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and
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Abstract

We consider the charged scalar boson phenomenology in the simplest effective

low-energy R-parity breaking model characterized by a bilinear violation of R-parity

in the superpotential. This induces a mixing between staus and the charged Higgs

boson. We show that the charged Higgs boson mass can be lower than expected in

the MSSM, even before including radiative corrections. We also study the charged

scalar boson decay branching ratios and show that the R-parity violating decay rates

can be comparable or even bigger than the R-parity conserving ones. Moreover, if

the stau is the LSP it will have only decays into standard model fermions. These

features could have important implications for charged supersymmetric scalar boson

searches at future accelerators.
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1 Introduction

A lot of emphasis has been put into the phenomenological study of the supersymmetric

Higgs boson sector [1]. However, so far most of these phenomenological studies have

been made in the framework of the Minimal Supersymmetric Standard Model (MSSM)

[2, 3] with conserved R-parity [4]. R-parity is a discrete symmetry assigned as Rp =

(−1)(3B+L+2S), where L is the lepton number, B is the baryon number and S is the spin

of the state. If R-parity is conserved all supersymmetric particles must always be pair-

produced, while the lightest of them must be stable. In particular, supersymmetric Higgs

scalar bosons must decay only to normal standard model particles or to pairs of lowest-

lying supersymmetric particles, which are usually heavy. On the other hand staus decay

only to supersymmetric states, like a neutralino and a tau lepton.

The study of alternative supersymmetric scenarios where the effective low energy

theory violates R-parity [5] has recently received a lot of attention [6] both due to its

phenomenological interest, as well as due to the intrinsic importance of investigating the

issue of R-parity breaking at a deeper level.

It is well–known that the simplest supersymmetric extension of the Standard Model

violates R-parity through a set of cubic superpotential terms involving a very large number

of arbitrary Yukawa couplings. Although highly constrained by proton stability, many of

such scenarios could still be viable. Nevertheless their systematic study at a phenomeno-

logical level is hardly possible, due to the enormous number of parameters present, in

addition to those of the MSSM.

As with other fundamental symmetries, it could well be that R-parity is a symmetry

at the Lagrangian level but is broken by the ground state. In order to comply with LEP

precision measurements of the invisible Z decay width these models require the introduc-

tion of SU(2) ⊗ U(1) singlet superfields [7]. Such scenarios provide a very systematic

way to include R parity violating effects, automatically consistent with low energy baryon

number conservation. They have many added virtues, such as the possibility of providing

a dynamical origin for the breaking of R-parity, through radiative corrections, similar to

the electroweak symmetry [8]. The simplest truncated version of such a model, in which

the violation of R-parity is effectively parametrized by a bilinear superpotential term

ǫiL̂
a
i Ĥ

b
2 has been widely discussed [9, 10]. It has also been shown recently [10] that this

model is consistent with minimal N=1 supergravity unification with radiative breaking of

the electroweak symmetry and universal scalar and gaugino masses. This one-parameter

extension of the MSSM-SUGRA model therefore provides the simplest reference model

for the breaking of R-parity and constitutes a consistent truncation of the complete dy-

namical models with spontaneous R-parity breaking proposed previously [7]. In this case

there is no physical Goldstone boson, the Majoron, associated to the spontaneous break-

ing of R-parity, since in this effective truncated model the superfield content is exactly

1



the standard one of the MSSM. Formulated as an effective theory at the weak scale, the

model contains only two new parameters in addition to those of the MSSM. Therefore our

model provides also the simplest parametrization of R-parity breaking effects. In contrast

to models with tri-linear R-parity breaking couplings, it leads to a very restrictive and

systematic pattern of R-parity violating interactions, which can be taken as a reference

model.

In this paper we focus on the phenomenology of the charged scalar boson sector

of the simplest R-parity breaking model. This complements a previous study of the

electrically neutral sector [11]. We show that

1. the mass of the charged Higgs boson can be lower than expected in the MSSM, even

before including radiative corrections,

2. if the stau is the LSP it will have only R-parity violating decay channels into stan-

dard model fermions,

3. the branching ratio for the R-parity violating charged Higgs boson decays can be

comparable or even bigger than the R-parity conserving ones.

We illustrate how these features arising from the charged scalar boson sector of the sim-

plest R-parity breaking model could play an important role in designing charged super-

symmetric scalar boson searches at e+e− colliders such as LEP II. For example they can

give rise to striking signatures consisting of high multiplicity events, such as di–tau + 4

jets + missing energy or 4 taus + 4 jets. Such processes, forbidden in the MSSM, are

expected to have high rates and negligible background. As for hadron colliders, we also

can have very high leptonic multiplicity events such as six leptons of which at least two

are taus, plus missing momentum. This should be easy to see at the LHC, due again to

the negligible standard model background.

2 The Model

The supersymmetric Lagrangian is specified by the superpotential W given by ∗

W = εab

[
hij

U Q̂
a
i ÛjĤ

b
2 + hij

DQ̂
b
iD̂jĤ

a
1 + hij

EL̂
b
iR̂jĤ

a
1 − µĤa

1 Ĥ
b
2 + ǫiL̂

a
i Ĥ

b
2

]
(1)

where i, j = 1, 2, 3 are generation indices, a, b = 1, 2 are SU(2) indices, and ε is a com-

pletely antisymmetric 2 × 2 matrix, with ε12 = 1. The symbol “hat” over each letter

indicates a superfield, with Q̂i, L̂i, Ĥ1, and Ĥ2 being SU(2) doublets with hypercharges
1
3
, −1, −1, and 1 respectively, and Û , D̂, and R̂ being SU(2) singlets with hypercharges

−4
3
, 2

3
, and 2 respectively. The couplings hU , hD and hE are 3 × 3 Yukawa matrices, and

∗We are using here the notation of refs. [3] and [12].
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µ and ǫi are parameters with units of mass. The last term in eq. (1) is the only R–parity

violating term.

