This paper has been published in Revista Matemática Iberoamericana, 23(1):127142 (2007).

Copyright 2007 by Real Sociedad Matemática Española and European Mathematical Society Publishing House.

The final publication is available at

```
http://rmi.rsme.es
http://www.ems-ph.org/journals/journal.php?jrn=rmi
http://projecteuclid.org/euclid.rmi/1180728887
```


On minimal non-supersoluble groups*

A. Ballester-Bolinches ${ }^{\dagger}$ R. Esteban-Romero ${ }^{\ddagger}$

20th January 2013

Dedicated to the memory of Klaus Doerk (1939-2004)

Abstract

The aim of this paper is to classify the finite minimal non- p-supersoluble groups, p a prime number, in the p-soluble universe.

Matematics Subject Classification (2000): 20D10, 20F16 Keywords: finite groups, supersoluble groups, critical groups

1 Introduction

All groups considered in this paper are finite.
Given a class \mathfrak{X} of groups, we say that a group G is a minimal non- \mathfrak{X} group or an \mathfrak{X}-critical group if $G \notin \mathfrak{X}$, but all proper subgroups of G belong to \mathfrak{X}. It is rather clear that detailed knowledge of the structure of \mathfrak{X}-critical groups could help to give information about what makes a group belong to \mathfrak{X}.

Minimal non- \mathfrak{X}-groups have been studied for various classes of groups \mathfrak{X}. For instance, Miller and Moreno [10] analysed minimal non-abelian groups, while Schmidt [14] studied minimal non-nilpotent groups. These groups are now known as Schmidt groups. Rédei classified completely the minimal non-abelian groups in [12] and the Schmidt groups in [13]. More precisely,

Theorem 1 ([12]). The minimal non-abelian groups are of one of the following types:

[^0]1. $G=\left[V_{q}\right] C_{r^{s}}$, where q and r are different prime numbers, s is a positive integer, and V_{q} is an irreducible $C_{r^{s}}$-module over the field of q elements with kernel the maximal subgroup of $C_{r^{s}}$,
2. the quaternion group of order 8,
3. $G_{I I}(q, m, n)=\left\langle a, b \mid a^{q^{m}}=b^{q^{n}}=1, a^{b}=a^{1+q^{m-1}}\right\rangle$, where q is a prime number, $m \geq 2, n \geq 1$, of order q^{m+n}, and
4. $G_{I I I}(q, m, n)=\left\langle a, b \mid a^{q^{m}}=b^{q^{n}}=[a, b]^{q}=[a, b, a]=[a, b, b]=1\right\rangle$, where q is a prime number, $m \geq n \geq 1$, of order q^{m+n+1}.

We must note that there is a misprint in the presentation of the last type of groups in Huppert's book [7; Aufgabe III.22].

Theorem 2 ([13], see also [2]). Schmidt groups fall into the following classes:

1. $G=[P] Q$, where $Q=\langle z\rangle$ is cyclic of order $q^{r}>1$, with q a prime not dividing $p-1$ and P an irreducible Q-module over the field of p elements with kernel $\left\langle z^{q}\right\rangle$ in Q.
2. $G=[P] Q$, where P is a non-abelian special p-group of rank $2 m$, the order of p modulo q being $2 m, Q=\langle z\rangle$ is cyclic of order $q^{r}>1, z$ induces an automorphism in P such that $P / \Phi(P)$ is a faithful irreducible Q-module, and z centralises $\Phi(P)$. Furthermore, $|P / \Phi(P)|=p^{2 m}$ and $\left|P^{\prime}\right| \leq p^{m}$.
3. $G=[P] Q$, where $P=\langle a\rangle$ is a normal subgroup of order $p, Q=\langle z\rangle$ is cyclic of order $q^{r}>1$, with q dividing $p-1$, and $a^{z}=a^{i}$, where i is the least primitive q-th root of unity modulo p.

Here $[K] H$ denotes the semidirect product of K with H, where H acts on K.

Itô [8] considered the minimal non- p-nilpotent groups for a prime p, which turn out to be Schmidt groups.

Doerk [5] was the first author in studying the minimal non-supersoluble groups. Later, Nagrebeckiĭ [11] classified them.

Let p be a prime number. A group G is said to be p-supersoluble whenever G is p-soluble and all p-chief factors of G are cyclic groups of order p.

Kontorovič and Nagrebeckiǐ [9] studied the minimal non- p-supersoluble groups for a prime p with trivial Frattini subgroup. Tuccillo [15] tried to classify all minimal non- p-supersoluble groups in the soluble case, and gave results about non-soluble minimal non- p-supersoluble groups. Unfortunately, there is a gap in his paper and some groups are missing from his classification.

Example 3. The extraspecial group $N=\langle a, b\rangle$ of order 41^{3} and exponent 41 has automorphisms y of order 5 and z of order 8 , given by $a^{y}=a^{10}$, $b^{y}=b^{37}$, and $a^{z}=b^{19}, b^{z}=a^{35}$, satisfying $y^{z}=y^{-1}$. The semidirect product G of N by $\langle x, y\rangle$ is a minimal non-supersoluble group such that the Frattini subgroup $\Phi(N)$ of N is not a central subgroup of G. This is a minimal non-41-supersoluble group not appearing in any type of Tuccillo's result.

Example 4. The extraspecial group $N=\langle a, b\rangle$ of order 17^{3} and exponent 17 has an automorphism z of order 32 given by $a^{z}=b, b^{z}=a^{3}$. The semidirect product $G=[N]\langle z\rangle$ is a minimal non-17-supersoluble group. It is clear that $[a, b]^{z}=[a, b]^{14}$ and so $[a, b]$ does not belong to the centre of G. This is another group missing in Tuccillo's work.

Example 5. The automorphism group of the extraspecial group of order 7^{3} and exponent 7 has a subgroup isomorphic to the symmetric group Σ_{3} of degree 3. The corresponding semidirect product is a minimal non-7supersoluble group not corresponding to any case of Tuccillo's work.

Example 6. Let $E=\left\langle x_{1}, x_{2}\right\rangle$ be an extraspecial group of order 125 and exponent 5 . This group has two automorphisms α and β given by $x_{1}^{\alpha}=x_{2}^{4}$, $x_{2}^{\alpha}=x_{1}, x_{1}^{\beta}=x_{1}^{2}$, and $x_{2}^{\beta}=x_{2}^{3}$ generating a quaternion group H of order 8 such that the corresponding semidirect product $[E] H$ is a minimal non-5supersoluble group. This group is also missing in [15].

