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Abstract

Starting from a realistic One-Boson-Exchange model of the nucleon

nucleon interaction the relativistic mean field for nucleons is determined

within the Dirac Brueckner Hartree Fock approach for finite nuclei. The

matrix elements of the axial charge operator evaluated for the solutions

of the Dirac equation with this selfenergy are investigated. These matrix

elements are enhanced with respect to the equivalent non relativistic

ones obtained from the solutions of the Schrödinger equation with the

non relativistic equivalent potential. The present results confirm at a

qualitative level the results for the axial charge renormalization obtained

with perturbative approaches. However, the results obtained differ in

size from those of the perturbative approach and are nucleus and state

dependent.
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1 Introduction.

As suggested in ref. [1] the presence of a large scalar potential in a relativistic
version of the nucleon selfenergy in the nucleus [2] leads to a sizeable renor-
malization of the axial charge in nuclei. This renormalization, which is also
sometimes refered to as the heavy meson exchange current contribution, must
be considered in addition to the conventional meson exchange currents stud-
ied earlier [3, 4, 5, 6]. More quantitative evaluations of this renormalization,
following the idea of [1], have been recently provided in [7, 8, 9]. In ref. [7]
a perturbative approach is used starting from a relativistic description of the
NN potential and taking direct and exchange terms. The strong short-range
and tensor components of a realistic NN interaction give rize to significant
two-nucleon correlations. The effects of NN correlations are taken into ac-
count in the investigations of ref. [8] by using the Brueckner G-matrix. The
estimates reported in [7] and [8] were made for the system of infinite nuclear
matter.

The investigations of ref. [9] are performed directly for finite nuclei. Also
in this case the effect of the nucleon selfenergy is treated in a perturbative way.
The operators are reduced to a bispinor representation and the calculations
are carried out in a nonrelativistic frame. The single-particle wavefunctions
are represented by oscillator wavefunctions and the effect of correlations are
included in terms of a simple local correlation function.

In the present work we want to consider the relativistic features, the effects
of correlations and the single-particle wavefunctions consistently. For that
purpose we employ the results of the relativistic Dirac Brueckner Hartree Fock
(DBHF) calculations of ref. [10]. These calculations are based on the version
A of the relativistic One-Boson-Exchange potential of [11]. The results of the
calculation of the ground-state properties of double closed-shell nuclei are in
good agreement with the experimental data and the resulting self-energy yields
a real part for the optical potential of low-energy nucleon nucleus scattering,
which is close to the empirical analysis [12].

After this short introduction we will review the perturbative treatment
of the heavy meson exchange current contribution in nuclear matter. The
self-consistent DBHF calculations are discussed in section 3, while section 4
contains a discussion of the non-relativistic reduction. The results are pre-
sented and discussed in section 5 and the final section summarizes the main
conclusions.

2 Perturbative renormalization of the axial charge

in a relativistic approach.

A realistic NN interaction contains a large attractive scalar isoscalar com-
ponent (due to σ-exchange in OBE model) and a repulsive vector isovector
component (ω-exchange). Evaluating the selfenergy of a nucleon in a medium
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of nuclear matter with such an interaction using the mean field approximation,
one finds that it contains a large attractive scalar component and a repulsive
component, which under Lorentz transformation transforms like the timelike
component of a vector [2]

Σ = Σs ρ

ρ0

+ Σvγ0 ρ

ρ0

(1)

with ρ the nuclear density and ρ0 the saturation density of nuclear matter
(ρ0 = 0.17fm−3). Taking into account the Fock-exchange terms in the Hartree-
Fock approximation or accounting for correlation effects in the DBHF approx-
imation one obtains a small spacelike vector component and finds that all the
terms depend slightly on the momentum of the nucleon [10]. We now want
to calculate matrix elements for the axial operator gAγ

