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Enhanced solar anti-neutrino flux in random magnetic fields
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Abstract

We discuss the impact of the recent KamLAND constraint on the solar anti-neutrino flux on the

analysis of solar neutrino data in the presence of Majorana neutrino transition magnetic moments

and solar magnetic fields. We consider different stationary solar magnetic field models, both

regular and random, highlighting the strong enhancement in the anti-neutrino production rates

that characterize turbulent solar magnetic field models. Moreover, we show that for such magnetic

fields inside the Sun, one can constrain the intrinsic neutrino magnetic moment down to the level

of µν . few × 10−12µB irrespective of details of the underlying turbulence model. This limit is

more stringent than all current experimental sensitivities, and similar to the most stringent bounds

obtained from stellar cooling. We also comment on the robustness of this limit and show that at

most it might be weakened by one order of magnitude, under very unlikely circumstances.
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I. INTRODUCTION

The KamLAND experiment has recently reached an improved sensitivity on a possible

electron anti-neutrino component in the solar flux [1]. Their current limit corresponds to

2.8 × 10−2% of the solar boron νe flux, at the 90% C.L., about 30 times better than the

previous Super-Kamiokande [2] and the recent SNO [3] limits. Solar anti-neutrinos constitute

a characteristic signature of the spin-flavor precession (SFP) mechanism when non-vanishing

Majorana neutrino transition magnetic moments [4] interact with solar magnetic fields [4,

5, 6].

The very first evidence of reactor anti-neutrino disappearance published by the Kam-

LAND collaboration [7] has already excluded SFP scenarios as solutions to the solar neu-

trino problem [8]. However this evidence still leaves considerable room for sub-leading SFP

effects in solar neutrino physics. It is the latest KamLAND limit on the solar electron anti-

neutrino flux [1], in combination with solar neutrino data, including the recent SNO salt

phase results [9], that ultimately establishes the robustness of the simplest three-neutrino

oscillation description of the solar neutrino data [10] showing how it is essentially stable

even in the presence of the SFP mechanism [11] [48].

Little is known about the detailed structure of solar magnetic fields and several mod-

els have been previously used to analyse the SFP conversion. These solar magnetic field

models make different assumptions about the nature (regular or random) of solar magnetic

fields, their magnitude, location and typical scales [12, 13, 14, 15, 16]. According to the

dynamo mechanism the solar magnetic field is generated close to the bottom of the con-

vective zone [17]. Following this picture, we assume that the field resides within the solar

convective zone [12, 13, 14]. Moreover, in accordance with the present-day understanding of

solar magnetic field evolution, the large-scale magnetic field in the solar convective zone is

followed by a small-scale random component, whose strength is expected to be comparable

to or even larger than that of the regular one.

Insofar as the SFP mechanism is concerned, the main difference between random and

regular magnetic field scenarios is that the former generally give rise to an enhanced rate

of anti-neutrino production, up to two orders of magnitude when compared to the case of

regular fields of the same (average) amplitude. This fact has been used in Ref. [11] in order

to obtain more stringent limits on µνB. Moreover, assuming that random magnetic fields
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are of turbulent origin we were able to extract a limit on the transition magnetic moment

itself (µν). We show that, under reasonable assumptions, such bound is comparable to the

best astrophysical limit that follows from stellar cooling arguments [18]. An alternative

anaysis of the KamLAND data [1] using the ”delta-correlated” model for the solar random

magnetic field was done in [19].

The main purpose of the present paper is to give a more comprehensive description

of the models and analysis already presented briefly in Ref. [11]. First to elucidate the

physics of the enhanced anti-neutrino SFP conversion rates in random field models, compared

to regular magnetic field scenarios. We show how this follows from the loss of coherence

of the spin flavour evolution in a fluctuating environment. Second, we show how in a

solar magnetohydrodynamics (MHD) turbulence model of Kolmogorov type one can use

the characteristic scaling in this theory in order to obtain a limit on the intrinsic neutrino

transition magnetic moment µν .

The paper is organized as follows. In Sec. II we develop a perturbative approach to de-

scribe neutrino evolution in the presence of convective–zone random magnetic fields, treating

the magnetic interactions as small correction to the oscillation evolution Hamiltonian. This

provides a good approximation, fully justified in view of recent KamLAND and solar neu-

trino data which support the MSW LMA interpretation [10]. We show that neutrinos behave

as a “Fourier analyzer” reading off only that spectral harmonic of the two-point magnetic

field correlation function whose space period equals the neutrino oscillation length. Our

solar magnetic field model is discussed in Sec. III, first within the framework of the simplest

piece-constant correlation cell model with one effective correlation scale L0, and subsequently

within a Kolmogorov–type turbulent magnetic field picture. Our discussion illuminates the

difference between SFP anti-neutrino production rates within random and regular fields,

as well as the physical meaning of the correlation cell model parameters. The results of

our neutrino data analysis of the KamLAND ν̄e limit and future perspectives are given in

Sec. IV. We also present in Sec. V a critique of the robustness of this limit and show that at

most it might be weakened by one order of magnitude, under very unlikely circumstances.

