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Abstract. All groups are finite. A subgroup H of a group G is called a primitive
subgroup if it is a proper subgroup in the intersection of all subgroups of G contain-
ing H as its proper subgroup. He, Qiao and Wang [7] proved that every primitive
subgroup of a group G has index a power of a prime if and only if G/Φ(G) is a
solvable PST-group. Let X denote the class of groups G all of whose primitive sub-
groups have prime power index. It is established here that a group G is a solvable
PST-group if and only if every subgroup of G is an X-group.

1. Introduction and Statements of Results.

All groups considered here are finite. A subgroup H of a group G is called primitive
if it is a proper subgroup in the intersection of all subgroups containing H as a proper
subgroup. All maximal subgroups of G are primitive. Some properties of primitive
subgroups are given in Lemma 2.1 and include:

(a) Every proper subgroup of G is the intersection of a set of primitive subgroups
of G.

(b) If X is a primitive subgroup of a subgroup T of G, then there exists a primitive
subgroup Y of G such that X = Y ∩ T .

Johnson [10] introduced the concept of primitive subgroup of a group. He proved
that a group G is supersolvable if every primitive subgroup of G has prime power
index in G.

The next results on primitive subgroups of a group G indicate how such subgroups
give information about the structure of G.

Theorem 1.1 ([7]). Let G be a group. The following statements are equivalent:

(1) Every primitive subgroup of G containing φ(G) has prime power index.
(2) G/φ(G) is a solvable PST-group.

Theorem 1.2 ([6]). Let G be a group. The following statements are equivalent:

(1) Every primitive subgroup of G has prime power index.
(2) G = [L]M is a supersolvable group, where L and M are nilpotent Hall sub-

groups of G, L is the nilpotent residual of G and G = LNG(L ∩X) for every
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primitive subgroup X of G. In particular, every maximal subgroup of L is
normal in G.

Note that G = [L]M in Theorem 1.2 means that G is the semidirect product of L
by M .

Let X denote the class of groups G such that the primitive subgroups of G have
prime power index (see [5, pp. 132-137]). By (a) it is clear that X consists of those
groups whose subgroups are intersections of subgroups of prime-power indices.

One purpose of this paper is to characterize solvable PST-groups in terms of X-
subgroups.

A subgroup H of a group G is said to be S-permutable in G if it permutes with
the Sylow subgroups of G. Kegel [2, 1.2.14] proved that an S-permutable subgroup
of G is subnormal in G. S-permutability is said to be transitive in G if H and K are
subgroups of G such that H is S-permutable in K and K is S-permutable in G, then
H is S-permutable in G. A group G is said to be a PST-group if S-permutability
is a transitive relation in G. By Kegel’s result G is a PST-group if and only if
every subnormal subgroup of G is S-permutable. Agrawal [1] characterized solvable
PST-groups. He proved the following theorem.

Theorem 1.3. Let G be a solvable group. G is a PST-group if and only if it has an
abelian normal Hall subgroup N such that G/N is nilpotent and G acts by conjugation
on N as a group of power automorphisms.

In Theorem 1.3 N can be taken to be the nilpotent residual of G. From Theorem 1.3
it follows that subgroups of solvable PST-groups are solvable PST-groups. Many
interesting results about PST-groups can be found in Chapter 2 of [2].

Theorem A. Let G be a group. The following statements are equivalent:

(1) G is a solvable PST-group.
(2) Every subgroup of G is an X-group.

Let G be an X-group. It follows from Theorem A that if G is not a solvable PST-
group, then G has a subgroup H which does not belong to X. See Examples 1 and
2.

A well-known theorem of Lagrange (see [5, Chapter 1, 1.3.6]) states that given a
subgroup H of a group G, the order of G is the product of the order |H| of H and the
index |G : H| of H in G. In particular, the order of any subgroup divides the order
of the group. The converse, namely, if d divides the order of a group G, then G has a
subgroup of order d, is not true in general. Groups satisfying this condition are often
called CLT-groups. The alternating group of order 12, having no subgroups of order
6, is an example of a non-CLT-group.

