

E1 ⊂ E2 ⇒ `p(E1) ⊂ `p(E2)

and use the same ideas above to get the desired result. �

Remark 2.29. For the weak version, consider the scalar case for every x∗ ∈ BE∗1
whenever p1 ≤ p2, q1 ≤ q2 and E1 ⊆ E2, which implies E∗2 ⊆ E∗1 . Then take the
supremum and

`Iw(p1, q1, E1) ⊆ `Iw(p2, q2, E2).

For the other direction,we use the same argument above based in the scalar case, taking
into account that ‖x‖E = supx∗∈BE |〈x

∗, x〉| for E a Banach space.

We would like to analyze the embedding between `I(p, q, E1) and `J (p, q, E2) for
I 6= J whenever ΛI = ΛJ .

Proposition 2.30. Let E1 ⊆ E2 be Banach spaces. Let I = {Il : l ∈ N0} and
J = {Jk : k ∈ N0}. If ΛI = ΛJ , p ≤ q and supk #Jk <∞ then

`I(p, q, E1) ⊆ `J (p, q, E2)

and
`Iw(p, q, E1) ⊆ `Jw (p, q, E2).

In an analogue way, if q ≤ p and supl #Il <∞,

`J (p, q, E1) ⊆ `I(p, q, E2))

and
`Jw (p, q, E1) ⊆ `Iw(p, q, E2).
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Proof. We will only prove the first two inclusions, as the other are obtained
reasoning in an analogue way. Let p ≤ q and supk #Jk < ∞. Then Proposition 2.25
gives `J (p, q, E2) = `J (q, q, E2) and clearly `J (q, q, E2) ⊇ `I(q, q, E1). Then the result
follows using Corollary 2.28, which states `I(p, q, E1) ⊆ `I(q, q, E1). For the weak
case consider the scalar case for x∗ ∈ E∗2 ⊆ E∗1 , ‖x∗‖E2 = 1 fixed. Then take the
supremum. �

Let us mention a particular case where they coincide.

Proposition 2.31. Let I be such that Ik = [nk, n
′
k) ∩ N0 with n′2k = n2k+1 and

define
J = {Jk = I2k ∪ I2k+1 : k ∈ N0}.

Then `I(p, q, E) = `J (p, q, E) and `Iw(p, q, E) = `Jw (p, q, E).

Proof. Note that Jk = I2k ∪ I2k+1 is again an interval in N0. Using that

(2.5) (a+ b)α ≤ Cα(aα + bα)

for a, b, α > 0 then

‖a‖Jp,q =

 ∞∑
k=0

∑
j∈Jk

‖aj‖pE

q/p


1/q

=

 ∞∑
k=0

∑
j∈I2k

‖aj‖pE +
∑

j∈I2k+1

‖aj‖pE

q/p


1/q

≤ C

 ∞∑
k=0

∑
j∈I2k

‖aj‖pE

q/p

+
∞∑
k=0

 ∑
j∈I2k+1

‖aj‖pE

q/p


1/q

≤ C‖a‖Ip,q.

On the other hand, using now (aβ + bβ) ≤ Cβ(a+ b)β for a, b, β > 0,

‖a‖Ip,q =

 ∞∑
k=0

∑
j∈I2k

‖aj‖pE

q/p

+

 ∑
j∈I2k+1

‖aj‖pE

q/p


1/q

≤ C ′

 ∞∑
k=0

 ∑
j∈I2k∪I2k+1

‖aj‖pE

q/p


1/q

= C ′‖a‖Jp,q.

For weak spaces just take the supremum over all the elements of BE∗ and use (2.5)
when necessary. �

The previous idea is easily generalized using the following definition.

Definition 2.32. Let I := {Il : l ∈ N0} and J := {Jk : k ∈ N0}. We say that
I ≤ J if the following conditions hold:

(i) ΛI = ΛJ ,
(ii) Fk = Fk(I,J ) := {l ∈ N0 : Il ⊆ Jk} 6= ∅ for all k ∈ N0,

(iii) Jk = ∪l∈FkIl for all k ∈ N0.
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Proposition 2.33. Let 1 ≤ p, q ≤ ∞, E1 ⊆ E2 and I ≤ J . Then

(i) `J (p, q, E1) ⊆ `I(p, q, E2) and `Jw (p, q, E1) ⊆ `Iw(p, q, E2) for p ≤ q.
(ii) `I(p, q, E1) ⊆ `J (p, q, E2) and `Iw(p, q, E1) ⊆ `Jw (p, q, E2) for q ≤ p.

Proof. (i) Case q =∞: Let a ∈ `J (p,∞, E1) and l ∈ N0. We know that there is
k such that Il ⊆ Jk. Hence∑

n∈Il

‖an‖pE2

1/p

≤ C

∑
n∈Jk

‖an‖pE1

1/p

≤ ‖a‖Jp,∞,E1
.

This gives ‖a‖Ip,∞,E2
≤ ‖a‖Jp,∞,E1

.

Now for the weak case use that, in the scalar case, ‖(〈x∗, an〉)n‖Ip,∞ ≤ ‖(〈x∗, an〉)n‖Jp,∞
and then take supremums.

The case p = 1: Let a ∈ `J (1, q, E1) and q ≥ 1. Therefore

(
‖a‖I1,q,E2

)q
=
∑
k

∑
l∈Fk

∑
n∈Il

‖an‖E2

q

≤ C
∑
k

∑
l∈Fk

∑
n∈Il

‖an‖E1

q

= C
(
‖a‖J1,q,E1

)q
The case 1 < p ≤ q <∞ follows using (2.3) and the previous one.
Again for the weak case use the scalar case and take supremums.
(ii) The case p =∞: Let a ∈ `I(∞, q, E1). Then

‖a‖J∞,q,E2
=
(∑

k

sup
l∈Fk

(sup
n∈Il
‖an‖E2)q

)1/q
≤ C

(∑
k

∑
l∈Fk

(sup
n∈Il
‖an‖E1)q

)1/q
= ‖a‖I∞,q,E1

.

To cover the remaning cases, from (2.3), we simply need to show that `I(p, 1, E1) ⊆
`J (p, 1, E2) for p ≥ 1. Now observe that

‖a‖Jp,1,E2
=
∑
k

∑
l∈Fk

∑
n∈Il

‖an‖pE2

1/p

=
∑
k

∑
l∈Fk

‖aχIl‖
p
`p(E2)

1/p

≤ C
∑
k

∑
l∈Fk

‖aχIl‖`p(E1) = C
∑
l

∑
n∈Il

‖an‖pE1

1/p

= C‖a‖Ip,1,E1
.

The proof for the weak case is easily adapted given that E∗2 ⊂ E∗1 using the scalar
case (E1 = E2 = K) and then taking supremums. �

Theorem 2.34. Let I ≤ J and 1 ≤ p, q ≤ ∞ with p 6= q. Then `I(p, q, E) =
`J (p, q, E) and `Iw(p, q, E) = `Jw (p, q, E) (with equivalent norms) if and only if supk #Fk <
∞.

Proof. Case: `I(p, q, E) = `J (p, q, E). =⇒) Assume that ‖a‖Jp,q ≈ ‖a‖Ip,q for all
a finitely supported. Take e ∈ E such that ‖e‖E = 1. Now define

a(k) =
∑
l∈Fk

(#Il)
−1/peχIl

for k ∈ N0. Then ‖a(k)‖Jp,q = (#Fk)
1/p and ‖a(k)‖Ip,q = (#Fk)

1/q. One concludes that

C2 ≤ (#Fk)
1/p−1/q ≤ C1 which implies, in the case p 6= q, supk∈N0

(#Fk) <∞.

Universitat de València



2. New results on vector-valued sequence spaces. 39

⇐=) Case p < q: From Proposition 2.33 we only need to show `I(p, q, E) ⊆
`J (p, q, E). Using now Hölder’s inequality for q/p > 1∑

n∈Jk

‖an‖pE

1/p

≤

∑
l∈Fk

∑
n∈Il

‖an‖pE

1/p

≤

∑
l∈Fk

∑
n∈Il

‖an‖pE

q/p


1/q

(#Fk)
1
p	q .

Therefore, if M = supk #Fk, we have

‖a‖Jp,q =

 ∞∑
k=0

∑
n∈Jk

‖an‖pE

q/p


1/q

≤M
1
p	q

∑
k∈N0

∑
l∈Fk

∑
n∈Il

‖an‖pE

q/p


1/q

= M
1
p	q

∑
l∈N0

∑
n∈Il

‖an‖pE

q/p


1/q

= M
1
p	q ‖a‖Ip,q.

Case p > q: Using again Proposition 2.33 we shall show `J (p, q, E) ⊆ `I(p, q, E).
Using 1/q = 1/q 	 p+ 1/p

‖a‖Ip,q =

(∑
l

‖aχIl‖
q
p

)1/q

=

∑
k

∑
l∈Fk

‖aχIl‖
q
p

1/q

≤

∑
k

∑
l∈Fk

‖aχIl‖
p
p

q/p

(#Fk)
q/q	p


1/q

≤M
1
q	p

∑
k

∑
n∈Jk

‖an‖pE

q/p


1/q

≤M
1
q	p ‖a‖Jp,q.

For the weak case fix x∗ ∈ E∗ and argue in an analogue way making use of the
scalar case. Then take the supremum in the unit ball of E∗. �

Let us now exhibit an example where neither `I(p, q, E) ⊆ `J (p, q, E) nor `J (p, q, E) ⊆
`I(p, q, E).

Example 2.35. Let 1 ≤ p < q <∞ and take I,J as shown below:

0 n1 2n1 2n1+n2 2(n1+n2)

· · ·

I0
I1 I2 ··· In1

In1+1 In1+2 ···In1+n2+1

· · ·
J0 J1

··· Jn1−1
Jn1

Jn1+1
··· Jn1+n2 Jn1+n2+1

with:

card(I0) = n1 card(J0) = ... = card(Jn1) = 1
card(I1) = ... = card(In1) = 1 card(Jn1) = n1

card(In1+1) = n2 card(Jn1+1) = ... = card(Jn1+n2) = 1
card(In1+2) = ... = card(In1+n2+1) = 1 card(Jn1+n2+1) = n2, ...
card(In1+n2+2) = n3, ... ...
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40 3. Generalized mixed-norm spaces

Let us see that neither `J (p, q, E) ⊂ `I(p, q, E) nor `I(p, q, E) ⊂ `J (p, q, E).
Taking

a = (

n1︷ ︸︸ ︷
β1e, ..., β1e,

n1︷ ︸︸ ︷
0, ..., 0,

n2︷ ︸︸ ︷
β2e, ..., β2e, 0, ...)

and
b = (0, ..., 0︸ ︷︷ ︸

n1

, β1e, ..., β1e︸ ︷︷ ︸
n1

, 0, ..., 0︸ ︷︷ ︸
n2

, β2e, ...)

where e ∈ E with ‖e‖E = 1 we have:

‖a‖Ip,q = ‖b‖Jp,q = (
∑
j

βqjn
q/p
j )1/q

‖a‖Jp,q = ‖b‖Ip,q = (
∑
j

βqjnj)
1/q.

Then it is enough to consider q > p and βj = n
−1/p
j j−1/q. Now

(
∑
j

βqjn
q/p
j )1/q = (

∑
j

j−1)1/q =∞

and, since nj ≥ j,

(
∑
j

βqjnj)
1/q = (

∑
j

j−1n
1−q/p
j )1/q ≤ (

∑
j

j−q/p)1/q <∞.

Hence we have a ∈ `J (p, q, E)\`I(p, q, E) and b ∈ `I(p, q, E)\`J (p, q, E).

This procedure may be applied in the weak case (all proofs may be repeated fixing
x∗ ∈ E∗ and then taking the supremum). Thus, we can find examples where neither
`Iw(p, q, E) ⊆ `Jw (p, q, E) nor `Jw (p, q, E) ⊆ `Iw(p, q, E).

We would like to explain a procedure to analyze the general case ΛI = ΛJ . We
will give the results for the weak case at the very end of the section as a remark to
avoid becoming repetitive.

Definition 2.36. Let I and J be two families of disjoint intervals in N0 with
ΛI = ΛJ . For each k ∈ N0 we use the notation, as above, Fk = {l ∈ N0 : Il ⊆ Jk}
which now might be empty. We also define

F̃k = {l ∈ N0 : Jk ∩ Il 6= ∅}.
We write φ and Φ for the mappings given by

φ(k) = min F̃k and Φ(k) = max F̃k.

Similarly, interchanging I and J , we define Gl, G̃l, ψ(l) and Ψ(l).

Definition 2.37. We define the ”left” and ”right” part of the interval Jk by

J̌k = Jk ∩ Iφ(k) and Ĵk = Jk ∩ IΦ(k)

and, denoting J ′k = ∪l∈FkIl and J̃k = ∪l∈F̃kIl, we have

(2.6) J ′k ⊆ Jk ⊆ J̃k
and

(2.7) Jk = J ′k ∪ Ĵk ∪ J̌k,

where J ′k = ∅ whenever Fk = ∅. Similarly, interchanging I and J we consider Ǐl, Îl, I
′
l

and Ĩl.

In the following picture one grasps the idea easily.

Universitat de València



2. New results on vector-valued sequence spaces. 41

· · ·
I0

I1 I2 I3 I4 I5 I6

· · ·
J0

J1
J2

J3

· · ·
J ′0

J̃0

J ′1

J̃1

J̌1

J̃2

Ĵ2

J ′2
J ′3

J̃3

With this notation out of the way we can classify intervals in J into four different
types (according to I). Note that for each interval J ∈ J there are four possibilities:
J coincides with I for some I ∈ I, J can be written as a union of at least two intervals
in I, J is strictly contained into some interval I ∈ I or there exists I ∈ I which
overlaps with J and its complement Jc. Therefore we decompose N0 into four disjoint
sets defined as follows:

Definition 2.38. Let I and J families of disjoint intervals in N0 with ΛI = ΛJ .
We introduce

(2.8) NJequal = {k ∈ N0 : #(F̃k \ Fk) = 0,#F̃k = 1},

(2.9) NJbig = {k ∈ N0 : #(F̃k \ Fk) = 0,#F̃k ≥ 2},

(2.10) NJsmall = {k ∈ N0 : #(F̃k \ Fk) > 0,#F̃k = 1},

(2.11) NJinter = {k ∈ N0 : #(F̃k \ Fk) > 0,#F̃k ≥ 2}.
We define the sets NIequal, N

I
big, N

I
small and NIinter similarly.

Since the notation may be a bit confusing, we will illustrate the idea. Let I,J be
different partitions of ΛI = ΛJ , then:

0∈NI
equal

↓

1,3,4∈NI
small

2∈NI
inter

5∈NI
big

0∈NJ
equal

3,4∈NJ
small

1,2∈NJ
inter

1∈Λr 2∈Λl

· · ·
I0

I1 I2 I3 I4 I5

· · ·
J0

J1
J2

J3 J4

Remark 2.39. Using (2.7) we can also give a description of the sets above in terms
of φ and Φ:

NJequal = {k : φ(k) = Φ(k), Jk = Iφ(k)}.
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NJbig = {k : φ(k) < Φ(k), Jk = J̃k}.
NJsmall = {k : φ(k) = Φ(k), Jk ( Iφ(k)}.
NJinter = {k : φ(k) < Φ(k), Jk ( J̃k}.

Using the above decomposition we can generalize Proposition 2.30, Proposition
2.33 and Theorem 2.34. We will generalize the weak version of the theorems at the
end of the section.

Note that supk #Jk <∞ implies supk #F̃k <∞ and also that I ≤ J corresponds

to the case where NJinter ∪N
J
small = ∅ or equivalently #G̃l = 1 for any l ∈ N0.

Theorem 2.40. Let 1 ≤ p < q ≤ ∞ and I,J with ΛI = ΛJ . Then

`I(p, q, E) ⊆ `J (p, q, E)⇐⇒ sup{#F̃k; k ∈ N0} <∞.

Proof. =⇒) Arguing as in Theorem 2.34, for k ∈ N0 we consider

a(k) =
∑
l∈F̃k

(#(Il ∩ Jk))−1/peχIl∩Jk ,

where ‖e‖E = 1. Hence

‖a(k)‖Jp,q =

∑
n∈Jk

‖an‖pE

1/p

=

∑
l∈F̃k

∑
n∈Il∩Jk

‖an‖pE

1/p

= (#F̃k)
1/p

and

‖a(k)‖Ip,q =

∑
l∈F̃k

 ∑
n∈Il∩Jk

‖an‖pE

q/p


1/q

= (#F̃k)
1/q.

Therefore using that ‖a(k)‖Jp,q ≤ C‖a(k)‖Ip,q and p < q we conclude that sup{#F̃k; k ∈
N0} <∞.

⇐=) Denote supk(#Fk) = M ≥ 0 and let k ∈ N0. Case q = ∞: If k ∈ NJsmall ∪
NJequal then ∑

n∈Jk

‖an‖pE

1/p

≤

 ∑
n∈Iφ(k)

‖an‖pE

1/p

≤ ‖a‖Ip,∞.

If k ∈ NJbig ∪N
J
inter we have∑

n∈Jk

‖an‖pE

1/p

=

∑
l∈Fk

∑
n∈Il

‖an‖pE +
∑

n∈J̌k∪Ĵk

‖an‖pE

1/p

≤

∑
l∈Fk

∑
n∈Il

‖an‖pE

1/p

+

 ∑
n∈Iφ(k)

‖an‖pE

1/p

+

 ∑
n∈IΦ(k)

‖an‖pE

1/p

≤ C

sup
l∈Fk

(∑
n∈Il

‖an‖pE
)1/p

(#Fk)
1/p + 2‖a‖Ip,∞

 .

Universitat de València
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This shows `I(p,∞, E) ⊆ `J (p,∞, E). Case q < ∞: Arguing as in Proposition 2.33
we simply show that `I(1, q, E) ⊆ `J (1, q, E) for q > 1. Observe that

∑
k∈NJsmall

∑
n∈Jk

‖an‖E

q

≤
∑

l∈NIbig∪N
I
inter

∑
φ(k)=l

∑
n∈Jk

‖an‖E

q

≤
∑

l∈NIbig∪N
I
inter

 ∑
φ(k)=l

∑
n∈Jk

‖an‖E

q

=
∑

l∈NIbig∪N
I
inter

∑
n∈Il

‖an‖E

q

≤
(
‖a‖I1,q

)q
.

