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Abstract

The aim of this paper is to characterise the classes of groups in
which every subnormal subgroup is normal, permutable, or S-permut-
able by the embedding of the subgroups (respectively, subgroups of
prime power order) in their normal, permutable, or S-permutable clos-
ure, respectively.
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1 Introduction and statement of results
In this paper, we consider only finite groups.

A subgroup H of a group G is said to be permutable in G if H permutes
with every subgroup of G. A group G is said to be a PT -group (respectively,
T -group) if permutability (respectively, normality) is a transitive relation in
G. By a result of Ore [13], PT -groups are exactly those groups where all
subnormal subgroups are permutable. PST -groups are also defined via a
transitivity property, namely with respect to S-permutability ([11]): a sub-
group of a group G is called S-permutable if it permutes with all the Sylow
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subgroups of G. By a result of Kegel ([11, Satz 1]), every S-permutable sub-
group is subnormal and hence PST -groups are exactly those groups in which
all subnormal subgroups are S-permutable.

Note that the class of T -groups is a proper subclass of the class of PT -
groups, which in turns forms a proper subclass of the class of PST -groups.
These classes have been studied in detail, with many characterisations avail-
able (see [1, 2, 3, 4, 5, 6, 7, 14, 15]).

The basic structure of soluble T -, PT -, and PST -groups were established
by Gaschütz, Zacher, and Agrawal, respectively, and are presented in the
following theorem.

Theorem 1. Let L be the nilpotent residual of a group G. Then:

1. (Agrawal, [1]) G is a soluble PST -group if and only if L is an abelian
Hall subgroup of odd order of G on which G acts by conjugation as a
group of power automorphisms.

2. (Zacher, [15]) G is a soluble PT -group if and only if G is a soluble
PST -group with modular Sylow subgroups.

3. (Gaschütz, [10]) G is a soluble T -group if and only if G is a soluble
PST -group with Dedekind Sylow subgroups.

The results of the present paper spring from a recent characterisation of
soluble T -groups due to the third author. There he proves that a group
is a soluble T -group if and only if every subgroup is self-normalising in its
normal closure ([12, Theorem 3.1]). It is natural to wonder whether or not
it is possible to get similar characterisations of soluble PT - and PST -groups
by using permutable and S-permutable versions of the normal closure. This
is the goal of the present paper.

Since the intersection of S-permutable subgroups of a groupG is again a S-
permutable subgroup of G, it seems reasonable to replace the normal closure
of a subgroup H by the intersection of all S-permutable subgroups of G
containing H in the PST -case. Unfortunately, the intersection of permutable
subgroups of G is not permutable in general. Therefore the intersection of
all permutable subgroups of G containing a given subgroup H is not the
smallest permutable subgroup of G containing H in general. This is the
main reason why the proofs concerning PT -groups are much more involved
than the corresponding ones for T - and PST -groups. Despite this fact, the
above subgroup will play a central role in our approach.

Definition 2. Let H be a subgroup of a group G.
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1. The permutable closure AG(H) of H in G is the intersection of all
permutable subgroups of G containing H.

2. The S-permutable closure BG(H) of H in G is the intersection of all
S-permutable subgroups of G containing H.

Applying [11], BG(H) is S-permutable in G. However, AG(H) is not
permutable in general, as the following example shows:

Example 3. Suppose that p is a prime and m > 1 is a natural number.
Let G = 〈a, b, c | apm = bp = cp = 1, ba = bc, ca = cb = c〉. The subgroups
H1 = 〈b, c〉 and H2 = 〈b, capm−1〉 are permutable in G, but the intersection
H = H1 ∩H2 is not permutable in G. For the subgroup H, the permutable
closure AG(H) = H is not permutable in G.

However we have:

Theorem 4. Assume that G is a group such that every subgroup is self-
normalising in its permutable closure. Then AG(H) is a permutable subgroup
of G for each subgroup H of G.

Theorem 4 is a consequence of a stronger result:

Theorem 5. Let p be a prime. If every p-subgroup of a group G is self-
normalising in its permutable closure, then AG(H) is a permutable subgroup
of G for every p-subgroup H of G.

These results justify the study of the class of groups in which every sub-
group is self-normalising in its permutable closure. It turns out that this
class is the class of all soluble PT -groups.

If we fix a prime p, the class of groups for which every p-subgroup is
self-normalising in its permutable closure is a subclass of a class which can
be considered as a local version of the class of all soluble PT -groups.

Definition 6 ([5]). A group G satisfies Xp if and only if each subgroup of a
Sylow p-subgroup P of G is permutable in the normaliser NG(P ).

Theorem 7. If p is a prime and G is a group in which every p-subgroup is
self-normalising in its permutable closure, then G satisfies Xp.