Finally in Sec. VI we summarize our results.
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II. NEUTRINO EVOLUTION

Here we adopt a simplified two-neutrino picture of neutrino evolution, neglecting the

angle θ13. As we show in the Appendix this is a good approximation, in view of current

neutrino data. Solar neutrino evolution in the presence of a magnetic field involves then

only the solar mixing angle where θ12 ≡ θsol ≡ θ and is described by a four–dimensional

Hamiltonian [4, 5, 6],

i















ν̇eL

˙̄νeR

ν̇aL

˙̄νaR















=















Ve − c2δ 0 s2δ µνb+(t)

0 −Ve − c2δ −µνb−(t) s2δ

s2δ −µνb+(t) Va + c2δ 0

µνb−(t) s2δ 0 −Va + c2δ





























νeL

ν̄eR

νaL

ν̄aR















, (1)

where νa = νµ cos θ23 − ντ sin θ23 (θ23 ≡ θatm is the atmospheric mixing angle); c2 = cos 2θ

and s2 = sin 2θ; δ = ∆m2/4E is assumed to be always positive. Note in this approximation

the Majorana neutrino transition magnetic moment element µν ≡ µea describing transitions

between neutrino flavour states νe and νa coincides with the element µ12 characterizing

transitions between mass eigenstates ν1 and ν2; Ve(t) = GF

√
2(Ne(t)−Nn(t)/2) and Va(t) =

GF

√
2(−Nn(t)/2) are the neutrino matter potentials for νeL and νaL in the Sun, given by

the number densities of the electrons (Ne(t)) and neutrons (Nn(t)). Finally, b± = bx ± iby

denote the magnetic field components which are perpendicular to the neutrino trajectory.

Inside the radiative zone, where the magnetic field is neglected, the evolution of the

neutrinos reduces to that implied by the LMA MSW oscillation hypothesis. In order to get

an approximate analytic solution for Eq. (1) in the convective zone it is convenient to work

in the mass basis. Defining the vectors

νL =





ν1L

ν2L



 ν̄R =





ν̄1R

ν̄2R



 , (2)

we then express the evolution equation in a block form as

i





ν̇L

˙̄νR



 =





Hosc Hmag

H†
mag H̄osc









νL

ν̄R



 , (3)

where

Hosc =





E1L −iθ̇m

iθ̇m E2L



 , H̄osc =





E1R −i ˙̄θm

i ˙̄θm E2R



 (4)
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and,

Hmag =





−µνb+eiΨ sin(θ̄m − θm) µνb+eiΨ cos(θ̄m − θm)

−µνb+eiΨ cos(θ̄m − θm) −µνb+eiΨ sin(θ̄m − θm)



 (5)

with Ψ = 1/2
∫

[Ve(t) + Va(t)]dt. The neutrino eigen-energies EiL are defined by

EiL = ∓
√

(V − δc2)2 + (δs2)2 , (6)

where V = (Ve −Va)/2 and the minus (plus) sign corresponds to the energy state with i = 1

(2). The solar neutrino mixing angle in matter is given as

tan 2θm = − δs2

V − δc2
. (7)

Similar expressions for the anti-neutrino eigen-energies and matter mixing angle, EiR and

θ̄m, are easily obtained by changing the sign of the matter potential, V → −V , in Eqs. (6)

and (7).

In the region of neutrino oscillation parameters indicated by current neutrino data [10],

δ = δLMA and θ = θLMA, the matter effect in the convective zone turns out to be rather small,

since the ratio of the matter potential V to δLMA is at most around ∼ 10−2, at the bottom

of the convective zone. This allows us to expand the neutrino eigen-energies in powers of

V/δ

EiL ≃ ∓δ

[

1 − V

δ
c2 +

V 2

δ2
s2
2 + O

(

V 3

δ2

)]

(8)

and similarly the neutrino mixing angle in matter may be expressed as

θm ≃ θ +
V

δ
s2 −

V 2

δ2
(1 + s2

2) tan 2θ + O

(

V 3

δ2

)

. (9)

An analogous estimate gives an upper bound on the mixing angle derivative, |θ̇m|/δ .

2 × 10−5 and
∣

∣

∣

∣

∣

θ̇m

µνb⊥

∣

∣

∣

∣

∣

. 5 × 10−3

(

10−11µB

µν

)(

100kG

b⊥

)

. (10)

with similar approximations valid for anti-neutrinos.

Therefore we can safely neglect all powers of V/δ, along with θ̇m and ˙̄θm. In this approx-

imation the (4 × 4) evolution equation decouples into two (2 × 2) equations

i





ν̇1L

˙̄ν2R



 =





−δ µb+(t)eiΨ

µb−(t)e−iΨ δ









ν1L

ν̄2R



 , (11)
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i





ν̇2L

˙̄ν1R



 =





δ −µb+(t)eiΨ

−µb−(t)e−iΨ −δ









ν2L

ν̄1R



 , (12)

describing spin-flavour precession of the two mass-eigenstate pairs. In the absence of mag-

netic fields the neutrino eigenstates propagate independently across the convective zone.

When the magnetic field is switched on one obtains a mixing, characteristic of the spin

flavour precession mechanism [4]. This turns out to be rather small, a fact that greatly

simplifies the problem of solving the evolution equation. For this we consider the parameter

κ defined as

κ =
µ2

νb
2
⊥

δ2
= 2.5 × 10−5

(

µν

10−11µB

)2(
b⊥max

100kG

)2(
7 × 10−5eV2

∆m2

)2(
E

10MeV

)2

. (13)

The smallness of κ allows us to expand the neutrino survival probabilities at the surface of

the Sun in powers of κ, to any given desired accuracy in perturbation theory. The matter

effect [5, 6] is also rather small, and is fully encoded by the phase Ψ, so that when Ψ → 0

one recovers the vacuum result of Ref. [4].