Also we have∑
k∈NJequal∪N

J
big

∑
n∈Jk

‖an‖E

q

≤
∑

k∈NJequal∪N
J
big

∑
l∈Fk

∑
n∈Il

‖an‖E

q

≤
∑

k∈NJequal∪N
J
big

(#Fk)
q−1

∑
l∈Fk

∑
n∈Il

‖an‖E

q

≤M q−1
∑

k∈NJequal∪N
J
big

∑
l∈Fk

∑
n∈Il

‖an‖E

q

≤M q−1
(
‖a‖I1,q

)q
.

Finally

∑
k∈NJinter

∑
n∈Jk

‖an‖E

q

≤
∑

k∈NJinter

∑
l∈Fk

∑
n∈Il

‖an‖E +
∑
n∈J̌k

‖an‖E +
∑
n∈Ĵk

‖an‖E

q

≤ C
∑

k∈NJinter

(#Fk)
q−1

∑
l∈Fk

∑
n∈Il

‖an‖E

q

+ C
∑

k∈NJinter

∑
n∈J̌k

‖an‖E

q

+ C
∑

k∈NJinter

∑
n∈Ĵk

‖an‖E

q

≤ CM q−1
∑

l∈NIinter∪NIsmall

∑
n∈Il

‖an‖E

q

+ C
∑

k∈NJinter

 ∑
n∈Iφ(k)

‖an‖E

q

+
∑

k∈NJinter

 ∑
n∈IΦ(k)

‖an‖E

q

≤ C
(
‖a‖I1,q

)q
.

Combining the above estimates we conclude this implication. �
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Corollary 2.41. Let 1 ≤ p < q ≤ ∞ and I,J with ΛI = ΛJ . Then

`J (p, q, E) ⊆ `I(p, q, E)⇐⇒ sup{#G̃l; l ∈ N0} <∞.

Theorem 2.42. Let 1 ≤ q < p ≤ ∞ and I,J with ΛI = ΛJ . Then

`J (p, q, E) ⊆ `I(p, q, E)⇐⇒ sup{#F̃k; k ∈ N0} <∞.

Proof. =⇒) The argument is similar to the one presented in the direct implication
of Theorem 2.40.
⇐=) Denote again supk(#Fk) = M . Case p = ∞: Observe first that if l ∈

NIbig ∪NIequal we have

(sup
n∈Il
‖an‖E)q = |an(l)|q ≤ ( sup

n∈Jk
‖an‖E)q

for some k = k(l) ∈ NJsmall ∪ N
J
equal. Since k(l) 6= k(l′) for l 6= l′ ∈ NIbig ∪ NIequal we

obtain ∑
l∈NIbig∪N

I
equal

(sup
n∈Il
‖an‖E)q ≤

∑
k∈NJsmall∪N

J
equal

( sup
n∈Jk
‖an‖E)q.

Also if l ∈ NIinter then (supn∈Il ‖an‖E)q = |an(l)|q where n(l) ∈ I ′l ∪ Îl ∪ Ǐl. Note that

n(l) ∈ Jk for some k ∈ NJsmall ∪N
J
inter and

1 ≤ #({l ∈ NIinter : n(l) ∈ Jk}) ≤ 2.

Hence ∑
l∈NIinter

(sup
n∈Il
‖an‖E)q ≤ 2

∑
k∈NJsmall∪N

J
inter

( sup
n∈Jk
‖an‖E)q.

On the other hand∑
l∈NIsmall

(sup
n∈Il
‖an‖E)q ≤

∑
k∈NJbig∪N

J
inter

∑
ψ(l)=k

(sup
n∈Il
‖an‖E)q

≤
∑

k∈NJbig∪N
J
inter

( sup
n∈Jk
‖an‖E)q(#Fk)

q

≤M q(‖a‖Jp,∞)q.

Combining the previous cases we get `J (∞, q, E) ⊆ `I(∞, q, E).
Case p < ∞: Arguing as in Proposition 2.33 we simply show that `J (p, 1, E) ⊆

`I(p, 1, E) for p > 1.

‖a‖Ip,1 =
∑
l

(∑
n∈Il

‖an‖pE
)1/p

≤
∑

l∈NIsmall

(∑
n∈Il

‖an‖pE
)1/p

+
∑

l∈NIequal∪N
I
big

( ∑
k∈Gl

∑
n∈Jk

‖an‖pE
)1/p

+
∑

l∈NIinter

( ∑
k∈Gl

∑
n∈Jk

‖an‖pE +
∑
n∈Ǐl

‖an‖pE +
∑
n∈Îl

‖an‖pE
)1/p

= I1 + I2 + I3.
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Now observe that

I1 ≤
∑

k∈NJbig∪N
J
inter

∑
l∈Fk

(∑
n∈Il

‖an‖pE
) 1
p ≤

∑
k∈NJbig∪N

J
inter

( ∑
n∈Jk

‖an‖pE
) 1
p
#(Fk) ≤M‖a‖Jp,1.

Also note, since p > 1,

I2 ≤
∑

l∈NIequal∪N
I
big

∑
k∈Gl

( ∑
n∈Jk

‖an‖pE
)1/p

≤ ‖a‖Jp,1.

Finally

I3 ≤
∑

l∈NIinter

( ∑
k∈Gl

∑
n∈Jk

‖an‖pE
)1/p

+
(∑
n∈Ǐl

‖an‖pE
)1/p

+
(∑
n∈Îl

‖an‖pE
)1/p

≤
∑

k∈NJinter∪N
J
small

( ∑
n∈Jk

‖an‖pE
)1/p

+
∑

l∈NIinter

( ∑
n∈Jψ(l)

‖an‖pE
)1/p

+
∑

l∈NIinter

( ∑
n∈JΨ(l)

‖an‖pE
)1/p

≤ C
∑
k

( ∑
n∈Jk

‖an‖pE
)1/p

= C‖a‖Jp,1.

The converse implication is now complete. �

Corollary 2.43. Let 1 ≤ q < p ≤ ∞ and I,J with ΛI = ΛJ . Then

`I(p, q, E) ⊆ `J (p, q, E)⇐⇒ sup{#G̃l; l ∈ N0} <∞.

Corollary 2.44. Let 1 ≤ p, q ≤ ∞ with p 6= q and I,J with ΛI = ΛJ . Then

`J (p, q, E) = `I(p, q, E)⇐⇒ sup{(#F̃k)(#G̃l); k, l ∈ N0} <∞.

Proof. It suffices to show the case p < q. Note that `I(p, q, E) ⊆ `J (p, q, E) and
`J (p, q, E) ⊆ `I(p, q, E) are equivalent, due to Theorem 2.40 and Corollary 2.41, to

the facts supk(#F̃k) <∞ and supl(#G̃l) <∞, or equivalently

sup{(#F̃k)(#G̃l); k, l ∈ N0} = sup
k

(#F̃k) sup
l

(#G̃l) <∞.

�

Remark 2.45. For 1 ≤ p < q ≤ ∞ and I,J with ΛI = ΛJ we have

`Iw(p, q, E) ⊆ `Jw (p, q, E)⇐⇒ sup{#F̃k; k ∈ N0} <∞

and

`Jw (p, q, E) ⊆ `Iw(p, q, E)⇐⇒ sup{#G̃l; l ∈ N0} <∞.
On the other side, for 1 ≤ q < p ≤ ∞ and I,J with ΛI = ΛJ we get

`Jw (p, q, E) ⊆ `Iw(p, q, E)⇐⇒ sup{#F̃k; k ∈ N0} <∞

and

`Iw(p, q, E) ⊆ `Jw (p, q, E)⇐⇒ sup{#G̃l; l ∈ N0} <∞.
So if 1 ≤ p, q ≤ ∞ with p 6= q and I,J with ΛI = ΛJ , then

`Jw (p, q, E) = `Iw(p, q, E)⇐⇒ sup{(#F̃k)(#G̃l); k, l ∈ N0} <∞.
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4. Multipliers between generalized mixed-norm spaces

In this section we consider 1 ≤ r, s, u, v ≤ ∞ and I,J such that ΛI = ΛJ . We
define

(`I(r, s, E1), `J (u, v, E2)) =

{λ = (λn)n∈ΛI∩ΛJ ∈ S(L(E1, E2)) : ‖(λnan)n∈ΛJ ‖
J
u,v,E2

≤ C‖(an)n∈ΛI‖
I
r,s,E1

}.

The case I = J can be easily determined adapting the proof of (1.3) (see [32,
Theorem 1]) considering I = {Ik : k ∈ N0} where Ik = [2k − 1, 2k+1 − 1) ∩ N0 and the
norms ‖ · ‖E1 , ‖ · ‖E2 instead of the modulus.

Theorem 2.46. (`I(r, s, E1), `I(u, v, E2)) = `I(r 	 u, s	 v,L(E1, E2)).

Corollary 2.47. `I(r, s, E)K = `I(r′, s′, E∗).

There are some other cases where the set of multipliers can be easily determined.

Proposition 2.48.
(i) If supk∈N0

#Jk <∞ then (`I(r, s, E1), `J (u, v, E2)) = `I(r	v, s	v,L(E1, E2)).

(ii) If supl∈N0
#Il <∞ then (`I(r, s, E1), `J (u, v, E2)) = `J (s	u, s	v,L(E1, E2)).

(iii) If sup{(#F̃k)(#G̃l); k, l ∈ N0} <∞ then

(`I(r, s, E1), `J (u, v, E2)) = `J (r 	 u, s	 v,L(E1, E2)) = `I(r 	 u, s	 v,L(E1, E2)).

Proof. To prove (i) take into account that using Proposition 2.25 and Corollary
2.44 one easily obtains that if supk∈N0

#Jk < ∞ then `J (u, v, E2) = `J (v, v, E2) =

`I(v, v, E2). Then use Theorem 2.46.
The other proofs are similar. �

Also as a direct consequence of Theorem 2.40 we obtain:

Proposition 2.49. If r ≤ u, s ≤ v and u < v and sup{#F̃k; k ∈ N0} <∞ then

(`I(r, s, E1), `J (u, v, E2)) = {(λn)n∈ΛI ∈ S(L(E1, E2)) : sup
n
‖λn‖ <∞}.

Proof. It is obvious that, if (λn)n∈ΛI is a multiplier, it necessarily is a bounded
sequence. For the inclusion

{(λn)n∈ΛI ∈ S(L(E1, E2)) : sup
n
‖λn‖ <∞} ⊆ (`I(r, s, E1), `J (u, v, E2))

let λ ∈ S(L(E1, E2)) be such that supn ‖λn‖ <∞ and consider a ∈ `I(r, s, E1). Then
‖λn(an)‖E2 ≤ ‖λn‖‖an‖E1 , thus (λn(an))n∈ΛI ∈ `I(r, s, E2). Now use the embedding

`I(r, s, E2) ⊆ `I(u, v, E2)

and argue as in Theorem 2.40 to conclude `I(u, v, E2) ⊆ `J (u, v, E2). �

Definition 2.50. If I,J with ΛI = ΛJ . We define the collection of pairwise
disjoint intervals in N0

Ĩ ∩ J = {Il ∩ Jk : k ∈ N0, l ∈ F̃k}.

It coincides with {Il ∩ Jk : l ∈ N0, k ∈ G̃l}.

Proposition 2.51. Let 1 ≤ r, s, u, v ≤ ∞.

(i) If r ≤ s, v ≤ u then (`I(r, s), `J (u, v)) ⊆ `Ĩ∩J (r 	 u, s	 v).

In particular, if supk #F̃k <∞ then

(`I(r, s), `J (u, v)) ⊆ `J (r 	 u, s	 v).
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(ii) If s ≤ r, u ≤ v then `Ĩ∩J (r 	 u, s	 v) ⊆ (`I(r, s), `J (u, v)).

In particular, if supl #G̃l <∞ then

`I(r 	 u, s	 v) ⊆ (`I(r, s), `J (u, v)).

Proof. (i) Note that Ĩ ∩ J ≤ I and Ĩ ∩ J ≤ J . Hence, from Proposition 2.33,

(2.12) `Ĩ∩J (p, q, E1) ⊆ `I(p, q, E1), p ≥ q

and

(2.13) `J (p, q, E2) ⊆ `Ĩ∩J (p, q, E2), p ≤ q.

Now using (2.12), (2.13) and Theorem 2.46 we obtain

(`I(r, s, E1), `J (u, v, E2)) ⊆ (`Ĩ∩J (r, s, E1), `Ĩ∩J (u, v, E2)) = `Ĩ∩J (r	u, s	v,L(E1, E2)).

Also we have

Fk(Ĩ ∩ J ,J ) = {(k, l) : l ∈ F̃k}
and

Fl(Ĩ ∩ J , I) = {(k, l) : k ∈ G̃l}.

Therefore, #Fk(Ĩ ∩ J ,J ) = #F̃k and Fl(Ĩ ∩ J , I) = #G̃l. Using now Theorem
2.34

(2.14) `Ĩ∩J (p, q,L(E1, E2)) = `J (p, q,L(E1, E2))⇐⇒ sup
k

#F̃k <∞.

(2.15) `Ĩ∩J (p, q,L(E1, E2)) = `I(p, q,L(E1, E2))⇐⇒ sup
l

#G̃l <∞.

The particular case follows now applying (2.14).
(ii) The proof is similar and left to the reader. The particular case follows applying

(2.15). �

Our purpose is to get a final description of multipliers (`I(r, s, E1), `J (u, v, E2)) for
arbitrary families I, J . We shall deal first with the case I ≤ J and get a reduction
to this situation in the remaining cases.

4.1. The case I ≤ J . .
In this section we consider I and J such that ΛJ = NJbig ∪N

J
equal. This means that

F̃k = Fk 6= ∅ and Jk = ∪l∈FkIl for all k. Notice that l ∈ Fk means Il ⊆ Jk and we have

Fk = {l ∈ N0 : φ(k) ≤ l ≤ Φ(k)}.

We use the notation J /I = {Fk : k ∈ N0}.
We shall need the following well known fact.

Lemma 2.52. Let 1 ≤ u, r ≤ ∞, E,F Banach spaces, A ⊆ N0 and λi ∈ L(E,F ), i ∈
A. Given ε > 0 there exists (ai)i∈A, ai ∈ E such that(∑

i∈A
‖ai‖rE

)1/r

= 1 and

(∑
i∈A
‖λi‖r	u

)1/r	u

≤

(∑
i∈A
‖λi(ai)‖uF

)1/u

+ ε

(with the obvious modifications whenever u, r or r 	 u equals ∞).
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Proof. We will prove the different cases, depending on the value of r, u. In all of

them, consider C =
(∑

i∈A 2−ui
)1/u

and ]A ≥ 1 the number of indices contained in A.

For r = ∞ (then r 	 u = u) it suffices to take ai = 1
]A ãi for ãi such that ‖ãi‖E = 1

and ‖λi(ãi)‖F is arbitrarily close to ‖λi‖, that is, given ε > 0

‖λi‖ ≤ ‖λi(ãi)‖F +
ε

C2i
.

Then
(∑

i∈A ‖ai‖rE
)1/r

= 1 and

(∑
i∈A
‖λi‖u

)1/u

≤

(∑
i∈A

(
‖λi(ãi)‖F +

ε

C2i

)u)1/u

≤

(∑
i∈A
‖λi(ãi)‖uF

)1/u

+

(∑
i∈A

( ε

C2i

)u)1/u

≤

(∑
i∈A

]Au‖λi(ãi)‖uF

)1/u

+

(∑
i∈A

( ε

C2i

)u)1/u

≤

(∑
i∈A
‖λi(ai)‖uF

)1/u

+

(∑
i∈A

( ε

C2i

)u)1/u

≤

(∑
i∈A
‖λi(ai)‖uF

)1/u

+ ε

where we have made use of the triangle inequality when necessary.
If r <∞ and u ≥ r (hence r 	 u =∞) it suffices to take ai(A), ‖ai(A)‖E = 1 such

that ‖λi(ai(A))‖F is arbitrarily close to ‖λi(A)‖ for i(A) such that supi∈A ‖λi‖ = ‖λi(A)‖,
and ai = 0 for i 6= i(A). That is, given ε > 0 it is enough to take ai verifying
‖λi(A)‖ ≤ ‖λi(ai(A))‖F + ε. Then

sup
i∈A
‖λi‖ = ‖λi(A)‖ ≤ ‖λi(ai(A))‖F + ε =

(∑
i∈A
‖λi(ai)‖uF

)1/u

+ ε.

If u < r <∞ take

αi = ‖λi‖r	u/r
(∑
n∈A
‖λn‖r	u

)−1/r

, i ∈ A

and ai = αiãi, where ‖ãi‖ = 1 and ‖λi(ãi)‖F is arbitrarily close to ‖λi‖, in this case
given ε > 0 we need ‖λi‖ = ‖λi(ãi)‖F + ε

C2iαi
. Notice that, with this choice, one gets

(∑
i∈A
‖ai‖rE

)1/r

= 1 and

(∑
i∈A

αui ‖λi‖u
)1/u

=

(∑
i∈A
‖λi‖r	u

)1/r	u

,

Universitat de València
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by simply using that r	u
r u = r 	 u − u. Making use of these equalities together with

the triangle inequality we get to(∑
i∈A
‖λi‖r	u

)1/r	u

=

(∑
i∈A

αui ‖λi‖u
)1/u

≤

(∑
i∈A

(
αi‖λi(ãi)‖F +

εαi
C2iαi

)u)1/u

≤

(∑
i∈A

αui ‖λi(ãi)‖uF

)1/u

+

(∑
i∈A

( ε

C2i

)u)1/u

≤

(∑
i∈A
‖λi(ai)‖uF

)1/u

+

(∑
i∈A

( ε

C2i

)u)1/u

≤

(∑
i∈A
‖λi(ai)‖uF

)1/u

+ ε.

�

Remark 2.53. Note than in the scalar case (ai ∈ K, λi ∈ K) arguing in a similar
way we obtain the equality:(∑

i∈A
|λi|r	u

)1/r	u

=

(∑
i∈A
|λiai|u

)1/u

for some a ∈ S verifying
(∑

i∈A |ai|r
)1/r

= 1.

Theorem 2.54. If I ≤ J then

(`I(r, s, E1),`J (u, v, E2)) =(λn)n ∈ S(L(E1, E2)) :

(∑
i∈Il

‖λi‖r	u
)1/r	u


l

∈ `J /I(s	 u, s	 v)

 .