µγ5, concentrating on
the axial charge gAγ

0γ5 for nucleons moving in the nuclear medium. We can
immediately write the perturbative corrections to the axial charge due to the
nucleon selfenergy, which are depicted diagramatically in fig. 1, where we have
separated the contribution from positive and negative intermediate states in
the nucleon propagator. Analytically this decomposition is given by

p/+M

p2 −M2
=

M

E(~p )
{
∑

r ur(~p )ūr(~p )

p0 − E(~p ) + iǫ
+

∑

r vr(−~p )v̄r(−~p )

p0 + E(~p ) − iǫ
} (2)

where M,E(~p ) are the mass and on shell energy of the free nucleon and ur, vr

the ordinary free spinors in Mandl-Shaw representation [13]. The axial charge
matrix element is reduced to a bispinor representation assuming E(~p ) ≃ M
by means of

ū(~p ′)γ0γ5u(~p) = χ′~σ(~p+ ~p ′)

2M
χ (3)

Now the a) and b) diagrams from fig. 1 with positive intermediate nucleon
components are automatically absorbed into the calculation with dressed non
relativistic wave functions but genuine corrections from the negative interme-
diate states c) and d) remain. One can easily see that the renormalization
with the Σvγ0 term of (1) vanishes identically and only the renormalization
with the Σs term remains. One immediately gets a renormalized axial charge
matrix element corresponding to bare matrix element plus figs. 1c and 1d
given by

gA(1 − Σs

M

ρ

ρ0

)χ′~σ(~p+ ~p ′)

2M
χ (4)

or equivalently a renormalization of the axial charge by the amount (1 − Σs

M
ρ
ρ0

).

This is the result obtained in [7]. Note that since the relativistic potential of (1)
implicitly accounts for direct and exchange terms no further corrections have
to be done in contrast to [7] where, because one starts from a NN interaction,
direct and exchange terms are explicitly evaluated. With standard values of
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Σs of the order of −400MeV and taking ρ ≃ ρ0 one obtains a renormalization
factor of the order of 1.4 in qualitative agreement with [7, 9].

Another way to arrive at eq.(4) is to realize that the solution of the Dirac
equation for with a selfenergy of the kind displayed in eq.(1) yields Dirac
spinors for the nucleons in the nuclear medium, which are identical to Dirac
spinors of free nucleons, except that the mass of the nucleon M has to be
replaced by an effective mass M∗ = M + Σsρ/ρ0. Calculating the matrix
element for the axial charge operator with these dressed Dirac spinors and
reducing it to a bispinor representation one finds as in eq.(3)

¯̃u(p′)γ0γ5ũ(p) = χ′ ~σ(~p+ ~p ′)

2
(

M + Σs ρ
ρ0

)χ

=



1 − Σs

M

ρ

ρ0
+

(

Σs

M

ρ

ρ0

)2

+ · · ·


χ′~σ(~p+ ~p ′)

2M
χ (5)

It should be noted that this non-perturbative treatment of the the heavy meson
exchange current contribution to the renormalization of the axial charge yields
an effect which is considerably larger than the perturbative treatment of eq.(4).
Using again Σs = −400MeV and taking ρ ≃ ρ0 one obtains a factor of 1.7
rather than 1.4 (see above).

3 Finite nuclei renormalization.

Solving the Dirac equation directly for the finite nucleus the diagrams in fig.
1 plus all terms of higher order in the nucleon selfenergy insertions can auto-
matically be taken into account by evaluating the matrix elements of the γ0γ5

operator between the solutions of the Dirac equation. The relativistic selfen-
ergy for the finite nucleus is calculated following the scheme defined as Hartree
approximation in ref. [10]. In this scheme we assume an effective Lagrangian
for nucleons, a scalar σ meson and a vector ω meson. This effective Lagrangian
is defined to be used in Dirac Hartree calculations for finite nuclei. The ef-
fects of correlations and the Fock-exchange terms are taken into account by
assuming coupling constants for the meson nucleon interaction terms, which
are density dependent and which are determined such that a Dirac Hartree
calculation of nuclear matter reproduces the results of microscopic DBHF cal-
culations for the OBE potential A at all densities.