From Eqs. (11) and (12) we find that to leading order in κ the neutrino mass eigenstate

probabilities at the surface of the Sun can be written in the form

|ν1L|2R⊙
= P1(1 − η), |ν2R|2R⊙

= P1η , (14)

|ν2L|2R⊙
= P2(1 − η), |ν1R|2R⊙

= P2η , (15)

(note that unitarity is fulfilled), where the key small parameter η is given by

η =
µ2

2

∫ L

0

dt1

∫ L

0

dt2[b+(t1)b−(t2)e
−2iδ(t1−t2) + c.c.] . (16)

Here L is the width of the convective zone and Pi = |νiL(r = 0.7R⊙)|2 denote the probabilities

that solar neutrinos reach the bottom of the convective zone in a given mass state, calculated

numerically in the LMA-MSW oscillation picture, similar to the method used in [10].

The probabilities for neutrinos to be detected in flavour states α = e, µ, ē, µ̄, Peα, are
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then given by

Pee =
[

P1P1e + P2P2e + 2
√

P1P2P1eP2e cos ξ1

]

(1 − η), (17)

Peµ =
[

P1P1µ + P2P2µ − 2
√

P1P2P1µP2µ cos ξ1

]

(1 − η), (18)

Peē =
[

P2P1̄ē + P1P2̄ē − 2
√

P2P1P1̄ēP2̄ē cos ξ2

]

η, (19)

Peµ̄ =
[

P2P1̄µ̄ + P1P2̄µ̄ + 2
√

P2P1P1̄µ̄P2̄µ̄ cos ξ2

]

η. (20)

Here Piα is the νi → να conversion probability from the surface of the Earth to the detector.

The phases ξk (k = 1, 2) characterize the evolution in vacuum from the Sun to the Earth,

and are given by

ξk =
∆m2(D + L − R⊙)

2E
+ φk , (21)

where D is the Sun-Earth distance, φk contain the phases due to propagation in the Sun

up to the bottom of the convective zone and in the Earth. We have checked that φk can be

safely neglected for our purposes.

In summary, neutrino evolution can be understood as follows:

• neutrinos, generated in the solar core, undergo LMA MSW conversion and enter the

convective zone as a coherent mixture of νeL and νaL. By numerically solving the

corresponding (2 × 2) MSW evolution problem we obtain the amplitudes νeL(0) and

νaL(0) at the bottom of the convective zone, which are then used as initial values for

neutrino propagation across the convective zone.

• neutrino evolution within the convective zone is considered as approximately vacuum

oscillations modulated by a small spin-flavour conversion [4]. This is treated in leading

order in the small expansion parameter κ, Eq. (13).

• the neutrino survival and conversion probabilities, defined at the solar surface, are

then evolved to the detector taking into account regeneration in the Earth.

This way neutrino and anti-neutrino yields are determined and used in the analysis of solar

neutrino and KamLAND data.

III. MAGNETIC FIELD MODEL

The main goal of this section is to calculate the parameter η in Eq. (16) characterizing

the solar anti-neutrino production rate to first order in the small expansion parameter κ in
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Eq. (13) describing neutrino propagation in the framework of different solar magnetic field

models.

Different approaches have been used in order to describe neutrino propagation in the

fluctuating matter density or random magnetic field environments. Since the origin of the

media fluctuations is unknown, we stick to the simplest “white” noise description, which

involves just two parameters: the typical correlation scale and its characteristic amplitude.

The “delta-correlated” model described by

〈b⊥(r1)b⊥(r2)〉 = b̄2
⊥

(

r1 + r2

2

)

L0δ(r1 − r2)

has been used both for the case of matter density fluctuations [20, 21, 22, 23], as well as

random magnetic fields [12, 19, 24, 25]. This choice of correlator has the virtue that it allows

for analytical solutions to the neutrino evolution equations. It suffers from an important

limitation, namely that the allowed spatial scales, L0, of fluctuations should be less than

typical neutrino oscillation lengths λosc = 4πE/∆m2. However, it so happens that the

strongest conversion effect takes place when these two parameters are comparable [26].

Because of this one needs to go at least one step further and consider the so called

“piece-constant” model. For the case of matter density fluctuations this has been used in

Refs. [26, 27, 28] and for random magnetic fields it was applied in [12].

In what follows (Sec. IIIA) we adopt this piece-constant model, whose correlator is de-

scribed by,

〈b⊥(r1)b⊥(r2)〉 = b̄2
⊥

(

r1 + r2

2

)

, if |r1 − r2| ≤ L0

〈b⊥(r1)b⊥(r2)〉 = 0 , if |r1 − r2| > L0.

In other words, the fluctuation correlation function is modeled as a step-function. We refer

to this as “simplest random magnetic field model”.

Note that in these models the typical correlation scale is in general a free unknown

parameter. One may go a step further if one has more information about the nature of

the assumed fluctuations. For instance, a detailed analysis of how density fluctuations, in

the form of helioseismic waves, can affect the MSW neutrino oscillations was introduced in

Ref. [29]. In the discussion we give in Sec. III B we use the solar MHD turbulence model in

order to describe the nature of the solar random magnetic fields. These are described by a

8



magnetic field correlation tensor

〈bi(r1)bj(r2)〉 = Mij(r1, r2) ,

whose specific form will be given below (Eq. (27)). As a result the separate dependence

on the correlation scale and the amplitude of fluctuations is replaced by a dependence on a

specific combination of these parameters, ε in Eq. (35). This has the advantage of expressing

the final neutrino fluxes in terms of a single effective parameter which varies over a relatively

narrow range.

