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IXJJATIONSFOR ADIABATIC BUT ROTATIONAL STIXDY

GAS FLOWS WITHOUT FRICTION*

By Manfred Sch~fer

ASSUMPTIONS

1. The flowing gases are assumed to
bution. (“Isoenergeticgas flows,” that
is valid with the same constants for the

have uniform energy distri-
is, the energy equation
entire flow.) This is

correct, for example, for gas flows issuing from a region of con-
stant pressure, density, temperature, end velocity. This property
is not destroyed by compression shocks because of the universal
validity of the energy law.

2. The gas behaves adiabatically, not during the compression
shock itself but both before and after the shock. Howeverj the
adiabatic equation (p/pJ$= C) is not valid for the entire gas
flow with the same constant C but rather with an appropriate
individual constant for each portion of the gas. ~Gl” fh?aciy flOWS,
this means the.tthe constant C of the adiab?.ticequation is a
function of the stream function. Consequently, a qa~ Lba’,,has
been flowing “isentropically”,that is, with the saxe constant C
of the adiabatic equation throughout (for exa~pie, m origination
from a region of constant density, teuperaturej and velocity) no
longer remains isentropic after a compression shcck if the com-
pression shock is not extremely simple (wedge shaped in a two-
dimensional flow or cone shaped in a rotationally symmetrical flow).

The solution of nonisentropic flows is therefore an urgent
nece8sity.

For the computations, the physical system of measurements
[mass, length, time, degrees Kelvin (absolute temperature), and
calorie) will be used. This system was chosen in order to avoid
the frequent occurrence of g. In the final equations, the gas
condition no longer explicitly appears but instead only properties
of the velocity field based on the “limit velocity” Vm (corre-
sponding to outflow into a vacuum) appear.

*“Gleichungen f& Adiabatische, aber Wirbelbehaftete Station&e
Gasstr8mungen ohne Reibung.” Lehrstuhl f& Technische Mechanik an
der Technischen Hochschule Dresden, Archiv. Nr. 44/1.
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SYMBOLS

pressure

density

absolute temperature

velocity vector [NACA comment: Changed from the
v for si.mp:.icity.]with velocity components
in a cartesian x, y, z coordinate system

magnitude of velocity

stream function

German script
u, v, and w

limit velocity corresponding to outflow into a vacuum .

local sonic velocity

BASIC EQUATIONS

Motion equations:

(1)

or

p7 “vv=- .gradp
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Continuity equation:

-.

or

div (p T) = O

Along each stream line W = constant, the following adiabatic
equation applies:

Adiabatic equation:

The flow line
tion u:v:w;

(2)

(3)

has direction cosines that are related by the propor-
hence

a! &v+d#w.grad~* ~.()
axu+ay

(4)

However, the stream function is not completely determined by this
property. The numbering of the stream lines will be on the basis
of the mass flowing through, in the cases of two-dimensionaland
of rotationally symmetrical flows.

The following gas equation is understood to apply:

Ga5 equation:

E=RT (5)
P

The quantity ~OK or, correspondingly, f(~) is related in a

readily apparent manner to the potentialtemperature used by
meteorologists as well as

The entropy per unit

s

to the entropy, namely:

mass is

lR=-— ()ln2°
JK-1 P“
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J, the mechanical heat equivalent, equals

4 18 x 107 Rrm cm2 8e~-2●

cal

The “yotential temperature” 0 is that temperature which a
gas would reach if it were adiabatically brought to a suitably
selected normal pressure pn.

In accordance with the adiabatic equation

PnK 1-K

;=$’’zpn

In accordance with the gas equation

-&RKf# pnl-K

Consequently

Instead of
“zero density”
report.)

The energy
dynamicsj

pn’-l p
e’.——

~K ~’

the potential temperature, F. Frankl introduces a
Po. (See discussion of the literature at end of

equation per unit mass flow is, as proved in thermo-

P 1 (U2 + V2 + W2) = constantJEi+-+~
P

where, according to the introductory remarks, the constant is supposed
to be valid for the entire gas. The internal energy in thermal units

is Ei; J2ji+ ~ is the heat content i per unit mass, expressed In

mechanical units.