Proof. ⊆) Assume that (λn)n ∈ (`I(r, s, E1), `J (u, v, E2)) and take ε > 0.

Now, define βl = (
∑

i∈Il ‖λi‖
r	u)1/r	u and use Lemma 2.52 in the scalar version

with A = Fk for each k ∈ N0, to choose (αl)l∈Fk verifying (
∑

l∈Fk |αl|
s)1/s = 1 and

(
∑
l∈Fk

βs	ul )1/s	u = (
∑
l∈Fk

|βlαl|u)1/u.

Again, use Lemma 2.52 in its scalar version for A = N0. Take γ = (γk)k verifying

(
∑

k |γk|s)1/s = 1 and∑
k

(
∑
l∈Fk

βs	ul )s	v/s	u

1/s	v

=

∑
k

|γ|vk(
∑
l∈Fk

βs	ul )v/s	u

1/v

.

Finally, use Lemma 2.52 with A = Il to select for each l ∈ N0, a sequence (ã
(l)
i )i∈Il

such that (
∑

i∈Il ‖ã
(l)
i ‖rE1

)1/r = 1 and

βl = (
∑
i∈Il

‖λi‖r	u)1/r	u ≤ K(u)(
∑
i∈Il

‖λiã(l)
i ‖

u
E2

)1/u +
ε

αlγk2l+k
.
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50 4. Multipliers between generalized mixed-norm spaces

This procedure allows us to obtain the sequence a = (ai)i, ai = γkαlã
(l)
i where

i ∈ Il, l ∈ Fk and k ∈ N0. With this choice we get that ‖a‖Ir,s,E1
= 1 and

‖β‖J /Is	u,s	v ≤ K(u, v)‖λ ∗ a‖Ju,v,E2
+Kε ≤ C‖λ‖.

⊇) Let a = (ai)i ∈ `I(r, s, E1) and λ = (λi)i such that (βl)l ∈ `J /I(s 	 u, s 	 v)
where

βl =

∑
i∈Il

‖λi‖r	u
1/r	u

.

Fix k ∈ N0∑
i∈Jk

‖λi(ai)‖uE2

1/u

=

∑
l∈Fk

∑
i∈Il

‖λi(ai)‖uE2

1/u

≤

∑
l∈Fk

(∑
i∈Il

‖λi‖r	u
)u/r	u(∑

i∈Il

‖ai‖rE1

)u/r1/u

≤

∑
l∈Fk

(∑
i∈Il

‖λi‖r	u
)s	u/r	u1/s	u∑

l∈Fk

(∑
i∈Il

‖ai‖rE1

)s/r1/s

.

Taking the v-norm, we get to:∑
k

(∑
i∈Jk

‖λi(ai)‖uE2

) v
u

 1
v

≤

∑
k

∑
l∈Fk

βs	ul

 v
s	u
∑
l∈Fk

(∑
i∈Il

‖ai‖rE1

) s
r

 v
s


1
v

≤

∑
k

∑
l∈Fk

βs	ul

 s	v
s	u


1
s	v ∑

k

∑
l∈Fk

(∑
i∈Il

‖ai‖rE1

) s
r

 1
s

=

∑
k

∑
l∈Fk

βs	ul

 s	v
s	u


1
s	v
∑

l

∑
i∈Il

‖ai‖rE1

 s
r


1
s

.

Hence (λn)n ∈ (`I(r, s, E1), `J (u, v, E2)) and ‖λ‖ ≤ ‖β‖J /Is	u,s	v.
�

Corollary 2.55. Let J ≤ I, E1 = E2 = K and 1 ≤ r, s, u, v ≤ ∞. Then

(`I(r, s),`J (u, v)) =(λn)n ∈ S(L(E1, E2)) :

(∑
i∈Jk

|λi|r	u
)1/r	u


k

∈ `I/J (r 	 v, s	 v)

 .

Proof. Recall that G̃l = Gl = {k ∈ N0 : Jk ⊆ Il} and Il = ∪k∈GlJk: We now
denote I/J = {Gl : l ∈ N0}. Using Köthe duals we actually have

(`I(r, s), `J (u, v)) = (`J (u′, v′), `I(r′, s′)).

Taking into account that q′ 	 p′ = p 	 q for all p, q the result follows from Theorem
2.54. �
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Corollary 2.56. Let J ≤ I, E1, E2 Banach spaces and 1 ≤ r, s, u, v ≤ ∞. Then

(`I(r, s, E1),`J (u, v, E2)) =(λn)n ∈ S(L(E1, E2)) :

(∑
i∈Jk

‖λi‖r	u
)1/r	u


k

∈ `I/J (r 	 v, s	 v)

 .

Proof. Let λ = (λi)i be in (`I(r, s, E1), `J (u, v, E2)). Consider the adjoint λ′

defined as 〈λ′ ∗L b′, a〉 = 〈b′, λ ∗L a〉 where b′ ∈ `J (u′, v′, E∗2) and a ∈ `I(r, s, E1). Then
λ′ = (λ′i)i ∈ (`J (u′, v′, E∗2), `I(r′, s′, E∗1)) is well-defined.
Taking into account J < I and applying Theorem 2.54, we have that λ′ verifies(∑

i∈Jk

‖λ′i‖u
′	r′
)1/u′	r′


k

∈ `I/J (v′ 	 r′, v′ 	 s′).

Since ‖λ′i‖ = ‖λi‖ and q′ 	 p′ = p	 q for all p, q , we have the inclusion.
For the other inclusion, let

λ ∈

(λn)n ∈ S(L(E1, E2)) :

(∑
i∈Jk

‖λi‖r	u
)1/r	u


k

∈ `I/J (r 	 v, s	 v)

 .

Now it is enough to consider the inequality ‖λi(ai)‖E2 ≤ ‖λi‖‖ai‖E1 and apply the
previous Corollary to the scalar sequence (‖λi‖)i to get the result. �

4.2. The case Ĩ ∩ J ⊆ I ∪ J . .
Let I = {Il : l ∈ N0} and J = {Jk : k ∈ N0} such that ΛI = ΛJ . We assume in this

section that NIinter = ∅ and NJinter = ∅, that is to say for a given l ∈ N0 either there
exists k such that Il ⊆ Jk or there exist k′ such that Jk′ ⊆ Il. In other words each

interval in Ĩ ∩ J belongs either to I or to J .
To extend the result on multipliers to this setting we shall use the following lemma

whose easy proof is left to the reader.

Lemma 2.57. Let I = {Il : l ∈ N0} and J = {Jk : k ∈ N0} such that ΛI = ΛJ and
let Ii (respect. Ji ) for i = 1, · · · ,m sub-collections of I (respect. J ) with I = ∪mi=1Ii
(respect. J = ∪mi=1Ji) satisfying ΛIi = ΛJi for i = 1, · · · ,m. Then

λ = (λn)n∈ΛI ∈ (`I(r, s, E1), `J (u, v, E2))

if and only if

λ(i) = (λn)n∈ΛIi
∈ (`Ii(r, s, E1), `Ji(u, v, E2)), i = 1, · · · ,m.

Moreover ‖λ‖ ≈
∑m

i=1 ‖λ(i)‖.

Theorem 2.58. Let Ĩ ∩ J ⊆ I ∪ J . Then (λn)n ∈ (`I(r, s, E1), `J (u, v, E2)) if
and only if it satisfies the conditions

(2.16)

(∑
i∈Jk

‖λi‖r	u
)1/r	u


k∈NJequal

∈ `s	v(L(E1, E2)),

(2.17)

(∑
i∈Il

‖λi‖r	u
)1/r	u


l∈NIsmall

∈ `F (s	 u, s	 v,L(E1, E2)),
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52 4. Multipliers between generalized mixed-norm spaces

(2.18)

(∑
i∈Jk

‖λi‖r	u
)1/r	u


k∈NJsmall

∈ `G(r 	 v, s	 v,L(E1, E2)),

where F = {Fk : k ∈ NJbig} and G = {Gl : l ∈ NIbig}.

Proof. Let us consider the following collection of intervals

Jb = {Jk : k ∈ NJbig}, Je = {Jk : k ∈ NJequal}, and Js = {Jk : k ∈ NJsmall}

and similarly for I.
If Jk ∈ Jb (respect. Il ∈ Ib) we have Fk = {l ∈ N0 : Il ( Jk} 6= ∅ (respect.

Gl = {k ∈ N0 : Jk ( Il} 6= ∅) and

(2.19) Jk = ∪l∈FkIl, Il ∈ Is ( respect. Il = ∪l∈GlJk, Jk ∈ Js).

Hence J = Je ∪ Jb ∪ Js, I = Ie ∪ Ib ∪ Is and

Je = {Jk : k ∈ NJequal} = {Il : l ∈ NIequal} = Ie.

Observe that Is ≤ Jb and Js ≤ Ib and, in particular, G = Ib/Js and F = Jb/Is.
We use Lemma 2.57 and observe that, denoting Λ0 = ΛJe , Λ1 = ΛJb = ΛIs and

Λ2 = ΛJs = ΛIb ,

(λn)n∈Λ0 ∈ (`Ie(r, s, E1), `Je(u, v, E2))

corresponds to (2.16) invoking Theorem 2.46, also that

(λn)n∈Λ1 ∈ (`Is(r, s, E1), `Jb(u, v, E2))

corresponds to (2.17) invoking Theorem 2.54 and, finally,

(λn)n∈Λ2 ∈ (`Ib(r, s, E1), `Js(u, v, E2))

corresponds to (4.3) invoking Corollary 2.56. �

4.3. The general case. .

In this section we assume that there exist k ∈ N0 and l ∈ F̃k such that Il∩Jk ∈ Ĩ ∩ J
and Il ∩ Jk /∈ I ∪ J .

The situation we are handling now corresponds to NJinter 6= ∅ (and hence NIinter 6=
∅).

Definition 2.59.

J ′ = {J ′k = ∪l∈FkIl : k ∈ N0,#Fk > 0},

H = Ĩ ∩ J \ (I ∪ J ),

Js = {Jk : k ∈ NJsmall}.
Denote J ′′ = J ′ ∪ Js and Jnew = J ′′ ∪H.
We use similar notations for I.

Recall that φ(k) = min F̃k and Φ(k) = max F̃k for k ∈ N0. We easily observe

that φ(NJequal) ⊆ NIequal, φ(NJbig) ⊆ NIsmall, φ(NJsmall) ⊆ NIbig ∪NIinter and φ(NJinter) ⊆
NIsmall ∪NIinter. Same results hold for Φ.

Lemma 2.60.

H = {Ĵk : k ∈ NJinter, φ(k) ∈ NIinter} ∪ {J̌k : k ∈ NJinter,Φ(k) ∈ NIinter}.
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Proof. ⊆) Let I ∈ H. Since I ∈ Ĩ ∩ J then there exist k ∈ N0 and l ∈ F̃k such
that I = Il ∩ Jk. On the other hand, since I /∈ I ∪ J we have that I ( Il and I ( Jk.
Hence either φ(k) = l and Ψ(l) = k or Φ(k) = l and ψ(l) = k. This gives either

k ∈ NJinter and φ(k) ∈ NIinter (and hence I = Ĵk) or k ∈ NJinter and Φ(k) ∈ NIinter (and

hence I = J̌k).

⊇) Let k ∈ NJinter with φ(k) ∈ NIinter and consider Ĵk = Jk ∩ Iφ(k) ∈ Ĩ ∩ J . Then

Ĵk ( Jk (hence Ĵk /∈ J ) and Ĵk ( Iφ(k) (hence Ĵk /∈ I). Similarly for J̌k in the case

k ∈ NJinter with Φ(k) ∈ NIinter
�

Remark 2.61. Note that Ĵk = Jk ∩ Il if and only if Ǐl = Il ∩ Jk. Therefore

H = {Îl : l ∈ NIinter, ψ(l) ∈ NJinter} ∪ {Ǐl : k ∈ NIinter,Ψ(l) ∈ NJinter}.

Lemma 2.62.

˜I ′′ ∩ J ′′ ⊆ Is ∪ Js ∪ Ie ⊆ I ′′ ∪ J ′′.

Proof. Let I ∈ I ′ ∪ Is and J ∈ J ′ ∪ Js with I ∩ J 6= ∅. The case I ∈ Is and
J ∈ Js can not hold. If I ∈ Is and J ∈ J ′ then I ∩ J = I ∈ Is. Similarly if I ∈ I ′ and
J ∈ Js then I ∩ J = J ∈ Js. Finally if I ∈ I ′ and J ∈ J ′ then I = J ∈ Ie = Je. �

Theorem 2.63. λ ∈ (`I(r, s, E1), `J (u, v, E2)) if and only if (λn)n satisfies

(2.20)

(∑
i∈Jk

‖λi‖r	u
)1/r	u


k∈NJequal

∈ `s	v(L(E1, E2))

(2.21)

(∑
i∈Il

‖λi‖r	u
)1/r	u


l∈NIsmall

∈ `F (s	 u, s	 v,L(E1, E2))

(2.22)

(∑
i∈Jk

‖λi‖r	u
)1/r	u


k∈NJsmall

∈ `G(r 	 v, s	 v,L(E1, E2))

(2.23)

(∑
i∈J̌k

‖λi‖r	u
)1/r	u


k∈Λr

+

(∑
i∈Ĵk

‖λi‖r	u
)1/r	u


k∈Λl

∈ `s	v(L(E1, E2))

where

Λr = {k ∈ NJinter,Φ(k) ∈ NIinter} and Λl = {k ∈ NJinter, φ(k) ∈ NIinter},

for example,

Universitat de València
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0∈NI
equal

↓

1,3,4∈NI
small

2∈NI
inter

5∈NI
big

0∈NJ
equal

3,4∈NJ
small

1,2∈NJ
inter

1∈Λr 2∈Λl

· · ·
I0

I1 I2 I3 I4 I5

· · ·
J0

J1
J2

J3 J4

G = {Gl : l ∈ NIbig ∪NIinter,#Gl > 0}

and

F = {Fk : k ∈ NJbig ∪N
J
inter,#Fk > 0}.

Proof. Using Jk = J ′k ∪ Ĵk ∪ J̌k and Lemma 2.60 one obtains Jnew ≤ J and
Inew ≤ I. Clearly #Fl(Inew, I) ≤ 3 and #Fk(Jnew,J ) ≤ 3 for all k. Therefore, using
Theorem 2.34, we have `Jnew(p, q, E) = `J (p, q, E) and `Inew(p, q, E) = `I(p, q, E),
which gives

(2.24) (`I(r, s, E1), `J (u, v, E2)) = (`Inew(r, s, E1), `Jnew(u, v, E2)).

Taking into account Lemma 2.60 and Remark 2.61 we observe that ΛH = Λr ∪ Λl
and ΛI′′ = ΛJ ′′ .

Since Jnew = J ′′ ∪ H and Inew = I ′′ ∪ H we can apply Lemma 2.57 to conclude
that λ ∈ (`I(r, s, E1), `J (u, v, E2)) if and only if (λn)n∈ΛH ∈ (`H(r, s, E1), `H(u, v, E2))

and (λn)n/∈ΛH ∈ (`I
′′
(r, s, E1), `J

′′
(u, v, E2)).

Now apply Theorem 2.46 to obtain (λn)n∈ΛH ∈ `H(r 	 u, s 	 v,L(E1, E2)) which
corresponds to (2.23).

On the other hand, comparing I ′′ and J ′′ we notice that I ∈ I ′′big corresponds to

I = I ′l for some l ∈ NIbig ∪NIinter and #Gl ≥ 1. Hence we obtain that G = {GI : I ∈
I ′′big} and similarly F = {FJ : J ∈ J ′′big}.

We now use Lemma 2.62 together with Theorem 2.58 to obtain the equivalence
with (2.20), (2.21) and (2.22) and (λn)n/∈ΛH ∈ (`I

′′
(r, s, E1), `J

′′
(u, v, E2)).

�

4.4. An application. .

Let us apply the previous ideas to a particular case. Consider E1 = E2 = C. Let ρ :
[0, 1)→ [0,∞) be a non-decreasing function such that ρ(0) = 0 and ρ(t)/t ∈ L1([0, 1)).
We define the weighted Bergman-Besov space B1(ρ) as those analytic functions F in
the unit disk such that ∫

D
|F ′(z)|ρ(1− |z|)

1− |z|
dA(z) <∞.

An analytic function F is called lacunary if F (z) =
∑

n∈ΛL
anz

n where L = {{nk} :

k ∈ N0} for some (nk) such that infk nk+1/nk > 1.
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Recently weights with the following condition had been considered in [33]: There
exist C1, C2 > 0 and K(n, ρ) such that

(2.25) C1

∫ 1

0
r2n−1 ρ(1− r)

1− r
dr ≤ K(n, ρ) ≤ C2

∫ 1−2−(n+1)

1−2−n
r2n+1−1 ρ(1− r)

1− r
dr

and the following result has been shown.

Theorem 2.64. (see [33]) Let F (z) =
∑

n∈ΛL
anz

n be a lacunary function and let

ρ be a weight satisfying (2.25). Then F belongs to B1(ρ) if and only if

(2.26)

∞∑
k=0

( ∑
n∈Jk

|an|2
)1/2

2kK(k, ρ) <∞

where Jk = {n : 2k − 1 ≤ n < 2k+1 − 1}.

We shall extend the previous result for more general classes of weight functions
and families of intervals J .

Definition 2.65. Let 0 < q <∞, J be a collection of disjoint intervals in N0, say
Jk = N0 ∩ [mk,mk+1) where m0 = 0 and (mk) is some increasing sequence in N0. and
let ρ : [0, 1)→ [0,∞) be a measurable function such that ρ(t)/t ∈ L1([0, 1)).

We say that ρ is q-adapted to J whenever there exists C > 0 depending on mn, q
and ρ such that

(2.27)

∫ 1

0
rqmn

ρ(1− r)
1− r

dr ≤ C
∫
An

rqmn+1
ρ(1− r)

1− r
dr

for all n ≥ 0 where A0 = [0, 1− 1
m1

) and An = [1− 1
mn
, 1− 1

mn+1
) for n ≥ 1.

We denote

(2.28) µρ(s) =

∫ 1

0
rs
ρ(1− r)

1− r
dr, s ≥ 0.

In particular, from condition (2.27) if ρ is q-adapted to J we get that

(2.29) µρ(qmn) ≈ µρ(qmn+1).

