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A NOTE ON FINITE PST -GROUPS

A. BALLESTER-BOLINCHES, R. ESTEBAN-ROMERO, AND M. RAGLAND

Abstract. A finite group G is said to be a PST -group if, for
subgroups H and K of G with H Sylow-permutable in K and
K Sylow-permutable in G, it is always the case that H is Sylow-
permutable in G. A group G is a T ∗-group if, for subgroups H and
K of G with H normal in K and K normal in G, it is always the
case that H is Sylow-permutable in G. In this paper, we show that
finite PST -groups and finite T ∗-groups are one and the same. A
new characterisation of soluble PST -groups is also presented.

1. Introduction and statement of results

Throughout this paper, all groups considered are finite. A subgroup
H of a group G is called Sylow-permutable in G, or S-permutable, if
HS = SH for every Sylow subgroup S of G. Kegel [9] has shown that
S-permutable subgroups are subnormal. However there exist subnor-
mal subgroups which are not S-permutable. Robinson [10] called PST -
groups the groups in which every subnormal subgroup is S-permutable.
From Kegel’s result, a group G is a PST -group if and only if S-
permutability is a transitive relation in G.

Many papers have studied PST -groups in detail. Agrawal initiated
the study in [1] where he characterised the soluble PST -groups as
follows:

Theorem 1. A group G is a soluble PST -group if and only the nilpo-
tent residual D of G is an abelian Hall subgroup of odd order such that
G induces power automorphisms in D.

Robinson, in [10], gave the following characterisation of PST -groups:
Theorem 2 ([10]). A group G is a PST -group if and only if it has a
perfect normal subgroup D such that:

(1) G/D is a soluble PST -group;
(2) D/Z(D) = U1/Z(D)×· · ·×Uk/Z(D) where Ui/Z(D) is simple

and Ui E G;
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(3) if {i1, i2, . . . , ir} ⊆ {1, 2, . . . , k}, where 1 ≤ r < k, then the
factor group G/U ′i1U

′
i2
· · ·U ′ir satisfies Np for all p ∈ π

(
Z(D)

)
.

Here, a group G satisfies Np if, for all soluble normal subgroups N ,
the p′-elements of G induce power automorphisms in Op(G/N).

On the other hand, Asaad and Csörgő defined in [4] T ∗-groups as
the groups G such that if H is a normal subgroup of K and K is a
normal subgroup of G, then H is S-permutable in G. In other words,
a group G is a T ∗-group whenever every subnormal subgroup of G of
defect at most 2 is S-permutable in G. The proofs of most results of
this paper seem to use the requirement that all subnormal subgroups
of a T ∗-group are S-permutable, as in PST -groups, without explicitly
stating the equivalence between the concepts of T ∗-group and PST -
group. Therefore, in order to check the validity of the proofs of [4],
it is necessary to show whether PST -groups can be characterised as
the groups in which every subnormal subgroup of defect at most 2 is
S-permutable. Our first main result shows that this question has an
affirmative answer.

Robinson established in [10] that PST -groups are SC-groups, that
is, groups whose chief factors are all simple. With little alteration of
Robinson’s proof of that result, one can arrive at the same conclusion
for T ∗-groups.
Lemma 3. A T ∗-group is an SC-group.
SC-groups are also characterised by Robinson in [10].

Theorem 4. A group G is an SC-group if and only if there is a per-
fect normal subgroup D such that G/D is supersoluble, D/Z(D) is a
direct product of G-invariant simple groups, and Z(D) is supersolubly
embedded in G (i.e., there is a G-admissible series of Z(D) with cyclic
factors).

A U∗p-group is defined in [2] to be a p-supersoluble group G in which
all p-chief factors are G-isomorphic when regarded as modules over G.
In [2, Corollary 3], the following characterisation of soluble PST -
groups is given.

Theorem 5. G is a soluble PST -group if and only if G satisfies U∗p
for all primes p.

Our first main result shows that PST = T ∗:
Theorem A. G is a T ∗-group if and only if G is a PST -group.