A. Simplest random field model

As already mentioned, current views on solar magnetic field evolution suggest that the

mean large-scale magnetic field is followed by a comparable small-scale random magnetic

field component. Such random small-scale magnetic field is not directly traced by sunspots

or other tracers of solar activity. Dynamically, this field propagates through the convective

zone and photosphere drastically decreasing in strength. While we lack a direct reliable

observational estimate of its amplitude, one finds that the ratio of the random to regular

magnetic field amplitudes may be as large as 50-100, as it is not clear at what stage the

dynamo mechanism saturates. This issue has been very actively discussed in the literature

(see, e.g., [17, 30] and references therein).

The simplest random convective–zone solar magnetic field model is obtained by imag-

ining that the convective zone consists of a set of correlation cells of volume L3
0 where the

random magnetic field is assumed uniform, fields in adjacent cells being uncorrelated. In

this picture we treat the small-scale random magnetic fields in terms of a single effective

scale L0 characterizing the size of the correlation cells. We also assume that within each cell

different magnetic field components transversal to the neutrino trajectory are independent

random variables with zero mean value (for a more detailed discussion see, for example,

Ref. [12]). That is, a given realization of the random magnetic field along the neutrino path

is a stationary random process described by Gaussian statistics. It is also assumed that in

order to satisfy divergence-less condition, ∇ · B = 0, the magnetic field strength changes

smoothly at the boundaries between adjacent cells. This simplified model seems reasonable

since we do not expect a strong influence of details of the random magnetic field structure
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near the layers separating adjacent domain cells.

In order to estimate η in Eq. (16) we divide the range of integration into a set of equal

intervals of correlation length L0 and average over random magnetic fields in each correlation

cell,

〈η〉 =
1

2
µ2

N
∑

k=1

N
∑

l=1

∫ kL0

(k−1)L0

dt1

∫ lL0

(l−1)L0

dt2
〈

b+(t1)b−(t2)e
−2iδ(t1−t2) + c.c.

〉

, (22)

this results in the final equation

〈η〉 =

(

N
∑

n=1

µ2b̄2
⊥n

)

sin2 (δ · L0)

δ2
, (23)

where b̄2
⊥n is the averaged square of the random magnetic field in the n-th correlation cell.

We assume that the root mean square (rms) field varies smoothly along the neutrino trajec-

tory. One therefore clearly sees the cumulative effect characterizing neutrino propagation

in random magnetic fields, implied by the sum in Eq. (23). For the simple case where all

rms field amplitudes in different cells are equal to some common magnetic field value the

above result gets proportional to the number of correlation cells traversed by the neutrino,

N = L/L0.

In contrast, for regular magnetic fields the situation is different. The neutrino to anti-

neutrino conversion probability after traversing the convective zone with a constant regular

magnetic field of the same amplitude is proportional to

η =
µ2

νb
2
⊥

δ2 + µ2
νb

2
⊥

sin2

(

√

δ2 + µ2
νb

2
⊥L

)

=
µ2

νb
2
⊥

δ2
sin2(δ · L) + O

(

(
µ2

νb
2
⊥

δ2
)2

)

≈ µ2
νb

2
⊥

2δ2
, (24)

that is, what would be expected after passing only one cell.

Therefore in the random magnetic field case one obtains a sizable enhancement of the

neutrino conversion probability as compared with the case of a constant magnetic field of

the same amplitude. This enhancement is explained by the fact that the random nature of

the magnetic field destroys the coherence in the neutrino evolution. Therefore, instead of

adding amplitudes one have to add probabilities [31].

Finally, in order to take account of the shape of the rms random field profile we introduce

a factor

S2 =
1

N

N
∑

n=1

b̄2
n

b2
⊥max

, (25)

which is S = 1 for constant rms field and of the order of unity for other sufficiently wide

spatial profiles, e.g. S ≈ 0.579 for “smooth” profile [12], S ≈ 0.577 for triangle profile [14],
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S ≈ 0.782 for Kutvitsky-Solov’ev profile [32]. An alternative estimate of typical shape

factors comes from the assumption that the magnetic energy density globally follows the

approximate solar density profile with the scale height H = 0.1R⊙, leading to S ≈
√

H/L ≈
1/
√

3 ≈ 0.57.

Using the above definition of the shape factor one can rewrite Eq. (23) as

〈η〉 =
µ2b2

⊥max

δ2
S2 L

L0
sin2(δ · L0) , (26)

where b2
⊥max is the maximal value of the transverse magnetic field. This shows that different

random magnetic field models can be effectively characterized by two parameters, b2
⊥maxS

2

and L0.

B. Magnetohydrodynamic turbulence models

A well motivated class of magnetic field models can be considered for which the number

of parameters can be further reduced by eliminating reference to the effective scale L0. The

relevant average 〈(b+(t1)b−(t2)〉 of the transverse components of the magnetic fields can

be characterized by introducing the two-point magnetic field correlation tensor as Mij =

〈bi(r1)bj(r2)〉.
For the case of isotropic, homogeneous and non-helical random magnetic fields Mij is

separated as

Mij = MN

(

δij −
rirj

r2

)

+ ML
rirj

r2
. (27)

where r = r1−r2. The longitudinal (ML) and transverse (MN ) correlation functions depend

only on the separation distance between the two points, r = |r1 − r2|. Given that ∇·B = 0,

one can write

MN (r) =
1

2r

∂

∂r
(r2ML(r)) . (28)