Supersymmetry breaking is parametrized with a set of soft supersymmetry breaking

terms which do not introduce quadratic divergences to the unrenormalized theory [13]

Vsoft = M ij2
Q Q̃a∗

i Q̃
a
j +M ij2

U Ũ∗
i Ũj +M ij2

D D̃∗
i D̃j +M ij2

L L̃a∗
i L̃

a
j +M ij2

R R̃∗
i R̃j

+m2
H1
Ha∗

1 H
a
1 +m2

H2
Ha∗

2 H
a
2 −

[
1
2
Msλsλs + 1

2
Mλλ + 1

2
M ′λ′λ′ + h.c.

]
(2)

+εab

[
Aij

Uh
ij
U Q̃

a
i ŨjH

b
2 + Aij

Dh
ij
DQ̃

b
iD̃jH

a
1 + Aij

Eh
ij
EL̃

b
iR̃jH

a
1 − BµHa

1H
b
2 +B2ǫiL̃

a
iH

b
2

]
,

and again, the last term in eq. (2) is the only R–parity violating term.

Following previous discussions we will focus for simplicity on the case of one gener-

ation, namely the third [11, 14]. In contrast we will keep in our discussion the theory as

defined at low energies by the most general set of soft-breaking masses, tri-linear and bilin-

ear soft-breaking parameters, gaugino masses and the Higgs superfield mixing parameter

µ.

The electroweak symmetry is broken when the two Higgs doublets H1 and H2, and

the third component of the left slepton doublet L̃3 acquire vacuum expectation values.

We introduce the notation:

H1 =

( 1√
2
[χ0

1 + v1 + iϕ0
1]

H−
1

)
, H2 =

(
H+

2
1√
2
[χ0

2 + v2 + iϕ0
2]

)
,

L̃3 =

(
1√
2
[ν̃R

τ + v3 + iν̃I
τ ]

τ̃−

)
. (3)

Note that the W boson acquires a mass m2
W = 1

4
g2v2, where v2 ≡ v2

1 + v2
2 + v2

3 =

(246 GeV)2. We introduce the following notation in spherical coordinates for the vacuum

expectation values (VEV):

v1 = v sin θ cos β

v2 = v sin θ sin β

v3 = v cos θ (4)

which preserves the MSSM definition tanβ = v2/v1. In the MSSM limit, where ǫ3 = v3 =

0, the angle θ is equal to π/2.

In addition to the above MSSM parameters, our model contains three new param-

eters, ǫ3, v3 and B2, of which only two are independent, and these may be chosen as ǫ3

and v3.

The full scalar potential at tree level is

Vtotal =
∑

i

∣∣∣∣∣
∂W

∂zi

∣∣∣∣∣

2

+ VD + Vsoft (5)
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where zi is any one of the scalar fields in the superpotential, VD are the D-terms, and

Vsoft the SUSY soft breaking terms given in eq. (2).

The scalar potential contains linear terms

Vlinear = t01χ
0
1 + t02χ

0
2 + t03ν̃

R
τ , (6)

where

t01 = (m2
H1

+ µ2)v1 − Bµv2 − µǫ3v3 + 1
8
(g2 + g′2)v1(v

2
1 − v2

2 + v2
3) ,

t02 = (m2
H2

+ µ2 + ǫ23)v2 − Bµv1 +B2ǫ3v3 − 1
8
(g2 + g′2)v2(v

2
1 − v2

2 + v2
3) , (7)

t03 = (m2
L3

+ ǫ23)v3 − µǫ3v1 +B2ǫ3v2 + 1
8
(g2 + g′2)v3(v

2
1 − v2

2 + v2
3) .

These t0i , i = 1, 2, 3 are the tree level tadpoles, and are equal to zero at the minimum of

the potential.

Now a few theoretical comments on the model. The first refers to the choice of basis

in the original Lagrangian in eq. (1). We could have used a rotated basis in which the

bi-linear coupling disappears [15]. However, if we choose to do so, new R–parity violating

terms appear not only in the tri-linear superpotential, in the form of a DQL term, but

also in the scalar sector of the theory, i.e. the Higgs potential due to supersymmetry

breaking. Authors who adopt this basis [16] have a tendency to neglect SUSY breaking

in the Higgs potential, which is most crucial for our subsequent analysis. Therefore we

prefer to use in our calculations the basis in which the bi-linear term is not rotated away.

The final physics results are completely basis-independent [17].

Another important feature of this model is that lepton number is violated by the

ǫ3 term and by the presence of the sneutrino vacuum expectation value v3. This induces

a mass for the tau neutrino since ντ mixes with the neutralinos (see the Appendix).

