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Abstract

We discuss some rare Z decay signatures associated with extensions of

the Standard Model with spontaneous lepton number violation close to

the weak scale. We show that singlephoton Z decays such as Z → γH
and Z → γJJ where H is a CPeven Higgs boson and J denotes the

associated CPodd Majoron may occur with branching ratios accessible to

LEP sensitivities, even though the corresponding neutrino masses can be

very small, as required in order to explain the deficit of solar neutrinos.
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1 Introduction

There is a large variety of ways to generate naturally small neutrino masses which

do not require one to introduce a large mass scale [1]. In some of these models

the neutrinos acquire mass only through radiative corrections [2, 3]. In addition to

their potential in explaining present puzzles in neutrino physics [4], such as that of

solar and atmospheric neutrinos [5], such models may give to many new signals at

highenergy accelerator experiments [6].

Here we consider radiative schemes of neutrino mass generation. For definite

ness we focus on that introduced in ref. [3] where neutrino masses are induced at

the twoloop level. For our purposes this model will be the simplest, as it does not

contain any scalar Higgs doublet in addition to that of the standard model. Follow

ing ref. [7], we slightly generalize the model adding a new singlet scalar boson σ
carrying two units of lepton number, so that this symmetry is broken spontaneously.

This leads to the existence of a physical Goldstone boson, called Majoron, denoted J .

One feature worthnoting here is that, although the Majoron has very tiny couplings

to matter and gauge bosons (in particular, it gives no contribution to the invisible Z
decay width), it can have significant couplings to the Higgs bosons. Since the scale

at which the lepton number symmetry gets broken in this model lies close to the

weak scale, there are a variety of possible phenomenological implications, such as a

substantial Higgs boson decay branching ratio into the the invisible channel [8]

H → J + J (1)

In this letter we consider the signatures associated with the singlephoton Z

boson decays such as:

Z → γH, Z → γJ, Z → γJJ (2)

where H is a CPeven Higgs boson, and J denotes the associated CPodd Majoron.

We have calculated the possible values allowed for these decay branching ratios

within a specific model for neutrino mass proposed in ref. [7] and which generalizes

the one first proposed in ref. [3] by introducing the Majoron. Since the Majoron J is

weakly coupled to the rest of the particles, once produced in the accelerator, it will

escape detection, leading to a missing energy signal for the Higgs boson [8, 9]. In

the present context the invisible Majoron will give rise to the singlephoton Zdecay

signal

Z → γE/T (3)

It is interesting to notice that singlephoton events have been recorded at LEP which

apparently can not be ascribed to standard model processes [10].

We have shown that the branching ratios for the decays Z → γH and the Higgs

mediated decay Z → γJJ can reach values comparable with LEP sensitivities at the

Z pole. It is remarkable that such sizeable values occur even though the associated

neutrino masses are very small, as required in order to explain the deficit of solar

neutrinos through the resonant conversion effect [11]. This happens due to the

fact that neutrino masses are induced only radiatively, at the twoloop level. This

is in sharp contrast to the conventional Majoron model formulated in the seesaw

context, where a large scale is introduced in order to account for the smallness of

neutrino masses [12].
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Figure 1: Twoloopinduced Neutrino Mass.

2 The model

We consider a modification of the model for radiative neutrino masses first proposed

in [3] to incorporate spontaneous breaking of global lepton number, leading to a

majoron.

The model is based on the gauge group SU(2) × U(1), with the same fermion

content as that of the standard model, but three complex singlets of scalars in

addition to the doublet. Thus the quark sector is standard and no righthanded

neutrino is introduced. Of the three complex singlets, two are charged, viz., h± with

charge ±1 and lepton number ∓2, and k±± with charge ±2 and lepton number ∓2.

The third neutral singlet scalar σ carries lepton number 2 and is introduced so as to

conserve lepton number in the full Lagrangian, including the scalar selfinteractions

[7].

