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We present a way to evaluate the scattering of unstable particles quantized in a finite volume with
the aim of extracting physical observables for infinite volume from lattice data. We illustrate the
method with the πρ scattering which generates dynamically the axial-vector a1(1260) resonance.
Energy levels in a finite box are evaluated both considering the ρ as a stable and unstable resonance
and we find significant differences between both cases. We discuss how to solve the problem to
get the physical scattering amplitudes in the infinite volume, and hence phase shifts, from possible
lattice results on energy levels quantized inside a finite box.

I. INTRODUCTION

The determination of hadron spectra is one of the chal-
lenging tasks of Lattice QCD and much effort is being
devoted to this problem [1–12]. Large pion masses are
commonly used in these calculations [4, 13–17]. The
“avoided level crossing” is usually taken as a signal of
a resonance, but this criteria has been shown insufficient
for resonances with a large width [18–20]. A more accu-
rate method consists on the use of Lüscher’s approach,
for resonances with one decay channel, in order to pro-
duce phase shifts for the decay channel from the discrete
energy levels in the box [21, 22]. This method has been
recently improved [20] by keeping the full relativistic two
body propagator (Lüscher’s approach keeps the imagi-
nary part of this propagator exactly but makes approx-
imations on the real part) and extending the method to
two or more coupled channels. The new method also
combines conceptual and technical simplicity and serves
as a guideline for future lattice calculations. Follow ups
of this new practical method have been done in [23] for
the application of the Jülich approach to meson baryon
interaction and in [24] for the interaction of the DK and
ηDs system where the Ds∗0(2317) resonance is dynam-
ically generated from the interaction of these particles
[25–28]. The case of the κ resonance in the Kπ channel
is also addressed along the lines of [20] in [29].

The case of scattering of unstable particles deserves
a special care since in the box one must also discretize
the momenta of the decay products of all the particles.
One such system would be the π∆ system where the ∆
is allowed to decay into πN . The generalization of the
work of [20] to this problem has been done in [30].

The problem of scattering of unstable particles will
have to be faced by the lattice QCD calculations. So
far, problems which would require this treatment have
been studied assuming stable particles. This is the case
of the πρ scattering, from where the a1(1260) resonance
is qualitatively obtained, assuming the ρ to be a stable
particle, in an actual lattice QCD simulation using the
first two levels for a fixed size of the box [31]. In the

present paper we face directly this problem and provide
the formalism to address it, also for the case of an unsta-
ble ρ resonance. For this purpose recall that in the chiral
unitary approach the axial vector a1(1260) resonance is
dynamically generated from the interaction of πρ and
K̄K∗ in coupled channels [32, 33], where πρ is the dom-
inant channel. Then we follow the approach of Ref. [33]
and solve the interaction of πρ within a box with pe-
riodic boundary conditions. These boundary conditions
are imposed on the spectator π and on the two π that
come from the ρ meson decay. For the π − 2π system
we choose the global center of mass (CM) frame, but the
two pions that lead to the ρ in the ππ loop function are
in a moving frame and this forces us to make the dis-
cretization of the levels in this moving frame, a problem
which is well studied in [34, 35]. Furthermore the ρ is
a p-wave resonance which requires a different method to
obtain the selfenergy than the s-wave resonances. All
these problems will be dealt with in the present paper.

II. FORMALISM

In the chiral unitary approach the scattering matrix in
coupled channels is given by the Bethe-Salpeter equation
in its factorized form

T = [1 − V G]−1V = [V −1 − G]−1, (1)

where V is the matrix for the transition potentials be-
tween the channels and G is a diagonal matrix with the
ith element, Gi, given by the loop function of two meson
propagators, a pseudoscalar and a vector meson, which
is defined as

Gi = i

∫
d4p

(2π)4

1

(P − p)2 − M2
i + iǫ

1

p2 − m2
i + iǫ

, (2)

where mi and Mi are the masses of the two mesons and P
the four-momentum of the global meson-meson system.
Note that in Eq. (2) we have not considered the possi-
ble widths of the mesons, thus it is only valid for stable
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mesons. The unstable mesons case will be addressed in
section IV.

For the case of scattering of a pseudoscalar with a vec-
tor meson, for instance πρ, K̄K∗, as in the present case,
the interaction is taken from the chiral Lagrangians [36]
and has the form [33]

VP V = ~ǫ · ~ǫ ′ V (3)

where ~ǫ, ~ǫ ′ are the polarization vectors of the initial and
final vector mesons. The term ~ǫ ·~ǫ ′ factorizes in all terms
of the Bethe-Salpeter series, V , V GV , etc., and finally
in the T matrix. Hence, we omit this factor in what fol-
lows. The explicit expression of the potentials, properly
projected onto s-wave, is thus [33]

Vij(s) =
1

8f2
Cij

[
3s − (M2

i + m2
i + M2

j + m2
j)

−1

s
(M2

i − m2
i )(M2

j − m2
j )

]
, (4)

where f = 92.5 MeV is the pion decay constant, the index
i(j) represents the initial (final) P V state in the isospin
basis and Mi(Mj) and mi(mj) correspond to the masses
of the initial (final) vector mesons and initial (final) pseu-
doscalar mesons, for which we use an average value for
each isospin multiplet. The explicit values of the numeri-
cal coefficients, Cij , can be found in Ref. [33]. For the πρ
isovector amplitude, which we need for the present work,
CI=1

