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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM NO. 1187

IQUATIONS FOR ADIABATIC BUT ROTATIONAL STEADY

GAS FIOWS WITHOUT FRICTION*

By Manfred Schifer

ASSUMPTIONS

1. The flowing gases are asgsumed to have uniform energy distri-
bution., ("Isoenergetic gas flows," that is, the energy equation
ie valid with the same constants for the entire flow.) This is
correct, for example, for gas flows lssuing from a region of con-
stant pressure, density, temperature, and velocity. This property
is not destroyed by compression shocks because of the universal
vallidity of the energy law.

2. The gas behaves adlabatically, not during the compression
shock itself but both before and after the shock. However, the
adlabatic equation (p/pK C) is not valid for the entire gas
flow with the same constant C but rether with an appropriate
individual constant for each portion of the gas. For gteady flows,
this means that the constant C of the adiabatic equation isg a
function of the stream function. Consequently, a gus Lbal has
been flowing "isentropically", that is, witk the sare consgtant C
of the adiabatic equation throughout (for exampie, in origination
from a region of constant density, tewperature, and velocity) no
longer remains isentropic after a compression shock if the com-
pression shock is not extremely simple (wedge shaped in a two-
dimensional flow or cone shaped in a rotationally symmetrical flow).

The solution of nonisentropic flows is therefore an urgent
necessgity.

For the computations, the physical system of measurements
(mass, length, time, degrees Kelvin (absolute temperature), and
calorie) will be used. This system was chosen in order to avoild
the frequent occurrence of g. In the finel equations, the gas
condition no longer explicitly appears but instead only properties
of the velocity field based on the "limit velocity" 7V, (corre-
sponding to outflow into a vacuum) appear.

*"Gleichungen flir Adiabatische, aber Wirbelbehaftete Stationdre
GasstrSmungen ohne Reibung." ILehrstuhl flr Technische Mechanik an
der Technischen Hochschule Dresden, Archiv. Nr. 44/1.
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SYMBOLS
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comment: Changed from the German script

v for simplicity.] with velocity components u, Vv,

in a cartesian X,
magnitudc of velocity

stream function

¥y, 2z coordinate system

limit velocity corresponding to outflow into a vacuum

local sonic velocity

BASIC EQUATIONS

Motion equations:
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Continuity equation:

of 2, 9V L ¥ o2} o Qe _
p(a'*ay"az)*“ax*"ay”’az‘o (2)

or
div (p V) = 0

Along each stream line VY = constant, the following adiabatic
eqpation applies:

Adiabatic equation:

£ = 2(v) (3)
P

The flow line has direction cosines that are related by the propor-
tion wu:v:w; hence

aiu+ﬁl’_v+@kw=grad\l";;=0 (4)
ox oy oz

However, the stream function is not completely determined by this

property. The numbering of the stream lines will be on the basis

of the mass flowing through, in the cases of two-dimensional and
of rotationally symmetrical flows.

The following gas equation is understood to apply:

Gas equation:

R - RT (5)
P

The quantity ﬁ% or, correspondingly, f(V) is related in a

readily apparent manner to the potential temperature used by
nmetecrologists as well as to the entropy, namely:

The entropy per unit mass is
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J, the mechanical heat equivalent, equals

4.18 X 107 grau cn® sec”C

cal

The "potential temperature” 6 is that temperature which a

gas would reach if it were adiabatically brought to a suitably
selected normal pressure DPp.

In accordance with the adiabatic equation

— T em—

In accordance with the gas equation
K n
o}

Consequently

Ppf-1 P
R® o*

ek =

Instead of the potential temperature, F. Frankl introduces a

"zero density" py. (See discussion of the literature at end of
report.)