With the choice of scalars and the representations which we have made, the most

general Yukawa interactions of the leptons can be written as

L = −
√

2mi

v
ℓ̄iφeRi + fijℓ

T
i Ciτ2ℓjh

+ + hije
T
RiCeRjk

++ + H.c. (4)

where h and f are symmetric and antisymmetric coupling matrices, respectively.

The lepton masses are generated when the SU(2)⊗U(1) gauge symmetry is broken

by 〈φ〉. The first term gives the charged lepton masses mi at the tree level, while

neutrinos acquire masses radiatively, at the twoloop level, by the diagram in Fig.

1. For reasonable and natural choices of parameters, consistent with all present

observations, e.g. feτ , fµτ , hττ ∼ 0.01, the singlet vacuum expectation value of about

100 GeV, and charged Higgs boson masses of about 100 GeV, these neutrino masses

are in the 10−2 to 10−3 eV range, where they could explain the deficit of solar

neutrinos through the resonant conversion effect [11].

3 The scalar potential

The most general scalar potential which is invariant under the gauge group and

under global lepton number, with at most quartic terms, is

V (φ, h, k, σ) = µ2
1φ

†φ + µ2
2h

+h− + µ2
3k

++k−− + µ2
0σ

∗σ
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+λ1(φ
†φ)2 + λ2

2(h
+h−)2 + λ3(k

++k−−)2 + λ0(σ
∗σ)2

+λ4(φ
†φ)(h+h−) + λ5(φ

†φ)(k++k−−) + λ6(h
+h−)(k++k−−)

+λ7(φ
†φ)(σ∗σ) + λ8(h

+h−)(σ∗σ) + λ9(k
++k−−)(σ∗σ)

+λ0h
+h+k−−σ + λ∗

0h
−h−k++σ∗. (5)

We assume that for a choice of parameters of the potential, both the SU(2) ⊗
U(1) gauge symmetry as well as the global lepton number symmetry are broken

spontaneously, with the neutral scalar fields getting vacuum expectations values.

We rewrite the neutral fields as follows:

φ0 =
1√
2

(v + φ0
R + iφ0

I), (6)

and

σ =
1√
2

(ω + σR + iσI). (7)

v and ω are the vacuum expectation values defined by 3

〈φ0〉 =
v√
2
, (8)

〈σ〉 =
ω√
2
. (9)

The physical massive scalars which survive are those corresponding to h±, k±±,

and two orthogonal combinations of of φ0
R and σR. The charged components of φ,

viz., φ±, correspond to the wouldbe Goldstone particles absorbed by W±, φ0
I is the

wouldbe Goldstone eaten by the Z boson and σI is the massless physical Goldstone

field corresponding to spontaneously broken global lepton number.

We can write the following expressions for the squared masses of the various

scalars:

M2
h+ = µ2

2 +
1

2
λ4v

2 +
1

2
λ8ω

2, (10)

M2
k++ = µ2

3 +
1

2
λ5v

2 +
1

2
λ9ω

2. (11)

The squared mass terms for the neutral scalars can be written as −1
2 iM

2
ij j + · · · where

we have defined the vector

=
[

φ0
R

σR

]

. (12)

The squared mass matrix M2 is given by

M2 =
[

2λ1 v2 λ7 ωv
λ7 ωv 2λ0 ω2

]

(13)

The mass eigenstates are Hi defined through

Hi = Pijj (14)

3Our choice of the φ vacuum expectation value differs from that in [3] by a factor of
√

2
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where the diagonalization matrix P is orthogonal, that is, P−1 = P T . Therefore the

inverse of Eq. (14) reads

i = Pji Hj (15)

or in terms of the fields φ0
R and σR







φ0
R = P11 H1 + P21 H2

σR = P12 H1 + P22 H2

(16)

Before we close this section let us derive two important relations. In the basis i

the eigenvectors Hi have components

[

Pi1

Pi2

]

(17)

Therefore the eigenvalue equation reads

M2 Hi = M2
Hi

Hi , i = 1, 2 (18)

which gives explicitly

2λ1 v2 Pi1 + λ7 ωv Pi2 = M2
Hi

Pi1

λ7 ωv Pi1 + 2λ0 ω2 Pi2 = M2
Hi

Pi2

(19)

These expressions will be useful below.