πρ,πρ = −2.
The loop function in Eq. (2) needs to be regularized

and this can be accomplished either with dimensional
regularization or with a three-momentum cutoff. The
equivalence of both methods was shown in Refs. [37, 38].
In dimensional regularization the integral of Eq. (2) is
evaluated and gives for meson-meson systems [37, 39]

Gi(s, mi, Mi) =
1

(4π)2

{
ai(µ) + log

m2
i

µ2

+
M2

i − m2
i + s

2s
log

M2
i

m2
i

+
Qi(

√
s)√

s

[
log

(
s − (M2

i − m2
i ) + 2

√
sQi(

√
s)

)

+ log
(
s + (M2

i − m2
i ) + 2

√
sQi(

√
s)

)

− log
(
−s + (M2

i − m2
i ) + 2

√
sQi(

√
s)

)

− log
(
−s − (M2

i − m2
i ) + 2

√
sQi(

√
s)

) ]}
, (5)

where s = E2, with E the energy of the system in the
center of mass frame, Qi the on shell momentum of the
particles in the channel i, µ a regularization scale and
ai(µ) a subtraction constant (note that there is only one
degree of freedom, not two independent parameters).

In other works one uses regularization with a cutoff in
three momentum once the p0 integration is analytically
performed [40] and one gets

Gi =

∫

|~p|<pmax

d3~p

(2π)3

1

2ω1(~p) ω2(~p)

ω1(~p) + ω2(~p)

E2 − (ω1(~p) + ω2(~p))2 + iǫ
,

ω1,2(~p) =
√

m2
1,2 + ~p 2 , (6)

with m1, m2 corresponding to mi and Mi of Eq. (2).
When one wants to obtain the energy levels in the fi-

nite box, instead of integrating over the energy states of
the continuum with p being a continuous variable as in
Eq. (6), one must sum over the discrete momenta allowed
in a finite box of side L with periodic boundary condi-

tions. We then have to replace G by G̃ = diag (G̃1, G̃2),
where

G̃j =
1

L3

|~p|<pmax∑

~p

1

2ω1(~p) ω2(~p)

ω1(~p) + ω2(~p)

E2 − (ω1(~p) + ω2(~p))2
,

~p =
2π

L
~n, ~n ∈ Z

3 (7)

This is the procedure followed in [20]. The eigenener-
gies of the box correspond to energies that produce poles
in the T matrix, Eq. (1), which correspond to zeros of

the determinant of 1 − V G̃.

III. ONE CHANNEL ANALYSIS

In the present problem the threshold of K̄K∗ is above
the mass of the a1(1260) resonance and, as found in [33],
the πρ channel is more important than the K̄K∗ one.
For this reason we shall perform the analysis with just
the πρ channel, as also done for the lattice calculation of
[31].

The one channel problem can be easily solved and is
very simple, as shown in [20]. The T matrix for infi-
nite volume can be obtained for the energies which are
eigenvalues of the box by

T (E) =
(
V −1(E) − G(E)

)−1
=

(
G̃(E) − G(E)

)−1

.

(8)

since G̃(E) = V −1(E) is the condition for the T matrix
to have a pole for the finite box.

Hence we find

T (E)−1 = lim
pmax→∞

[
1

L3

pmax∑

pi

I(pi) −
∫

p<pmax

d3p

(2π)3
I(p)

]

(9)

where I(p) is the integrand of Eq. (6)
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I(p) =
1

2ω1(~p) ω2(~p)

ω1(~p) + ω2(~p)

E2 − (ω1(~p) + ω2(~p))2 + iǫ
. (10)

This result is the one obtained in Ref. [20] starting with
cutoff regularization and, as proved in Ref. [20], it is noth-
ing else than Lüscher formula [21, 22], except that Eq. (9)
keeps all the terms of the relativistic two body propaga-
tor, while in Lüscher’s approach one neglects terms in
Re I(p) which are exponentially suppressed in the physi-
cal region, but can become sizable below threshold, or in
other cases when small volumes are used or large energies
are involved.

IV. GENERALIZATION TO SCATTERING OF

UNSTABLE PARTICLES

In this section we extend the approach to the case
where we have one unstable particle. We shall work with
the case of one channel, but the generalization to many
coupled channels is straightforward. The consideration
of the unstable particle requires to reevaluate the loop
function G of Eq. (2) by using the dressed meson propa-
gator including its selfenergy that accounts for the decay
channels. This means substituting

1

p2 − m2 + iǫ
−→ 1

p2 − m2 − Π(p)
, (11)

where Π(p) is the meson selfenergy of the unstable parti-
cle. Diagrammatically this means that we must evaluate
the loop diagram of Fig. 1.

a1

pπP−p

p q

p−q

π

π

π

ρ

P

FIG. 1. The πρ loop diagram considering the ρ meson selfen-
ergy.

In order to calculate this loop function we must first
evaluate the ρ selfenergy, Π(p). One knows [32, 33] that
differences between the sum and the integral in Eq. (9) in
regions of p far away from the pole of I(p) are exponen-
tially suppressed in L. The sizeable differences stem from
regions of p close to the on shell momentum pon where
I(pon) has a pole. For this reason we evaluate Π(p) for
values of p where the π and ππ systems can be placed
on shell. This is the same prescription taken in Ref. [30].
Then we have

p2 = (P − pπ)2 = P 2 + p2
π − 2P pπ = s + m2

π − 2
√

sE(~p)

≡ M2
I ≡ sρ, (12)

with MI ≡ √
sρ the invariant mass of the two pion sys-

tem. We have chosen the CM for the πρ system and
hence ~pπ = −~p.