Example 7. With the same notation as in Example 6, the automorphisms β and γ defined by $x_{1}^{\gamma}=x_{2}, x_{2}^{\gamma}=x_{1}$ generate a dihedral group D of order 8 . The corresponding semidirect product $[E] D$ is a minimal non- 5 -supersoluble group not appearing in [15].

By looking at these examples, we see that the classification of minimal non- p-supersoluble groups given in [15] is far from being complete. In our examples, the Frattini subgroup of the Sylow p-subgroup is not a central subgroup, contrary to the claim in $[15 ; 1.7]$.

The aim of this paper is to give the complete classification of minimal non- p-supersoluble groups in the p-soluble universe. This restriction is motivated by the following result.

Proposition 8. Let G be a minimal non-p-supersoluble group. Then either $G / \Phi(G)$ is a simple group of order divisible by p, or G is p-soluble.

Our main theorem is the following:
Theorem 9. The minimal p-soluble non-p-supersoluble groups for a prime p are exactly the groups of the following types:

Type 1: Let q be a prime number such that q divides $p-1$. Let C be a cyclic group of order p^{s}, with $s \geq 1$, and let M be an irreducible C-module over the field of q elements with kernel the maximal subgroup of C. Consider a group E with a normal q-subgroup F contained in the Frattini subgroup of E and E / F isomorphic to the semidirect product $[M] C$. Let N be an irreducible E-module over the field of p elements with kernel the Frattini subgroup of E. Let $G=[N] E$ be the corresponding semidirect product. In this case, $\Phi(G)_{p}$, the Sylow p-subgroup of $\Phi(G)$, which coincides with the Frattini subgroup of a Sylow p-subgroup of E, is a central subgroup of G and $\Phi(G)_{q}$, the Sylow q-subgroup of $\Phi(G)$, is equal to $\Phi(E)$, which coincides with the Frattini subgroup of a Sylow q-subgroup of E and centralises N.

Type 2: $G=[P] Q$, where $Q=\langle z\rangle$ is cyclic of order $q^{r}>1$, with q a prime not dividing $p-1$, and P is an irreducible Q-module over the field of p elements with kernel $\left\langle z^{q}\right\rangle$ in Q.

Type 3: $G=[P] Q$, where P is a non-abelian special p-group of rank $2 m$, the order of p modulo q being $2 m, q$ is a prime, $Q=\langle z\rangle$ is cyclic of order $q^{r}>1$, z induces an automorphism in P such that $P / \Phi(P)$ is a faithful and irreducible Q-module, and z centralises $\Phi(P)$. Furthermore, $|P / \Phi(P)|=p^{2 m}$ and $\left|P^{\prime}\right| \leq p^{m}$.
Type 4: $G=[P] Q$, where $P=\left\langle a_{0}, a_{1}, \ldots, a_{q-1}\right\rangle$ is an elementary abelian p-group of order $p^{q}, Q=\langle z\rangle$ is cyclic of order q^{r}, with q a prime such that q^{f} is the highest power of q dividing $p-1$ and $r>f \geq 1$. Define $a_{j}^{z}=a_{j+1}$ for $0 \leq j<q-1$ and $a_{q-1}^{z}=a_{0}^{i}$, where i is a primitive q^{f}-th root of unity modulo p.

Type 5: $G=[P] Q$, where $P=\left\langle a_{0}, a_{1}\right\rangle$ is an extraspecial group of order p^{3} and exponent $p, Q=\langle z\rangle$ is cyclic of order 2^{r}, with 2^{f} the largest power of 2 dividing $p-1$ and $r>f \geq 1$. Define $a_{1}=a_{0}^{z}$ and $a_{1}^{z}=a_{0}^{i} x$, where $x \in\left\langle\left[a_{0}, a_{1}\right]\right\rangle$ and i is a primitive 2^{f}-th root of unity modulo p.

Type 6: $G=[P] E$, where E is a 2-group with a normal subgroup F such that $F \leq \Phi(E)$ and E / F is isomorphic to a quaternion group of order 8 and P is an irreducible module for E with kernel F over the field of p elements of dimension 2 , where $4 \mid p-1$.

Type 7: $G=[P] E$, where E is a 2-group with a normal subgroup F such that $F \leq \Phi(E)$ and E / F is isomorphic to a quaternion group of order 8, P is an extraspecial group of order p^{3} and exponent p, where $4 \mid p-1$, and $P / \Phi(P)$ is an irreducible module for E with kernel F over the field of p elements.

Type 8: $G=[P] E$, where E is a q-group for a prime q with a normal subgroup F such that $F \leq \Phi(E)$ and E / F is isomorphic to a group $G_{I I}(q, m, 1)$ of Theorem 1, P is an irreducible E-module of dimension q over the field of p elements with kernel F, and q^{m} divides $p-1$.

Type 9: $G=[P] E$, where E is a 2-group with a normal subgroup F such that $F \leq \Phi(E)$ and E / F is isomorphic to a group $G_{I I}(2, m, 1)$ of Theorem 1, P is an extraspecial group of order p^{3} and exponent p such that $P / \Phi(P)$ is an irreducible E-module of dimension 2 over the field of p elements with kernel F, and 2^{m} divides $p-1$.

Type 10: $G=[P] E$, where E is a q-group for a prime q with a normal subgroup F such that $F \leq \Phi(E)$ and E / F is isomorphic to an extraspecial group of order q^{3} and exponent q, with q odd, P is an irreducible E module over the field of p elements with kernel F and dimension q, and q divides $p-1$.

Type 11: $G=[P] M C$, where C is a cyclic subgroup of order r^{s+t}, with r a prime number and s and t integers such that $s \geq 1$ and $t \geq 0$, normalising a Sylow q-subgroup M of $G, M / \Phi(M)$ is an irreducible C module over the field of q elements, q a prime, with kernel the subgroup D of order r^{t} of C, and P is an irreducible MC-module over the field of p elements, where q and r^{s} divide $p-1$. In this case, $\Phi(G)_{p^{\prime}}$, the Hall p^{\prime}-subgroup of $\Phi(G)$, coincides with $\Phi(M) \times D$ and centralises P.