Note also that condition (2.25) means that ρ is 1/2-adapted for J where mn = 2n− 1.

Proposition 2.66. Let ρα(t) = tα with α > 0 and J = {[mn,mn+1)∩N0 : n ∈ N0}.
The following statements are equivalent:

(i) ρα is q-adapted to J for all q > 0.
(ii) ρα is q-adapted to J for some q > 0.
(iii) supnmn+1/mn <∞.

Proof. (i) =⇒ (ii) Obvious.

(ii) =⇒ (iii) It is well known that B(n + 1, α) =
∫ 1

0 r
n(1 − r)α−1dr ≈ n−α and

therefore µρα(qmn) ≈ m−αn .
Hence it follows from (2.29) that mn+1 ≈ mn. therefore supmn+1/mn <∞.
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(iii) =⇒ (i) Let supmn+1/mn = δ and take q > 0. Now observe that∫ 1− 1
mn+1

1− 1
mn

rqmn+1(1− r)α−1dr ≥
(

1− 1

mn

)qmn+1
∫ 1

mn

1
mn+1

sα−1ds

≥ 1

α

(
1− 1

mn

)qmn+1

m−αn

(
1−

(
mn

mn+1

)α)
≥ 1

α

((
1− 1

mn

)mn)δq
m−αn

(
1− 1

δα

)
≥ Cµρα(qmn).

�

We now modify the proof of Lemma 3 in [8] to obtain the following result.

Lemma 2.67. Let 0 < q ≤ 1, let J be a collection of disjoint intervals in N0 and
assume ρ is a weight q-adapted to J . If (αn) ≥ 0 then

∫ 1

0

( ∞∑
n=0

αnr
n

)q
ρ(1− r)

1− r
dr ≈

∞∑
n=0

∑
k∈Jn

αk

q

µρ(qmn)

where Jn = {k : mn ≤ k < mn+1}

Proof. As above A0 = [0, 1− 1
m1

) and An = [1− 1
mn
, 1− 1

mn+1
) for n ≥ 1. Then∫ 1

0

( ∞∑
n=0

αnr
n

)q
ρ(1− r)

1− r
dr =

∞∑
n=0

∫
An

( ∞∑
n=0

αnr
n

)q
ρ(1− r)

1− r
dr

≥
∞∑
n=0

∫
An

∑
k∈Jn

αkr
k

q

ρ(1− r)
1− r

dr

≥
∞∑
n=0

∫
An

∑
k∈Jn

αk

q

rqmn+1
ρ(1− r)

1− r
dr

≥ C−1
∞∑
n=0

∑
k∈Jn

αk

q

µρ(qmn).

Conversely, since q ≤ 1,∫ 1

0

( ∞∑
n=0

αnr
n

)q
ρ(1− r)

1− r
dr ≤

∫ 1

0

∞∑
n=0

∑
k∈Jn

αkr
k

q

ρ(1− r)
1− r

dr

≤
∞∑
n=0

∑
k∈Jn

αk

q (∫ 1

0
rqmn

ρ(1− r)
1− r

dr

)

≤
∞∑
n=0

∑
k∈Jn

αk

q

µρ(qmn).

�
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We first note that for lacunary functions F and 0 < p <∞ we have (see [41])

Mp(r, F ) =

(∫ 2π

0
|F (reiθ)|p dθ

2π

)1/p

≈M2(r, F ) =

(∫ 2π

0
|F (reiθ)|2 dθ

2π

)1/2

.

Therefore for lacunary functions F one has that F ∈ B1(ρ) if and only if∫ 1

0
M2(r, F ′)

ρ(1− r)
1− r

dr <∞.

Therefore invoking Plancherel’s theorem and Lemma 2.67 we recover Theorem 2.64.
Recall that an analytic function F : D → C with F (z) =

∑∞
n=0 anz

n is said to
belong to H(p, q, ρ) (see [8, Definition 2]) whenever

‖F‖H(p,q,ρ) =

(∫ 1

0
M q
p (r, F )

ρ(1− r2)

1− r2
rdr

)1/q

<∞.

We use the notation H(p, q, α) if ρ(t) = tα.
A consequence of Lemma 2.67 is the following result.

Corollary 2.68. Let 0 < q ≤ 2, let J be a collection of disjoint intervals in N0

and ρ be a weight q/2-adapted to J . Then

‖F‖H(2,q,ρ) ≈

 ∞∑
n=0

∑
k∈Jn

|ak|2
q/2

µρ((qmn)/2)


1/q

.

Moreover if F is lacunary and 0 < p <∞ then

‖F‖H(p,q,ρ) ≈

 ∞∑
n=0

 ∑
k∈Jn∩ΛL

|ak|2
q/2

µρ((qmn)/2)


1/q

.

Theorem 2.69. Let 0 < q < ∞, let J be a collection of disjoint intervals in N0

and assume ρ is a weight q-adapted to J . Define λ = (λk)k such that

λk =

(∫ 1

0
rqmn

ρ(1− r)
1− r

)1/q

, k ∈ Jn

and λk = 0 otherwise. Then (λk)k ∈ (H(1, q, ρ), `J (∞, q)).

Proof. We shall show that( ∞∑
n=0

( sup
k∈Jn
|ak|)qµρ(qmn)

)1/q

≤ C‖F‖H(1,q,ρ).

Recall that

sup
k∈Jn
|ak|rk ≤M1(r, F )
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58 4. Multipliers between generalized mixed-norm spaces

and therefore, if A0 = [0, 1− 1
m1

) and An = [1− 1
mn
, 1− 1

mn+1
) for n ≥ 1 then

∞∑
n=0

( sup
k∈Jn
|ak|)qµρ(qmn) ≤ C

∞∑
n=0

( sup
k∈Jn
|ak|)q

∫
An

rqmn+1
ρ(1− r)

1− r
dr

≤ C
∞∑
n=0

∫
An

( sup
k∈Jn
|ak|rk)q

ρ(1− r)
1− r

dr

≤ C
∞∑
n=0

∫
An

M q
1 (r, F )

ρ(1− r)
1− r

dr

= C‖F‖qH(1,q,ρ).

�

Theorem 2.70. Let 1 ≤ q2 < q1 ≤ 2 and let J and I be collections of disjoint
intervals in N0, generated by sequences mk and nk respectively, such that I ≤ J .
Assume that ρ1 is a weight q1/2-adapted to I and ρ2 is a weight q2/2-adapted to J .
Denote

µρ1,ρ2(k) =
(

(µρ2((q2mk)/2))1/q2(µρ1((q1nk)/2))−1/q1
)1/q1	q2

Then

(H(2, q1, ρ1), H(2, q2, ρ2)) = {(λn)n; ( sup
k∈In

µρ1,ρ2(k)|λk|) ∈ `J /I(∞, q1 	 q2)}.

Proof. Let

FI(z) =
∞∑
k=0

(µρ1(q1nk/2))1/q1

∑
j∈Ik

zj

 ,

F̃I(z) =

∞∑
k=0

(µρ1(q1nk/2))−1/q1

∑
j∈Ik

zj

 ,

and

GJ (z) =

∞∑
k=0

(µρ2(q2mk/2))1/q2

∑
j∈Jk

zj


Using Corollary 2.68 one has that f ∈ H(2, q1, ρ1) if and only if f ∗ FI ∈ `I(2, q1) and
g ∈ H(2, q2, ρ2) if and only if g ∗GJ ∈ `J (2, q2)

We use that λ ∈ (H(2, q1, ρ1), H(2, q2, ρ2)) is equivalent to λ∗GJ ∈ (H(2, q1, ρ1), `J (2, q2))

and also equivalent to λ ∗GJ ∗ F̃I ∈ (`I(2, q1), `J (2, q2)).
Making use of Theorem 2.54 we have

(`I(2, q1), `J (2, q2)) = {(γn)n; ( sup
k∈In
|γk|)n ∈ `J /I(∞, q1 	 q2)}.

This concludes the result. �

Let us finish by observing some examples to apply the above results.

Example 2.71. Let λ > 1 and denote m0(λ) = 0 and mk(λ) = [λk] for k ∈ N0 and
J (λ) the partition of intervals Jk(λ) = [mk(λ),mk+1(λ))∩N0. In this case µρα(qmn) ≈
λ−αn, and then, from Proposition 2.66, ρα is q-adapted to J (λ) for any value of q > 0.
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2. New results on vector-valued sequence spaces. 59

Let λ > γ > 1 with λ = γN with N ∈ N0. Then J (γ) ≤ J (λ) because

mk(λ) = [λk] = [γNk] = mNk(γ)

and therefore
Jk(λ) = ∪l∈FkJl(γ)

where Fk = {l : Nk ≤ l < Nk + N}. Hence J (λ)/J (γ) = I where Ik = [Nk,N(k +
1)) ∩ N0, that is mk(I) = Nk.
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CHAPTER 3

New results on spaces of vector-valued analytic functions.

1. H(E)−admissibility

Definition 3.1. A Banach space XE ⊆ S(E) is called H(E)− admissible if

(i) XE ↪→ H(D, E) with continuous inclusion
(ii) H(rD, E) ⊆ XE ∀R > 1 and f 7→ f |D is continuous from H(rD, E) to XE .

Remark 3.2. We already mentioned thatH(rD, E) ⊆ S(E) with continuous inclu-
sion. Now note that the definition implies P(E) ↪→ XE and thereforeH(E)−admissibility
implies S(E)−admissibility.

Indeed, the only thing left to prove is ij : E → XE , ij(x) = xej is continuous for
every j ∈ N0. Thus, recall ej(z) = zj and take x ∈ E. Obviously xej ∈ H(rD, E). By
condition (ii), we know that there exists 0 < r < R such that

‖ij(x)‖XE = ‖xej‖XE ≤ C sup
|z|=r
‖xzj‖XE ≤ Cr

j‖x‖E .

Most of the vector-valued version of classical spaces are H(E)−admissible.

Example 3.3. The spaces A(D, E), BMOA(T, E), VMOA(T, E), Bloch(D, E),
Bloch0(D, E) Hp(D, E) and Ap(D, E) (for 1 ≤ p ≤ ∞) are H(E)−admissible.

Indeed take 1 ≤ p <∞, then

(3.1) A(D, E) ⊂ H∞(D, E) ⊂ Hp(D, E) ⊂ Ap(D, E) ⊂ A1(D, E)

with continuous inclusions. The H(E)−admissibility, follows from the facts that
A1(D, E) ↪→ H(D, E) and H(rD, E) ⊆ A(D, E) ∀R > 1 with continuous restriction.

In the case of BMOA(T, E) and Bloch(D, E) use that

H∞(D, E) ⊂ BMOA(T, E) ⊂ Bloch(D, E)

and

A(D, E) ⊂ VMOA(T, E) ⊂ Bloch0(D, E)

For the H(E)−admissibility, the only thing left to prove is the continuity of the inclu-
sion Bloch(D, E) ⊆ H(D, E). Taking into account

f(z)− f(0) =

∫ 1

0
f ′(tz)zdt

for f in any Banach space, we have that for f ∈ Bloch(D, E)

‖f(z)‖E ≤ ‖f(0)‖E +

∫ 1

0
‖f ′(tz)‖E |z|dt

≤ ‖f‖Bloch(D,E) + ‖f‖Bloch(D,E)

∫ 1

0

|z|
1− t|z|

dt

= ‖f‖Bloch(D,E)

(
1 + log

(
1

1− |z|

))
Therefore M∞(r, f) ≤ C log

(
1

1−r

)
‖f‖Bloch(D,E).
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We give now an easy way to generate new H(E)−admissible spaces from other
admissible spaces.

Example 3.4. (i) For X H−admissible, X⊗̂πE, X[E] and Xweak(E) are
H(E)−admissible. In particular the spaces `p⊗̂πE, `p[E] and `pweak(E) are

H(E)−admissible for 1 ≤ p ≤ ∞. Also A(D)⊗̂πE and A1
weak(D, E) are

H(E)−admissible and

A(D)⊗̂πE ⊂ A(D, E) ⊂ A1(D, E) ⊂ A1
weak(D, E)

(ii) The space Rad(E) is H(E)−admissible, since `1weak(E) ⊆ Rad(E) ⊆ `2weak(E)
with continuous inclusions.

(iii) ForXE H(E)−admissible, the spacesXS
E , X

K
E areH(E)− andH(E∗)−admissible,

respectively.

There are other ways to obtain H(E)−admissible spaces, but we will need some
new notions and tools first.

Recall the notation ij : E → XE , ij(x) = xej and πj : XE → E, πj(f) = f̂(j).

Proposition 3.5. Let XE be H(E)−admissible. Then:

(i) CEX(z) =
∑

n inz
n ∈ H(D,L(E,XE))

(ii) CXE (z) =
∑

n πnz
n ∈ H(D,L(XE , E)))

(iii) The mapping f 7→ F where F (w) = fw (recall thatfw(z) = f(wz)) defines a
continuous inclusion XE ⊆ H(D, X0

E)

Proof. (i) Since XE is H(E) − admissible we have that given f ∈ XE ,
∀0 < r < 1 ∃Ar such that

M∞(r, f) ≤ Ar‖f‖XE
Concretely, for f = xen, where x ∈ E we get that

M∞(r, xen) ≤ Ar‖xen‖XE
Equivalently

rn‖x‖E ≤ Ar‖xen‖XE
This implies rn ≤ Ar‖in‖.
On the other hand, if f ∈ H(D, E) ⇒ fr ∈ H(r−1D, E) ↪→ XE for any
0 < r < 1 and it exists r1 < r−1 verifying

‖fr‖XE ≤ Cr1 sup
|z|≤r1

‖fr(z)‖E ≤ Br sup
|z|<r−1

‖fr(z)‖E = Br sup
|z|<1
‖f(z)‖E

Again, for f = xen we get rn‖xen‖XE ≤ Br‖x‖E and ‖in‖ ≤ Brr
−n. From

these estimates one deduces limn→∞
n
√
‖in‖ = 1 Therefore (i) follows.

(ii) Let us prove that the series converges.
Observe that 1 = ‖idE‖ = ‖πn ◦ in‖ ≤ ‖πn‖‖in‖. Also

‖πn‖ = sup
‖f‖XE≤1

‖πn(f)‖E = sup
‖f‖XE≤1

‖f̂(n)‖E

= r−n sup
‖f‖XE≤1

‖rnf̂(n)‖E = r−n sup
‖f‖XE≤1

‖f̂r(n)‖E

≤ r−n sup
‖f‖XE≤1

M∞(r, f) ≤ r−n sup
‖f‖XE≤1

Ar‖f‖XE = r−nAr

These two conditions together give us limn→∞
n
√
‖πn‖ = 1. Therefore (ii)

follows.
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3. New results on spaces of vector-valued analytic functions. 63

(iii) The mapping is well defined as for |w| < 1 the series fw =
∑N

j f̂(j)wjej =∑
j ij(f̂(j))wj is absolutely convergent inXE (use the fact that limn→∞

n
√
‖in‖

= 1). Hence fw = limN→∞ (fw)N ∈ XE . It is also clear that if f ∈ XE , then
F (w) = fw is holomorphic. We will only prove that the defined mapping gives
us a continuous inclusion. Let r ∈ (0, 1):

M∞(r, F ) = sup
|z|=r
‖fz‖XE = sup

|z|=r
‖
∑

in(πn(f))zn‖XE

≤ sup
|z|=r

∑
‖in‖‖πn(f)‖E |z|n ≤ ‖f‖XE

∑
‖in‖‖πn‖rn

= ‖f‖XECr

�

Remark 3.6. Let 0 < r < 1. If XE is H(E)−admissible and f ∈ XE , then fr ∈
X0
E . Indeed, if f ∈ XE and 0 < r < 1, we have fr =

∑
j f̂(j)rjej =

∑
j ij(f̂(j))rj ∈

H(r−1D, E) ↪→ XE . Also,
∑

j ‖ij(f̂(j))rj‖XE =
∑

j ‖ij‖‖f̂(j)‖rj <∞ by the previous

result. Thus, the series converges absolutely and fr = limN→∞
∑N

j f̂(j)rjej .

Definition 3.7. Let XE be a H(E)−admissible space. Define

MXE (r, f) = sup
|w|=r

‖fw‖XE

for 0 < r < 1.

Proposition 3.8. Let XE be a H(E)−admissible space. Then

(i) MXE (r, f) is increasing
(ii) M∞(r, f) ≤ AXE (r)‖f‖XE , where AXE (r) = ‖(CXE )r‖C(T,L(XE ,E)) and r ∈

(0, 1).
(iii) If r ∈ (0, 1) and f ∈ A(D, E), MXE (r, f) ≤ BXE (r)‖f‖∞, where BXE (r) =

‖(CEX)r‖L1(T,L(E,XE))

Proof.

(i) Since F is holomorphic, using Cauchy formula we have w 7→ ‖F (w)‖XE is
subharmonic. Then using the maximum modulus principle, for s > r we can
write

MXE (r, f) = sup
|w|=r

‖F (w)‖XE ≤ sup
|w|=s

‖F (w)‖XE = MXE (s, f)

and the function is increasing.
(ii) Let r ∈ (0, 1). We can write

fr(z) =
∑
n

f̂nr
nzn = (CXE )r(z)[f ]

Taking norms ‖fr(z)‖E ≤ ‖(CXE )r(z)‖L‖f‖XE and since the series converges
absolutely for every z ∈ r−1D, we have the result.

(iii) Write

fw =

∫ 2π

0
(CEX)w(eiθ)[f(e−iθ)]

dθ

2π
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Now for |w| = r

‖fw‖XE ≤
∫ 2π

0
‖(CEX)w(eiθ)[f(e−iθ)]‖XE

dθ

2π

≤ ‖f‖∞
∫ 2π

0
‖(CEX)w(eiθ)‖L

dθ

2π

= ‖f‖∞
∫ 2π

0
‖(CEX)r(e

iθ)‖L
dθ

2π

Taking the supremum we obtain the desired result.

�

Let ν : D 7→ [0,∞) be a continuous weight. Define H∞ν (D, E) the subspace of
f ∈ H(D, E) such that supz∈D ν(z)‖f(z)‖E <∞. Hence (ii) in the previous proposition
shows the following fact.

Corollary 3.9. Let XE be H(E)−admissible. Define ν−1(z) = AXE (|z|). Then
XE ⊆ H∞ν (D, E) with continuous inclusion.