This mass turns out to be proportional to an effective neutralino mixing parameter ξ ≡
(µv3+ǫ3v1)

2 characterizing the violation of R–parity, either through v3 or ǫ3. One can show

[17] that this parameter corresponds to the R–parity violating VEV in the rotated basis. If

we stick to the simplest unified supergravity version of the model with universal boundary

conditions for the soft breaking parameters, then ξ will be small since contributions arising

from gaugino mixing will cancel, to a large extent, those from Higgsino mixing. This

cancellation will happen automatically so that in this case mντ
will be naturally small

and radiatively calculable in terms of the bottom Yukawa coupling hb, thus accounting

naturally for the smallness of the ντ mass in this model. In the language of [18] one can

say that universality of the soft breaking terms implies an approximate and radiatively

calculable alignment and as a result a suppression in ξ and on mντ
. This offers a hybrid

scenario combining the see-saw and radiative schemes of ν mass generation. The rôle of

the right-handed mass which appears in the see-saw model is played by the neutralino

mass (which lies at the SUSY scale) while the rôle of the seesaw-scheme Dirac mass is

played by the effective neutralino mixing ξ which is induced radiatively. The ντ mass

4
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Figure 1: Tau neutrino mass versus de R–parity violating parameter ξ

induced this way is directly correlated with the magnitude of the effective parameter ξ

so that R–parity violation acts as the origin for neutrino mass. In Fig. 1 we display the

allowed values of mντ
. One can see that mντ

values can cover a very wide range, from

MeV values comparable to the present LEP limit [19] down to values in the eV range,

even though the individual values of v3 and ǫ3 can be rather large, e. g. v3, ǫ3 ∼ 100

GeV, because they are naturally “aligned”, without any need for fine-tuning to get small

mντ
. The alignment follows from the universality of the soft breaking parameters at the

unification scale [10]. However, for generality, in this paper we take the parameters at the

weak scale independent (i.e. no universality assumption), and always impose mντ
<∼ 20

MeV which corresponds to the laboratory limit.

This brings us to a discussion about cosmology. Clearly our model leads to a tau–

neutrino which can be much heavier than the limits that follow from the cosmological

critical density as well as primordial nucleosynthesis would allow [20]. However, in this

model the ντ is unstable and decays via neutral current into three lighter neutrinos [21].

In order for this mode to be efficient we estimate that mντ
must exceed 100 keV or so. On

the other hand, to avoid problems with primordial nucleosynthesis it is safer to consider

masses below 1 MeV or so. In order to sharpen these estimates (which are not strict

bounds) a detailed investigation is required [22].

One should bear in mind, however, that mντ
can be as large as the present labora-

tory bound [19] in the more complete versions of the model in which R–parity is broken

spontaneously due to sneutrino expectation values [7, 6]. This is so because such models

contain a majoron, denoted as J, which opens new decay channels ντ into ν + J where

5



ν is a lighter neutrino [23] as well as new annihilation channels ντ + ντ → J + J . It has

been shown explicitly that the lifetimes that can be achieved in the spontaneous broken

R–parity versions of the model can be sufficiently short to obey the critical density limit

[24]. Moreover, it has been shown that the annihilation channel is efficient enough in

order to comply the primordial nucleosynthesis bound [25], while decays may also play

an important rôle [26].

Finally, a word about the magnitude of R–parity violation. It will depend to some

extent on the process considered. Some R–parity violating observables turn out to be

proportional to an effective neutralino mixing parameter ξ ≡ (µv3 + ǫ3v1)
2 characterizing

the violation of R–parity, either through v3 or ǫ3. An example is the mass of the tau–

neutrino (see below). However, not all R–parity-violating processes are determined by ξ:

some single production processes or R–parity violating decay branching ratios, such as the

ones discussed in the present paper, depend separately on v3 or ǫ3 and can be rather large

even for small ξ and mντ
. An obvious and important example is the decay of the lightest

neutralino, which is determined by ǫ3 only since, in the rotated basis it is determined by

the D Q L superpotential term only. A detailed discussion lies outside the scope of this

paper [17].

3 Scalar Mass Matrices

The mass matrix of the charged scalar sector follows from the quadratic terms in the

scalar potential

Vquadratic = [H−
1 , H

−
2 , τ̃

−
L , τ̃

−
R ]M2

S±M2
S±M2
S±




H+
1

H+
2

τ̃+
L

τ̃+
R




+ ... (8)

For convenience reasons we will divide this 4× 4 matrix into 2× 2 blocks in the following

way:

M2
S±M2
S±M2
S± =

[
MMM 2

HH MMM2T
Hτ̃

MMM 2
Hτ̃ MMM2

τ̃ τ̃

]
(9)

where the charged Higgs block is

MMM2
HH = (10)

[
Bµ v2

v1
+ 1

4
g2(v2

2 − v2
3) + µǫ3

v3

v1
+ 1

2
h2

τv
2
3 + t1

v1
Bµ+ 1

4
g2v1v2

Bµ+ 1
4
g2v1v2 Bµ v1

v2
+ 1

4
g2(v2

1 + v2
3) − B2ǫ3

v3

v2
+ t2

v2

]

and hτ is the tau Yukawa coupling. This matrix reduces to the usual charged Higgs mass

matrix in the MSSM when we set v3 = ǫ3 = 0 and we call m2
12 = Bµ. The stau block is

given by

MMM 2
τ̃ τ̃ = (11)
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[
1
2
h2

τv
2
1 − 1

4
g2(v2

1 − v2
2) + µǫ3

v1

v3
−B2ǫ3

v2

v3
+ t3

v3

1√
2
hτ (Aτv1 − µv2)

1√
2
hτ (Aτv1 − µv2) m2

R3
+ 1

2
h2

τ (v
2
1 + v2

3) − 1
4
g′2(v2

1 − v2
2 + v2

3)

]

We recover the usual stau mass matrix again by replacing v3 = ǫ3 = 0, nevertheless, we

need to replace the expression of the third tadpole in eq. (7) before taking the limit. The

mixing between the charged Higgs sector and the stau sector is given by the following

2 × 2 block:

MMM 2
Hτ̃ =

[−µǫ3 − 1
2
h2

τv1v3 + 1
4
g2v1v3 −B2ǫ3 + 1

4
g2v2v3

− 1√
2
hτ (ǫ3v2 + Aτv3) − 1√

2
hτ (µv3 + ǫ3v1)

]
(12)

and as expected, this mixing vanishes in the limit v3 = ǫ3 = 0. The charged scalar mass

matrix in eq. (9), after setting t1 = t2 = t3 = 0, has determinant equal to zero since one

of the eigenvectors corresponds to the charged Goldstone boson with zero eigenvalue.

