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Abstract

The discrete non-Abelian symmetry A4, valid at some high-energy scale, naturally

leads to degenerate neutrino masses, without spoiling the hierarchy of charged-lepton

masses. Realistic neutrino mass splittings and mixing angles (one of which is nec-

essarily maximal and the other large) are then induced radiatively in the context of

softly broken supersymmetry. The quark mixing matrix is also calculable in a similar

way. The mixing parameter Ue3 is predicted to be imaginary, leading to maximal CP

violation in neutrino oscillations. Neutrinoless double beta decay and τ → µγ should

be in the experimentally accessible range.
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It has often be said that the mixing pattern of neutrinos, which involves large angles, as

evidenced by the atmospheric [1] and solar [2] neutrino data, is unexpected and difficult to

understand, given that the quark charged-current mixing matrix VCKM involves only small

angles. However, as shown below, both can be explained in a simple and unified way as

small radiative corrections of a fixed pattern, valid at some high-energy scale as the result of

an underlying symmetry, which we identify here as A4, the non-Abelian discrete symmetry

group of the tetrahedron [3]. We show that at the high scale, neutrino masses are degenerate

and VCKM is the identity matrix. We then calculate the radiative corrections down at

the electroweak scale in the framework of softly broken supersymmetry [4, 5] and obtain

realistic versions of Mν and VCKM . The reason that neutrino mixing involves large angles

is a simple consequence of degenerate perturbation theory, where a small off-diagonal term

induces maximal mixing between two states of equal energy, whereas in the quark sector

with hierarchical masses, the same small off-diagonal element induces only a small mixing.

Our starting point is the model of Ref. [3], but with the following two important im-

provements. (I) Instead of breaking A4 spontaneously at the electroweak scale, it is now

broken at a very high scale. (II) Supersymmetry is added with explicit soft breaking terms

which also break A4. The resulting theory at the electroweak scale is a specific version of

the MSSM (Minimal Supersymmetric Standard Model), where the scalar lepton and quark

sectors are correlated with Mν and VCKM . In this way we also provide a theoretical frame-

work for realizing the neutrino unification idea suggested in the first paper of Ref. [4], but

with different specific predictions.

The non-Abelian discrete finite group A4 consists of 12 elements and has 4 irreducible

representations. Three are one-dimensional, 1, 1′, 1′′, and one is three-dimensional, 3, with

the decomposition

3 × 3 = 1 + 1′ + 1′′ + 3 + 3. (1)
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The usual quark, lepton, and Higgs superfields transform under A4 as follows:

Q̂i = (ûi, d̂i), L̂i = (ν̂i, êi) ∼ 3, φ̂1,2 ∼ 1, (2)

ûc
1
, d̂c

1
, êc

1
∼ 1, ûc

2
, d̂c

2
, êc

2
∼ 1′, ûc

3
, d̂c

3
, êc

3
∼ 1′′. (3)

We then add the following heavy quark, lepton, and Higgs superfields:

Ûi, Û c
i , D̂i, D̂c

i , Êi, Êc
i , N̂ c

i , χ̂i ∼ 3, (4)

which are all SU(2) singlets. The superpotential of this model is then given by

Ŵ = MU ÛiÛ
c
i + fuQ̂iÛ

c
i φ̂2 + hu

ijkÛiû
c
jχ̂k

+ MDD̂iD̂
c
i + fdQ̂iD̂

c
i φ̂1 + hd

ijkD̂id̂
c
jχ̂k

+ MEÊiÊ
c
i + feL̂iÊ

c
i φ̂1 + he

ijkÊiê
c
jχ̂k

+
1

2
MNN̂ c

i N̂
c
i + fN L̂iN̂

c
i φ̂2 + µφ̂1φ̂2

+
1

2
Mχχ̂iχ̂i + hχχ̂1χ̂2χ̂3, (5)

where we have adopted the usual assignment of R parity to distinguish between the Higgs

superfields, i.e. φ̂1,2 and χ̂i, from the quark and lepton superfields. We have also forbidden

the terms χ̂iN̂
c
j N̂

c
k , etc. by assigning

χ̂i ∼ ω, ûc
i , d̂c

i , êc
i ∼ ω2, (6)

and all others ∼ 1 under a separate discrete symmetry Z3 (with ω3 = 1 and 1+ω +ω2 = 0).