Type 12: $G=[P] M C$, where C is a cyclic subgroup of order 2^{s+t}, with s and t integers such that $s \geq 1$ and $t \geq 0$, normalising a Sylow q subgroup M of G, q a prime, $M / \Phi(M)$ is an irreducible C-module over the field of q elements with kernel the subgroup D of order 2^{t} of C, and P is an extraspecial group of order p^{3} and exponent p such that $P / \Phi(P)$ is an irreducible $M C$-module over the field of p elements, where q and 2^{s} divide $p-1$. In this case, $\Phi(G)_{p^{\prime}}$, the Hall p^{\prime}-subgroup of $\Phi(G)$, is equal to $\Phi(M) \times D$ and centralises P.

From Proposition 8 and Theorem 9 we deduce immediately that a minimal non- p-supersoluble group is either a Frattini extension of a non-abelian simple group of order divisible by p, or a soluble group.

As a consequence of Theorem 9, bearing in mind that minimal nonsupersoluble groups are soluble by [5] and minimal non- p-supersoluble groups for a prime p, we obtain the classification of minimal non-supersoluble groups:

Theorem 10. The minimal non-supersoluble groups are exactly the groups of Types 2 to 12 of Theorem 9, with r dividing $q-1$ in the case of groups of Type 11.

The classification of minimal non- p-supersoluble groups can be applied to get some new criteria for supersolubility. A well-known theorem of Buckley [4] states that if a group G has odd order and all its subgroups of prime order are normal, then G is supersoluble. The following generalisation follows easily from our classification:

Theorem 11. Let G be a group whose subgroups of prime order permute with all Sylow subgroups of G and no section of G is isomorphic to the quaternion group of order 8. Then G is supersoluble.

As a final remark, we mention that Tuccillo [15] also gave some partial results for Frattini extensions of non-abelian simple groups of order divisible by p. Looking at the results of Section 4 of that paper, it seems that the classification of minimal non- p-supersoluble groups in the general finite universe is a hard task.

2 Preliminary results

First we gather the main properties of a minimal non-supersoluble group. They appear in Doerk's paper [5].

Theorem 12. Let G be a minimal non-supersoluble group. We have:

1. G is soluble.
2. G has a unique normal Sylow subgroup P.
3. $P / \Phi(P)$ is a minimal normal subgroup of $G / \Phi(P)$.
4. The Frattini subgroup $\Phi(P)$ of P is supersolubly embedded in G, i. e., there exists a series $1=N_{0} \leq N_{1} \leq \cdots \leq N_{m}=\Phi(P)$ such that N_{i} is a normal subgroup of G and $\left|N_{i} / N_{i-1}\right|$ is prime for $1 \leq i \leq m$.
5. $\Phi(P) \leq \mathrm{Z}(P)$; in particular, P has class at most 2 .
6. The derived subgroup P^{\prime} of P has at most exponent p, where p is the prime dividing $|P|$.
7. For $p>2, P$ has exponent p; for $p=2, P$ has exponent at most 4.
8. Let Q be a complement to P in G. Then $Q \cap \mathrm{C}_{G}(P / \Phi(P))=\Phi(G) \cap$ $\Phi(Q)=\Phi(G) \cap Q$.
9. If $\bar{Q}=Q /(Q \cap \Phi(G))$, then \bar{Q} is a minimal non-abelian group or a cyclic group of prime power order.

In [6; VII, 6.18], some properties of critical groups for a saturated formation in the soluble universe are given. This result has been extended to the general finite universe by the first author and Pedraza-Aguilera. Recall that if \mathfrak{F} is a formation, the \mathfrak{F}-residual of a group G, denoted by $G^{\mathfrak{F}}$, is the smallest normal subgroup of G such that $G / G^{\mathfrak{F}}$ belongs to \mathfrak{F}.

Lemma 13 ([3; Theorem 1 and Proposition 1]). Let \mathfrak{F} be a saturated formation.

1. Assume that G is a group such that G does not belong to \mathfrak{F}, but all its proper subgroups belong to \mathfrak{F}. Then $\mathrm{F}^{\prime}(G) / \Phi(G)$ is the unique minimal normal subgroup of $G / \Phi(G)$, where $\mathrm{F}^{\prime}(G)=\operatorname{Soc}(G \bmod \Phi(G))$, and $\mathrm{F}^{\prime}(G)=G^{\mathfrak{\mho}} \Phi(G)$. In addition, if the derived subgroup of $G^{\mathfrak{F}}$ is a proper subgroup of $G^{\mathfrak{F}}$, then $G^{\mathfrak{F}}$ is a soluble group. Furthermore, if $G^{\tilde{F}}$ is soluble, then $\mathrm{F}^{\prime}(G)=\mathrm{F}(G)$, the Fitting subgroup of G. Moreover $\left(G^{\mathfrak{F}}\right)^{\prime}=T \cap G^{\mathfrak{F}}$ for every maximal subgroup T of G such that $G / \operatorname{Core}_{G}(T) \notin \mathfrak{F}$ and $\mathrm{F}^{\prime}(G) T=G$.
2. Assume that G is a group such that G does not belong to \mathfrak{F} and there exists a maximal subgroup M of G such that $M \in \mathfrak{F}$ and $G=M \mathrm{~F}(G)$. Then $G^{\mathfrak{F}} /\left(G^{\mathfrak{F}}\right)^{\prime}$ is a chief factor of G, $G^{\mathfrak{F}}$ is a p-group for some prime $p, G^{\mathfrak{F}}$ has exponent p if $p>2$ and exponent at most 4 if $p=2$. Moreover, either $G^{\mathfrak{F}}$ is elementary abelian or $\left(G^{\mathfrak{F}}\right)^{\prime}=\mathrm{Z}\left(G^{\mathfrak{F}}\right)=\Phi\left(G^{\mathfrak{F}}\right)$ is an elementary abelian group.

It is clear that the class \mathfrak{F} of all p-supersoluble groups for a given prime p is a saturated formation [7; VI, 8.3]. Thus Lemma 13 applies to this class.

The following series of lemmas is also needed in the proof of Theorem 9.
Lemma 14. Let N be a non-abelian special normal p-subgroup of a group G, p a prime, such that $N / \Phi(N)$ is a minimal normal subgroup of $G / \Phi(N)$. Assume that there exists a series $1=N_{0} \unlhd N_{1} \unlhd \cdots \unlhd N_{t}=\Phi(N)$ with N_{i} normal in G for all i and cyclic factors N_{i} / N_{i-1} of order p for $1 \leq i \leq t$. Then $N / \Phi(N)$ has order $p^{2 m}$ for an integer m.