On the other hand, abelian groups contain subgroups of every possible order, and
it is not difficult to prove that a group is nilpotent if and only if it contains a normal
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subgroup of each possible order [8]. Ore [11] and Zappa [15] obtained a similar
characterization for supersolvable groups:

Theorem 1.4. A group G is supersolvable if and only if each subgroup H ≤ G
contains a subgroup of order d for each divisor d of |H|.

Of course, we can state Theorem 1.4 in the following equivalent way, more easily
treated:

Theorem 1.5. A group G is supersolvable if and only if each subgroup H ≤ G
contains a subgroup of index p for each prime divisor p of |H|.

A proof of this theorem can be found in [5, Chapter 1, 4.2]. It must be noted
that CLT-groups are not necessarily supersolvable, as the symmetric group of order
4 shows.

The condition on a group G given in Theorem 1.5, namely

for all H ≤ G and for all primes q dividing |H|, there exists a subgroup
K of G such that K ≤ H and |H : K| = q,

has a dual formulation:

for all H ≤ G and for all primes q dividing |G : H|, there exists a
subgroup K of G such that H ≤ K and |K : H| = q.

Groups satisfying the latter condition have been studied by some authors. Following
[5, Chapter 1, 4], we will call them Y-groups.

A group G is said to be a Y-group if for all subgroups H of G and all primes q
dividing the index |G : H| of H in G, there exists a subgroup K of G with H ≤ K
and |K : H| = q.

Note that a group G is a Y-group if and only if for every subgroup H of G and
for every natural number d dividing |G : H| there exists a subgroup K of G such
that H ≤ K and |K : H| = d. The following characterization of Y-groups appears
in [5, Chapter 1, 4.3].

Theorem 1.6. Let L = GN be the nilpotent residual of the group G. Then G is a
Y-group if and only if L is a nilpotent Hall subgroup of G such that for all subgroups
H of L, G = LNG(H).

From Theorem 1.6, we see that if G ∈ Y and X is a normal subgroup of L, then X
is normal in G. In particular, Y-groups are supersolvable. Moreover, if G ∈ Y , then
L must have odd order.

Further results on Y-groups can be found in [5, Chapter 4, 5.2, 5.3]. For example,
a solvable group G is a Y-group if and only if every subgroup of G can be written as
an intersection of subgroups of G of coprime prime-power indices.

From Theorem 1.3 and Theorem 1.6 we obtain

Theorem 1.7. Let G be a Y-group with nilpotent residual L.
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(1) G is a solvable PST-group if and only if L is abelian.
(2) G/φ(G) is a solvable PST-group.

We note that the class Y is a subclass of the class X by Theorems 1.2 and 1.7. The
example of Humphreys on p. 136 of [5] (see also [9]) shows that Y is a proper subclass
of X.

Theorem B. Let G be a group. The following statements are equivalent:

(1) G is a solvable PST-group.
(2) Every subgroup of G is a Y-group.
(3) Every subgroup of G is an X-group.

Let F be a class of groups. Denote by SF (resp. S(F)) the class of groups all of
whose subgroups are F-groups (resp. solvable F-groups).

Theorem C. SX = SY = ST0 = S(T0) = SPST = S(PST ) = S(PST0) = S(PT0).

We mention that SX = SY of Theorem C follows from Theorem B and is Theo-
rem 5.3 of [5, p. 135]. The proof of Theorem 5.3 in [5] is much different and more
difficult than the proof of Theorem B.

2. Preliminaries.

Lemma 2.1 ([6, 7, 10]). Let G be a group. The following statements hold:

(1) For every proper subgroup H of G, there is a set of primitive subgroups {Xi |
i ∈ I} in G such that H = ∩i∈IXi.

(2) If H ≤ G and T is a primitive subgroup of H, then T = H ∩ X for some
primitive subgroup X of G.

(3) If K E G and K ≤ H ≤ G, then H is a primitive subgroup of G if and only
if H/K is a primitive subgroup of G/K.

(4) Let P and Q be subgroups of G with (|P |, |Q|) = 1. Suppose that H is a
subgroup of G such that HP ≤ G and HQ ≤ G. Then HP ∩ HQ = H. In
particular, if H is a primitive subgroup of G, then P ≤ H or Q ≤ H.