In this scheme the correlation effects are deduced from nuclear matter
and treated in a local density approximation. The investigations of ref.[10]
demonstrate that these Dirac Hartree calculations yield results which are close
to DBHF calculations in which the correlation effects are treated directly for
the finite nucleus under consideration. Furthermore the predictions of this
Dirac Hartree approximation for binding energy and radius of nuclei like 16O
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and 40Ca are close to the empirical data. Furthermore it is worth noting that
this approach leads to scalar and vector components of the self-energy

Σ(r) = Σs(r) + γ0Σv(r) (6)

which are local and depend on the radial distance r only. Using this selfenergy
in the Dirac equation

[i~γ ~∇ +M + Σs(r) + γ0Σv(r)]Ψ = γ0EΨ (7)

we obtain solutions for the energy E and Dirac spinors with the various quan-
tum numbers for the orbital angular momentum l and total angular momen-
tum j. By following the nomenclature of Itzykson and Zuber [14] we write the
relativistic wave functions as

Ψl
jm(~r) ≡















i
Glj(r)

r
ψl

jm

Flj(r)

r
~σ.r̂ψl

jm















(8)

where ψl
jm are the spin wave functions given by

ψ
(+)
jm = (

1

2j
)1/2







(j +m)1/2 Y
m−1/2
j−1/2

(j −m)1/2 Y
m+1/2
j−1/2







for j = l + 1/2

ψ
(−)
jm = (

1

2j + 2
)1/2







(j + 1 −m)1/2 Y
m−1/2
j+1/2

−(j + 1 +m)1/2 Y
m+1/2
j+1/2







for j = l−1/2 (l > 0) (9)

With a little bit of algebra the matrix elements of γ0γ5 between Dirac wave
functions are readily evaluated and the results are shown in the appendix.

Since the axial charge renormalization is checked in the 0+ ↔ 0− first for-
bidden β-decay transitions we have performed the calculations for the relevant
matrix elements in these transitions in two nuclei 16O and 40Ca, in order to
see the difference of the renormalization for nuclei with different mass number.

For such double closed shell nuclei a 0− state is formed with a ph excitation
for lp and lh with different parity and jp = jh. We have

|0− > =
∑

m

(−1)jh−mC(jpjh0;m,−m)a†jpmajhm|0+ >

=
∑

m

√

1

2jh + 1
a†jpmajhm|0+ > (10)

The matrix element for the 0+ ↔ 0− transition is readily obtained from
the formulas in the appendix by setting j = j′, m = m′ summing over m and
multiplying by (2j + 1)−1/2. The 0+ ↔ 0− transition can only be done with
cases b) and c) and in both cases we get a simplified solution which is
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< 0+|γ0γ5e
i~q~r|0− >=

√

2j + 1(−i)
∫

r2dr

[

Gl′j′(r)

r

Flj(r)

r
− Fl′j′(r)

r

Glj(r)

r

]

j0(qr) (11)

We construct the 0− state in 16O as a ph excitation with the orbitals 1p1/2

and 2s1/2. We also consider the component with 1p3/2 and 1d3/2 in order to see
whether the renormalization is state dependent or not. In the case of 40Ca we
take the orbitals 1d3/2 and 2p3/2 . In all cases we consider a proton hole state
and a neutron particle state, as it corresponds to β transitions. The neutron
states in the 2s1/2 and 1d3/2 orbitals in 16O and the 2p3/2 orbital of 40Ca are
all bound states in the potential used.

4 Non relativistic calculation.

In order to see the effects of the renormalization due to the relativistic structure
of the potential (6) we solve the Schrödinger equation with the equivalent
nonrelativistic potential [15, 12]

USEP (r) = Σs(r) +
E

M
Σv(r) +

(Σs(r))2 − (Σv(r))2 + UDarwin(r)

2M
(12)

with

UDarwin(r) =
3

4

[

1

D(r)

dD(r)

dr

]2

− 1

rD(r)

dD(r)

dr
− 1

2D(r)

d2D(r)

dr2
,

D(r) = E + Σs(r) − Σv(r) . (13)

The single-particle wavefunctions obtained from the solution of the Schroedinger
equation with USEP are used to evaluate the matrix elements of the ~σ(~p +
~p ′)/2M operator and we find

< 0+|~σ (~p+ ~p′)

2M
|0− >=

i(−1)j′+l′+1/2 1

2M

√
2F (n′l′j′, nlj;λ = 0) (14)

where the function F is defined in the appendix.