4 The calculation of the singlephoton processes

In this section we will describe the relevant couplings which are different from the

ones in standard model, or are new. The couplings of the physical and unphysical

scalars among themselves are simply obtained by substituting from Eq. (6) and Eq.

(7) into the scalar potential given by Eq. (5), and making use of Eq. (19) and Eq.

(16). The relevant terms in the Lagrangian resulting from this substitution are:

−L = φ+φ−Hi

M2
Hi

v
Pi1 +

1

2
J2Hi

M2
Hi

ω
Pi2

+
1

2
J2
[

λ7 φ+φ− + λ8 h+h− + λ9 k++k−−
]

+ · · · . (20)

The unphysical scalars φ± have exactly the same couplings to the gauge fields

and the FaddeevPopov ghosts as in the standard model, whereas the couplings of

the neutral massive scalars, Hi, are obtained by multiplying the standard model

couplings, written in terms of the physical masses, by Pi1. For example, the coupling

of Hi to W+W− is given by

L = gMWPi1 W+
µ W−µHi. (21)

The charged physical scalars h and k have the following couplings to the gauge

bosons:

L = −ie(Aµ + tan θW Zµ)
{

(h−∂µh+ − ∂µh−h+)
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+2(k−−∂µk++ − ∂µk
−−k++)

}

+e2(Aµ + tan θW Zµ)
2(h+h− + 4k++k−−). (22)

In order estimate the branching ratios for the singlephoton processes in our

model we have varied the values of MH2
, of Mh±, of Mk±± in the 100 GeV range, and

the quartic couplings in the potential over the range

0 ≤ λquartic ≤
√

4π (23)

while the lepton number violation scale ω and CPeven Higgs mixing angle θ were

chosen in the range

2 ≤ v

ω
≤ 3

0 ≤ θ ≤ π

2
(24)

We have also studied the effect having lower values for the lepton number violation

scale ω, and obtained a slight enhancement of our branching ratios for the single

photon processes. Notice that with our conventions we have for the mixing matrix

of the CPeven Higgs bosons

P =





cos θ − sin θ

sin θ cos θ



 (25)

4.1 The Z → Hγ decay

This process arises from the Feynman diagrams shown in Fig. (2). In addition to

standard model diagrams this process receives contributions from the new physical

singly as well doubly charged scalar bosons, as shown in Fig. (2). The amplitude for

the process can be written as

M = ǫµ
Zǫν

A

eg2

16π2MW

(

gµνq1 · q2 − q1µq2ν

)

AHγ (26)

where q1 and q2 are the photon and Higgs momenta, respectively. The normalized

amplitude AHγ is given by

AHγ = ASM P11 + Ah + Ak (27)

where ASM is the corresponding amplitude for the standard model and Ah and Ak

are the amplitudes corresponding to the loops of the new charged scalars. We give

their explicit expressions in the Appendix.

The resulting Z → γH decay width is then

=
1

12π

(

eg2

16π2MW

)2

E3
γ |AHγ|2 (28)

where Eγ = (M2
Z − M2

h)/(2MZ) is the energy of the photon.

As an illustrative example we show in Fig. (3) the expected branching ratio

branching ratio for Z → γH as a function of MH for the standard model and for our
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Figure 2: Feynman diagrams for the decay Z → Hγ.
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Figure 3: Branching ratio for Z → γH as a function of MH for the standard model

(solid line) and for our model (points).

model 4. In this Figure we have taken MH2
= 100 GeV and Mh± = Mk±± = 70 GeV .

For reasonable allowed choices of the relevant parameters one sees that this the

value of this branching ratio can be enhanced with respect to the standard model

predictions, but only slightly, by a factor 2 or so, for any fixed MH . The most novel

aspect of this decay in the present model comes from the fact that CPeven Higgs

boson H may decay into two Majorons with a substantial branching ratio, leading to

a monophoton plus missing energy signature for the decay Z → Hγ.