Since Π(p) is a Lorentz invariant magnitude one can
evaluate it in the CM frame of the ρ meson. However,

the analogous magnitude Π̃(p) in the finite box must take
into account the boundary conditions for the π momenta
in the moving frame.

In order to calculate the ρππ vertex, let us consider
the standard Lagrangian for the coupling of one vector
to two pseudoscalars [41]

LVPP = −igV 〈[P, ∂µP ]V µ〉 (13)

where gV = Mρ/2fπ, with fπ = 92.5 MeV the pion de-
cay constant, P , V µ, the SU(3) matrices of the pseu-
doscalar and vector mesons and 〈. . . 〉 standing for the
SU(3) trace. From this Lagrangian we find

tρπ+π− = 2
√

2 gV ~q · ~ǫ, (14)

with ~q taken in the ρ meson rest frame and ~ǫ the ρ po-
larization vector. The ρ selfenergy is then given by

− iΠ(p) =

∫
d4q

(2π)4

i

q2 − m2
π + iǫ

i

(P − q)2 − m2
π + iǫ

×(−i)2
√

2gV ~q · ~ǫ(−i)2
√

2gV ~q · ~ǫ ′. (15)

In the ρ rest frame, where we evaluate the ρππ vertex, we
have qiǫiqjǫ′

j, and for symmetry reasons we can replace

qiqj by ~q 2δij/3. Furthermore, in the chiral unitary ap-
proach it is justified to use the on-shell approach where
the vertices are factorized by their on shell form. Thus
we finally obtain

Π(p) =
8

3
g2

V ~q 2
onGππ(sρ)~ǫ · ~ǫ ′ (16)

where |~qon| =
√

sρ/4 − m2
π and Gππ(sρ) is the loop func-

tion of Eq. (2) for two pions. The function Gππ(sρ) can
be regularized by means of a cutoff, qmax, in the mod-
ulus of the three-momentum ~q and its explicit analytic
expression is [38]

Π(sρ) =
8

3
g2

V ~q 2
on

1

(4π)2
~ǫ · ~ǫ′

×
[
σ ln

σr + 1

σr − 1
− 2 ln

(
qmax

mπ

(1 + r)

)]
(17)

where σ =
√

1 − 4m2
π/sρ and r =

√
1 + m2

π/q2
max.

In Ref. [42] the Gππ function is evaluated in dimen-
sional regularization. This is equivalent to removing the
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divergent part of Π(sρ) of Eq. (17) and substituting it
by a subtraction constant which is then constrained by
experimental data. In Ref. [42], where the ρ meson is
studied within the chiral unitary approach, one finds that

GD
ππ(sρ) = σ ln

σ + 1

σ − 1
+ b (18)

with

b = −2 + d1
1 = −2 +

m2
K

m2
K − m2

π

(
ln

m2
π

µ2
+

1

2
ln

m2
K

µ2
+

1

2

)

(19)
and µ = mρ. One way to get the result of Eq. (18) is to
take the limit

GD
ππ(sρ) = lim

qmax→∞

[
Gππ(sρ) +

1

(4π)2

(
2 ln

2qmax

mπ

+ b

)]
.

(20)
since 2 ln(2qmax/mπ) cancels the divergent part of the
square bracket in Eq. (17) when qmax → ∞.

When we evaluate the selfenergy in the finite box,

Π̃(p), we shall use this expression but Gππ will be re-

placed by the corresponding discrete sum, G̃ππ . For
the numerical evaluation, the quantity inside the square
bracket in the previous equation has to be evaluated for
high values of qmax in order to get the convergence. How-
ever, it oscillates around the convergence value for not
very large values of qmax. Hence an average over the
interval qmax ∼ [2, 2.8] GeV numerically gets the conver-
gence value and thus we take this average in the numer-
ical evaluation, (see the analogous and further explained
reasoning in Ref. [24]).

V. DISCRETIZATION OF THE ρ SELFENERGY

IN THE MOVING FRAME

The ρ selfenergy in the finite box, Π̃(p), is given by
Eq. (16), where now Gππ will be given by Eq. (20) evalu-
ating Gππ(sρ) as a function of qmax for the finite box. In
order to perform this evaluation we must substitute the
d3q integration implicit in the evaluation of Gππ(sρ) in
the infinite volume by a discrete sum over the pion mo-
menta allowed in the finite box with appropriate bound-
ary conditions which we take to be periodic. The subtlety
is that the momenta ~qon in Eq. (16) and the variable of
integration in Eq. (15) are in the CM of the two pions
and the boundary conditions are in the box, where the
pair of pions move with total momentum ~p. By perform-
ing the q0 integral in Eq. (15) we find in infinite space
that

Π(p) = 8g2
V

~q∗
2

on

∫

| ~q∗|<qmax

d3q∗

(2π)3
I(q∗)q∗

i ǫiq
∗
j ǫ′

j , (21)

with p2 = sρ and ~q∗ the momentum in the CM of the
two pions.