For completeness, we give the neutral Higgs sector mass matrices. The quadratic

scalar potential includes

Vquadratic = 1
2
[ϕ0

1, ϕ
0
2, ν̃

I
τ ]MMM

2
P 0




ϕ0
1

ϕ0
2

ν̃I
τ


+ 1

2
[χ0

1, χ
0
2, ν̃

R
τ ]MMM2

S0




χ0
1

χ0
2

ν̃R
τ


+ ... (13)

where the CP-odd neutral scalar mass matrix is

MMM 2
P 0 =




Bµ v2

v1
+ µǫ3

v3

v1
+ t1

v1
Bµ −µǫ3

Bµ Bµv1

v2
−B2ǫ3

v3

v2
+ t2

v2
−B2ǫ3

−µǫ3 −B2ǫ3 µǫ3
v1

v3
−B2ǫ3

v2

v3
+ t3

v3


 (14)

This matrix also has a vanishing determinant after the tadpoles are set to zero, and the

zero eigenvalue corresponds to the mass of the neutral Goldstone boson. The usual MSSM

mass matrix of the pseudoscalar Higgs sector is recovered in the limit v3 = ǫ3 = 0 in the

upper–left 2 × 2 block, and the third component corresponding to the imaginary part of

the sneutrino decouples from it. Note that in this limit, the MSSM mass of the sneutrino

is recovered provided we replace the expression for the tadpole in eq. (7) before taking

the limit.

The neutral CP-even scalar sector mass matrix in eq. (13) is given by †

MMM 2
S0 = (15)




Bµ v2

v1
+ 1

4
g2

Zv
2
1 + µǫ3

v3

v1
+ t1

v1
−Bµ − 1

4
g2

Zv1v2 −µǫ3 + 1
4
g2

Zv1v3

−Bµ − 1
4
g2

Zv1v2 Bµ v1

v2
+ 1

4
g2

Zv
2
2 − B2ǫ3

v3

v2
+ t2

v2
B2ǫ3 − 1

4
g2

Zv2v3

−µǫ3 + 1
4
g2

Zv1v3 B2ǫ3 − 1
4
g2

Zv2v3 µǫ3
v1

v3
− B2ǫ3

v2

v3
+ 1

4
g2

Zv
2
3 + t3

v3




where we have defined g2
Z ≡ g2+g′2. In the upper–left 2×2 block, in the limit v3 = ǫ3 = 0,

the reader can recognize the MSSM mass matrix corresponding to the CP–even neutral
†Note that in the non-diagonal entries of this matrix the terms involving gauge couplings correct from

those given in ref. [11] by a factor 2.

7



Higgs sector. Similar to the previous case, in this limit the third component decouples from

the other two and corresponds to the real part of the sneutrino, which become degenerate

with the imaginary part of the sneutrino. Another way of looking at the separation of

the sneutrino field into real and imaginary parts is through a sneutrino–anti-sneutrino 45

degrees mixing [27].

In the general case, there will be a mixing between the Higgs sector and the stau

sector. The three mass matrices in eqs. (9), (14), and (15) are diagonalized by rotation

matrices which define the eigenvectors




G+

H+

τ̃+
1

τ̃+
2




= RRRS±




H+
1

H+
2

τ̃+
L

τ̃+
R



,




G0

A

ν̃I
τ


 = RRRP 0




ϕ0
1

ϕ0
2

ν̃I
τ


 ,




h

H

ν̃R
τ


 = RRRS0




χ0
1

χ0
2

ν̃R
τ


 , (16)

and the eigenvalues diag(0,m2
H±,m2

τ̃±
1

,m2
τ̃±
2

) = RRRS±MMM 2
S±RRR

T
S± for the charged scalar sector,

diag(0,m2
A,m

2
ν̃I

τ
) = RRRP0MMM2

P0RRR
T
P0 for the CP–odd neutral scalar sector, and diag(m2

h,m
2
H,m

2
ν̃R

τ
) =

RRRS0MMM 2
S0RRR

T
S0 for the CP–even neutral scalar sector.

The labelling for the different eigenstates is as follows. In the charged scalar sector

the eigenstate with zero mass is denoted G±. Among the other three, we call staus the

two eigenstates S±
i with the biggest stau component calculated with (Ri3

S±)2 + (Ri4
S±)2,

and by convention mτ̃±
1
< mτ̃±

2
. The remaining eigenstate is called charged Higgs H±. In

the neutral CP–odd sector, G0 is the eigenstate P 0
i with zero mass. Among the other two

eigenstates, the one with largest stau component (Ri3
P 0)2 is called ν̃I

τ , and the remaining

state is the CP–odd Higgs A. Similarly, in the neutral CP–even sector, the state S0
i with

the largest stau component (Ri3
S0)2 is called sneutrino ν̃R

τ . The other two are the neutral

Higgs bosons h and H , with mh < mH . With this notation H± is the field which is

mostly the MSSM charged Higgs, but with a small component of stau, and similarly for

the neutral Higgs bosons.

If a 3 × 3 matrix MMM has a zero eigenvalue, then the other two eigenvalues satisfy

m± =
1

2
TrMMM ± 1

2

√
(TrMMM)2 − 4(M11M22 −M2

12 +M11M33 −M2
13 +M22M33 −M2

23) (17)

The CP-odd neutral scalar mass matrix eq. (14) has a zero determinant, so that its

eigenvalues m2
ν̃R

τ
and m2

A can be calculated exactly with the previous formula. The same

can be done with the charged scalar mass matrix in the limit hτ = 0. In this case,

the right stau decouples, and the eigenvalues m2
H± and m2

τ̃±
L

can be also calculated with

eq. (17). Note that this limit is taken here only for the sake of illustration. In all numerical

calculations we have used the realistic value for hτ which is fixed through an exact tree-

level relation eq. (28) given in the Appendix.