Consider f =
∑

n f̂(n)en ∈ H(D) and g =
∑

n ĝ(n)en ∈ H(D, E). We recall the
definition of the convolution product f ∗B0 g

f ∗B0 g =
∑
n

f̂(n)ĝ(n)en.

Lemma 3.10. Let XE ⊆ H(D, E) be an H(E)−admissible Banach space. If f ∈
H(D), g ∈ H(D, E) ,then:

MXE (rs, f ∗B0 g) ≤M1(r, f)MXE (s, g)

Proof. Let 0 ≤ r, s < 1, |v| = r and |w| = s. Notice that

(f ∗B0 g)vw ≤
∫ 2π

0

(∑
n

f̂(n)vne−inθĝ(n)wneinθen

)dθ
2π

=

∫ 2π

0

(∑
n

(
∑
j

f̂(j)vje−ijθ)ĝ(n)wneinθen

)dθ
2π

Hence

‖(f ∗B0 g)vw‖ ≤
∫ 2π

0

(∑
n

|f(ve−iθ)|‖gweiθ‖XE
)dθ

2π

≤MXE (|w|, g)

∫ 2π

0
|f(ve−iθ)|dθ

2π

≤MXE (s, g)M1(r, f)

�

Lemma 3.11. Let XE ⊆ H(D, E) be a H−admissible Banach space and f ∈
H(D, E), then

(3.2) MXE (rs,Df) ≤ 1

1− r2
MXE (s, f)

(3.3) MXE (r, f) ≤
∫ 1

0
MXE (rs,Df)ds
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Proof. For the first inequality, recall that Den = (n + 1)en and Df = K ∗B0 f
where K(z) = 1

(1−z)2 . Now use Lemma 3.10 to obtain the result.

For the second one simply use that, for each 0 ≤ r < 1 and |ξ| = 1, one has

rfrξ =

∫ r

0
(Df)sξds

as XE−valued function. Hence, by Minkowski’s inequality,

rMXE (r, f) ≤
∫ r

0
MXE (s,Df)ds = r

∫ 1

0
MXE (rs,Df)ds

�

We are now ready to define a new H(E)−admissible space.

Definition 3.12. If XE is an H(E)−admissible space, we define X̃E as the space
of functions in H(D, E) such that w 7→ fw ∈ H∞(D, XE). We write

‖f‖X̃E = sup
0<r<1

MXE (r, f).

For instance

Ã(D, E) = H∞(D, E), ˜Ap(D, E) = Ap(D, E),

˜Hp(D, E) = Hp(D, E), ˜Bloch(D, E) = Bloch(D, E)

and
˜BMOA(T, E) = BMOA(T, E).

Indeed for the first equality notice that

sup
0<r<1

MA(D,E)(r, f) = sup
0<r<1

sup
|z|=r
‖f(z)‖E = ‖f‖H∞(D,E).

For Bergman and Hardy spaces we have

sup
0<r<1

MAp(D,E)(r, f) = sup
0<r<1

(∫
rD
‖f(z)‖pE

)p
= ‖f‖Ap(D,E)

and

sup
0<r<1

MHp(D,E)(r, f) = sup
0<r<1

Mp(r, f) = ‖f‖Hp(D,E)

respectively, for the integral means are increasing functions of r.
The same result can be used for the case of Bloch spaces. As M∞(r, f ′) are increasing
functions of r, we obtain

sup
0<r<1

MBloch(D,E)(r, f) = ‖f(0)‖E + sup
0<r<1

sup
z∈D

(1− |z|)‖f ′r(z)‖E

= ‖f(0)‖E + sup
z∈D

(1− |z|)M∞(r, f ′) = ‖f‖Bloch(D,E).

Finally, consider BMOA(T, E). We can embed BMOA(T, E) isometrically in
H1(T, E∗)∗. Then

sup
0<r<1

‖fr‖BMOA(T,E) = sup
0<r<1

sup
‖g‖H1(T,E∗)=1

lim
s→1

∣∣∣∣∫ 〈fsr, g〉∣∣∣∣ .
Proposition 3.13. Let XE be H(E)−admissible. Then:

(i) X̃E is H(E)−admissible.

(ii) (X̃E)0 ⊆ X0
E and X̃E = (̃XE)0 = ˜̃XE .

Proof.
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(i) The fact that ‖·‖X̃E is a complete norm is standard. Due to (i) in Proposition
3.8 one has that for 0 < r < 1

MX̃E
(r, f) = ‖fr‖X̃E = MXE (r, f).

From this one easily shows that X̃E is also H(E)−admissible.
(ii) Note that for 0 < r < 1

‖fr‖X̃E = MX0
E

(r, f) = MX̃E
(r, f)

which gives that X̃E = (̃XE)0. On the other hand if f ∈ P(E) then

‖f‖XE = lim
r→1
‖fr‖XE ≤ sup

0<r<1
MXE (r, f) = ‖f‖X̃E

and we obtain the first inclusion.

�

Then
˜Bloch0(D, E) = ˜(Bloch(D, E))0 = Bloch(D, E)

and
˜VMOA(T, E) = ˜(BMOA(T, E))0 = BMOA(T, E).

2. Homogeneous spaces and Fatou property

Definition 3.14. (Homogeneous space) Let XE be H(E)−admissible. We will
say XE is homogeneous if

(i) for f ∈ XE and |ξ| = 1 it is verified ‖fξ‖XE = ‖f‖XE , and
(ii) for f ∈ XE and 0 < r < 1 it is verified MXE (r, f) ≤ K‖f‖XE for some K

independent of f, r.

Proposition 3.15. Let XE be a homogeneous Banach space.

(i) If f ∈ XE then w 7→ fw ∈ H∞(D, X0
E).

(ii) If f ∈ X0
E then w 7→ fw ∈ A(D, X0

E).

Proof.

(i) Note that H(E)−admissibility guarantees

F (w) = fw ∈ H(D, X0
E)

(see Proposition 3.5) and given that XE is homogeneous,

MXE (r, f) = sup
|ξ|=1
‖frξ‖XE = ‖Fr‖H∞(D,XE) < K‖f‖XE .

Hence F ∈ H∞(D, XE).
(ii) It is clear that if f ∈ X0

E then limr→1 ‖fr − f‖XE = 0. Now use that ‖F −
Fr‖H∞(D,XE) = ‖f − fr‖XE (because Fr ∈ A(D, XE) for each 0 < r < 1) to
conclude the result.

�

Remark 3.16. If YE ⊂ XE and XE is homogeneous, then so it is YE . In particular
X0
E is homogeneous for XE homogeneous.

Proposition 3.17. Let XE be a H(E)−admissible Banach space. Then the space

X̃E is homogeneous.
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Proof. To show that X̃E is homogeneous use that MXE (r, f) is increasing and
the facts, for |ξ| = 1 and 0 < r, s < 1,

MXE (r, fξ) = MXE (r, f) and MXE (s, fr) = MXE (sr, f).

�

Note that XE homogeneous implies XE ⊆ X̃E with continuity. Now the previous
proposition gives us the following.

Corollary 3.18. Let XE be an H(E)-admissible space such that XE = X̃E with
equality of norms. Then XE is homogeneous.

Corollary 3.19. The spaces Bloch(D, E), BMOA(T, E), Ap(D, E), Hp(D, E)
and H∞(D, E) (1 ≤ p <∞) are homogeneous.

Proposition 3.20. Let XE be an H(E)−admissible homogeneous space. Then XK
E

is also homogeneous.

Proof. Let f ∈ XK
E and |ξ| = 1. Then

‖fξ‖XK
E

= sup
‖g‖XE=1

∑
j

|〈ξj f̂(j), ĝ(j)〉| = sup
‖g‖XE=1

∑
j

|〈f̂(j), ĝ(j)〉| = ‖f‖XK
E
.

Consider again f ∈ XK
E and take 0 < r < 1. Then making use of the hypothesis

MXK
E

(r, f) = sup
|w|=r

sup
‖g‖XE=1

∑
j

|〈wj f̂(j), ĝ(j)〉|

= sup
|w|=r

sup
‖g‖XE=1

∑
j

|〈f̂(j), wj ĝ(j)〉|

≤ K‖f‖XK
E

sup
|w|=r

sup
‖g‖XE=1

‖gw‖XE ≤ K
′‖f‖XK

E

�

Definition 3.21. (Fatou property) Let XE ⊆ H(D, E) be a homogeneous Ba-
nach space. XE is said to satisfy the Fatou property, to be denoted (FP ), if there exists
A > 0 such that for any sequence (fn)n ∈ XE with supn ‖fn‖XE ≤ 1 and fn −→ f in
H(D, E) one has that f ∈ XE and ‖f‖XE ≤ A.

Proposition 3.22. Let XE be H(E)−admissible. Then X̃E has (FP ).

Proof. Let (fn)n ⊆ X̃E with ‖fn‖X̃E ≤ 1 and fn −→ f . Using that

lim
n
MXE (r, fn) = MXE (r, f)

one concludes f ∈ X̃E and ‖f‖X̃E ≤ 1. �

Corollary 3.23. The spaces Bloch(D, E), BMOA(T, E), Ap(D, E), Hp(D, E)
and H∞(D, E) have the (FP ) (1 ≤ p <∞).

Proposition 3.24. Let XE be homogeneous. TFAE:

(i) XE has (FP ).
(ii) If f ∈ H(D, E) and supw∈D ‖fw‖XE <∞, then f ∈ XE.

(iii) XE = X̃E with equivalent norms.

Proof.

(i)→ (ii) Take f ∈ H(D, E) with 0 < sup0≤r<1MXE (r, f) = A <∞. Select a sequence

rn converging to 1 and define fn = Anfrn where A−1
n = MXE (rn, f). Then of

course fn −→ A−1f ∈ H(D, E) and ‖fn‖XE ≤ 1. Applying the assumption,
one gets that f ∈ XE .
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(ii)→ (iii) The homogeneity of XE gives us the inclusion XE ⊂ X̃E with continuity.

The assumption means that X̃E ⊆ XE . The continuity follows from the
closed graph theorem.

(iii)→ (i) Follows directly from Proposition 3.22.

�

Corollary 3.25. In the same conditions of Proposition 3.24, if X0
E has (FP ),

then XE = X0
E.

Then we can assure, for example, that Hp(T, E) doesn’t have (FP ). Otherwise it
would be Hp(T, E) = Hp(D, E). Also the spaces Bloch0(D, E) and VMOA(T, E) do
not have this property. Indeed Bloch0(D, E) = (Bloch(D, E))0 and VMOA(T, E) =
(BMOA(T, E))0, then is enough to consider a sequence in Bloch0(D, E) and an-
other one in VMOA(T, E) converging to an element in Bloch(D, E)\Bloch0(D, E) and
BMOA(T, E)\VMOA(T, E), respectively.
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CHAPTER 4

Vector-valued multipliers associated to bilinear maps and
B-Hadamard product

1. Vector-valued multipliers associated to bilinear maps

Our aim in this section is to generalize the notion of coefficient multipliers and
Hadamard tensor product through continuous bilinear maps.

Definition 4.1. (B−convolution product) Let B : E1 × E2 −→ E3 be a
bounded bilinear map.
We define the B−convolution product as the continuous bilinear map S(E1)×S(E2)→
S(E3) given by (λ, f)→ λ ∗B f where

λ̂ ∗B f(j) = B(λ̂(j), f̂(j)), j ≥ 0.

Thus, given f ∈ S(E2) and λ ∈ S(E1),

λ ∗B f(z) =
∑
j

B(λ̂(j), f̂(j))zj .

Remark 4.2. Notice that, if λ ∈ A(D, E) and f ∈ A(D, E1), one can write

λ ∗B f(z) =

∫ 2π

0
B(λ(ze−iθ), f(eiθ))

dθ

2π
.

We have already used the following bilinear maps:

• For B0 : E ×K −→ E, (x, α) 7→ αx we get

λ ∗B0 f = (λj f̂(j))j .

• For BD : E∗ × E −→ K, (x∗, x) 7→ 〈x∗, x〉 we get

λ ∗D f = (〈λ∗j , f̂(j)〉)j .
• For BL : L(E1, E2)× E1 −→ E2, (T, x) 7→ T (x) we get

λ ∗L f = (λj(f̂(j)))j

Of course many maps could be used, but we will only mention two more.

• For Bπ : E1 × E2 −→ E1⊗̂πE2, (x, y) 7→ x⊗ y we get

f ∗π g = (f̂(j)⊗ ĝ(j))j

• For a Banach algebra (A, .) and P : A×A −→ A, (a, b) 7→ ab we get

λ ∗P f = (λj f̂(j))j .

Remark 4.3. Notice that Lemma 3.10 can be generalized now in terms of bilinear
maps as follows:

Let XEi ⊆ H(D, Ei) be an H(Ei)−admissible Banach space, i = 1, 2, 3. If f ∈
H(D, E1), g ∈ H(D, E2) and B : E1 × E2 −→ E3 a bilinear function. Then:

MXE3
(rs, f ∗B g) ≤ ‖B‖M1(r, f)MXE2

(s, g).

Associated to a bilinear convolution we have the space of multipliers.

69



70 1. Vector-valued multipliers associated to bilinear maps

Definition 4.4. (B-multipliers) Let B : E × E1 −→ E2 be a bounded bilinear
map. Let XE1 and XE2 be Banach spaces. We define the multipliers space between
XE1 and XE2 through the bilinear map B as

(XE1 , XE2)B = {λ ∈ S(E) : λ ∗B f ∈ XE2 ∀f ∈ XE1}

with the norm

‖λ‖(XE1
,XE2

)B = sup
‖f‖XE1

≤1
‖λ ∗B f‖XE2

.

In the particular case E = L(E1, E2) and B = BL we are in the case of the
operator-valued multipliers. For this case, we will keep on writing simply (XE1 , XE2).

It is easy to prove that ‖ · ‖(XE1
,XE2

)B is a norm on (XE1 , XE2)B whenever B

satisfies the condition

(4.1) B(e, x) = 0 ∀x ∈ E1 =⇒ e = 0.

In other words, the mapping E → L(E1, E2) given by e → Te where Te(x) = B(e, x)
is injective. The previous mappings satisfy this condition.

Theorem 4.5. Let B : E ×E1 −→ E2 be a bounded bilinear map satisfying condi-
tion (4.1) and for which there exists C > 0 such that

(4.2) ‖e‖E ≤ C sup
‖x‖E1

=1
‖B(e, x)‖E2 , e ∈ E.

If XE1 and XE2 are S(E1), S(E2)−admissible Banach spaces respectively, then
(XE1 , XE2)B is S(E)−admissible.

Proof. We have proved the case where E = L(E1, E2) and B = BL in Theorem
2.10. For the general case assumption (4.2) allows to use Remark 2.2 where the iso-
morphism is given by e ∈ E → Te ∈ L(E1, E2) where Te(x) = B(e, x) for each e ∈ E
and x ∈ E1. Just note that

(XE1 , XE2)B = {(λ̂(j))j ∈ S(E) : (Tλ̂(j))j ∈ (XE1 , XE2)}.

�

Notice that condition (4.2) together with condition (4.1) say that we have E →
L(E1, E2) with equivalence of norms.
With this theorem we can recover some previous results on S(E)−admissibility. For
example, recall the definition of XS

E , X
K
E and XKK

E given in Definition 2.11 and Def-
inition 2.5. For XE an E-valued sequence Banach space, we can write the spaces as
follows:

XS
E = (`∞, XE)B0 = s(XE),

XK
E = (XE , `

1)D

and

XKK
E = (XK

E , `
1)D.

It is easy to check condition (4.2) on B0 and BD. Then Theorem 4.5 gives us the
S(E)− and S(E∗)−admissibility automatically.

We’ve seen so far how S(E)−admissibility remains stable under the construction of
the multipliers space through bilinear maps under certain conditions. This also works
for the notion of H(E)−admissibility.
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Theorem 4.6. Let XE1 , XE2 be H(E1) and H(E2)−admissible respectively. Con-
sider B : E × E1 −→ E2 such that there exists C > 0 s.t.

‖e‖E ≤ C sup
‖x‖XE1

=1
‖B(e, x)‖E2 , e ∈ E.

Then (XE1 , XE2)B is H(E)−admissible.

Proof. S(·)−admissibility guarantees we are dealing with Banach spaces. Need
only check the continuous inclusion conditions.

Let λ be in (XE1 , XE2)B and r ∈ (0, 1).

M∞(r2, λ) = sup
|z|=r2

‖λ(z)‖E ≤ C sup
‖x‖E1

≤1
sup
|z|=r2

‖B(λ(z), x)‖E2

= C sup
‖x‖E1

≤1
sup
|z|=r
‖B(λr(z), x)‖E2

≤ C sup
‖x‖E1

≤1
sup
|z|=r
‖λ ∗B (CXE1

)r[x](z)‖E2

= sup
‖x‖E1

≤1
M∞(r, λ ∗B (CXE1

[x])r)

≤ AXE2
(r) sup
‖x‖E1

≤1
‖λ ∗B (CXE1

[x])r‖XE2

≤ AXE2
(r)‖λ‖(XE1

,XE2
)B sup
‖x‖E1

≤1
‖(CXE1

[x])r‖XE1

≤ AXE2
(r)‖λ‖(XE1

,XE2
)B

∑
n

‖in‖rn

where we have used the previous theorem and the fact that (CXE )r[x] =
∑

n r
nxen ∈

XE1 .

On the other hand, let λ̃ ∈ H(D, E) and take r ∈ (0, 1).

‖λ̃r2‖(XE1
,XE2

)B = sup
‖f‖XE1

≤1
‖(λ̃ ∗B f)r2‖XE2

≤ sup
‖f‖XE1

≤1
sup
|w|=r

‖((λ̃ ∗B f)r)w‖XE2

= sup
‖f‖XE1

≤1
MXE2

(r, (λ̃ ∗B f)r)

≤ BXE2
(r) sup
‖f‖XE1

≤1
M∞(r, λ̃ ∗B f)

≤ BXE2
(r)‖λ̃‖∞ sup

‖f‖XE1
≤1
M∞(r, f)

≤ BXE2
(r)AXE1

(r)‖λ̃‖∞.

Therefore, if λ ∈ H(rD, E), we can write λ = (λ1/r2)r2 . Consider λ̃ = λ1/r2 for

R > 1/r2 > 1. Then

‖λ‖(XE1
,XE2

)B ≤ BXE2
(r)AXE1

(r)‖λ1/r2‖∞ <∞.