We must write the boost transformation from q to q∗.
By applying the Lorentz transformation from a moving
frame with momentum p to a frame where the ππ system
is at rest [43] we find

~q∗
1,2 = ~q1,2 +

[(
p0

MI

− 1

)
~q1,2 · ~p

|~p|2 −
q0

1,2

MI

]
~p, (22)

where M2
I = sρ = p2, p02

= M2
I + ~p 2 and the subindexes

1, 2, represent the two pions of the decay of the ρ meson.
Demanding that ~q∗

1 + ~q∗
2 = 0 enforces q0

1 + q0
2 = p0 or

equivalently q∗0
1 + q∗0

2 = MI . We take for q∗0
1 , q∗0

2 , the on
shell pion energy for the decay of an object of mass MI

at rest into two pions

q∗0
1,2 =

M2
I + m2

1,2 − m2
2,1

2MI

. (23)

Only this prescription makes q∗0
1 = q∗0

2 for two pions as
we should expect for two identical particles in the center
of mass. This provides then the boost for the off shell
momenta in the loop, where ~q is arbitrary but the energy
is the on shell one. Since we need the Jacobian of this
transformation, it is useful to write Eq. (22) in terms of
the CM energy of the pion and we find

~q∗
1,2 = ~q1,2 +

[(
MI

p0
− 1

)
~q1,2 · ~p

|~p|2 −
q∗0

1,2

p0

]
~p. (24)

This equation is the one used in [30]. Furthermore we

must substitute
∫

d3q∗

(2π)3 by
∫

d3q
(2π)3

MI

p0 , where the factor
MI

p0 is the Jacobian of the transformation, with q the

π momentum in the ππ moving frame and then
∫

d3q
(2π)3

becomes 1
L3

∑
~q in the box. In summary, we must do the

substitution

∫
d3q∗

(2π)3
−→ 1

L3

∑

~q

MI

p0
, ~q =

2π

L
~n, ~n ∈ Z

3 (25)

for the evaluation of the selfenergy in the box.
When summing over ~q, the integrand takes the follow-

ing structure for symmetry reasons:

∑

~q

f( ~q∗, ~q )ǫiq
∗

iǫ
′
jq∗

j = ǫiǫ
′
j(aδij + bpipj) (26)

Eq. (26) is exact for any vector ~p placed along any of the
axis and quite accurate, although not exact for vectors
in other directions. Yet, the term of b is quite small,
since the scale is O((p/mρ)2). Such terms have been
systematically neglected in the approach of [33] and so
do we here. By contracting Eq. (26) after removing ǫiǫ

′
j

with δij on one hand, and with pipj on the other hand,
we get two equations from where we find
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a =
1

2

∑

~q

f( ~q∗, ~q ) ~q∗
2
(1 − cos2 θ), (27)

where cos θ = ~p · ~q∗/|~p|| ~q∗|. Hence we finally get

Π̃(sρ) = 4g2
V

1

L3
~q∗

2

on

| ~q∗|<qmax∑

~q

MI

p0ωπ(q∗)

1 − cos2 θ

sρ − 4ω2
π(q∗)

(28)
up to the trivial ~ǫ · ~ǫ ′ factor.

Finally, in order to get a pole of the ρ propagator in
the infinite volume at the physical ρ mass we subtract

to Π(sρ) and Π̃(sρ) the selfenergy Re Π(m2
ρ). Thus we

replace

Π(sρ) −→ Π(sρ) − Re Π(m2
ρ),

Π̃(sρ) −→ Π̃(sρ) − Re Π(m2
ρ). (29)

VI. INCLUSION OF THE ρ SELFENERGY IN

THE FINITE BOX AND INFINITE VOLUME

We come back to the original problem of the πρ inter-
action with the ρ dressed by its selfenergy. In the approx-
imation that we did to write Πρ for the case where the
three intermediate pions are placed on shell, the variable
sρ depends on ~p, see Eq. (12). Hence, the p0 integration
of Eq. (2) when we replace the vector meson propagator
as in Eq. (11) can be performed in the same way as with
two free propagators and we obtain

Gπρ(E) =

∫

|~p|<pmax

d3p

(2π)3

1

2ω1ω2

× ω1 + ω2

E2 − (ω1 + ω2)2 − ω1+ω2

ω2
Π(sρ)

(30)

where ω1 ≡ ω1(~p) and ω2 ≡ ω2(~p) are the π and ρ on shell
energies, and we have kept the leading term in Π/ω2

2,
which is a small quantity close to the ρ on-shell from
where the finite volume corrections stem mostly.

For the box we substitute Gπρ by G̃πρ given by

G̃πρ(E) =
1

L3

|~p|<pmax∑

~p

1

2ω1ω2

× ω1 + ω2

E2 − (ω1 + ω2)2 − ω1+ω2

ω2
Π̃(sρ)

. (31)

In one channel the scattering matrix in infinite volume
is given by

T =
1

V −1 − Gπρ

(32)

and for the finite box

T =
1

V −1 − G̃πρ

. (33)

The eigenenergies of the unstable πρ system in the box
are given by the energies that satisfy

V −1 = G̃πρ. (34)

600 800 1000 1200 1400 1600 1800
E [MeV]

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

V
-1

Gπρ
∼ (Π=0)∼

Gπρ
∼ (Π=/ 0)∼

FIG. 2. Loop function in the box G̃πρ (solid line) and V −1

(dashed line) for L = 2m−1

π and pmax = 1 GeV. The dashed

dotted line corresponds to the case with stable ρ, Π̃(sρ)=0.