Proof. The result holds if N is extraspecial by [6; A, 20.4]. Assume that N is not extraspecial. Let $T=N_{1}$ be a minimal normal subgroup of G contained in $\Phi(P)$, then T has order p. It is clear that $(N / T)^{\prime}=N^{\prime} / T$ and
$\Phi(N / T)=\Phi(N) / T$. Consequently $(N / T)^{\prime}=\Phi(N / T)$. On the other hand, $\Phi(N / T)=\Phi(N) / T=\mathrm{Z}(N) / T \leq \mathrm{Z}(N / T)$. If $\Phi(N / T) \neq \mathrm{Z}(N / T)$, then $\mathrm{Z}(N / T)=N / T$ because $N / \Phi(N)$ is a chief factor of G, but this implies that N / T is abelian, in particular, $T=N^{\prime}$ and N is extraspecial, a contradiction. Therefore G / T satisfies the hypothesis of the lemma and N / T is non-abelian. By induction, $(N / T) / \Phi(N / T) \cong N / \Phi(N)$ has order $p^{2 m}$.

Lemma 15. Let G be a group, and let N be a normal subgroup of G contained in $\Phi(G)$. If p is a prime and G is a minimal non-p-supersoluble group, then G / N is a minimal non-p-supersoluble group.

Conversely, if G / N is a minimal non-p-supersoluble group, $N \leq \Phi(G)$, and there exists a series $1=N_{0} \unlhd N_{1} \unlhd \cdots \unlhd N_{t}=N$ with N_{i} normal in G for all i and whose factors N_{i} / N_{i-1} are either cyclic of order p or p^{\prime}-groups for $1 \leq i \leq t$, then G is a minimal non-p-supersoluble group.

Proof. Assume that G is a minimal non- p-supersoluble group and $N \leq$ $\Phi(G)$. If M / N is a proper subgroup of G / N, then M is a proper subgroup of G. Hence M is p-supersoluble, and so is M / N. If G / N were p-supersoluble, since $N \leq \Phi(G), G$ would be p-supersoluble, a contradiction. Therefore G / N is minimal non- p-supersoluble.

Conversely, assume that G / N is a minimal non- p-supersoluble group, $N \leq \Phi(G)$, and that there exists a series $1=N_{0} \unlhd N_{1} \unlhd \cdots \unlhd N_{t}=N$ with N_{i} normal in G for all i and factors N_{i} / N_{i-1} cyclic of order p or p^{\prime}-groups for $1 \leq i \leq t$. It is clear that G cannot be p-supersoluble. Let M be a maximal subgroup of G. Since $N \leq \Phi(G), N \leq M$. Thus M / N is p-supersoluble. On the other hand, it is clear that every chief factor of M below N is either a p^{\prime}-group or a cyclic group of order p. Consequently, M is p-supersoluble.

Lemma 16 ([1]). Let A be a group, and let B be a normal subgroup of A of prime index r dividing $p-1, p$ a prime. If M is an irreducible and faithful A-module over $\mathrm{GF}(p)$ of dimension greater than 1 and the restriction of M to B is a sum of irreducible B-modules of dimension 1 , then M has dimension r. In this case, M is isomorphic to the induced module of one of the direct summands of M_{B} from B up to A.

In the rest of the paper, \mathfrak{F} will denote the formation of all p-supersoluble groups, p a prime.

Lemma 17. Let G be a minimal non-p-supersoluble group whose p-supersoluble residual $N=G^{\mathfrak{F}}$ is normal Sylow p-subgroup. Then a Hall p^{\prime}-subgroup $R / \Phi(G)$ of $G / \Phi(G)$ is either cyclic of prime power order or a minimal nonabelian group.

Proof. By Lemma 15, we can assume without loss of generality that $\Phi(G)=$ 1. Then, by Lemma 13, G is a primitive group and $\mathrm{C}_{G}(N)=N$. In particular, for each subgroup X of G, we have that $\mathrm{O}_{p^{\prime}, p}(X N)=N$. Let M be a maximal subgroup of R. Then $M N$ is a p-supersoluble group and so $M N / \mathrm{O}_{p^{\prime}, p}(M N)=M N / N$ is abelian of exponent dividing $p-1$. Therefore if R is non-abelian, then it is a minimal non-abelian group. Suppose that R is abelian. If R has a unique maximal subgroup, then R is cyclic of prime power order. Assume now that R has at least two different maximal subgroups. Then R is a product of two subgroups of exponent dividing $p-1$. Consequently R has exponent $p-1$ and so N is a cyclic group of order p by [6; B, 9.8], a contradiction. Therefore if R is not cyclic of prime power order, R must be a minimal non-abelian group and the lemma is proved.

Lemma 18. Let G be a minimal non-p-supersoluble group with a normal Sylow p-subgroup N such that $G / \Phi(N)$ is a Schmidt group. Then G is a Schmidt group.

Proof. Let G be a minimal non- p-supersoluble group with a normal Sylow p-subgroup N such that $G / \Phi(N)$ is a Schmidt group. Then $G=N Q$, for a Hall p^{\prime}-subgroup Q of G. Moreover, since G is not p-supersoluble and $G / \Phi(N)$ is a Schmidt group, we have that Q is a cyclic q-group for a prime q and q does not divide $p-1$ by Theorem 2 . Let M be a maximal subgroup of G. If N is not contained in M, then a conjugate of Q is contained in M and so we can assume without loss of generality that $M=\Phi(N) Q$. Since q does not divide $p-1$ and M is p-supersoluble, we have that Q centralises all chief factors of a chief series of M passing through $\Phi(N)$. But by [6; A, 12.4], it follows that Q centralises $\Phi(N)$ by and so M is nilpotent. If N is contained in M, then M is a normal subgroup of G such that $M / \Phi(N)$ is nilpotent. By [7; III, 3.5], it follows that M is nilpotent. This completes the proof.

3 Proof of the main theorems

Proof of Proposition 8. By Lemma 13, $G / \Phi(G)$ has a unique minimal normal subgroup $T / \Phi(G)$ and $T=G^{\mathfrak{\Im}} \Phi(G)$. It follows that $T / \Phi(G)$ must have order divisible by p. Assume that $T / \Phi(G)$ is a direct product of non-abelian simple groups. We note that, since $G / \Phi(G)$ is a minimal non- p-supersoluble group by Lemma $15, T / \Phi(G)=G / \Phi(G)$ and so $G / \Phi(G)$ is a simple nonabelian group.