In the ideal gases

~i = CVT

lR
cv=-—

J K-1

‘:(&+’)’:&
Hence the energy equation becomes

Hw+$(U2+‘2+8 =constant
In terms of the maximum possible velocity Vm, which is the

V*2
“limit velocity,” ~ may be written for the constant; for with

outflow into a vacuum (P/P = 0), according to the previous
equation

(1.U2+V2+ $).2
2

Thus the final form of the
quantity, the magnitude of

energy equation
the velocity q

n.b. For adiabatic flows, the following is

5

is obtained if one more
is introduced.

true along a

(6)

flow line:

k“ ‘WP-2‘p=*f(v)’K-’=*:
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and this equation agrees with the first term of equation (6).

Because
J

~ occurs in the integration of the motion equation (1),

grad py*v~.-—
P’

it is evident that the energy equation (6) may

be derived by this method also, at least for adiabatic flows.
Compared with this, however, the thermodynamic derivation used
previously has the advantage of being valid for the entire flow
independentlyof compression shocks.

By the use of equation (6), the following equation is obtained
for local sound velocity a:

(7)

DIFFEIE!NTIAL3QUATIONSFOR

From equations (l), (2), (3),
derive equations that contain only
are to be eliminated.

GAS-VELOCITY FIELD ALONE

and (6) it is now intended to
velocities; that is, p and p

In order to eliminate P from equation (2), div(p~) = O,
the following equation is derived from equations (3) and (6):

f($)pK-1 K
~m2 - q2

—=
K-1 2

1therefore
Ki-

‘K-l Vm2 - q2
p.——

L2K f($) 1
and

div(p V) =pdivT+T=gradp= O

This equation may be replaced by the equivalent equation

(2a)

div V+V-. divV+Fgradlnp=O
P
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Now with the
tion in this

grad

1187 7

new expression for p [NACA comment: The second eQua-
section.]

1 1

Inp=
~ici

grad in [Vm2 - q ] - grad h f(v)-

Then it follows that
1

g
?~gradlnp= V- grad in [V.2 - q2]

because

and according to equation (4) becomes equal to O. Therefore

1
F7i

div V+ V*gradlnp= div T+ T-grad in [Vmz - q2]

1

ii%
V.grad [Vm2 -q2]

=div~+ 1

For this can finally be written

1 1

[Vm2 -q2JK-1
K

div V+ VO grad [Vm2 - q2] =0

or:

This
(See

(
L

)x
div V[V’2 - q2] .0

=0

equation Is already found in the work of L. Crocco, 1937.
discussion of literature at end ot report.)

(8)
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From the motion equation

p179VY=-gradp

p and p are also eliminated.

From previous reasoning

1

[

m
K-1 Vmz - q2

p.—
2K f($) 1

According to equation (3)

grad p
Therefore —

P
is expressed as:

r-
grad p =

i
, grad f($)

1
-ici- f(v)

= --&f(w)-

[

K
* ~(vmz -!12)m}

1
— -1 &
K-1

1
wrN(vm2 -q2) ‘-1
dv 12K

grad $

K

[ 1

— -1
K K-1 , K-1

~ (vm2 - q2)
K-1

icT ~g rad q2

[

K

~d;~) K-1 1~(vm2-q2)= grad $

1 1.—

- f($)
[

K-1 K-1 1-=(Vmz-q2)‘-lgrad$
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Consequently, after taking into account also

the following is obtained as the motion equation:

-- 1
‘otation v x v = Z-i?(Vn2 - q2) d l~Wf(v) grad$ (9)

ThiB equation appears to be new. It contains the expression
of the Bjerknes vortex theorem for the flows in question.

