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1 Introduction

Throughout the paper, the word group means finite group.
A subgroup H of a group G is said to be S-permutable in G if H permutes

with every Sylow subgroup of G. By the results of Kegel [9] and Schmid [12],
every S-permutable subgroup is subnormal and the set of all S-permutable
subgroups is a sublattice of the lattice of all subnormal subgroups of G.

We say that a group G is a PST-group when the above lattices coincide,
that is, when every subnormal subgroup is S-permutable. It follows that a
group G is a PST -group exactly when the S-permutability is a transitive
relation. Subclasses of PST -groups are the class of PT -groups or groups
in which permutability is transitive and the class of T -groups or groups in
which normality is transitive.

Soluble PST -groups were first studied by Agrawal [1] in 1975, and recently
by Alejandre, the first author and Pedraza-Aguilera [2], the authors [3], and
Beidleman and Heineken [5]. Soluble PT -groups have been investigated by
Zacher [13] in 1964, and more recently by Beidleman, Brewster and Robinson
[4]. T -groups have been widely studied [6, 8, 10, 11].

The paper [3] provides a unified viewpoint for the classes of soluble PST ,
PT and T -groups in terms of their Sylow structure. The approach we have
been following started in a paper of Bryce and Cossey [6], where a local
version of some of the results on T -groups was established. This approach
was also followed in the papers [2, 5].

One of our purposes in this paper is to give a local version of the classical
theorems of Gaschütz, Zacher and Agrawal by using the results of [3]. We
also provide new local characterisations of the soluble PST -groups motivated
by the results of the recent paper by Beidleman and Heineken [5].

Let us start with the classical characterisation of soluble PST -groups.

Theorem 1 (Agrawal). A group G is a soluble PST-group if and only if
G has an abelian normal Hall subgroup N of odd order such that G/N is
nilpotent and the elements of G induce power automorphisms in N .

In that result, if we add ‘G/N nilpotent modular group,’ we obtain
Zacher’s characterisation of soluble PT -groups [13], and if we put ‘G/N
Dedekind,’ we get Gaschütz’s characterisation of soluble T -groups [8].

The above results indicate that the three classes are closely related. How-
ever, there is a very important difference between them: the Sylow structure.
In the case of T -groups, the Sylow subgroups are Dedekind, and modular in
the case of PT -groups. There are no restrictions on Sylow subgroups in the
PST -case because every nilpotent group is a PST -group.
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For a prime p, Bryce and Cossey [6] introduced the class Tp of all soluble
groups G for which every subnormal p′-perfect subgroup of G is normal.
They prove:

Theorem 2. A soluble group is a T -group if and only if it is a Tp-group for
all primes p.

Motivated by Theorem 2, Alejandre, the first author and Pedraza-Agui-
lera introduced in [2] the class PST p of all soluble groups G in which every
subnormal p′-perfect subgroup in G permutes with every Hall p′-subgroup of
G. They have proved:

Theorem 3. A soluble group G is a PST-group if and only if G is a PST p-
group for all primes p.

As we have noted in [3], Theorem 3 holds equally if the word ‘soluble’ is
replaced by ‘p-soluble’ in the definition of the class of PST p-groups. Note
that [2, Theorem 6] also holds in the p-soluble universe. Therefore we have:

Theorem 4. A p-soluble group G is a PST p-group if and only if G is
p-supersoluble and all its chief p-factors are G-isomorphic regarded as G-
modules by conjugation.

In the paper [5], Beidleman and Heineken define, for a prime p, the class Tp

(respectively, T ′′
p ) of all soluble groups G for which every p′-perfect subnormal

subgroup of G is permutable (respectively, S-permutable) and prove:

Theorem 5. Let G be a soluble group. Then

1. G is a PT -group if and only if it is a T ′
p-group for all primes p.

2. G is a PST-group if and only if it is a T ′′
p -group for all primes p.

Combining Theorem 4 and Theorem 5 of [3], we have:

Theorem 6. A p-soluble group G is a PST p-group if and only if G is either
p-nilpotent, or G has an abelian Sylow p-subgroup P and every subgroup of
P is normal in NG(P ).

Using Theorem 6, we prove in this paper a structure theorem for PST p-
groups which can be considered as the local version of Agrawal’s theorem.
Before beginning the presentation of that theorem, the reader should be
aware of the notation that is used.