Assume now that $T / \Phi(G)$ is a p-group. By Lemma 13, we have that $G^{\mathfrak{F}}$ is a p-group. In this case, $T / \Phi(G)$ is complemented by a maximal subgroup
$M / \Phi(G)$ of $G / \Phi(G)$. Since M is p-supersoluble, so is $M / \Phi(G)$. Therefore $G / \Phi(G)$ is p-soluble. It follows that G is p-soluble.

Proof of Theorem 9. Assume that G is a p-soluble minimal non- p-supersoluble group. By Lemma 13 and Proposition $8, N=G^{\widetilde{\delta}}$ is a p-group.

Assume first that N is not a Sylow subgroup of G. By Lemma 13, $N / \Phi(N)$ is non-cyclic.

Assume that $\Phi(G)=1$. Then N is the unique minimal normal subgroup of G, which is an elementary abelian p-group, and it is complemented by a subgroup, R say. Moreover, N is self-centralising in G. This implies that $\mathrm{O}_{p^{\prime}, p}(G)=N=\mathrm{O}_{p}(G)$. Since N is not a Sylow p-subgroup of G, we have that p divides the order of R. Consider a maximal normal subgroup M of R. Observe that $N M$ is a p-supersoluble group and $\mathrm{O}_{p^{\prime}, p}(N M)=\mathrm{O}_{p}(N M)=N$ because $\mathrm{O}_{p}(M)$ is contained in $\mathrm{O}_{p}(R)=1$. Therefore $M \cong M N / \mathrm{O}_{p^{\prime}, p}(M N)$ is abelian of exponent dividing $p-1$. It follows that M is a normal Hall p^{\prime}-subgroup of R and $|R: M|=p$ because p divides $|R|$. In particular, M is the only maximal normal subgroup of R. Moreover, if C is a Sylow p-subgroup of R, then C is a cyclic group of order p.

Let M_{0} be a normal subgroup of R such that M / M_{0} is a chief factor of R. Let $X=N M_{0} C$. Since X is a proper subgroup of G, we have that X is p-supersoluble. Hence $X / \mathrm{O}_{p^{\prime}, p}(X)$ is an abelian group of exponent dividing $p-1$. It follows that $C \leq \mathrm{O}_{p^{\prime}, p}(X)$. In particular, $C=M_{0} C \cap \mathrm{O}_{p^{\prime}, p}(X)$ is a normal subgroup of $M_{0} C$ which intersects trivially M_{0}. We conclude that C centralises M_{0}. If M_{1} is another normal subgroup of R such that M / M_{1} is a chief factor of R, then $M=M_{0} M_{1}$. The same argument shows that C centralises M_{1} and so C centralises M as well, a contradiction because in this case $C \leq \mathrm{Z}(R)$ and then $C \leq \mathrm{O}_{p}(R)=1$. Consequently M_{0} is the unique such normal subgroup. Since M is abelian, we have that $M_{0} \leq \mathrm{Z}(R)$.

Now R has an irreducible and faithful module N over $\operatorname{GF}(p)$. By [6; $\mathrm{B}, 9.4], \mathrm{Z}(R)$ is cyclic. In particular, M_{0} is cyclic. We will prove next that $M_{0}=1$. In order to do so, assume, by way of contradiction, that M is not a minimal normal subgroup of R. First of all, if M is not a q group for a prime q, then M is a direct product of its Sylow subgroups, but all of them should be contained in M_{0}, a contradiction. Therefore, M is a q-group for a prime q. Since M has exponent dividing $p-1$, we have that q divides $p-1$. If $\operatorname{Soc}(M)$ is a proper normal subgroup of M, then $\operatorname{Soc}(M) \leq M_{0}$. Since M_{0} is cyclic, we have that M is an abelian group with a cyclic socle. Therefore M is cyclic. But since q divides $p-1$, we have that C centralises M and so $C \leq \mathrm{O}_{p}(R)=1$, a contradiction. Consequently $M=\operatorname{Soc}(M)$, and M is a C-module over $\operatorname{GF}(q)$. If M is not irreducible as C-module, then M can be expressed as a direct sum
of proper C-modules over $\operatorname{GF}(q)$. Hence M has at least two maximal C submodules, which yield two different chief factors M / M_{1} and M / M_{2} of R, a contradiction. Therefore M is a minimal normal subgroup of $R, R=M C$, and $\mathrm{C}_{R}(M)=M$. On the other hand, N is a faithful and irreducible R module over $\mathrm{GF}(p)$. By Clifford's theorem [6; B, 7.3], the restriction of N to M is a direct sum of $|R: T|$ homogeneous components, where T is the inertia subgroup of one of the irreducible components of N when regarded as an M module. Moreover, by [6; B, 8.3], we have that each of these homogeneous components N_{i} is irreducible. Therefore they have dimension 1 because $N_{i} M$ is supersoluble for every i. Since N is not cyclic, we have that $|R: T|>1$. Since $M \leq T \leq R$, we have that $M=T$ and so N has order p^{p}.

Assume now that $\Phi(G) \neq 1$. In this case, $\bar{G}=G / \Phi(G)$ is a minimal non- p-supersoluble group by Lemma 15 and $\Phi(\bar{G})=1$. We observe that $N \Phi(G) / \Phi(G)$ cannot be a Sylow p-subgroup of $G / \Phi(G)$, because otherwise $N H$, where H is a Hall p^{\prime}-subgroup of G, would be a proper supplement to $\Phi(G)$ in G, which is impossible. In particular, if T is a normal subgroup of G contained in $\Phi(G)$, then the p-supersoluble residual $N T / T$ of G / T is not a Sylow p-subgroup of G / T. Therefore \bar{G} has the above structure. Since $N \Phi(G)=\mathrm{F}(G), \mathrm{F}(G / \Phi(G))=\mathrm{F}(G) / \Phi(G)$, and $\Phi(\mathrm{F}(G) / \Phi(G))=1$, we have that $\bar{N}=(\bar{G})^{\mathfrak{F}}=N \Phi(G) / \Phi(G)$ satisfies