The ensrgy equation per unit mass flow is, as proved in thermo-
dynamics,

JE; + g + % (u? + v® + w8) = constant

where, according to the introductory remarks, the constant is supposed
to be valid for the entire gas. The internal energy in thermal units

is Ej; JBEg + % is the heat content 1 per unit mass, expressed in
mechanical units.
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In the ldeal gases
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Hence the energy equation becomes

LT D Y (- R )-
5 <K_1_)+ 2<u + v2 + wP) = constant
In terms of the maxim%m poseible velocity Vg, which is the

V.
"limit velocity," —g— may be written for the constant; for with

outflow into a vacuum (p/p = O), according to the previous
equation

V.2
;<u2 + V@ 4+ w2> = 2
2 2

Thus the final form of the energy equation is obtained if one more
quantity, the magnitude of the velocity q 1is introduced.

2 V2
Bi-fg_z:_m_. (6)
p K=l 2 2

n.b. For adiabatic flows, the following is true along a flow line:

EX fwmfp”-z R



6 NACA TM No. 1187

and this equation agrees with the first term of equation (8).

Because f %E occurs in the integration of the motion equation (1),

TVY =-§£%di, it is evident that the energy equation (6) may

be derived by this method also, at least for adiabatic flows.
Compared with this, however, the thermodynamic derivation used
previously has the advantage of being valid for the entire flow
independently of compression shocks.

By the use of equation (6), the following equation is obtained
for local sound velocity a:

2 _dp _ K-1 . p_ K-1 2 _ .2

DIFFERENTIAL EQUATIONS FOR GAS-VELOCITY FIELD ALONE

From equations (1), (2), (3), and (6) it is now intended to
derive equations that contain only velocitles; that is, p and »p
are to be eliminated.

In order to eliminate p from equation (2), div(p¥v) = O,
the following equation is derived from equations (3) and (6):

K= V2 - @
£(y)pt L H’fl = T
therefore 1
= i_H-l Vo - @@ Jml
L2k f(V)
and
Aiv(p¥) = pdivV + Vegrad p = O (2a)

This equation may be replaced by the equivalent equation

divV+V5—rE@—p=divV+Vgradlnp=O
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Now with the new expression for p [NACA comment: The second equa-
tion in this section.]

1 1
Kl =1
grad 1n p = grad 1n [sz - q2] - grad 1ln f(\v)K 1
Then it follows that
L
K-l
Vegrad In p = V- grad 1n [sz - q%]

because
X .
5. k-1 1 afr(y) 1 oL AV v
v s grad 1n £(¥) = FOY 3y n-ljl_“ TS TYS:

and according to equation (4) becomes equal to O. Therefore

1
o o 5 ool
div V¥ + Vegrad ln p = div ¥ + 7. grad 1n [Vp® - q¢]
L
Kal
_ V.grad [sz - g_2]
= div v + = 0
L
2 _ 42K
(v, -a%]
For this can finally be written
1 L
R=1 _ K-l
[sz - q2] div V + V. grad [Vma - ¢2] =0
or:
Lo
K-l
aiv <v[vmz - 9?7 >= 0 (8)

This equation 1s already found in the work of L. Crocco, 1937.
(See discussion of literature at end of report.)
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_ From the motion equation
PV VYV = -grad p

v and p are also eliminated.

From previous reasoning

i
K-l
- [K-l sz - qz:l
2k £(¥)
According to equation (3)
- &7 -1 o
Rol| K- K-
p=f(y) o* = £(y) "H = (vt - qz)}
Therefore ;g—r%‘:-ﬁ is expressed as:
Sl 5
grad p = grad{f(\l’) K'l{gzﬁ- (Vu? - q%) K'l}
1 K
Ly TSR o )P g
= -3 (W v LT Vm -q grad V
-2 £_ 3
K-1 K-1 . k-1
- £(V) E—'f—-[—g- (V2 - qz)} L grad g%
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LI LT
rad 1 K=1"K-1 gr(y) [ k-1 K-1 K-l
SR. o r(h) | B (- ?) grad
AL 1.1
k-l k-1 [k ¢ -1 k-1
+ T (V) =% (Vg2 - q%) grad 3%

~—

_ 1 -1 afr(y) k-1 2 _ .2 q2
= T ) —&%—-L-——ZK (Vm g¢)| grad ¥ + grad =~
Cbnsequently, after taking into account also

— — 2 — —
V.VYV = gra.dg'z—+ rotation v X v

the following is obtained as the motion equation:

rotation ¥ X V = - q2) d—%\ﬁ‘—(\!—)-

(V2 grad (9)

L
2K

This equation appears to be new. It contains the expression
of the Bjerknes vortex theorem for the flows in question.