One can determine in the tree-level approximation the minimum of the scalar po-

tential by imposing the condition of vanishing tadpoles in eq. (7). One–loop corrections

8



change these equations to

ti = t0i − δti + Ti(Q) (18)

where ti, with i = 1, 2, 3, are the renormalized tadpoles, t0i are the tree level tadpoles

given in eq. (7), δti are the tadpole counter-terms, and Ti(Q) are the sum of all one–loop

contributions to the corresponding one–point functions with zero external momentum.

The contribution from quarks and squarks to these tadpoles in our model can be found in

ref. [10]. In an on shell scheme we identify the tree level tadpoles with the renormalized

ones. Therefore, to find the correct minima we use eq. (7) unchanged, where now all the

parameters are understood to be renormalized quantities.

We have used the diagrammatic (tadpole) method. Although equivalent to the

effective potential method for minimization purposes [28], the diagrammatic method is

better than the effective potential when it comes to calculating the one–loop corrected

scalar masses [29]. Following ref. [30] (see also ref. [31]), we work in an on–shell scheme

where by definition the tree level CP-odd Higgs mass mA and the tree level W–boson mass

mW correspond to the respective pole masses. In this case, the renormalized charged Higgs

mass mH± is equal to the tree level charged Higgs mass calculated in the previous section,

plus the following one–loop contributions:

∆m2
H± = Re

[
AH+H−(m2

A +m2
W ) − AAA(m2

A) − AWW (m2
W )
]

(19)

where ASS(p2), with S = H±, A,W , are self energies. Each self energy is infinite by itself,

but ∆m2
H± is finite.

Before turning to the numerical study of the charged Higgs mass spectrum, let us

mention that, throughout this paper, except the case where the parameters have been

fixed (Fig. 5 and 6), we have taken the MSSM parameters varying in the range :

0.5 < tan β < 90

0 GeV < M,M ′ < 1000 GeV

0 GeV < mR3
, mL3

< 300 GeV (20)

−500 GeV < Aτ < 500 GeV

−200 GeV < µ,B < 0 GeV

and the two R–Parity violating parameters varying as:

− 200 GeV < ǫ3 < 200 GeV

−90 GeV < v3 < 90 GeV (21)

Note that m2
H1

, m2
H2

, and B2 are fixed through the tadpole equations given in eq. (7).

No big differences are observed if we take µ ≥ 0 , and the sign of B is equal to the sign

of µ because at the weak scale we have m2
A ∝ µB. We are interested in relatively light

charged Higgs , so we take |µ| , |B| ≤ 200 GeV . Similarly we are interested in relatively

light staus , and that is why we take mR3
, mL3

≤ 300 GeV.

9



Figure 2: Tree level and one–loop charged Higgs boson mass as a function of the CP–odd

Higgs mass mA. The variation of parameters in the scan is indicated in the text. The

horizontal dashed line corresponds to the W -boson mass.

We now turn to the numerical study of the lowest-lying charged scalar boson mass.

Our results are illustrated in Fig. 2. In Fig. 2 we display allowed values of charged

Higgs boson mass as a function of the CP-odd neutral Higgs boson mass mA. Here the

main point to note is that mH± can be lower than expected in the MSSM, even before

including radiative corrections. This is due to negative contributions arising from the

R-parity violating stau-Higgs mixing, controlled by the parameter ǫ3. We have varied the

relevant model parameters in the range given by eq. (20) and eq. (21).

The one loop correction ∆m2
H± in eq. (19) depends on the soft squark masses MQ,

MU and MD, and the tri-linear soft masses At and Ab . Since they appear only through

radiative corrections , for simplicity we have taken them degenerate at the weak scale :

MQ = MU = MD = 1 TeV and At = Ab = Aτ .

An alternative way to display the influence of ǫ3 parameter on the charged Higgs

boson mass can be seen in Fig. 3. In this figure the curves corresponding to different

ǫ3 and v3 values delimit the minimum theoretically allowed charged Higgs boson mass

corresponding to those specific values. These curves are found in a scan where the MSSM

parameters are varied according to eq. (20) and the R–parity violating parameters ǫ3 and

v3 are varied according to the label in Fig. 3. Below each curve no points are found.

10



Figure 3: Minimum charged Higgs boson mass versus tanβ. Each curve corresponds to a

different range of variation of the R–parity violating parameters ǫ3 and v3

The radiatively corrected MSSM prediction is recovered, as expected, when ǫ3 = 0 = v3.

This is indicated by the solid line in the figure. For larger values of the R-parity violating

parameters one sees that the mass can be substantially lower than the MSSM expectation.

This is due, again, to the negative contributions arising from the R-parity violating stau-

Higgs mixing, as discussed above.

4 Production and Decays of Charged Scalars

Charged scalar pair production cross section can be calculated with the aid of the ZS+
i S

−
j

Feynman rule, which is equal to iλij
ZS+S−(p+ p′)µ where p and p′ are the momenta in the

direction of the positive electric charge flow. The λ couplings are equal to λλλZS+S− =

RRRS±λλλ′ZS+S−RRR
T
S± where the couplings in the unrotated basis are

λλλ′ZS+S− =
g

2cW




−c2W 0 0 0

0 −c2W 0 0

0 0 −c2W 0

0 0 0 2s2
W




(22)
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Figure 4: Total production cross section of a pair of (a) charged Higgs bosons and (b)

light staus, as a function of their mass. The centre of mass energy is 192 GeV.