5 Results and discussion.

In fig. 2 we show the matrix elements of the axial charge for the relativistic
and non relativistic cases of eqs. (11) and (14) respectively as a function of
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q. We show the results for the 1p1/2 → 2s1/2 and 1p3/2 → 1d3/2 transitions on
16O. One observes that the strength of the latter transition is about a factor
2 larger than for the first one. In both cases the relativistic calculation of
the matrix element yields larger values than the non-relativistic one derived
from the equivalent non relativistic potential. We also observe that the matrix
elements are weakly dependent on the momentum transfer q up to values of
q ≃ 100 MeV/c. In fig. 3 we show the ratio of the relativistic versus non
relativistic matrix elements as a function of q for the two transitions in 16O.
The values of the ratios at q = 0, relevant to β decay, are about 1.33 and 1.20
for the 1p1/2 → 2s1/2 and 1p3/2 → 1d3/2 transitions, respectively.

The strength of Σs(r ) from eq. (6) at r = 0 is in our case Σs ≃ −384MeV ,
close to the value typical for nuclear matter at saturation ( Σs ≃ −400MeV )
which we have considered in our estimates of section 2. In the perturbative
approach of section 2 we would have obtained a ratio of 1.41 whereas the
non perturbative nuclear matter estimate would even yield a ratio of 1.69
for this value of Σs. We can see that the calculations performed directly
for the finite nuclei yields results which are significantly smaller than those
estimates from nuclear matter. The reason for this difference is the fact that
the calculation of matrix elements for finite nuclei requires a radial integration
which is dominated by the integrand at the surface. This is due to the fact
that the integrand contains a product of wavefunctions for a particle- and
a hole-state. The nuclear density at the surface, however, is smaller than
for r = 0 or the saturation density of nuclear matter. Consequently also
the relativistic effects due scalar potential Σs, leading to an enhacement of the
small component of the Dirac spinor, will be smaller at these relevant densities
than at the center of the nucleus or at the saturation density of nuclear matter.
Similar, although a bit smaller, reductions with respect to the nuclear matter
approach were also found in the finite nuclei perturbative approach of [9],
though the results were found to be sensitive to the short range correlations
assumed. Here short range correlations are incorporated in the problem in a
selfconsistent way.

From these considerations we can also understand that the relativistic
renormalization of the axial charge operator in the case of the 1p3/2 → 1d3/2

transition is smaller than the one in the 1p1/2 → 2s1/2 case. The smaller renor-
malization in the case of the 1p3/2 → 1d3/2 transition can be interpreted in
terms of the centrifugal barrier which pushes the d state more to the surface
of the nucleus where the potential Σs is weaker. Furthermore we observe a
slight increase of the renormalization as a function of q. At a larger momen-
tum transfer one tends to probe more the higher densities in the interior of
the nucleus.

These results are confirmed by our calculations for the nucleus 40Ca. In
fig. 4 we show the relativistic and non relativistic matrix elements for the
1d3/2 → 2p3/2 transition in 40Ca and in fig. 5 the ratio of the relativistic
to non relativistic matrix elements. The ratio is of the order of 1.23, rather
independent on the momentum transfer. This result for the renormalization
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of the axial charge is very similar but slightly larger than the ratio obtained
for the 1p3/2 → 1d3/2 in 16O. Once again the centrifugal barrier is responsible
for a reduced renormalization compared to the expectations of nuclear matter
approach.