Because

d l~$f(l’)grad$ = grad in f($)

L. Crocco’s (1937) equation number (5) may also be
derived from tliieequation

rotation
( )

rotation V x T =0
vm2 - ~2

immediately

however, use of this equation is less informativethan equation (9).
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IN!!?IWDWTIONOF DIMENSIONLESSMAGNITUDES

If’the procedure of other authors is followed (Castagna: Atti
dells R. Ace. delle Science di Torino, vol. 70) in basing the veloc-
ities on Vm, which appears to be the most useful procedure, the
following system of equations is finally obtained

~lK(l -q2) grad ln f(~)rotation V x 7 = — (I)

(
1

)Ki
div T [1 - q2] =0 (II)

[NACA comment: Compare equation (8).] and equation (4) as the
third

T*gradt=O (III)

These equationa furnish five scalar equations for the four
unlaxwn quantities u, v, w, and ~!. This apparent extra relation
is caused by the fact that use has already been made of an integral
of the gas-d~amic equations, namely the energy integral, equation (6).
For this reason, the apparent extra relation introduces no contra-
dictions and proves to be no impediment in practice.

For brevity, equation (7) is also used in dimensionless form

az=~(l-qq

APPLICATION OF EQUATIONS (I), (11), AND (III) TO

TWO-DIMENSIONAL AND ROTATIONALLY

SYMMETRICAL FLOWS

1. Two-Dimensional Flows

Equations (II) and (III) are satisfied by

1

[
2==$u (1 -q )

Y

[

1
2==-*

v (1 -q ) x

the expressions ,

(lo)
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The vector equation (I) yields the followiw two eq=tions

By expression of the underlined velocities in terms of $,
the following single equation is obtained

($-a=~(’-’2’&- (11)

and the apparent extra relation no longer exists.

This equation agrees with Crocco’s equation, equation (10),
which that author could reach only by way of integration processes,
for the entropy in mechanical units is

Equation
equation (10)

s =~ln~=~lnf(~)

(11) now must be transformed. In accordance with

1 1-—
W

-—
a~.

-Wxx (1 - qz) ‘-1 - * (1 - q2) ‘-l
‘1 g

ax

By use of equation (7), from the previous equation the following
is obtained:

-1

1 L

-(l-qz)=~=txx+k?~=t= Jm-wK-l&
2a2 ax 2a2 ax
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Correspondingly, it is true that

1 11.-—.--—~(1-~z)

a~=l K-1 K-1 aq2

ay
Vyy (1 - !12)

K -1 57
and

.

...—...— .—. —. ... _ —. —-

In order to transform ~ and $$, the starting point is.
taken as either

2-—
~2=u2+v2=(l-q2) ‘-1 (*X2 + VY2 )

or

2

qz(l - q2) ‘-1 . $X2 + ~y2

When differentiated with respect to x, this yields

1
ET< %,

1=2(1 -q2) -V VXX+U*
)Xy

.. .. . . ,
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Consequently

Correspondingly ,

1

J qadd=z-ZJ ay { }
-WXY+UJYY

L

The four underlined equations nay be summarized as follows:

(a2 - U2)$XX - 2UV$XY + (a2 - v2)&

Therefore equation (11) becomes

a au
(a2 - u2)0n - 2uvi$y + (.2 - V2)WYY

G-a~=-
(a2 -q2)(l -qZ)*

K

This further yields
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and finally

This is the
field, with
for u, v,
Vn .

(12)

differential equation for the two-dimensional velocity
which also belong the defining equations, (10) and (7),
and a. All velocities are based on the limit velocity

In the
out the whole flow -

femiliar special case wherein f(v) is constant through-

()

V2
i-l——

az+yy=o
(13)

Because according to equation (I) the flow is then free from
rotation, and hence with the velocity potential cp

u a~
‘z

the following equation is obtained

(%+*)~-qJ*+*p-q2)= -’[- 2U2*-,UV=

v= ~ (14)
ay

from equation (II):

1.

@ 2V2 a~
-2UVZ- aY1

=0

v xx +9
YY –*[U2WXX+ 2UVCPXY + v% ]= oYY

or

()1 U2

()

V2
--@%x-z:Txy+ l-~~yy=o (15)
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Equation (15) for ~ is analogous in form
for $; however, it must be remembered in this
and v are expressed altogether differently in

15

to equation (13)
connection that u
terms of CIIthan

in terms of $ (compare equations (10) and (14)).

