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Abstract

Let p be a prime. The class of all p-soluble groups G such that
every p-chief factor of G is cyclic and all p-chief factors of G are G-
isomorphic is studied in this paper. Some results on T -, PT -, and
PST -groups are also obtained.
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1 Introduction
All groups considered in the paper will be finite.

Let p be a prime number. Denote by U∗p the class composed of all p-soluble
groups G such that every p-chief factor of G is cyclic (G is p-supersoluble)
and all p-chief factors of G are G-isomorphic.

For a p-soluble group G, the following statements are pairwise equivalent:

1. G belongs to U∗p .

2. Every p′-perfect subnormal subgroup of G permutes with every Hall
p′-subgroup of G ([2, Theorem 6]).
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3. If H ≤ K are p-subgroups of G, then H permutes with all Sylow
subgroups of NG(K) ([5, Theorem 9]).

4. G is either p-nilpotent, or G has an abelian Sylow p-subgroup P and
every subgroup of P is normal in NG(P ) ([5, Theorem 5]).

5. Either G is p-nilpotent or G(p)/Op′
(
G(p)

)
is an abelian normal Sylow

p-subgroup of G/Op′
(
G(p)

)
such that the elements of G/Op′

(
G(p)

)
induce power automorphisms in G(p)/Op′

(
G(p)

)
, where G(p) denotes

the p-nilpotent residual of G, that is, the smallest normal subgroup of
G such that G/G(p) is p-nilpotent ([4, Theorem A]).

These characterisations let the class U∗p play a major role in the study of
three interesting classes of groups: T -groups (or groups in which normality
is transitive), PT -groups (or groups in which permutability is transitive),
and PST -groups (or groups in which permutability with Sylow subgroups is
transitive). These classes have been widely studied (see [1, 2, 4, 5, 7, 8, 9,
10, 13]).

The main goal of this paper is to study the behaviour of U∗p as a class
of groups and apply the results to get information about the classes of T -,
PT -, and PST -groups.

It is clear that U∗p is a subgroup-closed homomorph. However, the direct
product of a symmetric group of degree 3 with a cyclic group of order 3 shows
that it is not closed under taking direct products. In particular, U∗p is not a
formation. More precisely, we have:

Theorem A. The class of all p-nilpotent groups is the largest formation
contained in U∗p .

Since a soluble PST -group is a U∗p -group for all primes p ([2, Theorems
6 and 8]), we have:

Corollary 1. The class of all nilpotent groups is the largest formation con-
tained in the class of all soluble PST -groups.

The class U∗p is not saturated in general (see [3] or [12]). However we
have:

Theorem B. Let G be a group. The following statements are equivalent:

1. for every subgroup H of G, H/Φ(H) is a U∗p -group, and

2. G is a U∗p -group.
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This theorem is a consequence of the following result, which is proved
in [6]:

Theorem C. Let G be a p-supersoluble group. The following statements are
equivalent:

1. G belongs to U∗p .

2. G does not have any subgroup of the form X = [P ]Q, where p and q
are primes such that qf | p−1, with f ≥ 1, i is a primitive root of unity
modulo p, j = 1 + kqf−1, with 0 < k < q, P = 〈a, b〉 is an elementary
abelian group of order p2, Q = 〈z〉 is a cyclic q-group of order qr with
r ≥ f such that az = ai, bz = bi

j .

Following Van der Waall and Fransman [12], we say that a group G is a
T0-group (respectively, a PT 0-group, a PST 0-group) if G/Φ(G) is a T -group
(respectively, a PT -group, a PST -group).

As a consequence of Theorem B, [2, Theorems 6 and 8] and the fact that
the class of soluble PST -groups is subgroup-closed , we have the following
result.

Corollary 2. Let G be a group. The following statements are equivalent:

1. Every subgroup of G is a PST 0-group.

2. Every subgroup of G is a PST -group.

3. G is a soluble PST -group.

Assume now that every subgroup of G is T0-group. By Corollary 2, G
is a soluble PST -group. Applying Agrawal’s theorem [1], G has an abelian
normal Hall subgroup D of odd order complemented by a nilpotent subgroup
B such that every subgroup of D is normal in G. Consequently, B′ centralises
every subgroup of D.

In fact we have:

Theorem D. Let G be a group. The following statements are pairwise equi-
valent:

1. G is a soluble PST -group,

2. G is supersoluble and has a normal abelian subgroup D of odd order
and a nilpotent subgroup B such that G = DB, with gcd(|D|, |B|) = 1,
B′ E G and G/B′ is a T -group, and
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3. Every subgroup of G is a T0-group.

4. Every subgroup of G is a PT 0-group.

Note that Van der Waall and Fransman’s theorem [12, Theorem 3.10] is
the equivalence between 2 and 3.

Applying these results, we are able to give an alternative proof of the
main result of [3]. We will also use the following result, which is a particular
case of a theorem proved in [6].

Theorem E. Let G be a p-soluble group such that all proper subgroups of G
belong to U∗p , but G itself does not belong to U∗p . Then G has a normal Sylow
p-subgroup P which is complemented by a non-normal cyclic subgroup whose
order is a power of a prime q 6= p.