Let G be a group. G is called a T-(resp. PT-)group if H E K E G (resp. H is
permutable in K and K is permutable in G) then H C G (resp. H is permutable in
G). By Kegel’s result G is a PT-group if and only if every subnormal subgroup of G is
permutable. Many results about T- and PT-groups can be found in Chapter 2 of [2].
G is called a T0-group if G/φ(G) is a T-group where φ(G) is the Frattini subgroup
of G. T0-groups have been studied in [4, 12, 14]. Several of the results on T0-groups
given in [4,12] are contained in the next three lemmas and are needed in the proof of
Theorem A.

A group G is called a PT0-(resp. PST0-)group provided that G/φ(G) is a PT-
(resp. PST-)group. For solvable groups we have

Lemma 2.2 ([12]). S(T0) = S(PT0) = S(PST0).
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Lemma 2.3 ([4]). Let G be a group. G is a solvable PST-group if and only if every
subgroup of G is a T0-group.

3. Proofs of the Theorems.

Proof of Theorem A. Let G be a solvable PST-group and let L be the nilpotent resid-
ual of G. By Theorem 1.3 L is a normal abelian Hall subgroup of G on which G acts
by conjugation as a group of power automorphisms. Let X be a subgroup of L. Since
X C G, G = LNG(X). Let D be a system normalizer of G. By Theorem 9.2.7,
p. 264 of [13] G = [L]D, the semidirect product of L by D. It follows by Theo-
rem 1.2 that every primitive subgroup of G has prime power index and hence G is an
X-group. Since every subgroup of G is a solvable PST-group, every subgroup of G is
an X-group.

Conversely, assume that every subgroup of G is an X-group. We are to show that G
is a solvable PST-group. Let H be a subgroup of G. Because of Theorem 1.1 H/φ(H)
is a solvable PST-group and hence H is a solvable PST0-group. By Lemma 2.2 H
is a T0-group. It follows that every subgroup of G is a solvable T0-group and by
Lemma 2.3 G is a solvable PST-group.

This completes the proof. �

Proof of Theorem B. Let G be a solvable PST-group. Using the proof of the first
part of Theorem A and Theorem 1.6 we see that every subgroup of G is a Y-group
and (1) implies (2). Since Y ⊆ X, (2) implies (3). By Theorem A we see that (3)
implies (1). �

Proof of Theorem C. By Theorem B, SX = SY = S(PST) = SPST. Note by Theo-
rem 1.1 S(T0) = ST0 = SX. Finally, it follows that S(T0) = S(PST0) = S(PT0) by
Lemma 2.2. Hence Theorem C holds. �

4. Examples.

Example 1. Let P = 〈x, y | x5 = y5 = [x, y]5 = 1〉 be an extra-special group of
order 125 of exponent 5. Let z = [x, y] and note Z(P ) = Φ(P ) = 〈z〉. P has an
automorphism a of order 4 given by xa = x2, ya = y2 and za = z4 = z−1. Put
G = [P ]〈a〉 and note Z(G) = 1, Φ(G) = 〈z〉 and G/Φ(G) is a T-group. Thus G is
a solvable T0-group. Let H = 〈y, z, a〉 and notice Φ(H) = 1. H is not a T-group
since the nilpotent residual L of H is 〈y, z〉 and a does not act on L as a power
automorphism. Thus H is not a T0-group and hence not a solvable PST-group. By
Theorem 1.1 G is an X-group and H is not an X-group.

Example 2. Let P = 〈x, y | x3 = y3 = [x, y]3 = 1〉 be an extra-special group of order
33 and exponent 3. P has an automorphism b of order 2 given by xb = x−1, yb = y−1

and [x, y]b = 1. Let G = [P ]〈b〉 and note Z(G) = Z(P ) = 〈[x, y]〉 = φ(G). G/φ(G) is
a T-group and hence G is a T0-group. By Lemma 2.3 G has a subgroup which is not
a T0-group and hence not a solvable PST-group. Note G is an X-group.
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