4.2 Majoron emitting Z decays

The majoron does not couple to the Z boson at the tree level, since it is an SU(2)⊗U(1)
singlet. Nevertheless it can couple radiatively leading, for example, to processes such

as Z → γJ and Z → γ + J + J , recently discussed in a different context in ref. [13].

These processes are, of course, absent in the standard model.

The single majoron emission process would give rise to a characteristic signature

consisting of monochromatic photons plus missing energy. In contrast to the model

considered in ref. [13], the single majoron emission process is expected to be very

small in the present model. Notice, for example, that since the majoron does not

couple to charged leptons at the tree level, the oneloop diagram involving charged

lepton exchange is absent.

In contrast the process Z → γJJ proceeds at the oneloop level through two

types of diagrams. The first set of diagrams involves the oneloop coupling of Z to

γ and Hi (which may be offshell), with a treelevel coupling of Hi to two majorons,

Fig. (4). In the other set of diagrams Fig. (5) the two majorons arise from a

quartic coupling to a pair of charged scalars (φ±, h± or k±±). The first set is directly

related to the set of diagrams for the process Z → γH1 discussed in Section 4.1,

and can be computed simply by first replacing the Higgs boson H1 by Hi, then

4In the present model we also denote MH the mass of the lightest CPeven Higgs boson H1.
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Figure 5: Additional Feynman diagrams for the decay Z → γ + J + J .
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multiplying the corresponding amplitude by the propagator for the field Hi, and

finally summing over i = 1, 2. The particles running in the loops are, in this case,

not only those present in the standard model but also the charged scalars h± and

k±±. The corresponding amplitudes have been calculated in Section 4.1. The second

set of diagrams correspond to the quartic couplings of the majorons to the charged

scalars. It can be shown that the first diagram of Fig. (5) is not gauge invariant but

exactly cancels against the non gauge invariant part of the diagrams in Fig. (4). The

remaining diagrams of Fig. (5) with φ±, h± and k±± running in the loop are gauge

invariant by themselves and have to be calculated afresh.

Gauge invariance and CP conservation allow us to write the amplitude for

Z(P ) → γ(q1) + J(q2) + J(q3) (29)

for the case of onshell Z and γ, as

M = ǫZ
µ ǫγ

ν

eg2

16π2MW

(gµνq1 · Q − qµ
1 Qν) AγJJ (30)

where Q = q2 + q3 and use has been made of current conservation for onshell Z and

γ.

The combined contribution of the first set of diagrams to AγJJ can be deduced from

the result of Section 4.1. The answer is:

A
(1)
γJJ =

2
∑

i=1

AHγ(Q
2)

Q2 − M2
Hi

+ iMHi Hi

M2
Hi

ω
Pi2 (31)

where AHγ(Q
2) is the amplitude calculated in Section 4.1 evaluated at Q2 = (P −

q1)
2 = MZ(MZ − 2Eγ). In Eq. (31) we have introduced the width of Hi, because, as

we shall see, the dominant contribution for the process comes when Q2 ≃ M2
Hi

.

The contribution to AγJJ of the second set of diagrams can be written as

A
(2)
γJJ = Âφ + Âh + Âk (32)

where Âφ, Âh and Âk are the contributions of the charged scalars (unphysical and

physical) and are given explicitly in the Appendix.

The photon energy spectrum is then

d

dEγ
=

1

192 π3

(

e g2

16 π2 MW

)2

MZ E3
γ

∣

∣

∣A
(1)
γJJ + A

(2)
γJJ

∣

∣

∣

2
(33)

and the total width

=
∫ 1

2
MZ

0

d

dEγ
dEγ (34)

We have explicitly verified that the contribution of A
(2)
γJJ is small when compared

with the standard model result for Z → Hγ. Thus the main contribution comes from

the first set of diagrams when Q2 ≃ MHi
. For this reason we need to evaluate the

width of Hi. As an approximation, we assume that the doublet part of Hi decays

mainly in bb. In this case we have only two partial widths

(Hi → JJ) =
1

32 π

g2
HiJJ

MHi

(35)
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Figure 6: Photon spectrum for MH = 60 GeV. It is peaked around Eγ ≃ 25.7 GeV.