In Fig. 2 we plot V −1 and G̃πρ as a function of E for

L = 2m−1
π and pmax = 1 GeV. The G̃πρ plot is very dif-

ferent to a typical meson-meson loop function in infinite
volume. It shows clear poles coming from zeros in the

denominator of Eq. (31) and from poles of Π̃(sρ). These

poles of G̃πρ are not present in the infinite volume since
in the integration the poles of the integrand provide an
imaginary part to the loop function but not a pole af-
ter performing the integration. However, this is not the
case in the finite box since we do not have an integral
but a summation. The intersection between both plots
of Fig. 2 just provides the πρ scattering eigenenergies in
the box.

It is interesting to note that the spectra obtained is
also qualitatively different to the one obtained for the
stable ρ which would be given by the intersection of V −1

and G̃πρ for the case of the stable ρ (dashed-dotted line

in the figure). We can see that for stable ρ one has G̃πρ

going to infinity when the energy E approaches one of the
free energies of the πρ system in the box. Then V −1 cuts

G̃πρ only once in between two neighboring asymptotes.

When we discretize the ππ system, Π̃(sρ) becomes infi-
nite for the discrete energies of the moving ππ system in

the box. With Π̃(sρ) becoming infinite, with plus and mi-
nus sign, in the denominator of Eq. (31), independently

of the value of E2 − (ω1 + ω2)2, close to the pole of Π̃(sρ)



6

there will be an energy where the denominator will van-

ish, leading to a pole of G̃πρ. Thus, we get asymptotes of

G̃πρ for values of E close to the free eigenenergies of πρ
and also close to the free eigenenergies of the moving ππ.
We observe that in between two asymptotes correspond-
ing to the πρ free eigenenergies (dashed dotted lines) one
new asymptote has appeared corresponding to a free ππ
eigenenergy of the ππ moving frame. As a result of it,
the line V −1 cuts now two lines corresponding to the un-
stable ρ and only one corresponding to the stable ρ. If we
go to higher energies we observe that in between the next
two asymptotes corresponding to the free eigenenergies
of πρ there are now three extra asymptotes correspond-
ing to free eigenenergies of ππ in the moving frame. This
leads now to four eigenenergies of the interacting πρ sys-
tem in the box when we cut these lines with V −1. There
is, thus, a proliferation of eigenenergies as a consequence
of considering the ρ as an unstable state.

VII. RESULTS

A. Energy levels in the box

We first show in Fig. 3 the solutions of Eq. (34) which
represent the energy levels for different values of the cubic
size, L. The solid lines represent the full calculation, con-
sidering the unstable ρ-meson via the consideration of its

selfenergy in the box, Π̃ in Eq. (31), and the dashed lines

are the same calculation but setting Π̃ = 0 in Eq. (31),
i.e., considering the case of stable ρ meson. There is an
infinite number of levels and we have plotted the first six
ones for illustration. This distribution of energy levels
depends on the cutoff pmax and in particular this figure
has been evaluated using pmax = 1 GeV which is of the
order of the cutoff used in Ref. [33] to get dynamically
the axial-vector resonances.

It is worth noting the significant difference between
the consideration of the unstable ρ meson in comparison
to the stable case. The main difference is that the levels
tend to decrease and shrink as L increases and that there
are extra levels between those already present in the sta-
ble case, for instance between the second and third levels.
This latter feature comes from the appearance of extra

poles in G̃πρ due to the poles in Π̃ and this produces
extra intersections with the smooth function V −1 as ex-
plained above. This different behavior between the stable
and unstable analysis must be considered as a caveat for
lattice calculations that only consider the stable case.

B. Inverse problem: getting πρ amplitudes and

phase shifts from lattice-like data

By “inverse problem” we refer to the problem of getting
the actual scattering amplitudes (and hence by-product
magnitudes like phase shifts) in the infinite space from
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L [mπ
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800
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2000

E
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]

FIG. 3. The first six energy levels as a function of the cu-

bic box size L for stable ρ-meson (Π̃ = 0) (dashed lines) and
for unstable ρ-meson (solid lines) using pmax = 1 GeV. The
dotted lines indicate the free πρ energies of the box for com-
parison.

data consisting of points over the energy levels in the
box in the E vs. L plots, which is what a lattice calcu-
lation would provide. In our case we can “synthetically”
simulate this lattice-like data from our model generating
points in the levels of Fig. 3. We will call this data lattice-

like set although in the present work it is generated from
our model for illustrative purposes.

In Fig. 4 we represent by error bars the set generated
for a particular election of L values for the stable, 4(a),
and unstable, 4(b), ρ cases, to which we have assigned a
reasonable error of 10 MeV. The meaning of the shad-
owed error bands will be explained later in this section
when explaining the fit method [20], hence they must be
forgotten for the moment. We are aware that it is difficult
for a present lattice calculation to get such quantity of
points as considered in Fig. 4, but the method is equally
valid for less points and we have chosen such a set just
to illustrate more clearly the method. In an actual in-
verse problem the lattice-like generated set would just be
replaced by actual lattice results.

In Refs. [20, 23, 24, 29] several methods were suggested
to solve the inverse problem, mostly based on fitting the
potential V to reproduce lattice-like data analogous to
those in Fig. 4. In the following we will call this method
fit method. We will also discuss later the fit method for the
present problem but first we want to propose a different
strategy which does not require to assume a specific shape
of the potential V , unlike the fit method. In the following
we will call this new method direct method [20]. The
idea of the direct method is to evaluate directly the πρ
amplitude using the expression

Tπρ(E) =
1

G̃πρ(E) − Gπρ(E)
. (35)

in the pmax → ∞ limit with Gπρ(E) and G̃πρ(E) from
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FIG. 4. Synthesized lattice-like data considered in order to
illustrate the inverse problem methods. Stable ρ case: (a).
Unstable ρ case: (b). The error band represent the result of
the fit in the fit method described in the text.