6 Conclusions

We have analyzed in detail the renormalization of the axial charge in nuclei by
evaluating the matrix elements of the axial charge operator with relativistic
wave functions, solutions of the Dirac equation with the relativistic potential,
and with non relativistic wave function, solutions of the Schrödinger equation
with an equivalent non relativistic potential. We have found renormalization
effects due to the use of the relativistic wave functions, enhancing the axial
charge in the direction found in earlier perturbative approaches for nuclear
matter. However, the quantitative results differ from the estimates derived
for nuclear matter significantly. Using the G-matrix derived from a realistic
meson exchange model of the NN interaction [11] a perturbative estimate of
the heavy meson exchange current contribution to the axial charge at nuclear
matter saturation density [8] would yield a renormalization factor of 1.4 and
a non perturbative treatment would lead to enhancement as large as 1.7. For
finite nuclei the enhancement factors considerably smaller, of the order of 1.2
- 1.3. We argue that this reduction of the renormalization effect is due to
the smaller densities at the surface of finite nuclei, which are relevant for the
evaluation of actual matrix elements. From these considerations we can also
understand the dependence of the renormalization factor on the momentum
transfer and on the transition actually considered.

The amount of axial charge renormalization depends on the model for the
NN interaction. We have employed a relativistic meson exchange model (Po-
tential version A of the Bonn potential [11]), which has been derived to repro-
duce NN scattering data. It is fair to quote at this point that using this poten-
tial in the present case there is the assumption that the relativistic potential
constructed to reproduce NN scattering of on shell nucleons can be extrapo-
lated to deal with negative energy states and on shell and off shell conditions.
This is certainly a strong assumption from which all the microscopically con-
structed relativistic potentials suffer, and indeed different parametrizations of
the NN amplitude on shell lead to different relativistic potentials [16]. Some
efforts have been done to constrain the relativistic potential to be consistent
with the N̄N elementary amplitudes [17] and this leads to potentials like the
one obtained here but about one half their strength. Even then this potential
is constructed at the level of the impulse approximation or low density limit,
tρ, and many body effects should modify it. It is clear that many efforts are
still necessary to be able to claim that an unambiguous microscopical rela-
tivistic potential has been determined. On the other hand one can take a
more phenomenological approach and say that a certain relativistic potential
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has a wide degree of phenomenological success, providing fair nuclear binding
energies, spin-orbit splitting, nucleon nucleus cross sections and polarization
observables, etc. [10, 12]. The potential we have used is one of such and pro-
vides empirical support for the axial charge renormalization found, but this
does not exclude the possibility of other potentials with the same degree of
phenomenological success and still providing different axial charge renormal-
ization. The ultimate answer to this question is tied to the progress in our
understanding of the meaning and accurate strength of the relativistic poten-
tial. Meanwhile, by using a fair and plausible model we have done detailed
calculations and showed that the results are sufficiently different from the per-
turbative results to encourage the use of the present approach in future works
dealing with the problem.

Two of us, A. Gil and E. Oset wish to acknowledge the hospitality of the
University of Tübingen and H. Müther the one of the University of Valen-
cia. E. Oset acknowledges support from the Humboldt Foundation. The work
has been partially supported by the EU, program, Human Capital and Mobil-
ity contract no. CHRX-CT 93-0323, the CICYT contract no. AEN 93-1205
and the Graduiertenkolleg “Struktur und Wechselwirkung von Hadronen und
Kernen” of the Deutsche Forschungsgemeinschaft (DFG Mu 705/3)
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Appendix: Matrix elements of the axial charge operator.

A) Relativistic case: We write here the matrix element for the γ0γs operator
between relativistic wave functions

< n′l′j′m′|γ0γ5e
i~q~r|nljm > (a.1)

We distinguish 4 cases

a)j′ = l′ + 1/2, j = l + 1/2
b)j′ = l′ + 1/2, j = l − 1/2
c)j′ = l − 1/2, j = l + 1/2
d)j′ = l − 1/2, j = l − 1/2

and the resulting matrix element is

√
4π
∑

λ

iλ(−i)
∫

r2dr

[

Gl′j′(r)

r

Flj(r)

r
− Fl′j′(r)

r

Glj(r)

r

]

jλ(qr)

(2λ+ 1)1/2Y ∗
λ,m′−m(q̂)Ai (a.2)

where Ai is given for each of the cases a) b) c) d) listed above by

Aa =
1

2j′
C(j + 1/2, λ, j′ − 1/2; 000)

{(j′ +m′)1/2(j + 1 −m)1/2C(j + 1/2, λ, j′ − 1/2;m− 1/2, m′ −m)