Let p be a prime and let Ep′Sp be the saturated formation of all p-
nilpotent groups. For each group G, we denote G(p) the Ep′Sp-residual of G,
that is, the smallest normal subgroup of G such that G/G(p) is p-nilpotent.
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Theorem A. A group G is a PST p-group if and only if

1. either G is p-nilpotent, or

2. G(p)/Op′
(
G(p)

)
is an abelian normal Sylow p-subgroup of G/Op′

(
G(p)

)
such that the elements of G/Op′

(
G(p)

)
induce power automorphisms in

G(p)/Op′
(
G(p)

)
.

A local version of Gaschütz’s theorem is obtained by adding in 1 in The-
orem A the condition ‘G has Dedekind Sylow p-subgroups.’ A local version
of Zacher’s theorem is obtained by adding in 1 in Theorem A the condition
‘G has modular Sylow p-subgroups.’

The result is used in the paper to give a succinct proof of Agrawal’s
theorem.

Let p be a prime. In any group G there is a unique maximum normal
p-nilpotently embedded subgroup, denoted here by Zp(G). Hence Zp(G) is p-
nilpotent and there is a G-invariant series in Zp(G) such that the chief factors
whose order is a power of p are central, while G/Zp(G) has no central normal
p-subgroups. Zp(G) is the Ep′Sp-hypercentre of G ([7, IV,6.8]), and it is
contained in Z∞(G), the hypercentre of G. As a consequence of Theorem A
we have:

Corollary 1. Let G be a PST p-group. Then Zp

(
G/Op′

(
G(p)

))
is a Hall p′-

subgroup of Op′,p(G)/Op′
(
G(p)

)
and Op′,p(G)/Op′

(
G(p)

)
= G(p)/Op′

(
G(p)

)
×

Zp

(
Op′

(
G(p)

))
.

We say that a subgroup H of G is p-hypercentrally embedded (respectively,
hypercentrally embedded) if H/ CoreG(H) ≤ Zp

(
G/ CoreG(H)

)
(respectively,

H/ CoreG(H) ≤ Z∞
(
G/ CoreG(H)

)
). Beidleman and Heineken [5] proved

that a soluble group G is a PST -group if and only if every subnormal sub-
group permutes with every Carter subgroup of G and the subnormal sub-
groups are hypercentrally embedded in G. We prove in the following that
the permutability with the Carter subgroups can be removed.

Theorem B. A p-soluble group G is a PST p-group if and only if every
p′-perfect subnormal subgroup of G is p-hypercentrally embedded in G.

Corollary 2. A soluble group G is a PST-group if and only if every subnor-
mal subgroup of G is hypercentrally embedded in G.
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2 Proofs

Proof of Theorem A. Let G be a PST p-group and assume that G is not p-
nilpotent. Then G(p) 6= 1 and p divides |G(p)|. Applying Theorem 6, G has
an abelian Sylow p-subgroup P such that every subgroup of P is normal in
NG(P ).

Since G/Op′
(
G(p)

)
inherits the hypotheses of G, we can assume without

loss of generality that Op′
(
G(p)

)
= 1. G(p) is contained in G′, the commuta-

tor subgroup of G, which is p-nilpotent because G is p-supersoluble. Hence
G(p) is p-nilpotent and so G(p) is a p-group contained in P . In particular,
G(p) is abelian.

Note that [7, IV,5.18] still holds in the p-soluble universe. Consequently
G(p) is complemented in G by every p-nilpotent projector. Let D be one of
them and assume that p divides |D|. Then there exists a p-chief factor A/B
of G such that G(p) ≤ B < A. This implies that A/B is central in G. By
Theorem 4, all p-chief factors of G are G-isomorphic. In particular, every
chief factor below G(p) is central, a contradiction. Consequently D is a Hall
p′-subgroup of G and G(p) is a normal Sylow p-subgroup of G. Hence every
subgroup of G(p) is normal in NG

(
G(p)

)
= G.

Conversely, suppose that G is either p-nilpotent or G(p)/Op′
(
G(p)

)
is an

abelian normal Sylow p-subgroup of G/Op′
(
G(p)

)
such that the elements of

G/Op′
(
G(p)

)
induce power automorphisms in G(p)/Op′

(
G(p)

)
.

If G is p-nilpotent, then G is p-supersoluble and all p-chief factors are
central. Hence G is a PST p-group by Theorem 4.