One can generalize the above definition of the correlation function in Eq. (27) so as to

cover the case of media which are isotropic and homogeneous only locally. This can be done

by expressing the correlator in factorized form as [33]

MN (r1, r2) = F

(

r1 + r2

2

)

KN (|r1 − r2|) , (29)

where the random magnetic field profile factor F depends on the center-of-mass position of

the two points r1 and r2 and the local correlator KN (r) coincides with the one characterizing

the isotropic and homogeneous case, MN (r), given in Eq. (27).
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The above form provides a reasonable description for solar magnetic field profiles. Indeed,

typical solar rms field profiles (F ) vary on scales of the order of the density scale height

H ≈ 70000 km. On the other hand KN involves averaging on much smaller scales δ−1

related to the neutrino oscillation length, about hundred kilometers for the LMA-MSW

case.

Substituting Eq. (27) into Eq. (16) and restricting the coordinates to the neutrino path,

we get

〈η〉 = µ2

∫ L

0

dz1

∫ L

0

dz2MN (z1, z2) cos[2δ(z1 − z2)] , (30)

where z1 and z2 are two points on the neutrino trajectory.

Substituting Eq. (29) into Eq. (30), changing variables and rearranging we get

〈η〉 = 4µ2S2L

∫ ∞

0

dξKN(ξ) cos(2δ · ξ) , (31)

where the integration is extended to infinity because of δ · H ≫ 1 and the shape factor S2

is defined as a continuous analogue of Eq. (25)

S2 =
1

L

L
∫

0

b̄2
⊥(z)

b2
⊥max

dz . (32)

In order to estimate KN (ξ) we assume that magnetic field evolution in the solar con-

vective zone is due to the highly developed steady-state MHD turbulence treated within

the Kolmogorov scaling theory [17, 34, 35]. In other words, for large magnetic Reynolds

number, Rm ∼ 108 [17], the solar MHD turbulence is pumped by the largest eddy motion

that follows from the interplay between convection and differential rotation of the Sun. The

size of the largest eddies, Lmax, may be associated with the solar granule size of the or-

der of 1000 km. Dynamo enhancement subsequently results in the direct cascade of the

energy of MHD fluctuations to smaller scales [49]. The smallest scale at which turbulent

motion starts to decay transferring energy into heat is the dissipative scale defined through

ldiss = LmaxR
−3/4
m ≈ 1 m .

Within the inertial range, ldiss < l < Lmax, the similarity arguments of the Kolmogorov

theory require the turbulent hydrodynamic (HD) kinetic energy spectrum to scale as EHD ∼
k−5/3, where k ∼ 1/l is the wave number of the eddies of size l [17, 34, 35]. Similar

qualitative arguments applied to the MHD case imply that the corresponding Iroshnikov-

Kraichnan scaling law can be taken as EMHD ∼ k−3/2 [17]. However recent theoretical results

12



and numerical simulations suggest that the simpler HD Kolmogorov spectrum can actually

be used even for the MHD case [36, 37]. For our purposes the difference in the power-

law exponents turns out to be not specially important so that, we take for definiteness the

Kolmogorov value p = 5/3. Generalization to arbitrary p’s is straightforward. See details

below.

Let us model the longitudinal correlation function KL(r) as in hydrodynamics [33]

KL(l) =
b̄2

3

22/3

Γ(1/3)

(

l

Lmax

)1/3

K1/3

(

l

Lmax

)

, (33)

where Γ(x) is the gamma-function, Kµ(x) is the McDonald function of index µ and b̄2 is the

squared rms magnetic field on scale Lmax. The model function correctly reproduces required

asymptotics of the Kolmogorov theory:

(i) KL(0) = 〈b2
z(z)〉 = b̄2/3 ,

(ii) KL(0) − KL(l) ∼ l2/3 for l ≪ Lmax .

Using Eq. (28) and Eq. (33) and taking into account that 2δ ·Lmax ≫ 1 we finally perform

the integration in Eq. (31) and obtain [50]

〈η〉 ≃
√

π

3

21/3Γ(5/6)

Γ(1/3)

µ2b̄2S2LLmax

(δ · Lmax)5/3
≃ 0.3

µ2b̄2S2

δ2

δ · L
(δ · Lmax)2/3

. (34)

which leads, in normalized units, to

〈η〉 ≃ 3 × 10−3µ2
11ε

2S2

(

7 × 10−5eV2

∆m2

)5/3(
E

10MeV

)5/3

, (35)

where µ11 is the magnetic moment in units of 10−11µB, and the ratio ε =

(b/100 kG)/(Lmax/1000 km)1/3.

The ratio ε is not known precisely, but one may estimate it assuming equipartition be-

tween kinetic energy of hydrodynamic fluctuations and the rms magnetic energy at the

largest (most energetic) scale Lmax [17]

ρv̄2

2
≈ b̄2

8π
(36)

Taking v ∼ 3 × 104cm/s and ρ ∼ 1 g/cm3 [38] we obtain typical amplitude for magnetic

field fluctuations b ∼ 100 kG at the scale Lmax = 1000 km. Assuming that b ≈ 50− 100 kG

13



and that the shape factor S lies in the range between 0.5 and 1 we estimate that the product

εS may vary in the interval 0.25 < εS < 1.