Eqs. (30) and (31) for the energies of the points in Fig. 4.
Recall that Eq. (35) is valid only for the energies solu-
tion of Eq. (34). Note that despite the fact that Gπρ(E)

and G̃πρ(E) are divergent in the limit pmax → ∞, the

difference G̃πρ(E) − Gπρ(E) which appears in Eq. (35)
is convergent. Therefore Eq. (35) is cutoff indepen-
dent. This is definitely a non-trivial result an illustrates
one of the strong points of the method to solve the in-
verse problem. For practical numerical evaluations we
have checked that considering an average in the interval
pmax ∼ [1.5, 2.5] GeV we get the same numerical result
than considering pmax → ∞. As shown in [20], Eq. (35)
is a different and practical way of writing Lüscher’s equa-
tion, taking into account the full relativistic two body
propagators.

In Figs. 5 and 6 we represent by square points with
error bars the πρ amplitude (modulus squared, real part
and imaginary part) for the stable (Fig. 5) and unstable
(Fig. 6) ρ cases for the direct method. (The solid line
and shadowed error bands represent the solution of the
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FIG. 5. The πρ scattering amplitude solution of the inverse
problem for the stable ρ case. Horizontal errors of ±10 MeV

in the energy axis have to be also assumed. Square points
with error bars: direct method. Solid line with error band: fit

method

fit method which will be explained later on). The central
points of the solution of the direct method are obtained
with the central values of the lattice-like set and the er-
ror bars are evaluated by varying the energies within the
10 MeV errors given in Fig. 4. For the stable case there
are no data points between 900 and 1100 MeV since, as
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FIG. 6. Same as Fig. 5 but for unstable ρ meson

can be seen in Fig. 3, one should go to very high values
of the size of the box in order to get a good resolution in
this energy region. It is worth noting that this method
produces large errors for certain energies, particularly in
the case of the unstable ρ. This is due to the fact that

G̃πρ(E) is usually very steep close to the energy values
of the levels (see Fig. 2) and, hence, small variations in

E provides large variations in G̃πρ(E). This feature can

be seen in the G̃πρ vs. E plot in Fig. 2 where it is visible

that the crossing between the V −1 and G̃πρ lines usually

occur close to poles of G̃πρ and hence in an energy region

where G̃πρ changes rapidly. Anyway, a clear resonance
shape corresponding to the a1(1260) is visible as a peak
in |T |2. Note, however, that the shape is far from being a
Breit-Wigner. The chiral unitary approach in which our
lattice-like data set is generated, provides not only poles
but the full scattering amplitude in the complex plane, in
particular also in the real axis, and generates the possi-
ble background besides the pole, i.e., provides the actual
shape of the amplitude. Actually, for the a1(1260) there
is a very strong background which distorts the shape from
a Breit-Wigner. The reason is that the amplitude is zero
at around E ≃ Mρ since the potential V is zero around
that energy, as can be easily seen just looking for zeroes
of Eq. (4) for the πρ case. However, the pole contribu-
tion itself has a large strength at this energy. This means
that there must be a very strong background in order to
cancel at that energy the tail of the Breit-Wigner shape
coming from the pole in order to produce the zero. (See
a more extended discussion on this zero in Ref. [44]).
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FIG. 7. Phase shifts obtained from the solution of the inverse
problem for the stable (a) and unstable (b) cases.Horizontal
errors of ±10 MeV in the energy axis have to be also assumed.
Square points with error bars: direct method. Solid line with
error band: fit method
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From the scattering amplitudes we can get the phase
shift, δ, that is well defined for stable particle an which
in our normalization it is related to the amplitude via

S = e2iδ = 1 − i
p

4πE
T

=⇒ T (E) = −8πE

p

1

cot δ − i
. (36)

where p =
√

(E2 − (mρ + mπ)2)(E2 − (mρ − mπ)2)/(2E)
is the CM momentum. Note that Eq. (36) is only well
defined for stable scattering particles. However, for the
sake of comparison between the stable and unstable
case we also use, by definition for the unstable case, the
same equation using for the ρ meson mass the physical
value, but being aware that in the unstable case this is
not a well defined observable and it is just a theoretical
mathematical exercise. The solutions of the inverse
problem for the phase shifts using the direct method are
shown by the squares and error bars in Fig. 7 for the
stable, 7(a), and unstable, 7(b), cases. (Again the solid
line and shadowed error bands represent the solution of
the fit method explained below.)

It is interesting to note that the phase shifts that we
have obtained are quite different from those of a Breit
Wigner, where the phase shift would go from zero to 180
degrees passing through 90 degrees at the pole of the res-
onance. We see that the phase shifts stabilize around
90-100 degrees at high energies around 1400 MeV. On
the other hand, the shape of |T 2| in Fig. 5 is typical of a
resonance, and bumps like that would be used to identify
the resonance experimentally. To the light of this, and
the comments above that the πρ amplitude has a strong
background at low energies, one might question the pro-
cedure used in [31] where the shape of the amplitude is
constructed from a calculated phase shift below thresh-
old and another one above, assuming that one has a Breit
Wigner amplitude. On the other hand, given the peculiar
shape of the amplitude predicted here, the evaluation of
phase shifts at physical energies in the energy range of
our Fig. 7 would be most welcome. In this sense, it is
interesting to note that the approach of [31] produces δ
around 90 degrees in the region around 1430 MeV, where
we find the phase shift stabilizing around that value (see
Fig. 7).