However, Z3 is allowed to be broken explicitly but only softly, which is uniquely accomplished

in the above by Mχ 6= 0.

The scalar potential involving χi is given by

V = |Mχχ1 + hχχ2χ3|2 + |Mχχ2 + hχχ3χ1|2 + |Mχχ3 + hχχ1χ2|2, (7)
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which has the supersymmetric solution (V = 0)

〈χ1〉 = 〈χ2〉 = 〈χ3〉 = u = −Mχ/hχ, (8)

so that the breaking of A4 at the high scale Mχ does not break the supersymmetry. [Note

that Eq. (8) is only possible because A4 allows the invariant symmetric product of 3 × 3 ×

3, a highly nontrivial property not shared for example by the triplet representation of either

SO(3) or SU(3).]

Consider now the 6 × 6 Dirac mass matrix linking (ei, Ei) to (ec
j, E

c
j ).

MeE =



























0 0 0 fev1 0 0

0 0 0 0 fev1 0

0 0 0 0 0 fev1

he
1
u he

2
u he

3
u ME 0 0

he
1
u he

2
ωu he

3
ω2u 0 ME 0

he
1
u he

2
ω2u he

3
ωu 0 0 ME



























, (9)

where v1 = 〈φ0

1
〉, and Eq. (17) of the first paper of Ref. [3] has been used, with similar forms

for the quark mass matrices. The reduced 3 × 3 Dirac mass matrix for the charged leptons

is then

Me = UL









he
1

′ 0 0

0 he
2

′ 0

0 0 he
3

′









√
3fev1u

ME
, (10)

where he
i
′ = he

i [1 + (he
iu)2/M2

E ]−1/2 and

UL =
1√
3









1 1 1

1 ω ω2

1 ω2 ω









. (11)

This shows that charged-lepton masses are allowed to be all different, despite the imposition

of the A4 symmetry, because there exist three inequivalent one-dimensional representations.

[Note that the permutation symmetry groups S3 and S4 have only two inequivalent one-

dimensional representations and S3 has no three-dimensional representation.] Clearly, the up
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and down quark mass matrices are obtained in the same way, with the important conclusion

that the charged-current mixing matrix VCKM is automatically equal to the identity matrix,

because both are diagonalized by UL. Corrections to VCKM = 1 may then be ascribed to the

structure of the soft supersymmetry breaking sector [5, 6].

In the neutrino sector, the 6 × 6 Majorana mass matrix spanning (νe, νµ, ντ , N
c
1
, N c

2
, N c

3
)

is given by

MνN =





0 ULfNv2

UT
L fNv2 MN



 , (12)

where v2 = 〈φ0

2
〉. Hence the 3 × 3 seesaw mass matrix for (νe, νµ, ντ ) becomes

Mν =
f 2

Nv2

2

MN
UT

L UL =
f 2

Nv2

2

MN









1 0 0

0 0 1

0 1 0









. (13)

This shows that neutrino masses are degenerate at this stage.

Consider now the above as coming from an effective dimension-five operator [7]

f 2

N

MN
λijνiνjφ

0

2
φ0

2
, (14)

where λee = λµτ = λτµ = 1 and all other λ’s are zero, which is valid at some high scale.

As we come down to the electroweak scale, Eq. (14) is corrected [8] by the wavefunction

renormalizations of νe, νµ, and ντ , as well as the corresponding vertex renormalizations.

Even if only the standard model is considered, this will lift the degeneracy of Eq. (13)

because of the different charged-lepton masses. The resulting pattern, i.e. λee = 1 + 2m2

eǫ,

λµτ = λτµ = 1 + (m2

µ + m2

τ )ǫ, where ǫ ∼ 1/(16π2v2) ln(MN/MZ), is however not suitable

for explaining the present data on neutrino oscillations. On the other hand, other radiative

corrections exist in the context of softly broken supersymmetry with a general slepton mass

matrix [4]. Given the structure of λij at the high scale, its form at the low scale is necessarily
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fixed to first order as

λij =









1 + 2δee δeµ + δeτ δeµ + δeτ

δeµ + δeτ 2δµτ 1 + δµµ + δττ

δeµ + δeτ 1 + δµµ + δττ 2δµτ









, (15)

where we have assumed all parameters to be real as a first approximation. [The above

matrix is obtained by multiplying that of Eq. (13) on the left and on the right by all possible