The differential cross section for the production of two charged scalars is

dσ

d cos θcm

(e+e− → S+
i S

−
j ) =

1

32πs
λ3/2(1, m2

S±
i

/s,m2
S±

j

/s) sin2 θcm (23)

×
[
e4

2
δij −

ge2

2cW
ge

V λ
ij
ZS+S−δij

s

s−m2
Z

+
g2

8c2W
(ge2

V + ge2
A )λij2

ZS+S−

s2

(s−m2
Z)2

]

where ge
V = 1

2
− 2s2

W and ge
A = 1

2
and λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc.

In Fig. 4 we plot the production cross section of a pair of charged scalars as a

function of its mass, considering
√
s = 192 GeV. In Fig. 4a we have σ(e+e− −→ H+H−)

and most of the points fall on the MSSM curve. The points that deviate from the main

curve are due to mixing between charged Higgs and right stau. In fact, if the right stau

were decoupled from the rest of the charged scalars, the charged Higgs pair production

cross section would be identical to the MSSM for any value of ǫ3 or v3, and the reason is

that the upper–left 3× 3 relevant sub-matrix of λλλ′ZS+S− in eq. (22) is proportional to the

identity.

In Fig. 4b we have σ(e+e− −→ τ̃+
1 τ̃

−
1 ) as a function of mτ̃±

1
. The points concentrate

around the two MSSM curves corresponding to the cases where τ̃±1 is mainly left stau

(upper curve) and where τ̃±1 is mainly right stau (lower curve). The smallness of the

right-handed stau cross section relative to the left-handed one is understandable because

12



Figure 5: Mixed H±τ̃∓1 production cross section as a function of mH± +mτ̃∓
1

at 192 GeV

centre-of-mass energy.

the right-handed stau is an SU(2)L singlet. Again, the points which deviate from these

curves are due to the mixing between the left and right staus.

An interesting characteristic of our model is the mixed production e+e− −→ H±τ̃∓1
which is absent in the MSSM. In Fig. 5 we plot the total mixed production cross section,

defined by σ(e+e− −→ H±τ̃∓1 ) ≡ σ(e+e− −→ H+τ̃−1 ) + σ(e+e− −→ H−τ̃+
1 ), as a function

of the sum of the final product masses mH± + mτ̃±
1

for
√
s = 192 GeV. This mixed

production cross section can be sizable, with a maximum value of the order of 0.12 pb.

As we have already seen, our model allows strong charged Higgs stau mixing, and

this can substantially affect both the masses and the couplings. As a result the decay

branching patterns of the charged scalar bosons can be significantly affected.

We now turn to a discussion of the charged scalar boson decays. Our first result

here relates to the stau. In Fig. 6 we display the stau decay branching ratios below and

past the neutralino threshold. In this figure we have fixed the parameters as

µ = 370 GeV tan β = 2

v3 = −4.7 GeV M = 2M ′ = 170 GeV

B = 40 GeV ǫ3 = 10 GeV

Aτ = 500 GeV mR3
= 400 GeV (24)
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Figure 6: Stau branching ratios possible in our model for a particular choice of parameters.

Note the neutralino threshold below which only R–parity violating decays are present.

in such a way as to ensure that the lightest neutralino is about 80 GeV in mass and thus

may be produced as a decay product of a stau produced at LEP II energies.

In addition, we have chosen ǫ3 = 10 GeV and v3 = −4.7 GeV (θ = 1.59 rad) to

demonstrate that we don’t need large R–parity violating parameters to obtain sizeable

effects. Otherwise, the choice of parameters is arbitrary .

Below the neutralino threshold, the stau is the LSP and will have only R-parity

violating decays, therefore totally un-suppressed, even for the case of small R–parity

breaking mixing. The main modes of stau decay in this case are into νττ , cs̄ and cb̄,

as clearly seen from Fig. 6. Moreover, one sees that for typical values of the R–parity

breaking parameters, the stau will decay inside the detector.

Finally, for the case of the R-parity violating charged Higgs boson decays one can

see from Fig. 7 that the branching ratios into supersymmetric channels can be comparable

or even bigger than the R-parity conserving ones, even for relatively small values of ǫ and

v3.

Indeed it is explicitly seen from Fig. 7 that, in the region of small tan β, the R-parity

violating Higgs boson decay branching ratios can exceed the conventional ones and may

reach values close to 100 %, since the R-parity–conserving decayH± → τντ is proportional

14



Figure 7: Charged Higgs branching ratios possible in our model for a particular choice of

parameters. The R–parity violating decay dominates at low tan β.

to tan2 β and so is usually dominant for larger tanβ. This figure was obtained for a fixed

choice of parameters, given as

µ = −100 GeV mL3
= 140 GeV

v3 = 2.66GeV M = 2M ′ = 100 GeV

mH± = 93 GeV ǫ3 = 4 GeV

Aτ = 0 GeV mR3
= 400 GeV (25)

Note that in eq. (25) we have chosen µ with the opposite sign of eq. (24). This is done to

see that the trends in Fig. 6 are not a peculiarity of that particular choice of parameters.

Again we have taken small R–parity violating parameters: ǫ3 = 4 GeV and v3 = 2.66

GeV. In order to get a ligth charged Higgs with mH± = 93 GeV we take |µ| and |B| small.

We have also checked that a cosmologically safe 1 MeV ντ would not modify ap-

preciably our conclusions. For example, we have verified that Fig. 7 remains unchanged

if we vary mντ
up to 1 MeV. The reason is that, although typically correlated with mντ

the R–parity violating branching ratio may be large if the Higgs and stau masses are

relatively close to each other, even for much smaller mντ
values.