−(j′ −m′)1/2(j + 1 +m)1/2C(j + 1/2, λ, j′ − 1/2;m+ 1/2, m′ −m)} (a.3)

Ab =
1

2j′
C(j − 1/2, λ, j′ − 1/2; 000)

{(j′ +m′)1/2(j +m)1/2C(j − 1/2, λ, j′ − 1/2;m− 1/2, m′ −m)

+(j′ −m′)1/2(j −m)1/2C(j − 1/2, λ, j′ − 1/2;m+ 1/2, m′ −m) (a.4)

Ac =
1

2j′ + 2
C(j + 1/2, λ, j′ + 1/2; 000)

{(j′ + 1 −m′)1/2(j + 1 −m)1/2C(j + 1/2, λ, j′ + 1/2;m− 1/2, m′ −m)
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+(j′ +1 +m′)1/2(j+ 1+m)1/2C(j+ 1/2, λ, j′ +1/2;m+ 1/2, m′−m)} (a.5)

Ad =
1

2j′ + 2
C(j − 1/2, λ, j′ + 1/2; 000)

{(j′ + 1 −m′)1/2(j +m)1/2C(j − 1/2, λ, j′ + 1/2;m− 1/2, m′ −m)

−(j′ + 1 +m′)1/2(j −m)1/2C(j − 1/2, λ, j′ + 1/2;m+ 1/2, m′ −m)} (a.6)

B) Non relativistic case: we evaluate matrix elements of the ~σ(~p+ p̄′)/2M

operator between non relativistic states

< n′l′j′m′|~σ(~p+ ~p ′)/2M |nljm > (a.7)

The derivation of this matrix elements requires a bit more algebra than the
non relativistic case. With the help of some useful formulas from the appendix
of ref. [18] we obtain the following result

< n′j′l′m′|~σ (~p+ ~p ′)

2M
ei~q ~r|nljm >=

i(−1)j′+l′+1/2
√

4π
1

2M

∑

λ

C(jλj′; 1/2, 0, 1/2)

C(jλj′;m,m′ −m)iλY ∗
λ,m′−m(q̂)

[2(2λ+ 1)

2j′ + 1

]1/2

F (n′l′j′, nlj;λ) (a.8)

with λ+ l + l′ an odd number, where the last function is given by

F (n′l′j′, nlj;λ) =

δj,l+1/2(l + 1)1/2
∫ ∞

0
r2drφl′(r)[

dφl(r)

dr
− l

r
φl(r)]jλ(qr)

−(−1)j−j′+l−l′δj′,l′+1/2(l
′ + 1)1/2

(

2j + 1

2j′ + 1

)1/2

∫ ∞

0
r2dr[

dφl′(r)

dr
− l′

r
φl′(r)]φl(r)jλ(qr)
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−δj,l−1/2l
1/2
∫ ∞

0
r2drφl′(r)[

dφl(r)

dr
+
l + 1

r
φl(r)]jλ(qr)

+(−1)j−j′+l−l′δj′,l′−1/2l
′1/2

(

2j + 1

2j′ + 1

)1/2

∫ ∞

0
r2dr[

dφl′(r)

dr
+
l′ + 1

r
φl′(r)]φl(r)jλ(qr) (a.9)
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[10] R. Fritz, H. Müther and R. Machleidt, Phys. Rev. Lett. 71 (1993) 46;
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Figure captions:

Fig. 1 Diagrams appearing in the perturbative approach to the renormalization
of the axial charge.

a) b) involving positive energy intermediate nucleon states: c) d) involving
negative energy intermediate states.

Fig. 2 Axial charge form factor for the 0+ → 0− transition in 16O from the
orbitals 1p1/2 → 2s1/2 and 1p3/2 → 1d3/2 with relativistic and equivalent non
relativistic wave functions.

Fig. 3 Ratio of the relativistic to non relativistic matrix elements of fig. 2 as
a function of the momentum transfer.

Fig. 4 Same as fig. 3 for 40Ca and the transition 0+ → 0− from the orbitals
1d3/2 → 2p3/2.

Fig. 5 Ratio of relativistic to non relativistic matrix elements for the transition
in fig. 4.
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