$$
\begin{aligned}
\bar{N} / \Phi(\bar{N}) & =(N \Phi(G) / \Phi(G)) / \Phi(N \Phi(G) / \Phi(G)) \\
& =(\mathrm{F}(G) / \Phi(G)) / \Phi(\mathrm{F}(G) / \Phi(G)),
\end{aligned}
$$

which is isomorphic to $\mathrm{F}(G) / \Phi(G)=N \Phi(G) / \Phi(G)$, and the latter is G isomorphic to $N /(N \cap \Phi(G))=N / \Phi(N)$ by Lemma 13. Assume that $\Phi(N) \neq 1$. By Lemma 14, we have that $N / \Phi(N)$ has square order. But this order is equal to $|\bar{N} / \Phi(\bar{N})|=p^{p}$, which implies that $p=2$. This contradicts the fact that q divides $p-1$. Therefore $\Phi(N)=1$. Now we will prove that $\Phi(G)_{p}$, the Sylow p-subgroup of $\Phi(G)$, is a central cyclic subgroup of G. Assume first that $\Phi(G)_{p^{\prime}}$, the Hall p^{\prime}-subgroup of $\Phi(G)$, is trivial. We have that $G / \Phi(G)=\bar{N} \bar{M} \bar{C}$, where \bar{C} is a cyclic group of order p, \bar{M} is an irreducible and faithful module for \bar{C} over $\operatorname{GF}(q), q$ a prime dividing $p-1$, and \bar{N} is an irreducible and faithful module for $\bar{M} \bar{C}$ over GF (p) of dimension p. Let N, M, and C be, respectively, preimages of \bar{N}, \bar{M}, and \bar{C} by the canonical epimorphism from G to G / T. We can assume that $N=G^{\mathfrak{F}}$ and M is a Sylow q-subgroup of G. Since \bar{C} is cyclic of order p, we can find a cyclic subgroup C of G such that $\bar{C}=C \Phi(G) / \Phi(G)$. Consider now a chief factor H / K of G contained in $\Phi(G)_{p}$. Then $G / \mathrm{C}_{G}(H / K)$ is an abelian group of exponent dividing $p-1$ and H / K is centralised by a Sylow p-subgroup of G / K; in particular, $G / \mathrm{C}_{G}(H / K)$ is isomorphic to a factor group of a group with a unique normal subgroup of index p. It follows that
$\mathrm{C}_{G}(H / K)=G$, that is, H / K is a central factor of G. Now N centralises $\Phi(G)$ because $\Phi(N)=1=N \cap \Phi(G)$ and M is a q-group stabilising a series of $\Phi(G)$. By [6; A, 12.4], M centralises $\Phi(G)$. Moreover C normalises M because $M \Phi(G)=M \times \Phi(G)$ is normalised by C. In particular, $M C$ is a subgroup of G. Since $G=N(M C)$ and N is a minimal normal subgroup of G, it follows that $M C$ is a maximal subgroup of G. Hence $\Phi(G)$ is contained in $M C$ and so in C. This implies that $\Phi(C) \leq \mathrm{Z}(G)$. In the general case, we have that $\Phi(G) / \Phi(G)_{p^{\prime}} \leq \mathrm{Z}\left(G / \Phi(G)_{p^{\prime}}\right)$. Then $\left[G, \Phi(G)_{p}\right] \leq \Phi(G)_{p^{\prime}}$. Therefore $\Phi(G)_{p} \leq \mathrm{Z}(G)$. On the other hand, it is clear that $\Phi(G)_{p}$ is a proper subgroup of C. Thus $\Phi(G)_{p} \leq \Phi(C)$ and so $\Phi(G)_{p} \leq \Phi(M C)$. Now $\Phi(G)_{p^{\prime}}=\Phi(G)_{q}$, the Sylow q-subgroup of $\Phi(G)$, is contained in M and $M / \Phi(G)_{p^{\prime}}$ is elementary abelian. Hence $\Phi(M) \leq \Phi(G)_{p^{\prime}}$. Moreover, by Maschke's theorem [6; A, 11.4], the elementary abelian group $M / \Phi(M)$ admits a decomposition $M / \Phi(M)=\Phi(G)_{p^{\prime}} / \Phi(M) \times A / \Phi(M)$, where A is normalised by C. In this case, $R=M C=A\left(C \Phi(G)_{p^{\prime}}\right)$. Since C normalises A, we have that $A C$ is a subgroup of G. Therefore $N(A C)$ is a subgroup of G and so $G=(N A C) \Phi(G)_{p^{\prime}}$. We conclude that $G=N A C$. By order considerations, we have that $M=A$ and so $\Phi(M)=\Phi(G)_{p^{\prime}}$.

Now let G be a minimal non- p-supersoluble group such that N is a Sylow p-subgroup of G. Let Q be a Hall p^{\prime}-subgroup of G. Then $G=N Q$. Denote with bars the images in $\bar{G}=G / \Phi(G)$. By Lemma 13, $\bar{N}=N \Phi(G) / \Phi(G)$ is a minimal normal subgroup of $\bar{G}=G / \Phi(G)$ and either N is elementary abelian, or $N^{\prime}=\mathrm{Z}(N)=\Phi(N)$. Note that $\Phi(N)=\Phi(G)_{p}$, the Sylow p subgroup of $\Phi(G)$, because $\Phi(N)$ is contained in $\Phi(G)_{p}$ and \bar{N} is a chief factor of G. Assume that $\Phi(G)_{p^{\prime}}$, the Hall p^{\prime}-subgroup of $\Phi(G)$, is not contained in $\Phi(Q)$. Then there exists a maximal subgroup A of Q such that $Q=A \Phi(G)_{p^{\prime}}$. In this case, $G=N Q=N A \Phi(G)_{p^{\prime}}$ and so $G=N A$. It follows that $A=Q$ by order considerations, a contradiction. Therefore $\Phi(G)_{p^{\prime}} \leq \Phi(Q)$. We also note that since $\bar{Q}=Q \Phi(G) / \Phi(G) \cong Q / \Phi(G)_{q}$, where $\Phi(G)_{q}$ is the Sylow q-subgroup of $\Phi(G)$, has an irreducible and faithful module $\bar{N}=N / \Phi(N)$ over $\operatorname{GF}(p)$, we have that $\mathrm{Z}(\bar{Q})$ is cyclic by [6; B, 9.4].