νi → νj transitions.] Let us rewrite the above with δ0 ≡ δµµ + δττ − 2δµτ , δ ≡ 2δµτ ,

δ′ ≡ δee − δµµ/2 − δττ/2 − δµτ , and δ′′ ≡ δeµ + δeτ . Then

λij =









1 + δ0 + 2δ + 2δ′ δ′′ δ′′

δ′′ δ 1 + δ0 + δ

δ′′ 1 + δ0 + δ δ









, (16)

and the exact eigenvectors and eigenvalues are easily obtained:









ν1

ν2

ν3









=









cos θ sin θ/
√

2 sin θ/
√

2

− sin θ cos θ/
√

2 cos θ/
√

2

0 −1/
√

2 1/
√

2

















νe

νµ

ντ









, (17)

and

λ1 = 1 + δ0 + 2δ + δ′ −
√

δ′2 + 2δ′′2, (18)

λ2 = 1 + δ0 + 2δ + δ′ +
√

δ′2 + 2δ′′2, (19)

λ3 = −1 − δ0. (20)

With δ′′2/δ′2 of order unity, this is then a very satisfactory description of present neutrino-

oscillation data, i.e.

sin2 2θatm = 1, tan2 θsol =
δ′′2

δ′′2 + δ′2 − δ′
√

δ′2 + 2δ′′2
= 0.44, (21)

if δ′ < 0 and |δ′′/δ′| = 1.7. Note that for δ′′ = δ′ Eq. (16) reproduces that proposed in the

second paper of Ref. [3]. Whereas the latter was simply an ansatz, the form of Eq. (16)

here is a necessary consequence of our assumption that radiative corrections are responsible
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for the splitting of the neutrino mass degeneracy enforced by the discrete A4 symmetry.

Assuming that δ′, δ′′ << δ, we now have

∆m2

31
≃ ∆m2

32
≃ 4δm2

0
, ∆m2

12
≃ 4

√
δ′2 + 2δ′′2m2

0
, (22)

where m0 is the common mass of all 3 neutrinos.

Note that Ue3 = 0 in Eq. (17), which would imply the absence of CP violation in neutrino

oscillations. However, if we do not assume λij to be real, then it has one complex phase which

cannot be rotated away. Without loss of generality, we now rewrite Eq. (16) as

λij =









1 + 2δ + 2δ′ δ′′ δ′′∗

δ′′ δ 1 + δ

δ′′∗ 1 + δ δ









, (23)

where we have redefined 1 + δ0 as 1, and δ, δ′ are real. Although this mass matrix cannot

be diagonalized exactly, if we assume that δ′, Reδ′′ and (Imδ′′)2/δ are all much smaller than

δ in magnitude, then Eqs. (17) to (22) are again valid (but only approximately) with the

following changes:

Ue3 =
iImδ′′√

2δ
, δ′ → δ′ +

(Imδ′′)2

2δ
, δ′′ → Reδ′′. (24)

Note the important result that Ue3 is imaginary. Thus CP violation is predicted to be

maximal in this model for neutrino oscillations. Using Eq. (22), we also have the relationship

[

∆m2

12

∆m2
32

]2

≃
[

δ′

δ
+ |Ue3|2

]2

+

[

Reδ′′

δ

]2

. (25)

Note that |Ue3| is naturally of the order |∆m2

12
/∆m2

32
|1/2 ≃ 0.14. This result depends only

on the form of Eq. (23), which is itself derived in the most general way.

It remains to be shown in the rest of this paper that realistic values of δ, δ′, and δ′′ are

possible from the soft breaking of supersymmetry, without running into conflict with present

limits on neutrinoless double beta (ββ0ν) decay and lepton flavor violating processes such as

τ → µγ.
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Let us calculate δ in the context of supersymmetry. We show in Figures 1 and 2 the

wavefunction and vertex corrections respectively due to µ̃L − τ̃L mixing. Let the two scalar

mass eigenstates have masses m̃1,2 and their mixing angle be θ. For illustration, let us take

the approximation that m̃2

1
>> µ2 >> M2

1,2 = m̃2

2
, where µ is the superpotential Higgsino

mixing term, while M1,2 denote the soft supersymmetry breaking gaugino mass parameters.