Assume now that G(p)/Op′
(
G(p)

)
is an abelian Sylow p-subgroup of

the group G/Op′
(
G(p)

)
and every subgroup of G(p)/Op′

(
G(p)

)
is normal in

G/Op′
(
G(p)

)
. Let H be a subnormal p′-perfect subgroup of G and let D be a

Hall p′-subgroup of G. Denote T = HOp′(G). Then T =
(
T ∩G(p)

)
(T ∩D)

and T ∩ G(p)/Op′
(
G(p)

)
is normal in G/Op′

(
G(p)

)
. Therefore T ∩ G(p) is

normal in G. Now HD = TD =
(
T ∩ G(p)

)
D, which is a subgroup of G.

Consequently H permutes with D and G is a PST p-group.

Proof of Corollary 1. It is clear that we may assume that G(p) 6= 1 and
Op′

(
G(p)

)
= 1. By Theorem A, G(p) is an abelian normal Sylow p-subgroup

of G and so G(p) ≤ Op′,p(G). Let D be a Hall p′-subgroup of G. Then
G = G(p)D. Therefore Op′,p(G) = G(p)

(
D ∩ Op′,p(G)

)
. Since Op′,p(G) is

p-nilpotent and D ∩ Op′,p(G) is a Hall p′-subgroup of Op′,p(G), it follows
that D ∩ Op′,p(G) is normal in G. Consequently, D ∩ Op′,p(G) ≤ CG

(
G(p)

)
,

which coincides with Zp(G) by [7, IV,6.14]. On the other hand, since G(p)
is abelian, then D is actually a p-nilpotent projector of G by [7, IV,5.18].
Since, by [7, IV,6.14], Zp(G) ≤ D, it follows that D∩Op′,p(G) = Zp(G). The
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proof of the corollary is now complete.

Proof of Agrawal’s Theorem (Theorem 1). Suppose that G is a PST -group.
Let π be the set of all primes p such that G has a non-central chief p-factor.
Then

T = GN = 〈G(p) | p is a prime〉 = 〈G(p) | p ∈ π〉,

because G(p) = 1 if p does not belong to π. We prove that T is a Hall π-
subgroup of G. Since G is supersoluble, we have that G′ is nilpotent. Hence
T is nilpotent. Assume that q is a prime dividing the order of T such that
q /∈ π. Let Tq′ be a Hall q′-subgroup of T . Then Tq′ is a normal subgroup of
G. Since q /∈ π, we have that all chief q-factors of G are central. Therefore
G/Tq′ is nilpotent. Moreover, Tq′ is a normal subgroup of G, and G/Tq′ is
nilpotent. This implies that T = Tq′ , and T is a q′-group, a contradiction.
Consequently T is a π-subgroup of G. If p belongs to π, then G(p) contains an
abelian Sylow p-subgroup of G by Theorem A. Hence T is abelian. Moreover,
2 cannot belong to π, because a PST 2-group is always 2-nilpotent. We must
show now that every subgroup of T is normal in G. Since T is nilpotent, we
may assume without loss of generality that T is a p-group for some prime
p. Then Op′(T ) = Op′

(
G(p)

)
and G(p) is a Sylow p-subgroup of G. Hence

G(p) = T and every subgroup of T is normal in NG(T ) by Theorem A.
Conversely, suppose that N = GN is an abelian normal Hall subgroup N

of odd order of G such that every subgroup of N is normal in G. Then it is
clear that G satisfies the conditions of Theorem A for all primes p. Therefore
G is a PST p-group for all primes p and then G is a PST -group.

The following lemma is needed to prove Theorem B.

Lemma 1. If R is a Hall p′-subgroup of a group G, then Zp(G) ≤ NG(R).

Proof. Let G be a counterexample of minimal order to this lemma. Let R
be a Hall p′-subgroup of G such that Zp(G) 6≤ NG(R). Let T = Zp(G)R.
If T is a proper subgroup of G, then Zp(G) ≤ Zp(T ), which is contained
in NT (R) by the minimal choice of G, a contradiction. Therefore T = G
and G = Zp(G)R. Since R is a p′-group, R is p-nilpotent. Let X be a
maximal p-nilpotent subgroup of G containing R. By [7, IV,6.14], it follows
that Zp(G) ≤ X. Consequently G = X and G is p-nilpotent. This implies
that R is a normal subgroup of G, final contradiction.

Proof of Theorem B. Suppose that G is a PST p-group. Then, by Theorem 6,
either G is p-nilpotent, or G has an abelian Sylow p-subgroup P and every
subgroup of P is normalised by the normaliser NG(P ).
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In the first case, if G is p-nilpotent, every p′-perfect subnormal subgroup
is p-hypercentrally embedded. On the other hand, assume that a Sylow p-
subgroup P is abelian and every subgroup of P is normal in NG(P ). Note
that the proof of [6, Theorem 2.3] works in the p-soluble universe. Hence in
this case every p′-perfect subnormal subgroup of G is normal. Consequently
HG = H and H/HG ≤ Zp(G/HG).