By Lemma 17 we have that the Hall p^{\prime}-subgroup \bar{Q} of \bar{G} is either a cyclic group of prime power order or a minimal non-abelian group.

Suppose that $\bar{Q}=\langle\bar{z}\rangle$ is a cyclic group of order a power of a prime number, q say. Since this group is isomorphic to $Q / \Phi(G)_{q}$ and $\Phi(G)_{q} \leq$ $\Phi(Q)$, we have that Q is a cyclic group of q-power order, $Q=\langle z\rangle$ say.

Suppose that the order of \bar{z} is q^{f}. Then q^{f-1} divides $p-1$. If $\bar{z}^{q}=1$, then \bar{G} is a Schmidt group. By Lemma 18, G is a Schmidt group. By Theorem 2, G is a group of Type 2 if $\Phi(N)=1$, or 3 if $\Phi(N) \neq 1$.

Assume now that $f \geq 2$. In this case, q divides $p-1$ and, by Lemma 16, we have that \bar{N} has order p^{q}. Let $a_{0} \in \bar{N} \backslash 1$. Let $a_{i}=a_{0}^{z^{i}}$ for $1 \leq i \leq q-1$,
then $a_{0}^{z^{q}}=a_{0}^{i}$, where i is a q^{f-1}-root of unity modulo p. It follows that $\left(a_{0}^{z^{q^{f-1}}}\right)=a_{0}^{i^{f-2}}$. If i is not a primitive q^{f-1}-th root of unity modulo p, we have that $i^{q^{f-2}} \equiv 1(\bmod p)$. In particular, $a_{0}^{z^{q-1}}=a_{0}$, which contradicts the fact that the order of \bar{z} is q^{f}. If $\Phi(N)=1$, then we obtain a group of Type 4. If $\Phi(N) \neq 1$, then \bar{N} has square order by Lemma 14 and so $q=2$. Hence N is an extraspecial group of order p^{3} and exponent 3 , and G is a group of Type 5 .

Assume now that Q is not cyclic. In this case, \bar{Q} is a minimal nonabelian group by Lemma 17. Let x be an element of \bar{Q}. Since $\bar{N}\langle x\rangle$ is a p-supersoluble group, we have that the order of x divides $p-1$. It follows that the exponent of \bar{Q} divides $p-1$. Since $\bar{N}=N / \Phi(N)$ is an irreducible and faithful \bar{Q}-module over $\mathrm{GF}(p)$ of dimension greater than 1 and the restriction of \bar{N} to every maximal subgroup of \bar{Q} is a sum of irreducible modules of dimension 1, we have that \bar{N} has order p^{q} by Lemma 16.

Suppose that \bar{Q} is a q-group for a prime q. By Theorem 1 , either $\bar{Q} \cong Q_{8}$, or $\bar{Q} \cong G_{\mathrm{II}}(q, m, n)$, or $\bar{Q} \cong G_{\mathrm{III}}(q, m, n)$.

Suppose that \bar{Q} is isomorphic to a quaternion group Q_{8} of order 8. In this case, $q=2,|\bar{N}|=p^{2}$ and $\exp (\bar{Q})=4$ divides $p-1$. If $\Phi(N)=1$, then we have a group of Type 6. Assume that $\Phi(N) \neq 1$. In this case, N is an extraspecial group of order p^{3} and exponent p and so G is a group of Type 7 .

Suppose that \bar{Q} is isomorphic to $G_{\mathrm{II}}(q, m, n)=\langle a, b| a^{q^{m}}=b^{q^{n}}=1, a^{b}=$ $\left.a^{1+q^{m-1}}\right\rangle$, where $m \geq 2, n \geq 1$, of order q^{m+n}. Since \bar{Q} has an irreducible and faithful module \bar{N}, we have that $\mathrm{Z}(\bar{Q})$ is cyclic by $[6 ; \mathrm{B}, 9.4]$. Since $\left\langle a^{p}, b^{p}\right\rangle \leq \mathrm{Z}(\bar{Q})$ and $m \geq 2$, we have that $b^{p}=1$ and so $n=1$. Hence q^{m} divides $p-1$. If $\Phi(N)=1$, then we obtain a group of Type 8. If $\Phi(N) \neq 1$, then N is non-abelian and so $|\bar{N}|$ is a square by Lemma 14. It follows that $q=2$ and G is a group of Type 9 .

Suppose now that \bar{Q} is isomorphic to $G_{\mathrm{III}}(q, m, n)=\langle a, b| a^{q^{m}}=b^{q^{n}}=$ $\left.[a, b]^{q}=[a, b, a]=[a, b, b]=1\right\rangle$, where $m \geq n \geq 1$, of order q^{m+n+1}. Since $G_{\text {III }}(2,1,1) \cong G_{\mathrm{II}}(2,2,1)$, we can assume that $(q, m, n) \neq(2,1,1)$.

As before, $\mathrm{Z}(\bar{Q})$ is cyclic. Consider $\left\langle a^{q}, b^{q},[a, b]\right\rangle$, which is contained in $\mathrm{Z}(\bar{Q})$. If $m \geq 2$, then $\left\langle a^{q},[a, b]\right\rangle$ is cyclic. Since $[a, b]$ has order p, we have that $[a, b]=a^{q t}$ for a natural number t. But hence $a^{b}=a^{1+q t}$ and so $\langle a\rangle$ is a normal subgroup of G. Therefore $|\bar{Q}|=|\langle a, b\rangle|=|\langle a\rangle\langle b\rangle| \leq q^{m+n}$, a contradiction. Consequently $m=1$. It follows that \bar{Q} is an extraspecial group of order q^{3} and exponent q. If $\Phi(N) \neq 1$, then \bar{N} has square order, but this implies that $q=2$, a contradiction. Consequently, $\Phi(N)=1$ and we have a group of Type 10 .