Let us now apply the other method already introduced
in Refs. [20, 24] to solve the inverse problem based on
fitting the potential, fit method.

The shape of the lowest order πρ potential, V , based
on Eq. (4) which comes essentially from chiral symmetry,
can be written in the form [33]:

V = a′ + b′s +
c′

s
. (37)

In order to make the coefficients a, b and c adimensional
and of natural order 1 we redefine the previous equation

as

V ≡ −1

4f2
π

[
m2

Ra + b(s − m2
R) −

m2
ρ

s
c

]
(38)

with mR = 1.2 GeV. Actually in Ref. [33] a, b and c were
around 2, 1 and 3 respectively for the present channel, as
can be obtained from Eq. (4). One should note that the
expression of Eq. (38) is the one that one has in the chiral
unitary approach. In this sense, the fit that we perform
provides as a best solution the results of the chiral unitary
approach with χ2

min = 0. One can give one self some
freedom to have other possible potentials. When this is
done what one finds is that the best solution is essentially
the same but the uncertainties are somewhat larger [29].

Next, we assume that lattice data are provided by our
synthetic lattice-like set, points with error bars in Fig. 4.
Then we fit these points with the solutions coming from
Eq. (34) in order to get the best a, b and c parameters,
which produce the minimum χ2, χ2

min.

The G̃πρ(E) function is of course dependent on the cut-
off pmax and, therefore, also are the parameters fitted.
However, the amplitude T (E) obtained from Eq. (32)
should be independent of this cutoff and therefore the
inverse method does not require the knowledge or as-
sumption of any particular cutoff, i.e., changing the cut-
off value would produce different values for a, b and c
but the amplitudes and observables derived from them
would be the same. We have checked numerically that
this is indeed the case within errors. This feature is not
novel, it was already observed in [20] and is related to the
behavior of amplitudes within the renormalization group
method, as used for instance in Quantum Mechanics in
[45].

In Fig. 4 we show with the solid line the result of the
fit to the energy levels using for the fit the cutoff value
pmax = 1 GeV. The shadowed band represents the as-
signed errors obtained by varying the fitted parameters
such that χ2 ≤ χ2

min + 1. From Fig. 5 till Fig. 7 we rep-
resent by the solid line and error bands the results of the
fit method for the πρ amplitude and phase shift. Note
that the fit method gives generally smaller errors than
the direct method since it considers a global fit to all the
points of the lattice-like set and does not suffer from the
pathological error sensitivity discussed above for the di-

rect method. However, it has the drawback of having to
assume a shape of the potential, V , like in Eq. (37).

It is remarkable that in spite of the proliferation of
eigenenergies in the case of the unstable ρ and the dif-
ferent shapes of the two levels in Fig. 4 for the stable
and unstable ρ, the amplitudes and the phase shifts in
Figs. 5, 6 and 7 are rather similar. We observe then that
the effects of considering the ρ unstable are rather mod-
erate in the previous analysis. This is not the case if we
start from data generated with unstable ρ but the inverse
problem is analyzed with stable ρ, as will be explained at
the end of this section. It is interesting to observe that
the proliferation of levels in the case of the unstable ρ has
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made the region of energies between threshold and 1400
MeV accessible, while for the stable ρ the first accessible
physical energies are around 1100 MeV. The price one
pays for having these energies available in the unstable ρ
case is a bigger uncertainty in the reconstruction of the
phase shifts as seen in Fig. 7.

At this point let us discuss a different analysis which
may be closer to what a lattice calculation implements
(see, however, some technical observations at the end of
this section). In a real lattice calculation the generated
data should be closer to those in Fig. 4(b), unstable ρ
case, since starting from quarks in the lattice and im-
posing on them the boundary conditions would naturally
lead to boundary conditions in all the pions, the spectator
and those coming from the ρ decay. However, for simplic-
ity, one may be tempted to do the subsequent analysis
using the model for the stable ρ. In view of this, we are
going to see what happens if one starts from a lattice-like
set generated with the unstable model but the inverse
problem is analyzed considering the stable case. Let us
first focus on the direct method. Thus we evaluate now
Eq. (35) for the case of stable ρ-meson but for the en-
ergies shown in Fig. 4(b). The results for the amplitude
and phase shift are shown in Fig. 8. The result is very
far from reality. The real part of the amplitude blows-up
for low energies and it has little to do with the results of
Figs. 5 or 6. The phase shift is also different to Fig. 7,
even the sign. Conceptually there are no deep reasons
why the results should be so different, but numerically
the method is pathological for the following reasons. Let
us focus on one energy where the extracted amplitude
is very large, for instance the point of the lower energy
band at L = 2.4 m−1

π , for which E = 839 MeV, (see
Fig. 4(b)). Let us look now at Fig. 9, where we show the
same plots as in Fig. 2 but for L = 2.4 m−1