Holenbroek and Tscha@igin (Hodographenmethode der Gasdynamik)
have done work involving the comparison of the two differential
equations (13) and (15).

2. Rotationally Symmetr~cal-Flows

The cylindrical coordinates r, ~, and z will now be used.
The velocity components u IIz (axial) and
independent of u.

v IIr (radial) are

~guation (11) becomes:

1-

2‘1+ Mrv(’ - q2)&l = 0
$u (l-q)

L

where

This equation is

q2 2+=U

satisfied by:

[

1
Zici

ru(l - q )

[

1
ET

rv(l - q2)

(16)

where $(r,z) is the stream function, (compazw Stokes’s strmm
function for incompressibleflows).

At the same time,equation (III) is also satisfied by this
expression, therefore only the vector equation (I) remains to be
dealt with. Equation (I) yields:
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By expressing u and v
equation is obtained:

in terms of ~, the following single

(17)

This equation is equivalent to L. Crocco’s equation, equation (13),
which, however, he could only reach by integration,

The necessity of suitably transforming this last differential
equation, equation (17), remains.

From equation (16) is obtained

rar= -$zz(l-q’)-&-&(l-q’)-K+la#
~z

and making use of equation (7)

1 1

- (1-q2)K-1r~=$zz + ~~=$zz- vr(l - q2)K-1 ~’
‘a’ az

—— —

By analogy
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and

In order to

taken as

.

‘, the starting point is
?ilr

2

q2 2 Z=(l-$)-=r=U+v ($zz + Vrz )
L

or

2
2 ‘-1 . $Z2 + $rzq2r2(l - q )

By differentiationwith respect to z

2

{( )

/
m #

1
- 2q2r2

- q2 K-1

(=1-

= (1-

{
= w,

f

)q2 ‘r2{l -
L

IIZz + ilr ifrz
}

(1-w-‘}s
2 q2

}-

aq2
—. —
K-1 l-q2 az

@ &

1a2 az

>
1
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From these equations it follows that

1

G-‘25{’-$}%$=2{-‘“zz+““J
and finally

1

(1 -q’)=

2a2
—.

By differentiation with respect to r

= t - q2)&r2{6-$)$+?}=26.“rz‘ “’”J
1

=2(L- q~%r{- V$rz + .$rr}

.

(1. q2)K-lraq’ (- Wrz+uOrr) - (1 ‘q2)
K-1 ~2

—= .-
Za’ ar a’ -id
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Rro?nthe four underlined

-1

equations

1
R=i q2

V2v,z - 2uvllrz+ u%” - U(l - qz)
+

.52-q’

(a2 - $r 2
U2)WZZ + (a2 - v2)i$.r- 2uv$..z- ~ a

19

By use of this expression, differential equation (17) for $
becomes

(a2 . tir z
U2)$ZZ - 2uv$rz + (a2 - v2)$rr - ~a

K 1
‘+~dlnf(~)

‘2 (a2 -q2)(l -q2)K-1=-—-
2K dv

or finally

(18)
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This equation is the differential equation for the rotationally
symetirical velocity field, with which belong also the defining
equations (7) and (16) for u, v, and a. All velocities are based
on the limit velocity Vm.

In the fsmillar special case in which f($) is constant through-
out the whole flow,

Llz()1 +$ -~=o-— ()a2 ‘zz-2~wrz+ 1 a2 ‘r r
(19)

Because, according to equation (I), the flow is then free of
rotation and with the velocity potential defined as follows:

(20)

the following is obtained by insertion in equation (II) (the continuity
equation):

-2Llv*.2uv& -@Z
3Z & 1?h=o

[
Vzz +T$r+ Lvr - L u%??’ + 2uvcPrz + V%pr = o

r a2 1
or

U2()1 V2() Pr-pPzz-=
a2

Cprz+ l-—
a2

Cpm+yo (2i)

Differential equation (21) for v is the ssme, except for the
sign of the last term,as that for $, equation (19). However, u
and v are expressed altogether differently in terms of $ than in
terms of ~ (compare equations (16) and (20)).
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THE LITERATURE

1. Frankl, F. and Aleksjeva, R.: Two Boundary-ValueProbl.erns
Irlvolvingthe Theory of Hyperbolic Differential Equationfiof the
Second Order with Applications to Gas F1OWS of Supersonic Velocity
(Russian). Matematiceski Sbornik, 1934, p. 483. There exists a
German script translation of this work made at that time at my
request by Mr. B1. Dolaptschiew of Sofia.