Another way to see that the dominance of R–parity-violating Higgs boson decays is

not an accident of the above parameter choice is illustrated in Fig. 8. The various curves
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Figure 8: The curves denote the maximum attainable R-parity-violating charged Higgs

branching ratio versus tanβ.

denote the maximum attainable values for the R–parity-violating Higgs boson branching

ratio B(H+ −→ τ+χ̃0
1). The parameter space is scanned and the curves represent the

boundaries above which no points are found. The MSSM parameters are varied according

to eq. (20) and the range of variation of the R–parity violating parameters ǫ3 and v3 is

indicated in the figure. In this way and in absolute generality, we demonstrate that even

for very small R–parity violating parameters the branching ratio B(H+ −→ τ+χ̃0
1) can be

close to unity, and that in the region of tanβ ≫ 1 the decay H+ −→ τ+ντ dominates.

5 Discussion

We have seen in the last section [see Fig. 6] that if the lightest stau τ̃±1 is the LSP it will

decay only through R-parity-violating interactions, to cs or τντ . As a result it leads to

decay signatures which are identical to those of the charged Higgs boson in the MSSM.

However, if it is not the LSP the τ̃±1 is more likely to have standard R-parity-conserving

decays such as neutralino plus τ , leading to signals that can be drastically different from

those expected in the MSSM and which would arise from χ̃0 −→ ντZ
∗ or χ̃0 −→ τW ∗.

Unless ǫ3 and v3 are extremely small, the neutralino will decay inside the detector. For

the case of stau pair production in e+e− colliders, such as LEP II, this would imply a
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plethora of new high fermion-multiplicity events (multi-jets and/or multi-leptons) . For

example, di–tau + 4 jets + missing energy if both neutralinos decay into jets through

neutral currents, or 4 taus + 4 jets if both neutralinos decay into jets through charged

currents. Such processes are expected to have high rates and negligible background. As

for hadron colliders, we also can have very high leptonic multiplicity events such as six

leptons of which at least two are taus, plus missing momentum. This should be easy to

see at the LHC, due again to the negligible standard model background. For a recent

discussion see, for example, ref. [32].

If the charged Higgs is the lightest charged scalar boson one can distinguish two

scenarios. If the R-parity-violating parameter ǫ3 is small, the charged Higgs boson mainly

decays to standard model fermions, thus conserving R-parity. However ( as pointed out in

ref. [11] for the case of neutral Higgs) it is possible to obtain very large branching ratios

for R-parity-violating charged Higgs boson decays, even for moderate ǫ3 values, as long

as the mass difference between Higgs and staus is not too large. This happens because

the R-parity-violating decay rates are governed by gauge strength interactions, whereas

the R-parity-conserving ones are determined by Yukawa couplings.

In the opposite case of large ǫ3 ∼ mW we always expect large branching ratios for

R-parity-violating charged Higgs boson decay modes. As a result, one expects again a

large number of novel signatures arising from neutralino decays. These would be the same

large multiplicity events that we mentioned above for stau pair production.

Contrary to the MSSM, where stau and charged Higgs boson signal topologies are

different, in our model they can be identical, for suitably chosen parameters. If one of these

signals is observed, it will be difficult to know if it comes from a charged Higgs or a stau.

To disentangle them, measurements of masses and decay rates of both particles would be

required. Alternatively, less experimental information would be required to separate the

origin of the signals if the particle mass spectrum were predicted from theory, as happens

in supergravity versions of this model [10].

Another interesting feature of our model is the mixed production e+e− −→ H±τ̃∓.

If mχ0
1
< mτ̃±

1
then one can produce interesting signatures like di-tau + di-jets + missing

energy. This is obtained when H± −→ τ±ντ and τ̃∓ −→ τ∓χ̃0
1 −→ τ∓qqντ . Although

the cross section for this case is typically smaller, one can see from Fig. 5 that for many

choices of parameters it may be non-negligible.

6 Conclusion

In summary we have considered the most salient aspects of the phenomenology of the

charged scalar boson sector in the simplest effective low-energy R-parity breaking model

characterized by a bilinear violation of R-parity in the superpotential. We have shown
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that the mass of the charged Higgs boson can be lower than expected in the MSSM, even

before including radiative corrections. We have also studied the charged scalar boson

decay branching ratios and show that the R-parity violating decay rates can be comparable

or even bigger than the R-parity conserving ones. Moreover, if the stau is the LSP it will

have only decays into standard model fermions, therefore totally un-suppressed. In the

opposite case where it is heavier than the lightest neutralino one expects a plethora of

exotic high fermion multiplicity events for which the standard model backgrounds should

be rather small or absent. A detailed analysis of the detectability prospects of the related

signatures at future accelerators lies outside the scope of the present paper and will be

taken up elsewhere.
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Appendix

For completeness, in this Appendix we collect the Feynman rules relevant for the study

of charged scalar decays into two fermions, where these two fermions are a chargino-tau

and a neutralino-neutrino. We also give the exact formula, eq. (28), for the tau-lepton

Yukawa coupling hτ which differs in this model from that of the MSSM. First we set our

conventions in the fermionic sector.

As we have already learned, the charged Higgs states H2
1 and H1

2 mix with the stau

states τ̃+
L and τ̃+

R and form a set of four charged scalar eigenstates S±
i with i = 1, 2, 3, 4.

The charged scalar mass matrix M2
S±M2
S±M2
S± in eq. (9) is diagonalized by a 4× 4 rotation matrix

RRRS± defined in eq. (16).