π , (Fig. 2 was
evaluated for L = 2 m−1

π ). The energy E = 839 MeV
is indeed the first crossing point between V −1 (dashed

line) and G̃πρ(Π̃ 6= 0) (solid line). However, at this en-

ergy the value of G̃πρ(Π̃ = 0) (dashed dotted line) is very
different, about a factor six smaller. In Eq. (35), Gπρ is
similar both for stable and unstable case and has a small
value at this energy, (about -0.02). Therefore the ampli-

tude evaluated with G̃πρ(Π̃ = 0) is much larger than the

one evaluated with G̃πρ(Π̃ 6= 0). On the other hand, the

extra poles in G̃πρ(Π̃ 6= 0) coming from the eigenener-
gies of the ππ system as explained above, make the plot

of G̃πρ(Π̃ 6= 0) very different from G̃πρ(Π̃ = 0). Thus,
close to an extra pole this numerical analysis is also in-
appropriate, since one would be misidentifying the poles
responsible for the eigenvalues using the two procedures.
These pathological behaviors of the Gπρ functions within
the box are essentially due to the abruptness produced by
the poles of the G function in the box and it makes very
difficult to extract reliable information from this analy-
sis. We have also implemented the fit method in the last
analysis, with stable ρ but starting from data created
with unstable ρ. In this case, no good fit is obtained

since with this shape of the potential it is not possible
to generate a curve decreasing with L as the lower level
in Fig. 4(b) does. Actually the best fit has a χ2 ∼ 200
and produces the pole for the a1 in the real axis below
threshold which makes also this analysis unreliable. The
main conclusion of the analysis using the stable case but
starting from data generated using unstable ρ meson is
that the inverse method should be as close as possible
to reality, which in this context means to consider the
unstable ρ meson in the analysis of the data. Otherwise
unreliable results could be obtained due to the abrupt
shape of the G functions in the box.

In practice, the above mentioned problem could not
show up in some actual lattice calculations, like in [31],
if large pion masses are used. Indeed, we have seen that
with the pion mass mπ = 266MeV , used in [31], the
ground state level is much less affected than in the case

shown here, and the extra level originating from Π̃ 6= 0,
which in Fig. 9 corresponds to the first excited state
(eigenenergy around 1 GeV in the figure), is moved be-
yond the level corresponding to the first excited ρπ state.
In this case the results with the analysis with stable ρ
would be similar to those with the unstable ρ. Further-
more, one should also take into account that actual sim-
ulations like the one of [31], which do not incorporate
three-pion correlators, would not see the decay of the ρ
into ππ, in which case, the analysis with a stable ρ would
be more appropriate to interprete such lattice results.

VIII. SUMMARY

We showed how to tackle the problem of the inter-
action of two particles quantized in a finite box of size
L when one of the them has a finite width. The idea
is based on extending previously known techniques for
the stable case but quantizing also inside this finite box
the decay channel of the unstable particle. In this way,
the continuous integration needed to evaluate the selfen-
ergy is substituted by a discrete sum over the allowed
levels in the box of the decay channel of the unstable
scattering particle. We illustrate the method with the
πρ scattering which generates dynamically the a1(1260)
resonance within the chiral unitary approach. The scat-
tering energy levels inside the box for periodic boundary
conditions, both for the stable and unstable case are com-
pared. The results show significant differences between
both cases.

Then we explain how to solve the inverse problem
of getting physical observables in the real world (infi-
nite volume) from lattice data which are computed in
a finite box. The idea is based on the improvement of
the Lüscher’s approach developed in Ref. [20], properly
adapted to the present problem. We apply two methods
to solve the inverse problem: the first one is a previously
proposed way based on fitting the parameters of a given
potential to get the lattice data energy levels, fit method.
The second one, direct method, is to evaluate directly the
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FIG. 8. The πρ scattering amplitude and phase shift solution of the inverse problem with the direct method with stable ρ case
but starting from data generated with unstable ρ.
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πρ amplitude using Eq. (35). The advantage of the direct

method, which is closer to the original Lüscher approach,
is that there is no need to provide a specific shape of the
potential since there is no potential involved. However,
the drawback is that the errors are larger than in the fit

method and that the observables in the infinite volume
can be evaluated only for those energies for which there
are lattice data.

With respect to the particular case studied here of the
πρ scattering and the a1 resonance, it is quite instructive
to observe that the amplitudes obtained are rather pecu-
liar and they do not resemble much the shape of a Breit
Wigner. This feature will have to be considered in future
lattice QCD studies. We showed that using the stable

ρ, the first physical energies accessible were around 1100
MeV. However, the proliferation of energy levels due to
the quantization of the decay products of the ρ, making
the study with the unstable ρ, made a wider range of
energies available, although the induced phase shifts had
larger errors using the direct Lüscher method. In such a
case, the fit method proposed here could provide a more
efficient method to induce the phase shifts with much
smaller errors.

Furthermore, we have also discussed that if the start-
ing generated lattice data takes into account the decay
of the ρ meson into two pions, then the analysis of the
inverse problem must be performed considering also the
instability of the ρ meson. Otherwise the results could
be numerically unreliable.

The considerations done in the present work should
spur the future lattice calculations to consider also the
discretization of the decay channels when unstable par-
ticles are involved in the scattering. In between, calcula-
tions along the line of [31], which can be studied with the
stable ρ analysis, produced at other volumes or within a
moving frame, could bring extra information on phase
shifts in the physical region which would eventually de-
termine the peculiar shape of πρ amplitude in the a1

resonance region, with a strong diversion from a Breit
Wigner shape.
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