Because

d 1n £(V) grad ¥V = grad 1ln f£(¥)

ay
L. Crocco's (1937) equation number (5) may also be immediately
derived from this equation

rotation 0

rotation ¥ X 'v_>_
V2 - q?

however, use of this equation is less informative than equation (9).
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INTROTUCTION OF DIMENSIONLESS MAGNITUDES

If the procedure of other authors is followed (Castagna: Atti
della R. Acc. delle Science di Torino, vol. 70) in basing the veloc-
ities on Vp, which appears to be the most useful procedure, the
following system of equations ls finally obtained

rotation ¥ X ¥ = -2%—4 (1 - q%) grad 1n £(¥) (1)
I
K-

d1v<v [1 - q%] >= 0 (11)

[NACA comment: Compare equation (8).] and equation (4) as the
third

Vegrad v = 0 (111)
These equations furnish five scalar equations for the four
unknown quantities u, v, w, and V. This apparent extra relation
is caused by the fact that use has already been made of an integral
of the gas-dynamic equations, namely the energy integral, equation (6).
For this reason, the apparent extra relation introduces no contra-
dictions and proves to be no impediment in practice,

For brevity, equation (7) is also used in dimensionless form

r=-1
al = '5"(1 - q2)

APPLICATION OF EQUATIONS (I), (II), AND (III) TO
TWO -DIMENSIONAL AND ROTATIONALLY
SYMMETRICAL FLOWS
1. Two-Dimensionél Flows

Equations (IT) and (III) are satisfied by the expressions

1
u (1 - qz)i:I =V
N (10
v (-2 e oy

X
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The vector equation (I) yields the following two equations

@& .o “ 1 — d ln £(V) oV
-(ﬂ F)v_z—K(l -q_z) _a_L_.g_
and

v _ 3 _1 _ 2y 4 1n £(¥) oV
(Z-8)u-Fa-o s

By expression of the underlined velocities in terms of v,
the following single equation is obtained

K
dv _du\_ 1 _ a2 k-1 g 1n £ ()
> a—y)— 5% (1 - q%) I (11)

and the apparent extra relation no longer exists.

This equation agrees with Crocco's equation, equation (10),
which that author could reach only by way of integration processes,
for the entropy in mechanical units is

- B I
S = Kol 11’15K- Kol in f(\U)

Equation (11) now must be transformed. In accordance with
equation (10)

1

- = -1

v _ L 2y K-l 2
o 2 L)) - = (1 - d?) &

By use of equation (7), from the previous equation the following
is obtained:

1
K1

1
k-l ov Vx g2 v (1 - g2) ol
- l_q2) —:\I/ +—..—-£—=\lf - q
( dx XX 2a2 3y = 2a2 dx
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Correspondingly, it is true that

S L g -l
g%= Vyy (1 - a2) L ;_zl' (L-q?) %_1;_
and
25T ou Vy ag (1 - qz)ﬁ%_l 3q°
(1 - g*) 557 Vyy 282 3y Vyy + 2a? oy

qz 2
In order to transform %F; and Sy the starting point is

taken as either

Q¢ = uf + v = (1 - ¢?) (W2 + 0 E)

or

:Im

2 2y%-1 o2 2
a“(1 - %) T =Vf w0y

When differentiated with respect to -x, this yields

2 2 2.,
K-1 ‘242 Kl 2 K-1 2
(1-92) -2 (1-¢2) 99° _(1-¢7) 1.2 2 lxP
x K-l 1l-gq X
£
s (1-2)" 11 2\ ae? _

]
™
=
[}
o
~
o
=
b
+
o
255
v
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Consequently
1 ) .
K-1 ~ 2> 3 2
(1 - q?) 1—3—}—‘1—-=2—v +u
b i a2) 3x Vxx wJCy
Corresgpond ingly
1