Theorem 8. For a group G, the following statements are equivalent:

1. G is a soluble PT -group.

2. H is abnormal in AG(H) for every subgroup H of G.
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3. NG(H) ∩ AG(H) = H for every subgroup H of G.

4. For every prime p and every p-subgroup H of G, H is abnormal in
AG(H).

5. For every prime p and every p-subgroup H of G, we have NG(H) ∩
AG(H) = H.

Theorem 7 follows from the local strategy we use in the PST -case. In
fact, this local point of view leads to the local defining property of the class
of soluble PST -groups.

Recall that if p is a prime, a group G satisfies property Yp if for each
pair of p-subgroups H and K of G such that H is contained in K, then H is
S-permutable in NG(K) ([4]). A group G satisfies Cp if every subgroup of a
Sylow p-subgroup P of G is normal in NG(P ) ([14]).

A group G is a soluble PST -group if and only if G satisfies Yp for all
primes ([4, Theorem 4]). Similar results hold for soluble PT -groups and
property Xp ([5]), and soluble T -groups and property Cp ([14]). These results
are consequences of the following:

Theorem 9 ([4, Theorem 3]). Let p be a prime. A group G satisfies Xp

(respectively, Cp) if and only if G satisfies Yp and the Sylow p-subgroups of
G are modular (respectively, Dedekind).

If p is a prime and every p-subgroup is self-normalising in its permutable
closure, then Sylow subgroups are modular. Hence Theorem 7, by virtue of
Theorem 9, is the permutable local version of the following:

Theorem 10. If p is a prime and G is a group such that every p-subgroup
of G is self-normalising in its S-permutable closure, then G satisfies Yp.

The converse of the above result does not hold.

Example 11. Suppose that p and q are two primes such that q divides
p − 1. Let E be an extraspecial group of order p3 and exponent p. Let
i and j be two numbers such that ij ≡ 1 (mod p − 1) and i and j have
order q modulo p. Let {x, y} be a generating system for E and let z be an
automorphism of order q of E given by xz = xi, yz = yj. Let G = [E]〈z〉
be the corresponding semidirect product, then the S-permutable closure of
Z = 〈z〉 is G, but NG(Z) = 〈z, [x, y]〉. However, the group G satisfies Yq

because it is q-nilpotent.

Note that if H is a p-subgroup of G and NG(H) ∩ 〈HG〉 = H, where
〈HG〉 is the normal closure of H in G, we have that H is a Sylow p-subgroup
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of 〈HG〉. Hence if the above condition holds for every p-subgroup of G, it
follows that the Sylow p-subgroups of G are Dedekind groups. Therefore
applying Theorems 9 and 10 we have:

Corollary 12. Let p be a prime and let G be a group. If every p-subgroup
of G is self-normalising in its normal closure, then G satisfies property Cp.

We are now in a position to give characterisations of groups in which
every subgroup is self-normalising in its S-permutable closure: they turn out
to be the soluble PST -groups.

Theorem 13. Let G be a group. Any two of the following five statements
are equivalent:

1. G is a soluble PST -group.

2. For every subgroup H of G, H is abnormal in BG(H).

3. For every subgroup H of G, the equality NG(H) ∩ BG(H) = H holds.

4. If p is any prime and H is a p-subgroup of G, then H is abnormal in
BG(H).

5. If p is any prime and H is a p-subgroup of G, it follows that NG(H) ∩
BG(H) = H.

Combining Theorem 13 and Corollary 12, we have:

Corollary 14 ([12, Theorem 3.1]). Any two of the following assertions about
a group G are equivalent:

1. G is a soluble T -group.

2. H is abnormal in 〈HG〉 for all subgroups H of G.

3. NG(H) ∩ 〈HG〉 = H for all subgroups H of G.

4. H is abnormal in 〈HG〉 for every p-subgroup H of G and every prime
p.

5. NG(H) ∩ 〈HG〉 = H for every p-subgroup H of G and every prime p.
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2 Proofs
We begin the section with a pair of lemmas, which will be used several times
in subsequent proofs.

Lemma 15. Let G be a group and let N be a normal subgroup of G. If
H is a subgroup of G, then AG(H)N/N and BG(H)N/N are subgroups of
AG/N(HN/N) and BG/N(HN/N), respectively. If N is contained in AG(H),
then AG(H)/N = AG/N(HN/N). The same is true for BG(H).

Proof. The assertions made in the lemma follow from the fact that a subgroup
X of G containing N is permutable (respectively, S-permutable) in G if and
only if X/N is permutable (respectively, S-permutable) in G/N .