In a similar way, charginos mix with the tau lepton forming a set of three charge

fermions F±
i , i = 1, 2, 3. In a basis where ψ+T = (−iλ+, H̃1

2 , τ
+
R ) and ψ−T = (−iλ−, H̃2

1 , τ
−
L ),

the charged fermion mass terms in the lagrangian are

Lm = −1

2
(ψ+T , ψ−T )

(
000 MMMT

C

MMMC 000

)(
ψ+

ψ−

)
+ h.c. (26)
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where the chargino/tau mass matrix is given by

MMMC =




M 1√
2
gv2 0

1√
2
gv1 µ − 1√

2
hτv3

1√
2
gv3 −ǫ3 1√

2
hτv1


 (27)

and M is the SU(2) gaugino soft mass. We note that chargino sector decouples from

the tau sector in the limit ǫ3 = v3 = 0. As in the MSSM, the chargino mass matrix is

diagonalized by two rotation matrices UUU and VVV The tau Yukawa coupling hτ is chosen

such that one of the eigenvalues is equal to the tau mass. This is calculated from the

vacuum expectation values of the model through an exact tree level relation given by

h2
τ =

2M2
τ

v2
1


 f + g(ε3, v3)

f − 2
v2
1

h(ε3, v3)


 (28)

where :

f = g2
(

1

2
M2

τ (v2
1 + v2

2) +Mµv1v2 −
1

4
g2v2

1v
2
2

)
+ (µ2 −M2

τ )(M2
τ −M2)

g(ε3, v3) = 1
2
v2
3g

2
(
M2

τ − µ2 − 1
2
g2v2

2

)
− ε2

3

(
M2 −M2

τ + 1
2
g2v2

1

)

−ε3v3g
2(Mv2 + µv1)

h(ε3, v3) = ε3v3

(
µv1(M

2
τ −M2) + 1

2
g2Mv2

1v2

)
+ 1

2
ε2
3v

2
3 (M2 −M2

τ )

+1
2
v2
3

(
M2

τ (M2
τ −M2) − g2M2

τ (v2
1 + 1

2
v2
2) − g2Mµv1v2 + 1

2
g4v2

1v
2
2

)

+1
2
ε3v

3
3g

2Mv2 − 1
4
v4
3g

2(M2
τ − 1

2
g2v2

2)

In our model, the tau neutrino aquires mass, and this is due to a mixing between the

neutralino sector and the neutrino–tau, forming a set of five neutral fermion F 0
i , i =

1, ...5. In the basis ψ0T = (−iλ′,−iλ3, H̃1
1 , H̃

2
2 , ντ ) the neutral fermions mass terms in the

lagrangian are given by

Lm = −1

2
(ψ0)TMMMNψ

0 + h.c. (29)

where the neutralino/neutrino mass matrix is

MMMN =




M ′ 0 −1
2
g′v1

1
2
g′v2 −1

2
g′v3

0 M 1
2
gv1 −1

2
gv2

1
2
gv3

−1
2
g′v1

1
2
gv1 0 −µ 0

1
2
g′v2 −1

2
gv2 −µ 0 ǫ3

−1
2
g′v3

1
2
gv3 0 ǫ3 0




(30)

and M ′ is the U(1) gaugino soft mass. This neutralino/neutrino mass matrix is diagonal-

ized by a 5 × 5 rotation matrix NNN such that

NNN ∗MMMNNNN
−1 = diag(mχ0

1
, mχ0

2
, mχ0

3
, mχ0

4
, mντ

) (31)

where by definition the eigenstate F 0
5 is the neutrino–tau, i.e., with the largest tau com-

ponent (Ni5)
2.
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Now we are ready to work out the S±
i F

∓
j F

0
k Feynman rules. These vertices are

denoted by

S+
i F

−
j F

0
k −→ iλL ijk

S+F−F 0PL + iλR ijk
S+F−F 0PR (32)

where PL = 1
2
(1−γ5) and PR = 1

2
(1+γ5) are the usual left and right proyection operators.

For simplicity, we work in a basis where the chaged scalars are unrotated. In this basis

S ′+ = (H2∗
1 , H

1
2 , τ̃

+
L , τ̃

+
R ) the vertices are denoted by

S ′+
i F

−
j F

0
k −→ iλ′L ijk

S+F−F 0PL + iλ′R ijk
S+F−F 0PR (33)

The relation between λ and λ′ is given by

λL ijk
S+F−F 0 = Ril

S±λ
′L ljk
S+F−F 0 , λR ijk

S+F−F 0 = Ril
S±λ

′R ljk
S+F−F 0 (34)

and each of the λ′ can be read from the following Feynman rules

H2∗
1 F

−
i F

0
j −→ i

g

2

[
−U∗

i1N
∗
j3 +

1√
2
U∗

i2

(
N∗

j2 +
g′

g
N∗

j1

)]
(1 − γ5) + i

hτ

2
Nj5Vi3(1 + γ5)

H1
2F

−
i F

0
j −→ −ig

2

[
Vi1Nj4 +

1√
2
Vi2

(
Nj2 +

g′

g
Nj1

)]
(1 + γ5) (35)

τ̃+
L F

−
i F

0
j −→ −ig

2

[
U∗

i1N
∗
j5 −

1√
2
U∗

i3

(
N∗

j2 +
g′

g
N∗

j1

)]
(1 − γ5) − i

hτ

2
Nj3Vi3(1 + γ5)

τ̃+
RF

−
i F

0
j −→ −i g

′
√

2
Vi3Nj1(1 + γ5) + i

hτ

2

(
N∗

j5U
∗
i2 −N∗

j3U
∗
i3

)
(1 − γ5)

The reader can check that from eq. (35) we can recover the MSSM Feynman rules taking

the appropriate limits.
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