The solid line represents the total contribution, the dotted line the contribution from

the resonant diagrams, and the dashed line the contribution from the nonresonant

ones. In this Figure we have MH2
= 100 GeV and Mh± = Mk±± = 70 GeV .

and

(Hi → bb) =
1

4 π
MHi

g2
Hibb

(

1 − 4 m2
b

M2
Hi

)3/2

(36)

where

gHiJJ =
M2

Hi

ω
Pi2 and gHibb

=
mb Pi1

v
(37)

As we said before the photon energy spectrum is peaked around Eγ = (M2
Z −

M2
Hi

)/(2MZ). However this does not mean that the contribution of the charged

scalars is negligible. In fact, we have two extreme cases:

• P11 large (small θ)

The dominant contribution comes from the resonant diagrams (first set). The con

tribution from the loops of charged scalars with quartic vertices is negligible. The

energy spectrum is peaked around Eγ = (M2
Z − M2

H)/(2MZ). This can be seen from

Fig. (6) which is for P11 = 0.94. Note that the other diagrams with charged scalars

are not negligible because they are also resonant. In fact it is necessary to have them

of the same order as the standard model for Z → γH in order to have an increase.

Note also from Fig. (6) that the width of the H1 is very small. This depends on P11

being large as can be seen from Eq. (37) and in Fig. (7).

• P11 small (θ close to π/2)

Now the standard modellike diagrams are small and the main contribution is from

the loops of charged scalars. However the main contribution is still from the resonant

charged scalars diagrams. The nonresonant diagrams are small, although not

completely negligible. In Fig. (8) we illustrate this for P11 = 0.04. There we can

also see that the width of the H1 is a few GeV’s in agreement with Fig. (7). Note

that when θ ∼ π/2 the branching ratio of the Higgs to JJ is close to one. Thus the

standard way of looking for the Higgs, through the standard b− b̄ decay mode, would

10
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Figure 9: Width for Z → γJJ as a function of Mh for our model (points). The standard

model result for Z → Hγ (solid line) is shown for comparison.

miss it. In the present context this implies that, in addition to the broad photon

spectrum in the photon + missing energy signal, one has the additional feature that

the γ + bb̄ signal would be weak.

The resulting Z → γJJ decay branching ratio is shown in Fig. (9). Comparing with

the results of Fig. (3) we see that the strength of this process is essentially the same

as that of Z → γH. This can be easily understood. If we change variables to

x =
2 MZ

MH H

Eγ (38)

one can, after some simple algebra, write the total width in the form

(Z → γJJ) =
∫ xmax

0
(Z → Hγ) BR(H → JJ)

1

π

1

(x − x0)2 + 1
(39)

where

xmax =
M2

Z

MHH
(40)

and

x0 =
2 MZ

MH H

M2
Z − M2

H

2MZ
(41)

is the value for which Q2 = m2
H in terms of the x variable. Now we notice that
∫ +∞

−∞

1

π

1

(x − x0)2 + 1
= 1 (42)

and if the width is very small we can safely set

1

π

1

(x − x0)2 + 1
≃ δ(x − x0) (43)

and therefore

(Z → γJJ) ≃ (Z → Hγ) BR(H → JJ) (44)

One can see from Fig. (10) that the Br(H → JJ) is very close to 1 except for the

mixing angle in the vicinity of zero as can be understood from Eq. (37).
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Figure 10: BR(H → JJ) as a function of cos2 θ.

5 Discussion

The search for singlephoton plus missing energy events constitutes one of the classic

experiments in e+e− annihilation. Of course, such events are expected to occur

through initial state bremsstrahlung with the Z decaying to a νν̄ pair. Recently

the OPAL collaboration has published a high statistics singlephoton spectrum that

shows some excess of high energy photons above the expectations from initial state

radiation [10]. This signal could be an interesting hint for physics beyond the

standard model.