�

Theorem 4.7. Let B : E × E1 −→ E2 be a bounded bilinear map satisfying (4.2).
Define B∗ : E × E∗2 → E∗1 given by

〈B∗(e, y′), x〉 = 〈y′, B(e, x)〉, e ∈ E, x ∈ E1, y
′ ∈ E∗2 .
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If XE1 ⊆ S(E1) and XE2 ⊆ S(E2) are S(E1) and S(E2)−admissible spaces respectively
and XE2 = XKK

E2
, then

(XE1 , XE2)B = (XK
E2
, XK

E1
)B∗

Proof. From the definition we can write for λ ∈ S(E), f ∈ S(E1), g ∈ S(E∗2) and
j ≥ 0,

〈ĝ(j), λ̂ ∗B f(j)〉 = 〈λ̂ ∗B∗ g(j), f̂(j)〉.
Assume now that λ ∈ (XE1 , XE2)B and g ∈ XK

E2
. We have

‖λ ∗B∗ g‖XK
E1

= sup
{∑

j

|〈λ̂ ∗B∗ g(j), f̂(j)〉| : ‖f‖XE1
≤ 1
}

= sup
{∑

j

|〈ĝ(j), λ̂ ∗B f(j)〉| : ‖f‖XE1
≤ 1
}

≤ ‖g‖XK
E2

sup{‖(λ ∗B f)‖XE2
: ‖f‖XE1

≤ 1}

≤ ‖λ‖(XE1
,XE2

)B‖g‖XK
E2

.

Using the assumption XE2 = XKK
E2

one can argue as above for λ ∈ (XK
E2
, XK

E1
)B∗ and

f ∈ XE1 to obtain

‖λ ∗B f‖XE2
= sup

{∑
j

|〈ĝ(j), λ̂ ∗B f(j)〉| : ‖g‖XK
E2

≤ 1
}

= sup
{∑

j

|〈λ̂ ∗B∗ g(j), f̂(j)〉| : ‖g‖XK
E2

≤ 1
}

≤ ‖f‖XE1
sup

{
‖(λ ∗B∗ g)‖XK

E1

: ‖g‖XK
E2

≤ 1
}

≤ ‖λ‖(XK
E2
,XK
E1

)B∗
‖f‖XE1

.

�

Let us see under which conditions this new space we have generated becomes a
solid space, a homogeneous space or a space with (FP ).
The following result has already been used in a weaker version (B = B0) in Proposition
2.14. We give now a general version.

Proposition 4.8. If either XE1 ⊂ S(E1) or XE2 ⊂ S(E2) is an S(E1)− or
S(E2)−admissible solid space, then so it is (XE1 , XE2)B.

Proof. Let α = (α̂(j))j ∈ `∞ and λ ∈ (XE1 , XE2)B. Then (α ∗B0 λ) ∗B f =
α ∗B0 (λ ∗B f) = λ ∗B (α ∗B0 f) for f ∈ XE1 . So α ∗B0 λ ∈ (XE1 , XE2)B whenever XE1

or XE2 is solid. �

Proposition 4.9. Let XE1 and XE2 be H(E1)− and H(E2)−admissible Banach
spaces, respectively. Let B be a bilinear form defined as in Theorem 4.6. If XE2 is
homogeneous then (XE1 , XE2)B is homogeneous.

Proof. The vector-valued H-admissibility has already been proved in Theorem
4.6. Given λ ∈ (XE1 , XE2)B and f ∈ XE1 one has that

‖λ‖(XE1
,XE2

)B = sup
‖f‖XE1

=1
‖λ ∗B f‖XE2

and λw ∗B f = (λ ∗B f)w

what trivially gives the result using the homogeneity of XE2 . �

Proposition 4.10. Let XE1 and XE2 be H(E1) and H(E2)−admissible Banach
spaces respectively and B defined as in Theorem 4.6. If XE2 is homogeneous with
(FP ), then (XE1 , XE2)B has the (FP ).
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Proof. Let (λn)n ⊆ (XE1 , XE2)B such that ‖λn‖(XE1
,XE2

)B ≤ 1 and λn −→ λ in

H(D, E). Hence for a given f ∈ XE1 with ‖f‖XE1
= 1 we have λn ∗B f ∈ XE2 with

‖λn∗Bf‖XE2
≤ 1 and λn∗Bf −→ λ∗Bf inH(D, E). Since XE2 has (FP ), λ∗Bf ∈ XE2

and ‖λ ∗B f‖XE2
≤ A. Therefore λ ∈ (XE1 , XE2)B with ‖λ‖(XE1

,XE2
)B ≤ A. �

Let us see some other examples of multiplier spaces.

Definition 4.11. Let XE be H(E)−admissible. Define

X]
E = {f = (x∗j )j ∈ S(E∗) :

∑
j

〈x∗j , xj〉ej ∈ A(D) for (xj)j ∈ XE}

X?
E = {f = (x∗j )j ∈ S(E∗) :

∑
j

〈x∗j , xj〉ej ∈ H∞(D) for (xj)j ∈ XE}

That is to say X]
E = (XE , A(D))D and X?

E = (XE , H
∞(D))D. In general, we will

use the multipliers notation, as it makes easier to keep in mind where we are working.
Note that from Proposition 2.16, if X is a solid space, (X[E])] = X][E∗] and (X[E])? =
X?[E∗].

Corollary 4.12. The spaces (XE , A(D))D and (XE , H
∞(D))D are

H(E∗)−admissible.

It is clear that (XE , A(D))D ⊆ (XE , H
∞(D))D. Notice that (XE , A(D))D ⊆ X∗E

by means of f 7→ λ ∗D f(1). Therefore we have the following chain of continuous
inclusions:

XK
E ⊆ X

]
E ⊆ X

∗
E .

There are other inclusions that is worth studying.

Proposition 4.13. Let XE ⊆ H(D, E) be H(E)−admissible. Then

(XE , A(D))D ⊆ (XE , H
∞(D))D ⊆ (X0

E , A(D))D ⊆ (X̃E , H
∞(D))D

with continuous inclusions. In particular (X0
E , H

∞(D))D = (X0
E , A(D))D.

Proof. The first inclusion is immediate. For the second one note that (H∞(D))0 =
A(D) and that (X,Y ) ⊆ (X0, Y 0). For the third one, let g ∈ (X0

E , A(D))D and take

f ∈ X̃E . Then take 0 < s < 1. By the definition of X̃E , f√s ∈ XE . Now apply that

hr ∈ X0
E for any h ∈ XE to h = (f√s) and r =

√
s to get fs ∈ X0

E

‖
∑
n

〈ĝ(n), f̂(n)〉snen‖A(D) ≤ C‖fs‖XE ≤ C‖f‖X̃E .

Therefore g ∈ (XE , H
∞(D))D. �

Let us now give some information on the dual of homogeneous Banach spaces.

Proposition 4.14. Let XE ⊆ S(E) be a homogeneous Banach space. Then
(XE , A(D))D ⊆ (X0

E)∗ ⊆ (X0
E , A(D))D with continuity.

Proof. For the first inclusion let λ ∈ (XE , A(D))D. Now define

γλ(g) =
∑

n 〈λ̂(n), ĝ(n)〉, for g ∈ X0
E . Then γλ ∈ (X0

E)∗ and ‖γλ‖ ≤ ‖λ‖].
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For the second one, given γ ∈ (X0
E)∗define λγ ∈ (X0

E)] = (X0
E , A(D))D as follows:

λγ =
∑

n λ̂(n)en where 〈λ̂(n), x〉 = γ(xen) for any x ∈ E. Then given f ∈ X0
E

‖
∑
n

〈λ̂(n), f̂(n)〉en‖A(D) = sup
|w|<1

∑
n

γ(f̂(n)en)wn

= sup
|w|<1

|γ(fw)| = sup
|w|<1

|γ(F (w))|

≤ ‖γ‖‖F‖A(D,X0
E)

where F (w) = fw and we have used Proposition 3.15. �

Corollary 4.15. If XE ⊆ S(E) is an homogeneous Banach space then

(XE , H
∞(D))D = (X0

E , H
∞(D))D = (X0

E , A(D))D = (X0
E)∗

with equivalent norms.

Proof. Since XE ⊆ X̃E , we have X̃?
E ⊆ X?

E . Then it follows from Proposition

4.13 (taking X̃E as XE) and Proposition 3.11 ( ˜̃XE = X̃E) that (X̃E , H
∞(D))D =

(XE , H
∞(D))D. Clearly, for XE homogeneous,

(X̃E , H
∞(D))D = (X0

E , A(D))D = (X0
E)?.

Now XE homogeneous implies X0
E homogeneous. Applying Proposition 4.13 we get

(X0
E , A(D))D = (X0

E)∗. �

Proposition 4.16. Let XE ⊆ S(E) be homogeneous and recall the notation X?
E =

(XE , H
∞(D))D. Then X0

E ⊆ X??
E and there exists K > 0 such that

‖f‖X??
E
≤ ‖f‖XE ≤ K‖f‖X??

E
, f ∈ X0

E .

In particular X0
E is isomorphically contained in (X??

E )0.

Proof. The inclusion and first inequality are straightforward. Let now f ∈ X0
E .

From the previous results and Hahn-Banach theorem

‖f‖XE ≤ sup{|γ(f)| : γ ∈ (X0
E)∗, ‖γ‖ = 1}

≤ K sup{|g ∗D f(1)| : g ∈ (X0
E)], ‖g‖] ≤ 1}

≤ K sup{‖g ∗D f‖∞ : g ∈ (X0
E)], ‖g‖] ≤ 1}

= K sup{‖g ∗D f‖∞ : g ∈ (XE)?, ‖g‖? ≤ 1}
≤ K‖f‖??

�

Again, recall the notation X?
E = (XE , H

∞(D))D

Proposition 4.17. Let XE ⊆ S(E) be homogeneous. Then XE has (FP ) if and

only if XE = X0
E

X??
E .

Proof. For the direct implication, recall X??
E = (X?

E , H
∞(D))D. Since H∞(D) is

homogeneous with (FP ), Proposition 4.10 and the fact X0
E

X??
E is a closed subspace of

X??
E give us the desired result. For the reverse direction it is enough to check f ∈ X̃E

(see Corollary 3.24). Consider f ∈ X0
E

X??
E . Then fr ∈ X0

E . Hence using Proposition
4.16

MXE (r, f) ≤ KMX??
E

(r, f) ≤ K ′‖f‖X??
E
.

This gives f ∈ X̃E . �
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2. B−Hadamard product

In Chapter 2, we mentioned that the space

XE1 ∗B XE2 = {f ∗B g : f ∈ XE1 , g ∈ XE2}

was not necessarily a Banach space for B = B0. But if we consider the space of infinite
sums of these elements endowed with a proper norm, it becomes a Banach space.

Definition 4.18. (Hadamard projective tensor product) Let B : E1×E2 −→
E3 be a bounded bilinear map and let XE1 , XE2 be S(E1)−, S(E2)−admissible, re-
spectively. We define the Hadamard projective tensor product XE1 ~B XE2 as the
space of elements h ∈ S(E3) that can be represented as

h =
∑
n

fn ∗B gn

where the convergence of
∑

n fn ∗B gn is considered in S(E3), being fn ∈ XE1 , gn ∈
XE2 and ∑

n

‖fn‖XE1
‖gn‖XE2

<∞.

The particular case E3 = E1⊗̂πE2 and Bπ : E1 ×E2 → E3 will be simply denoted
XE1 ~XE2

Proposition 4.19. Let E1, E2 and E3 be Banach spaces and let B : E1×E2 −→ E3

be a bounded bilinear map. Let h ∈ XE1 ~B XE2 and define

‖h‖B = inf
∑
n

‖fn‖XE1
‖gn‖XE2

where the infimum is taken over all possible representations of h =
∑

n fn ∗B gn.
Then (XE1 ~B XE2 , ‖ · ‖B) is a Banach space.

Proof. Let ‖h‖B = 0 and ε > 0. Thus there exists a representation h(z) =∑
n fn ∗B gn(z) such that

∑
n ‖fn‖XE1

‖gn‖XE2
< ε. Since the series converges in S(E3)

we conclude that ĥ(j) =
∑

nB(f̂n(j), ĝn(j)). Using the admissibility of XE1 and XE2

‖ĥ(j)‖E3 ≤
∑
n

‖B(f̂n(j), ĝn(j))‖E3

≤ ‖B‖
∑
n

‖f̂n(j)‖E1‖ĝn(j)‖E2

≤ ‖B‖‖πj‖XE1‖πj‖XE2

∑
n

‖f̂n‖XE1
‖ĝn‖XE2

< ε.

Consequently ĥ(j) = 0 for all j ≥ 0.
Of course ‖αh‖B = |α|‖h‖B for any α ∈ K and h ∈ XE1 ~B XE2 .

The triangle inequality follows using that if h1 ∼ (f1
n ∗B g1

n)n and h2 ∼ (f2
n ∗B g2

n)n
such that ∑

n

‖f in‖XE1
‖gin‖XE2

< ‖hi‖B +
ε

2
, i = 1, 2.

Then h1 + h2 =
∑

n f
1
n ∗B g1

n +
∑

m f
2
m ∗B g2

m and

‖h1 + h2‖B ≤
∑
n

‖f1
n‖XE1

‖g1
n‖XE2

+
∑
m

‖f2
m‖XE1

‖g2
m‖XE2

< ‖h1‖B + ‖h2‖B + ε.

Finally, let us see that XE1 ~B XE2 is complete. Let
∑

n hn be an absolute con-
vergent series in XE1 ~B XE2 with hn ∈ XE1 ~B XE2 . For each n ∈ N select a
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76 2. B−Hadamard product

decomposition hn =
∑

k f
n
k ∗B gnk such that∑

k

‖fnk ‖XE1
‖gnk‖XE2

< 2‖hn‖B.

Let us now show that
∑

n hn =
∑

n

∑
k f

n
k ∗B gnk in S(E3). Indeed, for each j ≥ 0

we have∑
n

∑
k

‖B(f̂nk (j), ĝnk (j))‖E3 ≤ ‖B‖‖πj‖XE1‖πj‖XE2

∑
n

∑
k

‖fnk ‖XE1
‖gnk‖XE2

< 2‖B‖‖πj‖XE1‖πj‖XE2

∑
n

‖hn‖B

and since E3 is complete we get the result.
Moreover h =

∑
n hn ∈ XE1 ~B XE2 because

∑
n

∑
k ‖fnk ‖XE1

‖gnk‖XE2
<∞. Now

use that

‖
∞∑
n=N

hn‖B ≤
∞∑
n=N

∞∑
k

‖fnk ‖XE1
‖gnk‖XE2

< 2
∞∑
n=N

‖hn‖B

to conclude that the series
∑

n hn converges to h in XE1 ~B XE2 . �

Remark 4.20. If h =
∑

n fn ∗B gn ∈ XE1 ~B XE2 then
∑

n ‖fn ∗B gn‖B <∞ and
h =

∑
n fn ∗B gn converges in XE1 ~B XE2 .

Indeed, simply use that

‖f ∗B g‖B ≤ ‖f‖XE1
‖g‖XE2

for f ∈ XE1 and g ∈ XE2 and that for M > N

‖
M∑
n=N

fn ∗B gn‖B ≤
M∑
n=N

‖fn ∗B gn‖B ≤
M∑
n=N

‖fn‖XE1
‖gn‖XE2

.

Theorem 4.21. Let E1, E2 and E be Banach spaces and let B : E1 × E2 −→ E
be a bounded bilinear map satisfying that there exists C > 0 such that for each e ∈ E
there exists (xn, yn) ∈ E1 × E2 such that

(4.3) e =
∑
n

B(xn, yn),
∑
n

‖xn‖E1‖yn‖E2 ≤ C‖e‖E .

If XE1 and XE2 are admissible spaces, then XE1 ~B XE2 is S(E)−admissible.
In particular XE1 ~XE2 is S(E1⊗̂πE2)−admissible.

Proof. We show first that XE1 ~B XE2 ⊂ S(E) with continuity. For ε > 0 we
can find a representation h =

∑
n fn ∗B gn such that

∑
n ‖fn‖XE1

‖gn‖XE2
< ‖h‖B + ε.

Therefore, for each j ≥ 0,

‖ĥ(j)‖E ≤
∑
n

‖B(f̂n(j), ĝn(j))‖E

≤ ‖B‖
∑
n

‖f̂n(j)‖E1‖ĝn(j)‖E2

≤ ‖B‖‖πj‖XE1‖πj‖XE2

∑
n

‖f̂n‖XE1
‖ĝn‖XE2

≤ Cj‖h‖B + ε.

To show that P(E) ⊂ XE1 ~B XE2 , it suffices to see that eej ∈ XE1 ~B XE2 for
each j ≥ 0 and e ∈ E. Now use condition (4.3) to write e =

∑
nB(xn, yn) ∈ E and

therefore

eej =
∑
n

(xnej) ∗B (ynej)
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and

(4.4)
∑
n

‖xnej‖XE1
‖ynej‖XE2

≤ ‖ij‖XE1‖ij‖XE2

∑
n

‖xn‖E1‖yn‖E2 ≤ Cj‖e‖E .

Hence eej ∈ XE1 ~B XE2 and ‖eej‖B ≤ C‖ij‖XE1‖ij‖XE2‖e‖E . �

Remark 4.22. If E1, E2 and E are Banach spaces and B : E1 × E2 −→ E is a
surjective bounded bilinear map such that there exists C > 0 s.t. for every e ∈ E there
exists (x, y) ∈ E1 × E2 verifying

(4.5) e = B(x, y), ‖x‖E1‖y‖E2 ≤ C‖e‖E
then we can apply Theorem 4.21.

A simple application of (4.5) gives the following cases.

Corollary 4.23. (i) If X and XE are S and S(E)-admissible spaces respectively,
then X ~B0 XE is S(E)−admissible.

(ii) Let (D,Σ, µ) be a measure space, 1 ≤ pi ≤ ∞ for i = 1, 2, 3 and 1/p3 =
1/p1 + 1/p2. Let B : Lp1(µ)× Lp2(µ) → Lp3(µ) be given by (f, g) → fg. If XLp1 and
XLp2 are admissible spaces then XLp1 (µ) ~B XLp2 (µ) is admissible.