Lemma 16. Let H be a subgroup of a group G and let S be a subgroup of G
containing H. Then AS(H) ≤ AG(H) and BS(H) ≤ BG(H).

Proof. Note that if X is a permutable (respectively, S-permutable) subgroup
of G containing H, then X ∩ S is a permutable (respectively, S-permutable)
subgroup of S containing H.

Corollary 17. The classes of all groups in which every subgroup is self-
normalising in its permutable (respectively, S-permutable) closure are closed
under taking subgroups and factor groups.

Proof of Theorem 5. Assume that every p-subgroup of G is self-normalising
in its permutable closure. We prove that AG(H) is permutable in G by in-
duction on the order of G. If N is a minimal normal subgroup of G contained
in AG(H), then AG(H)/N = AG/N(HN/N) by Lemma 15. Since the hypo-
theses of the theorem hold in G/N , we have that AG(H)/N is permutable in
G/N by induction. Hence AG(H) is permutable in G, as required. Therefore
we can suppose that CoreG

(
AG(H)

)
= 1. On the other hand, applying [11,

Satz 2], AG(H) is S-permutable in G and so AG(H) is nilpotent by a result
of Deskins [8, Theorem 1]. Since H is self-normalising in AG(H), it follows
that AG(H) is a p-group and so H = AG(H) is S-permutable in G. By [11,
Satz 1], H is subnormal in G. Let P be a Sylow p-subgroup of G. Then
H is contained in P . If P were a proper subgroup of G, then H would be
permutable in P because P inherits the hypotheses of the theorem. It would
imply the permutability of H in G, as required. Hence we may assume that
P = G. Then a minimal normal subgroup N of G is central. Since H is
self-normalising in G, it follows that N must be contained in H, contradict-
ing the fact that CoreG(H) = 1. Therefore H is permutable in P and so in
G.
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Proof of Theorem 10. Let H and K be p-subgroups of G such that H is con-
tained in K and let P be a Sylow p-subgroup of G containing K. Write
T = NG(K). We must prove that H is S-permutable in T . Applying
Lemma 16, H is self-normalising in BT (K). If H is not S-permutable in
T , then H is a proper subgroup of BT (H). It implies that H is a proper sub-
group of its normaliser in BT (H) as H is a subnormal subgroup of T . This
contradiction shows that H is S-permutable in NG(K) and G has property
Yp.

Proof of Theorem 13. 1 implies 2. We suppose that the implication is not
true and derive a contradiction. Let (G,H) be a counterexample with |G|
minimal. Assume that A = BG(H) is a proper subgroup of G. Then, by
Theorem 1, A is a soluble PST -group and so H is abnormal in BA(H).
Since BA(H) is S-permutable in A and A is S-permutable in G, it follows
that BA(H) is S-permutable in G because G is a PST -group. Consequently
A = BA(H) and then H is abnormal in A. This contradiction shows that
A = G. IfN := CoreG(H) 6= 1, we have thatH/N is abnormal inG/N by the
minimal choice of G. Hence H is abnormal in G. Thus we can assume that
N := CoreG(H) = 1. Applying Agrawal’s theorem (Theorem 1), G = LM ,
where L is the nilpotent residual of G, L∩M = 1, and L is an abelian normal
Hall subgroup of G of odd order acted upon by conjugation as a group of
power automorphisms by M . It implies that every subgroup of L is normal
in G and so L∩H = 1. Hence we can assume, without loss of generality, that
H is contained in M . Since M is nilpotent, we have that LH is S-permutable
in G. Thus BG(H) = G = LH and H = M . Applying [9, IV, 5.18 and III,
4.6], H is a Carter subgroup of G. Applying [9, IV, Section 3 and 4.6, and I,
6.21], H is abnormal in G. This is the desired contradiction.

On the other hand, by virtue of [9, I, 6.21], every abnormal subgroup is
self-normalising. Therefore 2 implies 3 and 4 implies 5. It is clear that 2
implies 4 and 3 implies 5.

To complete the proof we now show that 5 implies 1. Assume that every
p-subgroup is self-normalising in its S-permutable closure for each prime p.
By Theorem 10, G satisfies Yp for each prime p. Applying [4, Theorem 4],
we conclude that G is a soluble PST -group.

Proof of Theorem 8. The same arguments to those used in the proof of The-
orem 13 replacing Agrawal’s result by Zacher’s result (see Theorem 1) show
that 1 implies 2. It is clear that 2 implies 3 and 4 implies 5. Obviously 2
implies 4 and 3 implies 5.

Now if every p-subgroup is self-normalising in its permutable closure for
each prime p, then G satisfies Xp for each prime p by virtue of Theorem 7.
Applying [5, Theorem A], G is a soluble PT -group.
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