In this report a differential equation occurs for $ in the
two-dimensional case of the general flow (f(~) ~ constant) that
is copied from a paper by F. Frankl in the collection “SovietUnion
Rockets” which is unavailable. The differential equation set forth
by Mr. F. Frankl is as follows:

(1 U2 k-1 V

3
& ..4.

(

~fi+ ~ V2

)

k-1 U2 ~z$-—-— — - — - ..— — —
a*2 k-~1a*2 ~x2 k-tla*2 ~~y a*2 k+l a*2 ~y2

2

In the report from which the quotation
made regarding definitions is that the

is taken, the only statement
“zero density” PO is the

density obtained by the adiabatic reduction of the veloc~ty to zero.
Aside from the unprofitable introduction of Po, F. l?rankl’sequa-
tion may be immediately obtained from equation (18) if the sonic
velocity a is expressed in terms of the critical velocity or
critical Sonic Velocity a* (U2 + V2 = a*2) in accordance with

a2 . k+l a*2 -u (U2 + V2)
2 2

The meaning of the other symbols insofar as they differ from these
used here is obviously as follows:

W2 corresponds to q2

k corresponds to K.
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2. Crocco, L.: Una nuova funzione di correnta per 10 studio
del moto rotazionale dei gas, Rend. dells R. Accad. dei Binceij
VOIL XXIII, serie 6a, 1° sem. fast. 2, 1936.

Translated as “Eine neue Stromfunktion fh die ~I&forschung der
Bewegung der Gase mit Rotation!’, ZaMM17, p. 1, 1937.

Crocco’s final equations (10”) and (13’)agree with equations
(12) and (18). Mention has previously been made of the differences
in derivation.

NOTES

1. With regard to page 3 it should be noted that up to the
present time a stream function $ has been defjned only in the two-
dimensional and rotationally symmetrical flows, which cases are, to
be sure, of principal interest. In the general three-dimensional
case, * = constant is to be considered as the equation applying
to those flow surfaces (built up out of flow lines) on which the
function f($) is constant.

The Crocco stream function is used chiefly as the stream function
for two-dimensional and rotationally symmetrical flows. The numbering
of the flow lines is, with the exception of the isentropic case
(chapters III and IV), not done by Crocco on the basis of the mass
flowing through, but corresponds instead to his form of the continuity
equation (8). Reasons of expediency led, even in the- case of the
nonisentropic rotational flows (chapter VI), to reversion from the
Crocco stream function to the customary stream function.

2. Regarding page 6 it is to be noted that the relation between
the new vortex theorem as expressed in equations (9) and (I) and
the Bjerknes vortex theorem has recently received proper clarifica-
tion for the first tine in a paper in the Wieselsberger-Gedachtnisheft,
ZWB (W. Toll-mien: Ein Wirbelsatz ftirstation&e isoenergetische
Gasst~mungen.) In the same paper the apparent excessive determina-
tion of the equation system (1), (11), and (III) is decisively
explained by the fact that the vortex theorem (I), contrary to first
appearances, yields only two scalar equations.

3. The relation between pressure, density, and velocity for
isentropic flows that will be used frequently in the following
lectures is appended here. When using dimensioned quantities, in
accordance with the energy equation (6)
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-!2E Vmz- (’p= ——
K-1 -p 2

and in accordance with the adiabatic equation for isentropic flows

-E=c
pl’t

From this, by the elimination of P, is obtained

The first factor is equal to the reservoir pressure PO, as appears
by setting q equal to zero. According to this

From the adiabatic equation it then follows that

P=p+$$
m

Wh=e P. is the reservoir density.

Translation by Edward S. Shafer,
National Advisory Committee
for Aeronautics.
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