Before concluding this section we note that both types of magnetic field models lead to

qualitatively similar results for the neutrino conversion parameter 〈η〉 when the magnetic

field correlation scale is chosen to coincide with neutrino oscillation length λosc. Indeed,

in accordance with the Kolmogorov scaling law b̄2/(δ · Lmax)
2/3 ≃ λ

2/3
osc · b̄2/L

2/3
max = b̄2

λosc
is

the squared rms field at the scale λosc. This implies that Eq. (26) goes into Eq. (34) when

making the replacement δ ·L ∼ L/λosc. This happens because in the context of the turbulent

magnetic field model neutrinos effectively feel only one scale, namely their oscillation length.

IV. LIMITS ON NEUTRINO MAGNETIC MOMENTS

In this section we analyze the limit on electron anti-neutrino flux published by Kam-

LAND [1]. In Ref. [11] we showed how this limit makes the determination of neutrino

oscillation parameters, ∆m2
sol and θsol, extremely robust against possible existence of spin-

flavor conversions. This can be used in order to determine the allowed regions of solar

neutrino oscillation parameters independently of the magnetic field and magnetic moment

parameters.

Using the standard χ2 procedure (see [8] and references therein) and taking into account

full set of solar as well as KamLAND reactor neutrino data we have re-determined the

allowed regions of solar neutrino oscillation parameters, ∆m2
sol and θsol, within the recent

version of Standard Solar Model (BP04) [39]. The results are presented as shaded regions

in Fig. 1.

Let us first consider the simple random magnetic field model described in Sec. IIIA. In

this case neutrino conversion probabilities depend both on the oscillation parameters, ∆m2
sol

and θsol, as well as the parameters µ2
νb

2
⊥max

S2 and L0 describing the random magnetic field

model. Using Eqs. (19) and (23) we have calculated the predicted electron anti-neutrino flux.

In Fig. 1 we show, for a fix value of L0 = 100 km and S2 = 1, the curves that correspond

to an electron anti-neutrino yield of 2.8 × 10−4φB. It is clear that a better determination

of the solar mixing angle by future experiments will not substantially improve the limits

on the parameters µ2
νb

2
⊥max

S2 and L0 which are mainly restricted by the solar anti-neutrino

flux limit. In contrast note that an improved determination of the solar mass splitting at
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FIG. 1: Allowed regions for ∆m2
sol and θsol from solar and KamLAND neutrino experiments

at 90%, 95%, 99% and 99.73% C.L. The curves are electron anti-neutrino iso-flux contours for

L0 = 100 km, plotted for different µ11Sb⊥ values indicated in kG, and fixing the anti-neutrino

production at the current KamLAND limit. For values above 55 kG or so the high LMA region is

ruled out.

KamLAND will play an important role in pinning down the magnetic field parameters.

In order to determine the restrictions on these parameters we have imposed that the

anti-neutrino yield should not exceed the current experimental bound, 2.8× 10−4φB within

the presently allowed 90% C.L. region of the (∆m2
sol, θsol) plane. The results of this analysis

are shown in Fig 2. The limits on µ2
νb

2
⊥max

S2 versus L0 correspond to different values of

electron anti-neutrino fluxes. The lower curve represents the current upper bound on the

product of magnetic moment and magnetic field which follows from the recent KamLAND

bound in Ref. [1]. This is compared with the original sensitivity expected by the KamLAND

collaboration [40] (dashed line) and with the Super-K [2] bound (dot-dashed line). One can

see how Fig. 2 quantitatively confirms the expectation that the strongest limit on µ2
νb

2
⊥S2

corresponds to the case when the correlation scale L0 is of the same order as the neutrino

oscillation length, λosc ≈ 100 − 200km.

As discussed in section IIIB, solar MHD turbulence provides an attractive framework for

the solar magnetic field model, in which the anti-neutrino production probability depends
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FIG. 2: Upper bound on µ11Sb⊥ for a random field with spatial scale L0 allowed by the 90%

C. L. region of ∆m2
sol and θsol. The solid line shows the allowed values coming from the current

KamLAND limit on φν̄e . For comparison we also give the limits that would correspond to φν̄e =

0.1% and φν̄e = 0.8 % of φB .

only on one extra parameter: µ2
νε

2S2. As we did above, we first determine the values of

µ2
νε

2S2 that produce an electron anti-neutrino yield of 0.028 % φB. In Fig. 3 we have shown

curves corresponding to different values of µ11εS. Similarly to the case of the simplest

random field model one sees that an improved determination of solar neutrino mixing angle

will not limit µνεS significantly better than the current constraint. In contrast a better

determination of the solar mass splitting at KamLAND will be useful.

Following the same approach as before we have determined the limit on µνεS taking

into account the currently 90% C.L. allowed region of solar neutrino oscillation parameters.

As we have already seen in Sec. III B, a reasonable estimate of the allowed range for εS

is 0.25 < εS < 1. Therefore, in contrast to the previous models, with random or regular

fields, we can now, to within a factor of four, extract direct restriction on the intrinsic

neutrino magnetic transition moment µν . This is indicated in Fig. 4. The lowest horizontal

line represents current limit on the solar electron anti-neutrino flux from the KamLAND [1]

experiment. On the other hand our bounds on µν are given by the crossings of the lines

delimiting the dark band with the horizontal line labeled KamLAND. From the Fig. 4 one
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sees that µν ≤ 5 × 10−12µB [11]. For comparison the best current laboratory limit by the

MUNU experiment (µν < 1.0 × 10−10µB at 90% C.L.) [41] is also indicated. This should

be compared with the best astrophysical limit, estimated as µν < 3.0 × 10−12µB [18]. As

discussed in Sec. V under unlikely circumstances this bound might be weakened by at most

one order of magnitude. This would correspond to the tilted line delimiting the hatched

band from the right.
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FIG. 3: Similar as Fig. 1. The curves are iso-flux contours with the anti-neutrino yield fixed at

the current KamLAND limit on φν̄e and corresponding to different values of εSµ11. For values

above 0.15 or so the high LMA region is ruled out.