In [3, Theorem 3.1], Asaad proved that a group G is a soluble T -
group if and only if for all primes p dividing the order of F∗(G), the
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generalised Fitting subgroup of G, every p-subgroup of G is pronormal
in G. As a consequence, he proved that a group G is a soluble T -group
if and only if for all primes p dividing the order of F∗(G), G satisfies
property Cp, that is, every subgroup of a Sylow p-subgroup P of G
is normal in NG(P ) ([3, Corollary 3.2]). He extended this result to
permutability by showing that a group G is a soluble PT -group if and
only if G satisfies X p for all primes p dividing the order of F∗(G). Here
a group G satisfies X p when every subgroup of a Sylow p-subgroup P of
G is permutable in NG(P ). This property was introduced and studied
in [7].

The PST -version of the properties Cp and X p is the property Yp

introduced in [5]. Recall that a group G satisfies Yp if whenever H and
K are p-subgroups of G such that H ≤ K, then H is S-permutable
in NG(K). In [5, Theorem 4], it is proved that a group G is a soluble
PST -group if and only if G satisfies Yp for all primes p. Asaad’s results
admit the following generalisation to PST -groups:

Theorem B. A group G is a soluble PST -group if and only if G
satisfies Yp for all primes p dividing the order of F∗(G).

Unlike previous characterisations of soluble PST -groups, this one
does not follow quickly from the classification of minimal non-PST -
groups given by Robinson in [11].

2. Proofs

Proof of Theorem A. Only the necessity of the condition is in doubt.
We assume that it does not hold and derive a contradiction. Let G
be a group of minimal order such that G is a T ∗-group but G is not
a PST -group. An argument similar to the one used in [1] to show
that quotients of PST -groups are PST -groups shows that all quotient
groups ofG are T ∗-groups. Therefore, by minimality ofG, we have that
every proper quotient group of G is a PST -group. Applying Lemma 3,
G is an SC-group. Thus, from Theorem 4, we have that G has a normal
perfect subgroup D such that D/Z(D) = U1/Z(D) × · · · × Uk/Z(D),
with all Ui/Z(D) simple, and Z(D) is supersolubly embedded in G.

Assume that D 6= 1, i.e., G is not soluble. Then G/D is a soluble
PST -group. Since Ui/Z(D) is simple for all i, we have that U ′i 6= 1
for all i. Therefore if {i1, i2, . . . , ir} ⊆ {1, 2, . . . , k}, with r < k, we
have that G/U ′ij is a PST -group and so G/U ′i1U

′
i2
. . . U ′ir satisfies Np

for all primes p. Theorem 2 implies that G is a PST -group, contrary to
assumption. Therefore D = 1 and G is soluble. Since all chief factors
of G are simple, we have that G is supersoluble. Let p be the largest
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prime dividing the order of G. Then G has a normal Sylow p-subgroup,
P say. Moreover, G/P is a PST -group by the choice of G. Hence G/P
satisfies U∗q for all primes q 6= p by Theorem 5. This implies that G
satisfies U∗q for for all primes q 6= p. Since G is not a PST -group, it
follows that G does not satisfy U∗p.

Suppose that Op′(G) 6= 1. Then G/Op′(G) is a soluble PST -group.
Therefore G/Op′(G) satisfies U∗p by Theorem 5, and so G satisfies U∗p.
This is a contradiction. Consequently Op′(G) = 1. Assume that G
has two different minimal normal subgroups N1 and N2. Both of them
have order p, and G/N1 and G/N2 satisfy U∗p. If N1N2 is a proper
subgroup of P , then by considering all chief factors of G between N1

and N1N2, between N2 and N1N2, and between N1N2 and P , we obtain
that G satisfies U∗p. This contradiction shows that P = N1N2. Note
that P = N1 × N2 is abelian. If D is a subgroup of P , then D is
normal in P and D is S-permutable in G; hence D is normalised by
all p′-elements of G and D is normal in G. Thus elements of G induce
power automorphisms in P , from which it follows that G satisfies U∗p,
contrary to the choice of G.

Hence G has a unique minimal normal subgroup N , which is con-
tained in P , and G/N is a PST -group. Moreover, P = Op(G) = F(G).
If N is not contained in the Frattini subgroup Φ(G) of G, then G is a
primitive group and so N = F(G) has order p. In particular, G satisfies
U∗p. This contradiction yields N ≤ Φ(G). If G/N is p-nilpotent, then G
is p-nilpotent and so G satisfies U∗p. This is not possible. Consequently,
G/N is not nilpotent. Since G/N is a PST -group, the nilpotent resid-
ual R/N of G/N is an abelian Hall subgroup of G/N and all elements
of G induce power automorphisms on R/N . Moreover, N is the unique
minimal normal subgroup of G. In particular, R/N is a p-group and so
P/N = R/N . In particular, p′-elements of G/N induce power automor-
phisms on P/N . Let S be a subgroup of P . Then SN is normal in G
because P/N is abelian and Op(G/N) normalises SN/N . In addition,
since either SN = S or S is a maximal subgroup of the p-group SN ,
we have that S is a normal subgroup of SN . Since G is a T ∗-group,
S is S-permutable in G. Then all p′-elements of G normalise S and so
induce power automorphisms in P . Hence G satisfies U∗p. This is the
final contradiction. �

The following lemma is needed in the proof of Theorem B.

Lemma 6. Let p be a prime and let M be a normal p′-subgroup of a
group G. Then G satisfies Yp if and only if G/M satisfies Yp.



A NOTE ON FINITE PST -GROUPS 5

Proof. Let p be a prime and let M be a normal p′-subgroup of a group
G. By [5, Lemma 2], we have that if G satisfies Yp, then G/M satisfies
Yp. Conversely, assume that G/M satisfies Yp. By [5, Theorem 5],
we have that either G/M is p-nilpotent, or G/M has abelian Sylow
p-subgroups and G/M satisfies Cp. In the first case, we have that G
is p-nilpotent and so G satisfies Yp by [5, Theorem 5]. Assume that
G/M has abelian Sylow p-subgroups and satisfies Cp. Let P be a Sylow
p-subgroup of G. Consider a subgroup H of P , and g ∈ NG(P ). We
have that HgM = HM because HM/M is normalised by gM ∈ G/M .
Therefore Hg = HgM ∩ P = HM ∩ P = H. This implies that G
satisfies Cp and so G satisfies Yp by [5, Theorem 5]. �

Proof of Theorem B. If G is a soluble PST -group, we can apply [5,
Theorem 4] to conclude that G satisfies Yp for all primes p. Let G be
a group satisfying Yp for all primes p dividing the order of F∗(G). We
shall prove that G is a soluble PST -group by induction on |G|. By
[5, Theorem 4], we can suppose that F∗(G) is a proper subgroup of
G. Note that the class Yp is subgroup-closed for all primes p. Hence
F∗(G) satisfies Yp for all primes p. Applying [5, Theorem 4], we have
that F∗(G) is soluble. Therefore 1 6= F∗(G) = F(G) by [8, X, 13].

Suppose that there exists a prime p dividing |F∗(G)| such that a
Sylow p-subgroup P of G is not abelian. In this case, G is p-nilpotent
by [5, Theorem 5]. Moreover, since F∗

(
Op′(G)

)
is contained in F∗(G),

we have that Op′(G) is a soluble PST -group by induction. This implies
that G is soluble. Let N be a minimal normal subgroup of G contained
in Op(G). Since 1 6= N ∩ Z(P ) is contained in the centre of G, we
have that N ∩ Z(P ) = N . Thus F(G/N) = F(G)/N . Consequently
G/N satisfies Yp for all primes p dividing |F∗(G/N)|. Hence G/N is a
soluble PST -group by induction and so G/N satisfies Yq for all primes
q dividing |G/N | by [5, Theorem 4]. By Lemma 6, G satisfies Yq for
all primes q 6= p. Since G satisfies Yp by hypothesis, it follows that G
satisfies Yp for all primes p and so G is a soluble PST -group by [5,
Theorem 4].

Therefore we can assume, by [5, Theorem 5], that for every prime p
dividing |F∗(G)|, G has an abelian Sylow p-subgroup P and G satisfies
Cp. In this case, every cyclic subgroup of p-power order of F(G) is
normal in G, because G satisfies Cp, and so centralised by G′. Hence
G′ is contained in CG

(
F(G)

)
, which is contained in F(G) by [8, X, 13].

Thus G′ is abelian and so G is soluble.
Let q be a prime. If q divides |G′|, then q divides |F(G)| and so

G satisfies Yq by hypothesis. Suppose that q does not divide |G′|.
Consider a q-subgroupH of G. We have thatHG′ is a normal subgroup
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of G and so every Sylow subgroup of HG′ is pronormal in G. Hence
H is pronormal in G. According to [6, Lemma 2], G satisfies Cq and so
G satisfies Yq by [5, Theorem 3]. Consequently, G is a soluble PST -
group. �
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