(iii) Let A be a Banach algebra with identity and P : A×A→ A given by (a, b)→
ab. If XA and YA are admissible spaces then XA ~P YA is admissible.

Recall the concept of minimal space, that is, a space such that X0
E = XE . The

new space we have built preserves minimality.

Proposition 4.24. Let E1, E2 and E be Banach spaces and let B : E1 × E2 −→
E be a bounded bilinear map satisfying (4.3). Let XE1 , XE2 be S(E1) and S(E2)-
admissible Banach spaces respectively, such that either XE1 or XE2 are minimal spaces,
then XE1 ~B XE2 is a minimal S(E)-admissible space.

Proof. We shall prove the case X0
E1

= XE1 . Let h ∈ XE1 ~BXE2 . From Remark
4.20, there exist fn ∈ XE1 , gn ∈ XE2 and N ∈ N such that

‖h−
N∑
n=0

fn ∗B gn‖B <
ε

2
.

By density choose polynomials pn with coefficients in E1 such that

‖fn − pn‖XE1
≤ ε

2(N + 1)‖gn‖XE2

Then
∑N

n=0 pn ∗B gn ∈ P(E) and

‖h−
N∑
n=0

pn ∗B gn‖B ≤ ‖h−
N∑
n=0

fn ∗B gn‖B + ‖
N∑
n=0

(fn − pn) ∗B gn‖B

≤ ε

2
+

N∑
n=0

‖fn − pn‖XE1
‖gn‖XE2

≤ ε

2
+

N∑
n=0

ε

2(N + 1)
= ε

�

With the same conditions on the bilinear map, the H(E)−admissibility also re-
mains stable under B−Hadamard products.

Theorem 4.25. Let XE1 , XE2 be H(E1)− and H(E2)−admissible, respectively. Let
B : E1 × E2 −→ E be a bilinear map verifying (4.3). Then XE1 ~B XE2 is
H(E)−admissible.
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Proof. We have already checked the Banach space condition in Proposition 4.19.
Need only check the continuous inclusion conditions. Take h =

∑
fn ∗B gn ∈ XE1 ~B

XE2 such that ‖h‖B =
∑

n ‖fn‖XE1
‖gn‖XE2

− ε. For r ∈ (0, 1)

M∞(r2, h) ≤ ‖B‖
∑
n

M∞(r, fn)M∞(r, gn)

≤ ‖B‖AXE1
(r)AXE2

(r)
∑
n

‖fn‖XE1
‖gn‖XE2

= ‖B‖AXE1
(r)AXE2

(r)(‖h‖B + ε)

Also let h(z) =
∑

j ĥ(j)zj ∈ H(rD, E) with ĥ(j) =
∑

nB(f̂n(j), ĝn(j)) for some fn ∈
XE1 , gn ∈ XE2 verifying

∑
n ‖f̂n(j)‖E1‖ĝn(j)‖E2 < C‖ĥ(j)‖E . Then arguing as in

(4.4) and using the S(E1) and S(E2)-admissibility of XE1 , XE2 respectively, we obtain

‖h‖B = ‖
∑
j

∑
n

(
f̂n(j)ej

)
∗B
(
ĝn(j)ej

)
‖B

≤
∑
j

‖ĥ(j)ej‖B

≤
∑
j

∑
n

‖f̂n(j)ej‖XE1
‖ĝn(j)ej‖XE2

≤
∑
j

‖ij‖XE1‖ij‖XE2

∑
n

‖f̂n(j)‖E1‖ĝn(j)‖E2

≤ C
∑
j

‖ij‖XE1‖ij‖XE2‖ĥ(j)‖E

≤ C‖hS‖∞
∑
j

‖ij‖XE1‖ij‖XE2S−j

for any S ∈ (1, R). �

The B−Hadamard product can help us determine some spaces of multipliers and
vice-versa. Let us see how this two concepts are related.

Theorem 4.26. Let XE1 , XE2 , XE3 be S(E1)−, S(E2)− and S(E3)−admissible
Banach spaces, respectively. Then

(XE1 ~XE2 , XE3) = (XE1 , (XE2 , XE3))

Proof. Due to the identification between L(E1⊗̂πE2, E3) and L(E1,L(E2, E3))
where the correspondence is given by φ(x⊗ y) = Tφ(x)(y) we obtain, in our case, that

each λ ∈ S(L(E1⊗̂πE2, E3)) can be identified with λ̃ ∈ S(L(E1,L(E2, E3)) satisfying

λ̂(j)(f̂(j)⊗ ĝ(j)) =
̂̃
λ(j)(f̂(j))(ĝ(j)).

Let λ ∈ (XE1 ~XE2 , XE3). For each f ∈ XE1 and g ∈ XE2 we have

(4.6) λ ∗1 (f ∗π g) = (λ̃ ∗2 f) ∗3 g

where ∗1 is used for multipliers in S(L(E1⊗̂πE2), E3), ∗2 for multipliers in
S(L(E1,L(E2, E3))) and ∗3 for multipliers in S(L(E2, E3)).

Let us now show that λ̃ ∈ (XE1 , (XE2 , XE3)).
We use (4.6) to get

‖(λ̃ ∗2 f) ∗3 g‖XE3
≤ ‖λ‖(XE1

~XE2
,XE3

)‖(f ∗π g)‖ = ‖λ‖(XE1
~XE2

,XE3
)‖f‖XE1

‖g‖XE2
.
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Therefore ‖λ̃‖(XE1
,(XE2

,XE3
)) ≤ ‖λ‖(XE1

~XE2
,XE3

).

For the converse, take λ̃ ∈ (XE1 , (XE2 , XE3)) and h ∈ XE1 ~ XE2 . Assume that
h =

∑
n fn ∗π gn with

∑
n ‖fn‖XE1

‖gn‖XE2
<∞. Hence

‖λ ∗1 h‖XE3
≤
∑
n

‖λ ∗1 (fn ∗π gn)‖XE3

=
∑
n

‖(λ̃ ∗2 fn)‖(XE2
,XE3

)‖gn‖XE2

≤
∑
n

‖λ̃‖(XE1
,(XE2

,XE3
))‖fn‖XE1

‖gn‖XE2

≤ ‖λ̃‖(XE1
,(XE2

,XE3
))

∑
n

‖fn‖XE1
‖gn‖XE2

,

which gives ‖λ‖(XE1
~XE2

,XE3
) ≤ ‖λ̃‖(XE1

,(XE2
,XE3

)). �

Proposition 4.27. Let B : E1 × E2 → E be a bounded bilinear map satisfying
(4.3). Denote B∗ : E∗ × E1 → E∗2 the bounded bilinear map defined by

〈B∗(e∗, x), y〉 = 〈e∗, B(x, y)〉, x ∈ E1, y ∈ E2, e
∗ ∈ E∗.

If XE1 and XE2 are S(E1)− and S(E2)−admissible respectively, then

(XE1 ~B XE2)K = (XE1 , X
K
E2

)B∗ and

(XE1 ~B XE2)∗ = (XE1 , X
∗
E2

)B∗ .

In particular (XE1 ~XE2)∗ = (XE1 , X
∗
E2

) and (XE1 ~XE2)K = (XE1 , X
K
E2

).

Proof. Let λ ∈ (XE1 , X
K
E2

)B∗ and define, for f ∈ XE1 and g ∈ XE2 ,

λ̃(f ∗B g)̂(j) = 〈(λ ∗B∗ f)̂(j), ĝ(j)〉, j ≥ 0.

Let us see that λ̃ ∈ (XE1 ~B XE2)K .∑
j

|λ̃(f ∗B g)̂(j)| =
∑
j

|〈(λ ∗B∗ f)̂(j), ĝ(j)〉|

≤ ‖λ ∗B∗ f‖XK
E2

‖g‖XE2

≤ ‖λ‖(XE1
,XK
E2

)B∗
‖f‖XE1

‖g‖XE2
.

By linearity we can extend the result to finite linear combinations of ∗B−products and,
by continuity, to XE1 ~B XE2 , that is

λ̃(h) =
∑
n

λ̃(fn ∗B gn)

whenever h =
∑

n fn ∗B gn and
∑

n ‖fn ∗B gn‖B ≤ ∞. Therefore we conclude
(XE1 , X

K
E2

)B∗ ⊆ (XE1 ~B XE2)K .

For the other inclusion, consider γ ∈ (XE1 ~B XE2)K and define γ̃(f)̂(j) ∈ E∗2 by

〈γ̃(f)̂(j), y〉 = γ(f ∗B yej)̂(j), f ∈ XE1 , y ∈ E2, j ≥ 0.

This gives

〈γ̃(f)̂(j), ĝ(j〉) = γ(f ∗B g)̂(j), f ∈ XE1 , g ∈ XE2 , j ≥ 0.
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Let us see that γ̃ ∈ (XE1 , X
K
E2

)B∗ :

‖γ̃(f)‖XK
E2

= sup
‖g‖XE2

=1

∑
j

|γ(f ∗B g)̂(j)|

≤ ‖γ‖(XE1
~BXE2

)K sup
‖g‖XE2

=1
‖f ∗B g‖B

≤ ‖γ‖(XE1
~BXE2

)K‖f‖XE1
.

The argument to study the dual is similar: Let λ ∈ (XE1 , X
∗
E2

)B∗ and define
φλ(f ∗B g) = 〈λ ∗B∗ f, g〉. Note that X∗E2

is also S(E∗2)−admissible and

|φλ(f ∗B g)| ≤ ‖λ‖(XE1
,X∗E2

)B∗‖f‖XE1
‖g‖XE2

.

By linearity we can extend the result to finite linear combinations of ∗B−products and
then extend by continuity to XE1 ~B XE2 , that is

φλ(h) =
∑
n

φλ(fn ∗B gn)

whenever h =
∑

n fn ∗B gn and
∑

n ‖fn ∗B gn‖B ≤ ∞. Therefore we conclude
(XE1 , X

∗
E2

)B∗ ⊆ (XE1 ~B XE2)∗.
For the other inclusion, consider T ∈ (XE1 ~B XE2)∗ and define

λT (f)(g) = T (f ∗B g).

Then

‖λT (f)‖X∗E2
= sup
‖g‖XE2

=1
|λT (f)(g)| ≤ sup

‖g‖XE2
=1
‖T‖‖f ∗B g‖B ≤ ‖T‖‖f‖XE1

.

�

Let us see what happens with solid spaces, homogeneity and (FP ) in our new
spaces.

We first give a characterization of S(E)−solid spaces in terms of Hadamard tensor
products.

Remark 4.28. It is straightforward to see that, under the assumptions of Theorem
4.21, if either XE1 or XE2 are solid spaces then XE1 ~B XE2 is a S(E)−solid space.

Consider now the set X ∗B0 YE = {f ∗B0 g : f ∈ X and g ∈ YE}.

Proposition 4.29. Let XE ⊆ S(E). Then there is a smallest solid superset of XE,

XE ⊂ S(XE). Moreover S(XE) = `∞∗B0XE = {g ∈ S(E) : ∃f ∈ X such that ‖f̂(j)‖E ≥
‖ĝ(j)‖E}.

Proof. Clearly S(XE) is the intersection of all solid sets containing XE and since
`∞ ∗B0 XE is solid, we have S(XE) ⊆ `∞ ∗B0 XE . On the other hand, by definition
XE ⊂ S(XE), therefore

`∞ ∗B0 XE ⊆ `∞ ∗B0 S(XE) = S(XE),

as S(XE) is solid.

For the second equality, name A = {g ∈ S(E) : ∃f ∈ XE such that ‖f̂(j)‖E ≥
‖ĝ(j)‖E}. This set is, by definition, a solid superset of XE . Now let B be any other solid

superset of XE and let g ∈ A. Then there exists f ∈ XE such that ‖ĝ(j)‖E ≤ ‖f̂(j)‖E
for all j. As f ∈ XE ⊂ B and B is solid, we get g ∈ B. �

Denote by SB(XE) = `∞~B0XE . Of course, for S(XE) the smallest solid superset
of XE , we have S(XE) ⊆ SB(XE), but also we have the following result.
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Proposition 4.30. Let XE be admissible. Then `∞~B0XE is the smallest S(E)−solid
space which contains XE.

In particular XE is S(E)−solid if and only if XE = `∞ ~B0 XE

Proof. Of course XE ⊆ `∞~B0XE and `∞~B0XE is solid (due to Remark 4.28).
Let YE be a solid space with XE ⊂ YE . We shall see that `∞ ~B0 XE ⊂ YE .

Let h ∈ `∞ ~B0 XE be given by h =
∑

n fn ∗B0 gn where fn ∈ `∞, gn ∈ XE and∑
n ‖fn‖∞‖gn‖XE <∞. Note that fn ∗B0 gn ∈ YE and ‖fn ∗B0 gn‖YE ≤ ‖fn‖∞‖gn‖YE

for each n because YE is solid. Hence∑
n

‖fn ∗B0 gn‖YE ≤
∑
n

‖fn‖∞‖gn‖YE ≤ C
∑
n

‖fn‖∞‖gn‖XE <∞

and then h ∈ YE . �

Proposition 4.31. Let XE1 and XE2 be H(E1)− and H(E2)−admissible Banach
spaces, respectively. Let B be a bilinear form defined as in Theorem 4.25. If XE1 and
XE2 are homogeneous then XE1 ~B XE2 is homogeneous.

Proof. The vector-valued H-admissibility has already been proved in Theorem
4.25. Given h =

∑
n fn ∗ gn ∈ XE1 ~B XE2 with

∑
n ‖fn‖XE2

‖gn‖XE1
<∞, using the

homogeneity of XE1 and XE2 , as well as the properties of MXE described in Chapter
3, one has

MXE1
~BXE2

(r2, h) ≤ ‖B‖
∑
n

MXE1
(r, fn)MXE2

(r, gn) ≤ ‖B‖K1K2

∑
n

‖fn‖XE2
‖gn‖XE1

.

Therefore MXE1
~BXE2

(r, h) ≤ K‖h‖B (K = ‖B‖K1K2), for all 0 < r < 1.

For the other condition, let ε > 0. Then we can find (fn)n ⊂ XE1 , (gn)n ⊂ XE2

such that h =
∑

n fn ∗B gn and∑
n

‖fn‖XE1
‖gn‖XE2

< ‖h‖B + ε

Taking into account that

hξ =
∑
n

(fn)ξ ∗B gn, |ξ| = 1,

and the homogeneity of XE1 , one concludes

‖hξ‖B ≤
∑
n

‖(fn)xi‖XE1
‖gn‖XE2

=
∑
n

‖fn‖XE1
‖gn‖XE2

< ‖h‖B + ε

for |ξ| = 1 and the result follows.
�

Lets see under which conditions the space we’ve generated has the (FP ). Notice
that is not enough for XE1 ~B XE2 to have this property if only one of the spaces has
it (see [16], p.437).

Theorem 4.32. Let XE1 and YE2 be homogeneous with (FP ) and B defined as in
Theorem 4.21. Then XE1 ~B XE2 has also (FP ).

Proof. Let (hn)n ∈ XE1 ~B XE2 with ‖hn‖ ≤ 1 ∀n ∈ N and such that hn −→ h
in H(D, E3). Take a decomposition hn =

∑
j fn,j ∗B gn,j where ‖fn,j‖XE1

= ‖gn,j‖XE2

and

‖hn‖ ≤
∑
j

‖fn,j‖XE1
‖gn,j‖XE2

≤ ‖hn‖+
1

n
≤ 2.
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Then (‖fn,j‖XE1
)j , (‖gn,j‖XE2

)j ∈ `2 and if we consider (αj)j ∈ `2, ‖(αj)j‖2 = 1, we
get

max{‖
∑
j

αjfn,j‖XE1
, ‖
∑
j

αjgn,j‖XE2
} ≤ 2.

For φn =
∑

j αjfn,j , ϕ =
∑

j αjgn,j , supn ‖φn‖ ≤ 2 and supn ‖ϕn‖ ≤ 2. Taking into

account XE ⊆ ((XE , A(D))D)∗, the Banach-Alaoglu theorem gives us a subsequence
(nk)k ∈ N such that φnk −→ φ, ϕnk −→ ϕ in the weak-star topology. Consequently
φnk −→ φ ∈ H(D, E1), ϕnk −→ ϕ ∈ H(D, E2). Using (FP ), φ ∈ XE1 and ϕ ∈ XE2

with ‖φ‖XE1
≤ 2, ‖ϕ‖XE2

≤ 2.

Apply the previous idea to the canonical basis (ei)i ⊆ `2, then for (αj)j = ei
φn = fn,i and ϕn = gn,i and, as before, it exists (nk)k ∈ N such that fnk,i −→ fi and
gnk,i −→ gi in H(D, E1) and H(D, E2) respectively. Taking limits h =

∑
i fi ∗B gi in

S(E3).
To see

∑
i ‖fi‖XE1

‖gi‖XE2
< ∞ it is enough to check (‖fi‖XE1

)i, (‖gi‖XE2
)i ∈ `2.

Then we have
∑

i ‖fi‖XE1
‖gi‖XE2

≤ 4, and our space has the (FP ). �

Theorem 4.33. Given Y a S−admissible space with the (FP ) and E2 a reflexive
Banach space, we have (XE1 ~ Y [E2]?)? = (XE1 , Y [E2]).

Proof. Taking into account that if Y has the (FP), then Y = Y ?? (see [?, ?,
Theorem 5.1,BP] Theorem 4.26 and Corollary 2.17 we get the result. �

3. Computing the ~B−product.

Let us see some useful examples of the ~B−product and how they can help to
compute some multiplier spaces. We start computing the Hadamard projective tensor
product for sequence spaces.

Proposition 4.34. Let 1 ≤ p, q ≤ ∞ with 1
p + 1

q = 1. Then

`p(E1)~ `q(E2) = `1(E1⊗̂πE2).

Proof. Let f ∈ `p(E1) and g ∈ `q(E2). Since f̂ ∗π g(j) = f̂(j)⊗ ĝ(j) and

‖f̂ ∗π g(j)‖E1⊗̂πE2
≤ ‖f̂(j)‖E1‖ĝ(j)‖E2

we have, using Hölder’s inequality,

(4.7) ‖f ∗π g‖`1(E1⊗̂πE2) ≤ ‖f‖`p(E1)‖g‖`q(E2).