Wl 2 2
1 - q2) 1 - 4 ﬂ—:z{v +u
( 1 2 Sy Vxy * BV

The four underlined equetions may be summarized as follows:

1

A .
-(1-4%) [ﬁ g%]-wnwyw

vzwix - ZuVWiy + uly

Jy

al - q2

(a2 - uz)Wix - ZuVﬂ&y + (al - v2)¢5y

a2 - g2

Therefore equation (11) becomes

(a.2 - u? Wyx - ZuV\ny + (za.2 - v'?)\llyy

ov _ou _ _
ox Jy 1
(a2 - a2)(1 - ¢&)FT
K
1 2y81 4 1n £
=gx (1 -0 gy

This further yields

2 —
(3 he o e (1 B - (- B 22
a

a’ g2/ I 2K
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and finally
Kl
c 2 / o2 K1
1- % -puY - =X (. _a2 d 1n £(¥)
< az)“’“ = Vart (-3l g A Py

(12)

This is the differential equation for the two-dimensional velocity
field, with which also belong the defining equations, (10) and (7),
for u, v, and a. All velocities are based on the limit velocity
V-

In the femiliar special case wherein f(V¥) is constant through-
out the whole flow

uz uv 2
(1 - ;§>\Vxx - z;—z-\bxy + (1 _Z—Z)\Ilyy =0 (13)

Because according to equation (I) the flow is then free from
rotation, and hence with the velocity potential ¢

u = §-g-)', v = a_c_p (14)
oX oy

the following equation is obtained from equation (II):

1 1

- — -1
u . ov)/ 2\k-1 1 2\k-1 2 ou ov
4]~ —— - - e - =

(ax +ay>( q) ! (l : o ox o Ox

N\

or

2 2
u uv v _
( - ;E)cPXX - 2;—2- qaxy + (1 - ;-é-)pry =0 (15)
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Equation (15) for ® is analogous in form to equation (13)
for V; however, it must be remembered in this connection that u
and v are expressed altogether dlfferently in terms of ©® than
in terms of VY (compare equations (10) and (14)).

Holenbroek and Techapligin (Hodographenmethode der Gasdynamik)
have done work involving the comparison of the two differential
equations (13) and (15).

2. Rotationally Symmetrical Flows

The cylindrical coordinates r, ®, and 2z will now be used.
The velocity components wu || z (axial) and v || r (radial) are
independent of w.

Equation (ITI) becomes:

1 l
o) 2 k-1 1 09 2 1]
o 1 - i o -
37 u( ac) ] =5 [-rv(l q?) 0
where
02 = u2 4 v2

This equation is satisfied by:

g 1
_ a2yl a3y
ru(l - q¢) =2
4 1 (16)
[re(a - q2) 2 -2
az

\.

where (r,z) 18 the stream function, (comparc Stokcs's stroam
function for incompressible flows).

At the same time, equetion (IIT) is also satisfied by this
expression, therefore only the vector equation (I) remains to be
dealt with. Equation (I) yields:
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2 d In £(¥) dy
2K (l - q%) av or

TS
vy
i
0)'0)
RiS
N
i=
I

<
'
Im
Hig
N~
i<
[]

_;_(1 i qz)a 1n £(¥) AV
2K av oz

By expressing u and v in terms of 1, the following single
equation is obtained:

K
ov _dul)_r (y .2t alin e
<§E é?)‘zn( q) Y (7)

This equation is equivalent to L. Crocco's equation, equation (13),
which, however, he could only reach by integration.

The necessity of suitably transforming this last differential
equation, equation (17), remains.