In this letter we have studied the rates for singlephoton processes such as Z →
γH, Z → γJ and Z → γJJ where H is a massive CPeven Higgs boson, and J denotes

the massless (or nearly so) CPodd Majoron associated to the spontaneous violation

of lepton number around the weak scale. For this purpose we considered the simple

model proposed in ref. [7]. We have demonstrated that in this simple model the

Z → γH and Z → γJJ decays may occur with branching ratios compatible with

LEP sensitivities. That such indirect signals of models of neutrino mass can be

sizeable is quite remarkable, taking into account that the corresponding neutrino

masses themselves are very small, as required in order to explain the solar neutrino

problem. In the model in question the smallness of the neutrino masses follows

naturally from the fact that they arise only at the twoloop level.

The γ spectrum associated to these decays is shown in Fig. (6) and Fig. (8).

It is characterized by a spike located at a photon energy Eγ = (M2
Z − M2

H)/(2MZ),
determined by the possible values of the scalar Higgs boson masses MH . The con

straints on MH that follow from the LEP100 experiments differ from those obtained

in the standard model since (i) the CPeven Higgs boson neutralcurrent couplings

are somewhat suppressed due to the admixture of the singlet required to implement

the spontaneous violation of lepton number and (ii) these CPeven Higgs bosons

can decay with substantial rates into the invisible channel JJ [9]. Here we showed

explicitly how the invisible Higgs decay can be important also in conjunction with

radiative Z → γH decays, leading to a sizeable rate for the Z → γE/T signal on the Z

13



peak.

While LEP200 will play an important role in searching for invisiblydecaying

Higgs bosons [14], high statistics studies of the singlephoton energy spectrum at

the Zpole may still be an interesting physics goal, as illustrated through the model

described in this paper.
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Appendix

We will give here the explicit expressions for the various amplitudes referred in the

text. For ASM , Ah and Ak we have[15]

ASM = AW + AF (45)

where

AW = 4 cos θW

[

(3 − tan θ2
W ) J1(MZ , MH , MW )

+

(

−5 + tan2
W θW − 1

2

M2
H

M2
W

(1 − tan θ2
W )

)

J2(MZ , MH , MW )

]

(46)

and

AF =
∑

f

4gf
V Qf

cos θW

[

− J1(MZ , MH , Mf ) + 4J2(MZ , MH , Mf )
]

. (47)

In the previous equations we have introduced the functions J1 and J2 defined by

J1(MZ , MH , MW ) = −M2
W C0(M

2
Z , 0, M2

H , M2
W , M2

W , M2
W )

J2(MZ , MH , MW ) =
1

2

M2
W

M2
Z − M2

H

[

1 + 2M2
W C0(M

2
Z , 0, M2

H , M2
W , M2

W , M2
W )

+
M2

Z

M2
Z − M2

H

(

B0(M
2
Z , M2

W , M2
W ) − B0(M

2
H , M2

W , M2
W )
)

]

(48)

where B0 and C0 are the PassarinoVeltman functions[16].

The amplitudes Ah and Ak are given by

Ah =
4 sin2 θW

cos θW

(

λ4 v2 Pi1 + λ8 wv Pi2

M2
h±

)

J2(MZ , MH , Mh±)

Ak =
16 sin2 θW

cos θW

(

λ5 v2 Pi1 + λ9 wv Pi2

M2
k±±

)

J2(MZ , MH , Mk±±) (49)

The amplitudes Âφ, Âh and Âk coming from the second set of diagrams with quartic

vertices are:

Âφ = −4 cos θW (1 − tan2 θW )
1

MW

λ7

g
J2(MZ , MJJ , MW )

Âh =
4 sin2 θW

cos θW

v λ8

M2
h±

J2(MZ , MJJ , Mh±)

Âk =
16 sin2 θW

cos θW

v λ9

M2
k±±

J2(MZ , MJJ , Mk±±) (50)

where M2
JJ = Q2 = (q2 + q3)

2 = MZ(MZ − 2Eγ).
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