An important issue arises here, namely the robustness of the bounds we have obtained

with respect to different possible choices of the scaling law for the turbulent kinetic spectrum.

In order to answer this question we have considered the Iroshnikov-Kraichnan model [17],

characterized by the power law p = 3/2 instead of p = 5/3 that corresponds to the Kol-

mogorov spectrum. We have found that, in this case, the anti-neutrino yield is higher by

∼ 30%, implying a correspondingly stronger bound on the neutrino magnetic moment. In

general, values of p lower than 5/3 lead to the same tendency: the smaller p, the stronger

limit on the neutrino magnetic moment.

Another question which may be addressed is whether different power-laws could be dis-

tinguished in future experiments, should solar electron anti-neutrinos ever be measured.
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FIG. 4: Bounds on µν for the turbulent magnetic field model described in the text. The horizontal

lines indicate the bounds on solar electron anti-neutrino fluxes from Super-K and KamLAND.

The diagonal dark band shows the limit on the intrinsic neutrino magnetic moment, its width

corresponds to our (Kolmogorov) turbulent magnetic field model uncertainties. The crossing of

this band with the lowest KamLAND line gives the limit µν = 5 × 10−12 µB . For comparison the

vertical line indicates the present MUNU reactor limit. A more conservative and pessimistic limit

discussed in Sec. V would give the limit indicated by the hatched band.

Although the anti-neutrino yield is larger for the Iroshnikov-Kraichnan spectrum than for

the Kolmogorov one, the expected anti-neutrino spectrum is not significantly different. In

Fig. 5 the predicted anti-neutrino spectra (normalized to unity) are plotted both for the

Iroshnikov-Kraichnan and Kolmogorov spectra. For comparison we have also shown the ex-

pected electron anti-neutrino spectrum for the random magnetic field case with L0 = 100km

and for the Kutvitsky-Soloviev magnetic field scenario [13]. One can see that there is no

essential difference between them. Therefore, if a positive anti-neutrino signal is ever de-

tected, the spectrum shape would not convey definitive information about the turbulent

energy spectrum. In contrast, different L0 values in random field scenario lead to signifi-

cantly different energy spectrum predictions. This may help in some cases to distinguish

these models, but the detailed analysis of this phenomenon is out of the scope of the paper.
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FIG. 5: Predicted normalized electron anti-neutrino spectrum for the MHD turbulent model with

Kolmogorov (solid) or Iroshnikov-Kraichnan (dashed) scaling exponents and the simplest random

magnetic field model. For comparison we also indicate the expectation for the a regular magnetic

field model.

Note that in the framework of our turbulent picture there is no time dependence in

the magnetic field correlators, so that the resulting solar neutrino fluxes will have no time

variation. This is a reasonable aproximation since the neutrino data we use are taken

over periods larger than characteristic turbulent time fluctuations of solar magnetic fields.

Possible neutrino flux variations in the Super-Kamiokande data have been considered [42,

43]. We note however that in the framework of the spin flavour precession of Majorana

neutrinos, irrespective of the magnetic field model adopted, the expected variations in the

electron and muon neutrino fluxes should not exceed the current electron anti-neutrino flux

bound 2.8 ·10−4φB. Therefore time variations are expected to be too small, given the current

statistical errors in the solar neutrino data.

V. A CRITIQUE OF THE ROBUSTNESS OF THE BOUND OBTAINED

We now discuss in more detail the possible weaknesses of the method we have employed

to constrain the neutrino magnetic moment in the case of turbulent magnetic fields. The
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bound is given from Eq. (34) and depends on Lmax. We have taken Lmax ∼ 1, 000 km,

arguing that this is the size of the granules on the surface of the Sun. One might argue,

however, that the scale Lmax may be associated with the size of the convection cells which

is about a few ×104 km. In such a worse-case scenario the neutrino conversion would be

smaller, thus weakening the limit. However at most this would weaken our bound by a factor

(few × 10)1/3 ∼ 3 due to the mild power dependence 1/3. Moreover, the size of the largest

turbulent eddies, Lmax, is still an open question, see for example Ref. [17].

The bound on the neutrino magnetic moment also depends on the shape factor 0.5 <

S < 1. Such shape factor S accounts for the fact that the random magnetic field may not

be located in the whole convective zone (see discussion after Eq. (25)). The bound on the

neutrino magnetic moment assuming that the shape factor is S=0.5 is a conservative bound

and corresponds to the assumption that only 1/4 part of the convective zone is effectively

filled by the random magnetic field (S2 = 0.25).

The strength of the random (as well as the regular) magnetic field in the solar convective

zone is unknown. There are different theoretical estimates of its value based on available

experimental data. In order to derive our conservative limit on the neutrino magnetic

moment we have used the value 50kG. A smaller value, say 20kG, for the strength of the

large–scale regular magnetic field in the convective zone would result in a limit only 2.5

times weaker than the value we obtained. However we stress that the small–scale random

magnetic field is expected to be comparable or even larger than the regular one. The value of

50 kG for the random magnetic field does not contradict the helioseismic data, in particular

the analyses of SOHO MDI or GONG data. For example, the observed asphericity of the

inferred sound speed may be explained by a magnetic field at the bottom of the convective

zone of strength 200-300kG [45]. We mention also that recent results on the modelling of

the sunspot generation suggest that the strength of the toroidal field at the base of the solar

convective zone must be on the order of 100 kG or so [46] in which case the bound would

get stronger.