Assume now that \bar{Q} is a minimal non-abelian group which is not a q-group for any prime q. Then \bar{Q} is isomorphic to $\left[V_{q}\right] C_{r}$, where q and r are different primes numbers, s is a positive integer, and V_{q} is an irreducible $C_{r^{s}}$-module
over the field of q elements with kernel the maximal subgroup of $C_{r^{s}}$. Since $\bar{N} V_{q}$ is a p-supersoluble subgroup, it follows that the restriction of \bar{N} to V_{q} can be expressed as a direct sum of irreducible modules of dimension 1. By Lemma 16, we have that \bar{N} has dimension r. We know that $\Phi(G)_{p^{\prime}} \leq \Phi(Q)$ and $\Phi(G)_{p}=\Phi(N)$. Since \bar{Q} is isomorphic to $Q / \Phi(G)_{p^{\prime}}$, and this group is r-nilpotent, Q is r-nilpotent. Consequently Q has a normal Sylow q subgroup M. On the other hand, $\Phi(G)_{q}$, the Sylow q-subgroup of $\Phi(G)$, is contained in M and $M / \Phi(G)_{q}$ is elementary abelian. This implies that $\Phi(M)$ is contained in $\Phi(G)_{q}$. Let C be a Sylow r-subgroup of G. Then, by Maschke's theorem [6; A, 11.4], $M / \Phi(M)=\Phi(G)_{q} / \Phi(M) \times A / \Phi(M)$ for a subgroup A of M normalised by C. Then $Q=(A C) \Phi(G)_{q}=A C$ and so $A=M$. Consequently $\Phi(M)=\Phi(G)_{q}$. Now the Sylow r-subgroup $\Phi(G)_{r}$ of $\Phi(G)$ is contained in C. If $\Phi(G)_{r}$ were not contained in $\Phi(C)$, there would exist a maximal subgroup T of C such that $C=T \Phi(G)_{r}$. This would imply $Q=M T$ and $T=C$, a contradiction. Hence $\Phi(G)_{r}$ is contained in $\Phi(C)$ and C is cyclic. Moreover $\Phi(G)_{r}$ centralises M.

If $\Phi(N)=1$, then we have a group of Type 11. If $\Phi(N) \neq 1$, then $r=2$ and N is an extraspecial group of order p^{3} and exponent p. This is a group of Type 12.

Conversely, it is clear that the groups of Types 1 to 12 are minimal non- p-supersoluble.

Proof of Theorem 10. It is clear that all groups of the statement of the theorem are minimal non-supersoluble. Conversely, assume that a group is minimal non-supersoluble. Hence it is soluble, and so its p-supersoluble residual is a p-group by Proposition 8. Note that groups of Type 1 in Theorem 9 are not minimal non-supersoluble. On the other hand, groups of Type 11 are not minimal non-supersoluble when r does not divide $q-1$, because in this case the subgroup $M C$ is not supersoluble.

Proof of Theorem 11. Assume that the result is false. Choose for G a counterexample of least order. Since the property of the statement is inherited by subgroups, it is clear that G must be a minimal non-supersoluble group, and so a minimal non- p-supersoluble group for a prime p. In particular, the p-supersoluble residual $N=G^{\mathfrak{F}}$ of G is a p-group. Suppose that N has exponent p. The hypothesis implies that every subgroup of N is normalised by $\mathrm{O}^{p}(G)$. In particular, $N / \Phi(N)$ is cyclic, a contradiction. Consequently $p=2$ and the exponent of N is 4 . By Theorem 9 , the only group with \mathfrak{F} residual of exponent 4 is a group of Type 3 . But in this case either $N / \Phi(N)$ has order 4 and N must be isomorphic to the quaternion group of order 8 , because the dihedral group of order 8 does not have any automorphism of odd order, or $N / \Phi(N)$ has order greater than 4 . In the last case, N has an
extraspecial quotient, which has a section isomorphic to a quaternion group of order 8 , final contradiction.

Acknowledgement

The authors are indebted to the referee for his/her helpful suggestions.

References

[1] A. Ballester-Bolinches and J. Cossey. On finite groups whose subgroups are either supersoluble or subnormal. Preprint.
[2] A. Ballester-Bolinches, R. Esteban-Romero, and D. J. S. Robinson. On finite minimal non-nilpotent groups. Preprint.
[3] A. Ballester-Bolinches and M. C. Pedraza-Aguilera. On minimal subgroups of finite groups. Acta Math. Hungar., 73(4):335-342, 1996.
[4] J. Buckley. Finite groups whose minimal subgroups are normal. Math. Z., 116:15-17, 1970.
[5] K. Doerk. Minimal nicht überauflösbare, endliche Gruppen. Math. Z., 91:198-205, 1966.
[6] K. Doerk and T. Hawkes. Finite Soluble Groups. Number 4 in De Gruyter Expositions in Mathematics. Walter de Gruyter, Berlin, New York, 1992.
[7] B. Huppert. Endliche Gruppen I, volume 134 of Grundlehren Math. Wiss. Springer-Verlag, Berlin, Heidelberg, New York, 1967.
[8] N. Itô. Note on (LM)-groups of finite order. Technical report, Kodai Math. Seminar Report, 1951.
[9] N. P. Kontorovič and V. T. Nagrebeckiĭ. Finite minimal not psupersolvable groups. Ural. Gos. Univ. Mat. Zap., 9(3):53-59, 134-135, 1975.
[10] G. A. Miller and H. C. Moreno. Nonabelian groups in which every subgroup is abelian. Trans. Amer. Math. Soc., 4:398-404, 1903.
[11] V. T. Nagrebeckiĭ. Finite minimal non-supersolvable groups. In Finite groups (Proc. Gomel Sem., 1973/74) (Russian), pages 104-108, 229. Izdat. "Nauka i Tehnika", Minsk, 1975.
[12] L. Rédei. Das schiefe Produkt in der Gruppentheorie. Comment. Math. Helvet., 20:225-267, 1947.
[13] L. Rédei. Die endlichen einstufig nichtnilpotenten Gruppen. Publ. Math. Debrecen, 4:303-324, 1956.
[14] O. J. Schmidt. Über Gruppen, deren sämtliche Teiler spezielle Gruppen sind. Mat. Sbornik, 31:366-372, 1924.
[15] F. Tuccillo. On finite minimal non-p-supersoluble groups. Colloq. Math., LXIII(1):119-131, 1992.

[^0]: *Supported by Proyecto BFM2001-1667-C03-03 (MCyT) and FEDER (European Union)
 ${ }^{\dagger}$ Departament d’Àlgebra, Universitat de València, Dr. Moliner, 50, E-46100 Burjassot (València, Spain), email: Adolfo.Ballester@uv.es
 ${ }^{\ddagger}$ Departament de Matemàtica Aplicada, Universitat Politècnica de València, Camí de Vera, s/n, E-46022 València (Spain), email: resteban@mat.upv.es