Theorem F. Assume that every proper subgroup of a group G is a T0-group,
but G itself is not a T0-group. Then:

1. G = PQ, where P is a Sylow p-subgroup of G and Q is a Sylow q-
subgroup of G for some distinct primes p and q;

2. P / G and Q is a non-normal cyclic subgroup of G;

3. G/Φ(G) is a minimal non-T -group.

2 Proofs
Proof of Theorem A. Let F be a formation contained in the class U∗p . Assume
that G is a group such that G ∈ F, but G is not p-nilpotent. Given a groupX,
let us denote by X(p) the p-nilpotent residual of X. Since F is a formation,
we have that H = G/Op′

(
G(p)

)
belongs to F. By [4, Theorem A], H(p) is an

abelian normal Sylow p-subgroup of H such that the elements of H induce
power automorphisms in H(p). Since H is not p-nilpotent, there exists a
p′-element x ∈ H such that x does not centralise H(p). On the other hand,
since F is a formation, we have that H × H ∈ F. Moreover H × H does
not belong to U∗p , because (x, 1) centralises the p-chief factors of the second
factor of the direct product, but does not centralise the p-chief factors of the
first factor, a contradiction.

Proof of Theorem B. It is clear that ifG is a U∗p -group, then for everyH ≤ G,
H is a U∗p -group and hence H/Φ(H) is a U∗p -group.

Assume that the converse is false. Let G be a group of minimal order
such that for every subgroup H of G, H/Φ(H) is a U∗p -group, but G itself is
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not a U∗p -group. By minimality of G, we have that all proper subgroups H
of G belong to U∗p , but G itself does not. By Theorem C, it follows that G
has the form G = [P ]Q, where p and q are primes such that qf | p− 1, with
f ≥ 1, i is a primitive root of unity modulo p, j = 1 +kqf−1, with 0 < k < q,
P = 〈a, b〉 is an elementary abelian group of order p2, Q = 〈z〉 is a cyclic
q-group of order qr with r ≥ f such that az = ai, bz = bi

j . Since 〈a〉 and
〈b〉 are normal subgroups of G, it follows that 〈a〉Q and 〈b〉Q are maximal
subgroups of G. Hence Φ(G) ≤ 〈a〉Q∩ 〈b〉Q = Q. Therefore G/Φ(G) can be
expressed as a semidirect product of an elementary abelian normal subgroup
〈ā, b̄〉 of order p2 by a cyclic subgroup 〈z̄〉 such that āz̄ = āi and b̄z̄ = āi

j .
Since G/Φ(G) satisfies U∗p , it follows that 〈ab〉 is normalised by z. Hence aibij

belongs to 〈ab〉, which implies that ij ≡ i (mod qf ). Thus j ≡ 1 (mod qf ),
but j = 1 + kqf−1 with 0 < k < q, a contradiction. Hence G belongs to
U∗p .

Proof of Theorem D. (1) implies (2) Assume that G is a soluble PST -group.
By Agrawal’s theorem [1], there exists an abelian Hall subgroup D of odd
order complemented by a nilpotent subgroup B such that every subgroup of
D is normal in G.

Let d ∈ D. Since 〈d〉 is a normal subgroup of G, it follows that G/CG(〈d〉)
is abelian. Hence B′ ≤ CG(〈d〉). It follows that B′ ≤ CG(D). Consequently,
B′ is a normal subgroup of G. Since G is a soluble PST -group, we have that
G/B′ is a PST -group. Moreover, all Sylow subgroups of G/B′ are abelian,
because they are Sylow subgroups of the abelian group D or isomorphic to
Sylow subgroups of the abelian group B/B′. Therefore, G/B′ is a T -group
by [5, Theorem 2].

(2) implies (3) Assume that G is a supersoluble group with an abelian
normal Hall subgroup D of odd order complemented by a nilpotent subgroup
B such that B′ is normal in G and G/B′ is a T -group. Since B is nilpotent,
we have that B′ ≤ Φ(B). Hence B′ ≤ Φ(G), because B′ is a normal subgroup
of B. In particular, G/Φ(G) is a soluble T -group.

Let H be a subgroup of G. Since G is a soluble PST -group, we have that
H is a soluble PST -group. Hence the nilpotent residual HN of H is a normal
Hall subgroup of H of odd order complemented by a subgroup HB which can
be assumed to be contained in B. Since (HB)′ ≤ B′ and (HB)′ ≤ Φ(HB),
because HB is nilpotent, and (HB)′ is a normal subgroup of H, we obtain
that (HB)′ ≤ Φ(H). Hence H/Φ(H) is again a soluble T -group. Hence G is
a T0-group.

It is clear that (3) implies (4). Assume now that every subgroup of G is
a PT 0-group. Then every subgroup of G is a PST 0-group. By Corollary 2,
it follows that G is a soluble PST -group. Therefore (4) implies (1) and the
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circle of implications is complete.

Proof of Theorem F. Assume that G is a minimal non-T0-group. Then all
proper subgroups of G are T0-groups. From Theorem D, we have that all
proper subgroups of G are soluble PST -groups. In particular, all proper
subgroups of G are supersoluble, which implies that G itself is soluble (see
[11]).

If G were a PST -group, then G would be a T0-group by Theorem E, a
contradiction. Therefore G is not a PST -group. Hence there exists a prime p
such that G is a minimal non-U∗p -group. By Theorem E, G can be expressed
as G = PQ satisfying conditions 1 and 2.

Since Φ(P ) ≤ Φ(G) because P is a normal subgroup of G, it follows
that G/Φ(G) has a normal abelian Sylow p-subgroup PΦ(G)/Φ(G). Con-
sequently, G/Φ(G) has abelian Sylow subgroups. Since every subgroup of
G is a soluble PST -group, it follows that every proper subgroup of G/Φ(G)
is a soluble PST -group, and since Sylow subgroups of G/Φ(G) are abelian,
all proper subgroups of G/Φ(G) are T -groups by [5, Theorem 2]. Hence
G/Φ(G) is a minimal non-T -group, as desired.
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