Conversely, suppose that every p′-perfect subnormal subgroup H of G is
p-hypercentrally embedded. Let H be a subnormal p′-perfect subgroup of
G, and let R be a Hall p′-subgroup of G. Since H/HG ≤ Zp(G/HG) and
RHG/HG is a Hall p′-subgroup of G, it follows by Lemma 1 that H/HG

normalises RHG/HG. In particular, H permutes with RHG. This implies
that H permutes with R. Therefore G is a PST p-group.

Proof of Corollary 2. Suppose that G is a PST -group of minimal order with
a subnormal subgroup H not hypercentrally embedded in G. Assume that
H is of minimal order. We can clearly assume that HG = 1. Hence H
is nilpotent by [12, Proposition A] and every Sylow subgroup of H is S-
permutable in G by [12, Proposition B]. From the minimality of H, we can
suppose that H is a p-group for a prime p. Since G is a PST p-group, H
is p-hypercentrally embedded in G by Theorem B. Since H is a subnormal
p-subgroup, its normal closure K = 〈HG〉 is a p-group. Let A/B be a chief
factor of G such that B < A ≤ K. Since B/A is a p-group and K ≤ Zp(G),
it follows that B/A is central in G. Thus K is contained in Z∞(G). In
particular, H is hypercentrally embedded in G.

Conversely, suppose that every subnormal subgroup of G is hypercentrally
embedded in G. Let p be a prime number and let H be a p′-perfect subnormal
subgroup. Since H is hypercentrally embedded in G, it follows that H is p-
hypercentrally embedded in G. Hence G is a PST p-group by Theorem B.
Therefore G is a PST -group by Theorem 3.

3 Examples

Example 1. The result of Corollary 1 cannot be sharpened to Op′,p(G) =
G(p)Zp(G) when Op′

(
G(p)

)
6= 1. The symmetric group Σ3 of degree 3 has an

irreducible and faithful module over the field of 2 elements. Let V = 〈v1, v2〉
and W = 〈w1, w2〉 be two Σ3-isomorphic copies of these modules. There is an
action of the cyclic group C2 = 〈z〉 of order 2 on V × W such that vz

j = wj,
wz

j = vj for j ∈ {1, 2}. Hence we can consider the semidirect product
G = [V × W ](Σ3 × C2) with respect to this action. This group is clearly
a PST 3-group, because its Sylow 3-subgroup has order 3, but Z3(G) = 1,
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O3′,3(G) = (V × W )(A3 × C2) and G(3) = (V × W )A3, whence O3′,3(G) 6=
G(3)Z3(G).

Example 2. One might ask whether a p-soluble group G is a PST p-group
if and only if every p′-perfect subnormal subgroup of G is hypercentrally
embedded. The answer is negative: The dihedral group D8 of order 8 has an
irreducible and faithful module of dimension 2 over the field of 3 elements.
Let G be the corresponding semidirect product. This group is a PST 2-group,
because it is 2-nilpotent. On the other hand, G possesses 2′-perfect core-free
subnormal subgroups of order 6 isomorphic to the symmetric group Σ3 of
degree 3. These subgroups cannot be hypercentrally embedded, because
they are not nilpotent.

This example also shows that a PST p-group does not have property T ′′
p

in general.

Example 3. There are non-PST p-groups such that every subnormal p-sub-
group is hypercentrally embedded. For instance, let G = 〈x〉 × Σ4, where
〈x〉 is a cyclic group of order 3 and Σ4 is the symmetric group of degree 4.
The subnormal 3-subgroups of G are 1 and 〈x〉. Both are hypercentrally
embedded in G, because they are normal. But G is not a PST 3-group,
because the 3-factor 〈x〉 is central but A4/V4 is not.

Example 4. Even in the case that all subnormal p-subgroups of G are hy-
percentrally embedded for all p we cannot ensure that a soluble group is a
PST -group: The cyclic group C3 of order 3 has an irreducible and faithful
module V7 over the field of 7 elements. The group C3 × Σ3 acts on V7 with
kernel Σ3. Let G be the semidirect product corresponding to this action.
The unique subnormal subgroups of prime-power order of G are 1, A3 and
V7. All these subgroups are normal and so hypercentrally embedded. But G
is not a PST -group, because the action of C2 ≤ Σ3 on C3 is trivial, while the
action on A3 is non-trivial.
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