Let h ∈ `p(E1) ~ `q(E2). Let ε > 0 and take h =
∑

n fn ∗π gn with fn ∈ `p(E1) and
gn ∈ `q(E2) and

∑
n ‖fn‖`p(E1)‖gn‖`q(E2) ≤ ‖h‖Bπ + ε.

From (4.7) we have that h =
∑

n fn ∗π gn converges in `1(E1⊗̂πE2) and
‖h‖`1(E1⊗̂πE2) ≤ ‖h‖Bπ + ε. This implies that `p(E1) ~ `q(E2) ⊆ `1(E1⊗̂πE2) with

inclusion of norm 1.
Take now h ∈ `1(E1⊗̂πE2). In particular for each j ≥ 0 and ε > 0 there exists

xjn ∈ E1 and yjn ∈ E2 such that ĥ(j) =
∑

n x
j
n ⊗ yjn and∑

n

‖xjn‖E1‖yjn‖E2 < ‖ĥ(j)‖E1⊗̂πE2
+

ε

2j
.

Define Fn and Gn by the formulae

F̂n(j) =
(
‖xjn‖E1‖yjn‖E2

)1/p xjn

‖xjn‖E1

, Ĝn(j) =
(
‖xjn‖E1‖yjn‖E2

)1/q yjn

‖yjn‖E2

.
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Note that

‖Fn‖`p(E1) = (
∑
j

‖xjn‖E1‖yjn‖E2)1/p, ‖Gn‖`q(E2) = (
∑
j

‖xjn‖E1‖yjn‖E2)1/q

and ∑
n

‖Fn‖`p(E1)‖Gn‖`q(E2) =
∑
n,j

‖xjn‖E1‖yjn‖E2 ≤ ‖h‖`1(E1⊗̂πE2) + ε.

In such a way we have h =
∑

n Fn∗πGn ∈ `p(E1)~`q(E2) with ‖h‖Bπ ≤ ‖h‖`1(E1⊗̂πE2).
�

To analyze the other values of p we shall make use of 2.1.

Proposition 4.35. Let 1 ≤ p, q ≤ ∞ with 0 < 1
p + 1

q = 1
r < 1. Then

`p(E1)~ `q(E2) = `r(E1⊗̂πE2).

Proof. Note that same argument as in Proposition 4.34 gives `p(E1)~ `q(E2) ⊆
`r(E1⊗̂πE2) with inclusion of norm 1.

Indeed, as above, if f ∈ `p(E1) and g ∈ `q(E2) then

‖f̂ ∗π g(j)‖E1⊗̂πE2
≤ ‖f̂(j)‖E1‖ĝ(j)‖E2 .

Hence

(4.8) ‖f ∗π g‖`r(E1⊗̂πE2) ≤ ‖f‖`p(E1)‖g‖`q(E2).

For a general h =
∑

n fn ∗π gn ∈ `p(E1)~`q(E2) where fn, gn are chosen such that fn ∈
`p(E1) and gn ∈ `q(E2) and

∑
n ‖fn‖`p(E1)‖gn‖`q(E2) ≤ ‖h‖Bπ + ε we have from (4.8)

that
∑

n ‖fn ∗π gn‖`r(E1⊗̂πE2) < ∞ . Then h =
∑

n fn ∗π gn converges in `r(E1⊗̂πE2)

and ‖h‖`r(E1⊗̂πE2) ≤ ‖h‖Bπ + ε.

To see that they coincide it suffices to show that (`p(E1)~`q(E2))∗ = (`r(E1⊗̂πE2))∗.
It is well known that for 1

r′ = 1− 1
r ,

(`r(E1⊗̂πE2))∗ = `r
′
(L(E1, E

∗
2)).

On the other hand, using Proposition 4.27 and (2.1) we have

(`p(E1)~ `q(E2))∗ = (`p(E1), `q
′
(E∗2)) = `r

′
(L(E1, E

∗
2))

where 1
q′ = 1− 1

q . �

One of the purposes of our work was to get to know the B−Hadamard tensor
product between analytic function spaces. We now compute the Hadamard tensor
product in some particular cases of spaces of analytic functions. We shall analyze
the case H1 and H1(D, E) at least for particular Banach spaces E following the ideas
developed in [16].

We need some notions and lemmas before the statement of the result. Recall that
for an E-valued analytic function, F (z) =

∑∞
j=0 xjz

j , we define DF (z) =
∑∞

j=0(j +

1)xjz
j .

Lemma 4.36. Let E be a complex Banach space, 1 ≤ p ≤ ∞.
(i) There exist A1, A2 > 0 such that

A1r
m‖f‖Hp(D,E) ≤Mp(r, f) ≤ A2r

n‖f‖Hp(D,E), 0 < r < 1

for f ∈ P(E) given by f(z) =
∑m

j=n xjz
j , xj ∈ E,n,m ∈ N.

(ii) If P (z) =
∑2n+1

k=2n−1 P̂ (k)zk, P̂ (k) ∈ C, then there exist constants B1 and B2

such that

(4.9) B12n‖P ∗B0 f‖Hp(D,E) ≤ ‖P ∗B0 Df‖Hp(D,E) ≤ B22n‖P ∗B0 f‖Hp(D,E)
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for any f ∈ Hp(D, E).

Proof. It is well known (see Lemma 3.1 [34]) that

rm‖φ‖∞ ≤M∞(r, φ) ≤ rn‖φ‖∞, 0 < r < 1.

for each scalar-valued polynomial φ(z) =
∑m

j=n αjz
j , where ‖φ‖∞ = sup|z|=1 |φ(z)|

and M∞(r, φ) = sup|z|=1 |φ(rz)|.
This allows us to conclude, composing with elements in the unit ball of the dual

space,

rm‖F‖∞ ≤M∞(r, F ) ≤ rn‖F‖∞, 0 < r < 1.

for any F (z) =
∑m

j=n yjz
j where yj ∈ Y where Y is a complex Banach space.

Now select Y = Hp(D, E) and F (z) = fz that is to say

F (z)(w) =
m∑
j=n

xjw
jzj .

Using that

‖F‖∞ = sup
|z|=1
‖fz‖Hp(D,E) = ‖f‖Hp(D,E)

and M∞(r, F ) = Mp(r, f) we obtain the result.
To see (ii) we first use [16, Lemma 7.2] that guarantees the existence of constants

B1, B2 such that

B12n‖P ∗B0 φ‖∞ ≤ ‖P ∗B0 Dφ‖∞ ≤ B22n‖P ∗B0 φ‖∞
for any φ ∈ H∞(D). Now apply the same argument as above to extend it to Hp(D, E).

�

Theorem 4.37. Let D−1A1(D, E) denote the space of E-valued analytic functions
F (z) =

∑
j=0 xjz

j such that DF (z) ∈ A1(D, E) with the norm given by

‖F‖D−1A1(D,E) = ‖F (0)‖E +

∫
D
‖DF (z)‖EdA(z).

Let E = Lp(µ) for any measure µ and 1 ≤ p ≤ 2.

H1(D)~B0 H
1(D, Lp(µ)) = D−1A1(D, Lp(µ)).

Proof. Let us first show thatD−1A1(D, E) ⊆ H1(D)~B0H
1(D, E) for any Banach

space E. We argue similarly to [16, Thm 7.1].
Let {Wn}∞0 be a sequence of polynomials such that

(4.10) supp(Ŵn) ⊂ [2n−1, 2n+1] (n ≥ 1), supp(Ŵ0) ⊂ [0, 1], sup
n
‖Wn‖1 <∞

and

(4.11) g =
∞∑
n=0

Wn ∗B0 g, g ∈ H(D, E).

Let f ∈ D−1A1(D, E). Note that

‖(Wn ∗B0 f)r‖H1(D,E) ≤ ‖Wn‖1‖fr‖H1(D,E) ≤ C‖f‖H1(D,E),

Hence, ‖Wn ∗B0 f‖H1(D,E) ≤ C‖f‖H1(D,E).
Denoting Qn = Wn−1 +Wn +Wn+1 we can write

f =

∞∑
n=0

Qn ∗B0 Wn ∗B0 f.
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Note now that Lemma 4.36 allows us to conclude
∞∑
n=0

‖Qn‖H1‖Wn ∗B0 f‖H1(D,E) ≤ K
∞∑
n=0

‖Wn ∗B0 f‖H1(D,E)

≤ K
∞∑
n=0

∫ 1−2−(n+1)

1−2−n
2nr2n‖Wn ∗B0 f‖H1(D,E)dr

≤ K

∞∑
n=0

∫ 1−2−(n+1)

1−2−n
r2n‖Wn ∗B0 Df‖H1(D,E)dr

≤ K
∞∑
n=0

∫ 1−2−(n+1)

1−2−n
M1(r,Wn ∗B0 Df)dr

≤ K
∞∑
n=0

∫ 1−2−(n+1)

1−2−n
M1(r,Df)dr

= K

∫ 1

0
M1(r,Df)dr

≤ K‖f‖D−1A1(D,E).

To show the other inclusion between these spaces we shall use that E = Lp(µ)
for 1 ≤ p ≤ 2 satisfies the following vector-valued extension of a Hardy-Littlewood
theorem,

(4.12)

(∫ 1

0
(1− r)M2

1 (Df, r)dr

)1/2

≤ A‖f‖H1(D,E)

for some constant A > 0(see [10], Definition 3.5 and Proposition 4.4).
It suffices to see that φ ∗B0 g ∈ D−1A1(D, Lp(µ)) for each φ ∈ H1(D) and g ∈

H1(D, Lp(µ)). Now taking into account that D2(φ ∗B0 g) = Dφ ∗B0 Dg and

rD(φ ∗B0 g)(reit) =

∞∑
j=0

(j + 1)φ̂(j)ĝ(j)rj+1eitj =

∫ r

0
D2(φ ∗B0 g)(seit)ds

we have, ∫ 1

0
M1(r,D(φ ∗B0 g))rdr ≤

∫ 1

0

(∫ r

0
M1(s,D2(φ ∗B0 g))ds

)
rdr

=

∫ 1

0
(1− s)M1(s,D2(φ ∗B0 g))ds

≤ 2

∫ 1

0
(1− r2)M1(r,Dφ)M1(r,Dg)rdr.

Now from Cauchy-Schwarz and (4.12) we obtain∫ 1

0
(1− r2)M1(r,Dφ)M1(r,Dg)rdr ≤

(∫ 1

0
(1− r2)M2

1 (r,Dφ, )rdr

)1/2

.

(∫ 1

0
(1− r2)M2

1 (r,Dg)rdr

)1/2

≤ K‖φ‖H1‖g‖H1(D,Lp(µ)).

�
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It has been already mentioned that (H1)∗ = BMOA. In the vector-valued case,
using Lp is an UMD space for 1 < p <∞, we have

(H1(T, Lp(µ)))∗ = BMOA(T, Lp
′
(µ)), 1 < p <∞

(see [7]). It is also well known that (D−1A1)∗ = Bloch (see [1]) and for the vector-
valued case (D−1A1(D, E))∗ = Bloch(D, E∗) for any complex Banach space E (see [8],
Corollary 2.1) under the pairing

〈F,G〉 =

∫
D
〈DF (z), G(z)〉dA(z).

We can give a version of this duality in terms of H∞(D).

Proposition 4.38. Let 1 < p ≤ 2.

(H1(T, Lp(µ)), H∞(D))D = BMOA(T, Lp
′
(µ))

and

(D−1A1(D, E), H∞(D))D = Bloch(D, E∗).

Proof. Given f ∈ BMOA(T, Lp′(µ)), take g ∈ H1(T, Lp(µ)). Then

f ∗D g(z) = 〈f, gz〉 =

∫
T
〈f(eiθ), g(ze−iθ)〉dθ

2π

for any |z| ≤ 1. Thus, since BMOA(T, Lp′(µ)) is the topological dual of H1(T, Lp(µ)),

sup
|z|<1
|f ∗D g(z)| ≤ ‖f‖BMOA(T,Lp′ (µ))‖gz‖H1(T,Lp(µ)) ≤ ‖f‖BMOA(T,Lp′ (µ))‖g‖H1(T,Lp(µ)).

For the reverse inclusion, we will use again a duality argument. Consider
f ∈ (H1(T, Lp(µ)), H∞(D))D and take g ∈ H1(T, Lp(µ)). Then |f ∗g(z)| = 〈fz, g〉 <∞
for |z| ≤ 1, and so fr ∈ BMOA(E∗) with ‖fr‖BMOA(T,E∗) ≤ C‖g‖H1(T,E) for any r ∈
(0, 1]. By Alaoglu’s Theorem, there exists h ∈ BMOA(T, E∗) such that fr converges
in the weak-star topology to h as r → 1.
To see h = f , consider the polynomial xen(z) = xzn, where x is an arbitrary element
of E. Then

〈fr, xen〉 = 〈f̂(n), x̄〉rn → 〈ĥ(n), x̄〉, as r → 1.

As polynomials are dense in H1(T, E) we get f̂(n) = ĥ(n) almost everywhere in T.
Therefore h = f almost everywhere in the disc.

Now consider f ∈ Bloch(D, E∗) and g ∈ D−1A1(D, E). Then we can identify the
convolution product with the following pairing:

f ∗D g(z) = 2〈Df + f,Dgz〉 = 2

∫
D
〈(Df + f)(w), Dgz(w̄)〉(1− |w|2)dA(w).

Notice that
∫
D ‖Dgz(w)‖dA(w) <

∫
D ‖Dg(w)‖dA(w) < ‖g‖D−1A1 , that Df(z) =

(zf(z))′ = f(z) + zf ′(z) and that writing f(reiθ) = f(0) +
∫ r

0 f
′(seiθ)ds one deduces

‖f(reiθ)‖E∗(1− r2) ≤ (1− r2)

(
‖f(0)‖E∗ +

∫ r

0
‖f ′(seiθ)‖E∗ds

)
≤ (1− r2)

(
‖f(0)‖E∗ + sup0<t<1‖f ′(teiθ)‖E∗r

)
≤ (1− r2)‖f(0)‖E∗ + r‖f‖Bloch.
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Therefore for a fixed |z| < 1

|f ∗ g(z)| < K sup
|w|<1

((Df(w) + f(w))(1 + |w|2))

∫
D
‖Dgz(w̄)‖dA(w)

≤ K sup
|w|<1

((2f(w) + wf ′(w))(1 + |w|2))

∫
D
‖Dgz(w̄)‖dA(w)

≤ K ′(‖f‖Bloch(D,E∗) + ‖g‖D−1A1(D,E)).

Finally, considerf ∈ (D−1A1(D, E), H∞(D))D = Bloch(D, E∗). We know

f ∗ g(z) = 〈(Df + f)(w), Dgz(w)〉 = 〈Df(w), Dgz(w)〉+ 〈fz(w), Dg(w)〉 <∞

�

Using this together with Proposition 4.27 and Theorem 4.37 we recover the follow-
ing result.

Corollary 4.39. (See [10]) Let 1 ≤ p1 ≤ 2 and 2 ≤ p2 <∞. Then

(H1(T, Lp1), BMOA(T)) = Bloch(D, Lp
′
1) and

(H1(T), BMOA(T, Lp2)) = Bloch(D, Lp2).

Using similar techniques as in Theorem 4.37, we can compute the ~B0−product
between A1(D) and the vector-valued Hardy space H1(D, E).

Theorem 4.40. Let E be a Banach space. Then

A1(D)~B0 H
1(D, E) = A1(D, E).

Proof. Let f ∈ A1(D, E). Again take (Wn)n∈N0 a sequence of polynomials verify-
ing conditions (4.10) and (4.11). Again, consider Qn = Wn−1 +Wn +Wn+1 and write
f =

∑
nQn ∗B0 (Wn ∗B0 f). Let us see that∑

n

‖Qn‖A1‖Wn ∗B0 f‖H1(D,E) <∞.

Lemma 2.3 in [30] gives for r ∈ (0, 1)

r2n+1‖Wn‖H1 ≤M1(r,Wn) ≤ r2n−1‖Wn‖H1 .

Integrating the expressions

‖Wn‖H1

2n+1 + 1
≤ ‖Wn‖A1 ≤

‖Wn‖H1

2n−1 + 1
.

Using supn ‖Wn‖H1 < ∞ we get to ‖Wn‖A1 ∈ O(2−n) and thus ‖Qn‖A1 ∈ O(2−n).
Therefore we need only check the convergence of

∑
n 2−n‖Wn ∗B0 f‖H1(D,E). Note now
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that Lemma 4.36 allows us to conclude
∞∑
n=0

‖Qn‖A1‖Wn ∗B0 f‖H1(D,E) ≤ K
∞∑
n=0

2−n‖Wn ∗B0 f‖H1(D,E)

≤ K
∞∑
n=0

∫ 1−2−(n+1)

1−2−n
r2n‖Wn ∗B0 f‖H1(D,E)dr

≤ K

∞∑
n=0

∫ 1−2−(n+1)

1−2−n
M1(r,Wn ∗B0 f)dr

≤ K
∞∑
n=0

∫ 1−2−(n+1)

1−2−n
M1(r, f)dr

= K

∫ 1

0
M1(r, f)dr

≤ K‖f‖A1(D,E).

For the reverse inclusion consider f =
∑

n gn ∗B0 hn ∈ A1(D)~B0 H
1(D, E). Since

‖B0‖ = 1, one gets

M1(r2,
∑
n

gn ∗B0 hn) ≤
∑
n

M1(r, gn)M1(r, hn),

integrating both expressions and taking into account that hn ∈ H1(D, E) for every n,

‖f‖A1(D,E) =

∫ 1

0
M1(r2,

∑
n

gn ∗B0 hn)dr ≤
∫ 1

0

∑
n

M1(r, hn)M1(r, gn)dr

≤
∑
n

‖hn‖H1(D,E)

∫ 1

0
M1(r, gn)dr =

∑
n

‖hn‖H1(D,E)‖gn‖A1 .

�
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.

Desmayarse, atreverse, estar furioso,
áspero, tierno, liberal, esquivo,
alentado, mortal, difunto, vivo,

leal, traidor, cobarde y animoso;
no hallar fuera del bien centro y reposo,
mostrarse alegre, triste, humilde, altivo,

enojado, valiente, fugitivo,
satisfecho, ofendido, receloso;

huir el rostro al claro desengaño,
beber veneno por licor süave,

olvidar el provecho, amar el daño;
creer que un cielo en un teorema cabe,
dar la vida y el alma a un desengaño;

es la tesis, quien terminó lo sabe.
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