From equation (16) is obtained

1 1
v _ . S @) BT . V2o L2y e 7t add
raz = WZZ (1 Q) ) (1 q°) 1 3
and making use of equation (7)
2 L
- (1 - qz)}{-l r Vo Yz 2? | v -zl - a2) " w2
dz ZZ 2 T Taz 2
2a” Oz 2a dz

By analogy

1 - 1
- e - 1 2 v
2 Uy (1-a8) T L (1) RT 7Tl E (1. q2) FT
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and

1 1

K-1
(l_qZ) r Qll- =\l/ -1112 Wr ag w. _\_!;'{4_ :I‘z (l-qz)K-l aqz
a

3r T r 2.2 3p r

17

2 2
In order to transform <3 and ag_’ the gtarting point is
r

taken as oz
- 2_
"ol
2 _ 2., .2_ (1 -4q%) 2 2
q° = u® 4+ v° = z (\pz +\yr)
or
2_
Ro1
a2r2(1 - @) =y 2 4y, 2

By differentiation with respect to =z

2
7 E_— K— -
o7 - w07 N
2
2 2
<1-q> -1 { _é_.__q__}a;z_
K-l 1-q2) dz
*l 2’
<1-qz> zﬁl-g__g_
i

Z{Wz \sz + “l"r Wrz

1

K1 r
2(1 - ?‘ 1 r{L- Wy, + u\brz}

ﬁ,
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From these equations it follows that

- 2 r
(l-q> l {1- }aq _zi- YWy, + Wy,

and finally
1

(1 -q2)*? )
222 oz a

By differentiation with respect to r
2

2
r K-1 k-1
i(l - q2> I‘2 + 2rq Q_ >

29
(1-q> {( ‘-L .B.L+2<1 (xv v, r\vrr>
A
=2<l -q2>ﬁ-l r{—vxlf + }
rz rr

<1-q2>-£—1-r< -——>a—9-—2< W+ /-2<1-q>nl 2

1 £

=== 1
(L - QZ)K-lI‘ 3q? (- W, + wh) - (1 - qz)K q?

288 ar a.2 - qz

__..1\
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From the four underlined equations it follows that
2
(1 -2yt ou |, Ve
(1 q)_ rLa_z' ﬁ]'wzz+wrr T

A
K-1
vy, - 2uvy,, + uz\llrr - u(l - q2) q?

+
a2 - g2
v \/
(‘yzz + Yy - I‘E (5'2 - %)+ vz\vzz - 2uvip,, + u‘z\‘Jrr - 'E' q®
2 - Z

(a2 - uz)\llzz + (a2 - vz)\brr - 2uvi,, - \l-lrﬁ al

a2 - q2

By use of this expression, differential equation (17) for ¥
now becomes

Vg 2
(a2 - uz)\lfzz -~ 2uvi,, + (a2 - va)\llrr -=a
K 1
2 BT ¥ %I g 1n 2()
= - £ (a2 -~ q2)(1 - g2 @ n ity
T (ae - q&)( q4) 3

or finally

2 v 2
(o) e (B

SEE- T
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This equation is the differential equation for the rotationally
symmetrical velocity fleld, with which belong also the defining
cquations (7) and (16) for u, v, and a. All velocities are based
on the limit velocity V.

In the familiar svecial case in which f(¥) is constant through-
out the whole flow,

'le ! | uv
(';E)sz 2=, <" )wrr = = (19)

Because, according to equation (I), the flow is then free of
rotation and with the velocity potential defined as follows:

v = g;_g (20)

the following is obtained by insertion in equation (II) (the continuity
equation):

( +

e 3

-1

BT Ro1
+ XTV1 - q2 A (1 - 42 - oy2 Ou
er “‘> ”n-l(l q) [ -

3v u 3y
-2 == - <L 2
WA TR - ar] 0

¥l
SNy
*1|<

1 1 2 2 =
Pyg + Ppp + 7 Py ;_2- [u Pz + 2UVR,, + 7 C[Jrr] =0

or

2 2 ®
1 -2 - 2% .Y r_o o1
< a2>cP” 2 Pz * 7 et (21)

Differential equation (21) for ¢ is the same, except for the
sign of the last term,as that for V, equation (19). However, u
and v are expressed altogether differently in terms of Y than in
terms of ¢ (compare equations (16) and (20)).
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THE LITERATURE

l. Frankl, F. and Aleksjeva, R.: Two Boundary-Value Problems
Involving the Theory of Hyperbolic Differential Equations of the
Second Order with Applications to Gas Flows of Supersonic Velocity
(Russian). Matematiceski Sbornik, 1934, p. 483. There exists a
German script translation of this work made at that time at my
request by Mr. Bl. Dolaptschiew of Sofia.