All in all, taking all of the uncertainties mentioned above into acount we find that, in the

worst case, they will be able to weaken our bound at most by one order of magnitude (see

Fig. 4). Still the resulting bound is better than the current direct experimental bound. This

situation would, in our opinion, be extremely unlikely as it would require a conspiracy.
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VI. CONCLUSIONS

We have considered neutrino spin-flavor precession in stationary solar magnetic fields,

treated perturbatively with respect to LMA-MSW neutrino oscillations. We have discussed

the impact of the recent KamLAND constraint on the solar anti-neutrino flux on the solutions

of the solar neutrino problem in the presence of Majorana neutrino transition magnetic

moments. This leads to strong limits on neutrino spin-flavor precession, involving µνB. We

analysed these constraints for a number of models of solar magnetic fields, both regular as

well as random. We found that for a turbulent solar random magnetic field model, one

can find a rather stringent constraint on the intrinsic neutrino magnetic moment down

to the level of µν . few × 10−12µB, similar to bounds obtained from star cooling. Such

magnetic moments would have no effect in the detection process, given current experimental

sensitivities. We also discussed how, in the worst possible case, these limits might deteriorate

at most by one order of magnitude. We note also that for the complementary case where

there is no spin flavor precession in the Sun and the only effect of the neutrino magnetic

moment happens in the detection process [44] the current sensitivity is weaker than found

here [47]. Therefore we conclude that turbulent solar magnetic fields provide an enhanced

sensitivity to very small neutrino transition magnetic moments. We have also shown how our

result is rather insensitive to the details of the assumed model of turbulent random magnetic

field. We verified this explicitly for Kolmogorov’s and Iroshnikov-Kraichnan spectra. Should

solar anti-neutrinos ever be detected, it is unlikely that this would be of help in testing the

intrinsic scaling law B(L) ∝ L1/3 characterizing turbulence.
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APPENDIX A: 3-ν DESCRIPTION OF ν̄e PRODUCTION IN SOLAR RANDOM

MAGNETIC FIELDS

To justify the validity of the 2-ν scenario one can generalize it to the 3-ν case. The prob-

ability of the solar electron anti-neutrino appearence at the surface of the Earth (averaged

over the Sun-Earth distance) takes the form

Peē ≈ |µ12|2I12

{

c2
13c

2
12P2L(0.7) + c2

13s
2
12P1L(0.7)

}

+ |µ23|2I23

{

c2
13s

2
12P3L(0.7) + s2

13P2L(0.7)
}

(A1)

+ |µ13|2I13

{

c2
13c

2
12P3L(0.7) + s2

13P1L(0.7)
}

.

Here µjk are the transition magnetic moments; sjk and cjk are corresponding sin and cos of

the 3-ν mixing angles (θ12 – solar, θ23 – atmospheric, θ13 – reactor mixing angles); PjL(r =

0.7R⊙) are the solar neutrino probabilities at the bottom of the convective zone. The

integrals Ijk are the generalizations of Eq.(16)

Ijk =
1

2

∫ L

0

dt1

∫ L

0

dt2(b+(t1)b−(t2)e
−2iδjk(t1−t2) + c.c.) , (A2)

where δjk = ∆m2
jk/4E, ∆m2

jk = m2
k − m2

j . To derive the above equation we have used the

perturbative approach, as in Sec.II, leaving only terms quadratic in magnetic moments in

the final probabilities.

We can notice first that, at a very good approximation, one has P3L(0.7) = s2
13 ≪ 1

(see [44] and references therein). The ν3L yield in the solar core propagates as in vacuum

because matter effects are strongly suppressed, as δ23 ≈ δ13 ≫ VMSW .

Therefore the second and third terms in Eq. (A1) are proportional to sin2 θ13. In order

to estimate Ijk we consider the simple random magnetic field model discussed in Sec.IIIA

Ijk =
b2S2

δ2
jk

L

L0
sin2(δjkL0) (A3)

and the turbulent magnetic field model discussed in Sec. III B

Ijk = 0.3
b2S2LLmax

(δjkLmax)5/3
(A4)

Taking into account that solar and atmospheric mass splittings have significantly different

scales, ∆m2
12 ≪ ∆m2

23 ≈ ∆m2
13, we obtain in both cases (random and turbulent) that
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I23 ≈ I13 ≪ I12, which means that neutrino spin-flavor conversion in the channels 1− 3 and

2 − 3 is strongly suppressed with respect to the 1 − 2 channel.

We may conclude that possible constraints on |µ23|2 and |µ13|2 are very poor. They are

strongly suppressed by two facts:

• s2
13 < 0.054 (3σ C.L.) [10],

• 0.018 < ∆m2
12/∆m2

13 ≈ ∆m2
12/∆m2

23 < 0.053 (3σ C.L.) [10].

Therefore the contribution of other channels involving µ23 and µ13 to electron anti-

neutrino production is strongly suppressed both directly by the small value of the angle

θ13 and by the small ratio of solar to atmospheric squared mass differences ∆2
sol/∆2

atm. As

a result we adopt the 2-ν picture, characterized by a single component of the transition

magnetic moment matrix (µ12) as a very good approximate description of anti-neutrino

production.
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