We then obtain

δ ≃ sin θ cos θ

16π2

[

(3g2

2
− g2

1
) ln

m̃2

1

µ2
− 1

4
(3g2

2
+ g2

1
)

(

ln
m̃2

1

m̃2
2

− 1

2

)]

. (26)

Using Eq. (22) and taking ∆m2

32
= 2.5 × 10−3 eV2 from atmospheric neutrino oscillations,

we find δ = 3.9 × 10−3(0.4 eV/m0)
2. This implies that

[

ln
m̃2

1

µ2
− 0.3

(

ln
m̃2

1

m̃2
2

− 1

2

)]

sin θ cos θ ≃ 0.535
(

0.4 eV

m0

)2

. (27)

To the extent that this factor cannot be much greater than one, the common mass m0 as

probed in neutrinoless double beta decay [9] cannot be much lower than the present upper

bound of about 0.4 eV. This is in sharp contrast to the scenario proposed in the first paper

of Ref. [4] where ββ0ν decay is strongly suppressed.

Similarly, δ′′ = δeµ + δτe = δeµ + δ∗eτ is determined by ẽL − µ̃L and ẽL − τ̃L mixing. Using

the experimental bound of |Ue3| < 0.16, we find Imδ′′ < 8.8 × 10−4(0.4 eV/m0)
2, and using

∆m2

12
≃ 5×10−5 eV2 from solar neutrino oscillations, we find Reδ′′ < 7.8×10−5(0.4 eV/m0)

2.

These limits may be saturated mainly by ẽL − τ̃L mixing, allowing ẽL − µ̃L mixing to be

much more suppressed. In other words, from the data on neutrino oscillations, we are able

to make the direct connection in this model that flavor violation in the charged-lepton sector

should be the greatest in the µ − τ sector and smallest in the e − µ sector.

Using the same approximation which leads to Eq. (26), the τ → µγ amplitude is calcu-

lated to be

A =
e(3g2

2
+ g2

1
)

1536π2
(sin θ cos θ)

mτ

m̃2
2

ǫλqνµ̄σλν(1 + γ5)τ. (28)
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The resulting branching fraction is then

B(τ → µγ) = 4.8 × 10−6 sin2 θ cos2 θ
(

100 GeV

m̃2

)4

. (29)

Using the experimental upper limit of 1.1× 10−6 on this number, we require thus m̃2 > 102

GeV. Constraints from τ → eγ and µ → eγ are also similarly satisfied. Details will be given

in a forthcoming comprehensive study of the correlation between the neutrino parameters

and the pattern of soft supersymmetry breaking of this model.

Consider now the quark sector. Whereas the neutrino sector has only L−L scalar mixings,

we now also have L − R and R − R scalar mixings. In a previous study [5], VCKM = 1 was

obtained from proportional up and down quark mass matrices, and it was shown that a

realistic VCKM could then be generated with L − R scalar quark mixings through gluino

exchange. Here VCKM = 1 is obtained from our A4 symmetry for any set of arbitrary up and

down quark masses, with the obvious implication that the above result also applies. [In the

charged-lepton sector, the effect is smaller and does not significantly change the neutrino

mixing angles except possibly for Ue3.] More details will be discussed in the forthcoming

comprehensive study.

In conclusion, we have presented a concrete model based on the discrete symmetry A4

where quark and charged-lepton masses can be all different and yet neutrino masses are

degenerate at some high scale where VCKM = 1 and the effective neutrino mass matrix in

the νe, νµ, ντ basis is of the form

Mν =









m0 0 0

0 0 m0

0 m0 0









. (30)

The parameter m0 naturally lies in the range where it can be probed in cosmology, neu-

trinoless double beta decay and tritium beta decay. Radiative corrections lift the neutrino

degeneracy leading to (A) sin2 2θatm = 1, (B) Ue3 small and imaginary, and (C) large (but
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not maximal) solar mixing angle. These corrections can be ascribed to the structure of the

soft supersymmetry breaking terms in the scalar sector, which also break the A4 symmetry

explicitly and correlate the neutrino mass matrix with lepton flavor violating processes. Last

but not least, a realistic quark mixing matrix VCKM may be obtained in a totally analogous

way.
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w̃νµ

ντ νµ
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×

φ0

2
φ0

2

Figure 1: Wavefunction contribution to δ in supersymmetry.

w̃ φ̃2
νµ νµ

φ0

2
φ0

2

µ̃L τ̃L
×

Figure 2: Vertex contribution to δ in supersymmetry.
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