In this report a differential equation occurs for V in the
two-dimensional case of the general flow (£(V) # constant) that
is copled from a paper by F. Frankl in the collection "Soviet Union
Rockets" which is unavailable. The differential equation set forth
by Mr. P. Frankl is as follows:

<l _ w2 _ k-1 vz) azw 4 uv azw 2 _ k-1 u2>az\11
a%c k+l a*2/ dx& K+l axd axay a*2 k+l a¥e ay2
2_
RN - 4 _ k-1 dp
+k_+3;a*2l'<]:c_l l-l:ll_l{.i_l’__ po_._o.___o
2k k+l/ axt kt+l ax ay

In the report from which the quotation is taken, the only statement
made regarding definitions is that the "zero density"” p, is the
density obtained by the adiabatic reduction of the velocity to zero.
Aside from the unprofitable introduction of p,, F. Frankl's equa-
tion may be immediately obtained from equation (18) if the sonic
velocity a 1s expressed in terms of the critical wvelocity or
critical sonic velocity a¥* (u + V8 = a*z) in accordance with

al = k-|2—l axe - kgl (uz + v2)

The meaning of the other symbols insofar as they differ from these
used here is obviously as follows:

w2 corresponds to q2

k corresponds to K.
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2. Crocco, L.: TUna nuova funzione di correnta per lo studio
del moto rotazionale dei gas, Rend. della R. Accad. dei Bincei,
Vol. XXIII, serie 6%, 1° gem. fasc. 2, 1936.

Translated as "Eine neue Stromfunktion filr die Erforschung der
Bewegung der Gase mit Rotation", ZaMM 17, p. 1, 1937.

Crocco's final equations (10'') and (L3') agree with equations
(12) and (18). Mention has previously been made of the differences
in derivation.

NOTES

1. With regard to page 3 it should be noted that up to the
present time a stream function VW has been defined only in the two-
dimensional and rotationally symmetrical flows, which cases are, to
be sure, of principal interest. In the general three-dimensional
case, V = constant is to be considered as the equation applying
to those flow surfaces (built up out of flow lines) on which the
function f(¥) is constant.

The Crocco stream function is used chiefly as the stream function
for two-dimensional and rotationally symmetrical flows. The numbering
of the flow lines is, with the exception of the isentropic case
(chapters III and IV), not done by Crocco on the basis of the mass
flowing through, but corresponds instead to his form of the continuity
equation (8). Reasons of expediency led, even in the case of the
nonisentropic rotational flows (chapter VI), to reversion from the
Crocco stream function to the customary stream function.

2. Regarding page 6 it is to be noted that the relation bestween
the new vortex theorem as expressed in equations (9) and (I) and
the BJjerknes vortex theorem has recently received proper clarifica-
tion for the first time in a paper in the Wieselsberger-Gedachtnishef't,
7WB (W. Tollmien: Ein Wirbelsatz fir stationdre isocenergetische
Gasstrdmungen.) In the same paper the apparent excessive determina-
tion of the equation system (I), (II), end (ITI) is decisively
explained by the fact that the vortex theorem (1), contrary to first
appearances, yields only two scalar equations.

3. The relation between pressure, density, and velocity for
igentropic flows that will be used frequently in the following
lectures is appended here. When using dimensioned quantities, in
accordance with the energy equation (6)
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wp_Tu-d
K-1-p 2

and in accordance with the adiabatic egquation for isentropic flows

2 _,
ok

From this, by the elimination of p, 18 obtained

K K
k=1 K-1

-~ vz 2
=] 5 m-] <1--‘1_>
k-1 2c1/% V2

The first factor is equal to the reservoir pressure p,, as appears
by setting q equal to zero. According to this

A
2 K."l
2w (- %)
Vm

From the adiabatic equation it then follows that

2
K-1
2
p=po<1..._“l__>
v, 2

where Py 1s the reservoir density.

Translation by Edward S. Shafer,
Netional Advisory Committee
for Aeronautics.
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