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Abstract
In this paper we present the connection between scattering amplitudes in momentum space and

wave functions in coordinate space, generalizing previous work done for s-waves to any partial

wave. The relationship to the wave function of the residues of the scattering amplitudes at the

pole of bound states or resonances is investigated in detail. A sum rule obtained for the couplings

provides a generalization to coupled channels, any partial wave and bound or resonance states, of

Weinberg’s compositeness condition, which was only valid for weakly bound states in one channel

and s-wave. An example, requiring only experimental data, is shown for the ρ meson indicating

that it is not a composite particle of ππ and KK̄ but something else.
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I. INTRODUCTION

One of the most important issues in hadron spectroscopy is to determine the nature of
the different hadronic states, mesons and baryons, which are reported in the PDG [1] and
still being found in new facilities like BABAR, BES, CLEO, BELLE, CERN facilities among
others. The traditional wisdom that mesons are qq̄ states and the baryons qqq states has
given room to more complicated structures in many cases, involving more quarks in one
way or another [2, 3]. One of the issues that has seen a more spectacular development in
this field is the application of chiral dynamics to study the interaction of hadrons. The
chiral Lagrangians [4–6] represent an effective approach to QCD at low energies and use
the observable mesons and baryons as degrees of freedom, which makes also comparison
of prediction with experiment an easy task. However, the perturbation theory made these
Lagrangians, Chiral Perturbation theory, χPT , in spite of its spectacular success in dealing
with many hadron properties, certainly could not succeed on the problem of spectroscopy, for
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the simple reason that resonances correspond to poles in the scattering amplitudes but poles
cannot be reached in a perturbative expansion. The problem was solved with the advent
of the chiral unitary approach [7–18] (see [19] for a review). What is found in the chiral
unitary approach is that many known mesons and baryons can be explained as composite
states of meson-meson or meson-baryon dynamically generated by the interaction provided
by the chiral Lagrangians. An important step forward has been given in recent work on
three body systems that show that also many other states can be understood as molecules
of two mesons and a baryon [20–22] or three mesons [23, 24].

One of the challenges in this field is to determine from the experimental data the nature of
the states as whether they are composite of other stable particles or something different. The
pioneer in this work was Weinberg in his well known paper determining that the deuteron
was a composite state (bound state from the potential) of a proton and a neutron [25].
More work on this issue has been done in [26, 27]. The generalization of Weinberg’s work to
coupled channels was done in [28] and a different derivation is also done in [29]. Yet, all the
work has been done for s-waves. The generalization of the theorem to higher partial waves
is one of the contents of the present work. The theorem comes as a byproduct of a thorough
study of the relationship of scattering amplitudes in momentum space to wave functions
in coordinate space and the meaning of the residues at the poles, or couplings of states to
the pair of interacting hadrons. The same problem was studied for just s-waves in [28], for
bound states, and in [30] for resonant states. In the present paper we generalize this work to
any partial wave and both for bound states and states in the continuum. As an application
of some of the results obtained we justify that the ρ meson is not a composite state of ππ
but something else. This is the commonly accepted idea about the nature of the ρ, which
qualifies as one of the typical qq̄ states, and has been supported by large Nc studies done in
[31–33]. The novelty is that we reach the conclusion from just the experimental data.

The work contains novel results and is rather practical concerning applications and clarity
in the derivation and in the relationship of different magnitudes.

II. COUPLINGS AND WAVE FUNCTIONS IN THE CASE OF BOUND STATES

We want to study the nonrelativistic dynamics of a bound state generated by the inter-
action of two particles of masses m1 and m2 in a generic l-wave.

A. Lippman-Schwinger equation

As done in [28, 30] we choose as the potential V a separable function in momentum space
with the modulating factor being a step function, Θ. A generalization to other types of
potential is done in [28], but the basic results are the same.

Thus, our potential, this time projected in a generic l-wave, is

〈~p ′|V |~p〉 = V (~p, ~p ′) = v(2l + 1)Θ(Λ− p)Θ(Λ− p′)Pl(cos θ)|~p|l|~p ′|l , (1)

where Λ is a cutoff in the momentum space.
Let the Hamiltonian of the system be H = H0 + V , with H0 the free Hamiltonian. The

nonrelativistic Lippmann-Schwinger equation can be written as

T = V + V
1

E −H0

T (2)
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and also as

T = V + V
1

E −H
V . (3)

Considering the second term of the series given by Eq. (2) and substituting the expression
of the potential, we can write

〈~p|T (2)|~p ′〉 = 〈~p|(2l + 1)vΘ(Λ− p)
∫
p′′<Λ

d3p′′Pl(p̂, p̂
′′)

|~p|l|~p ′′|l

E −m1 −m2 − ~p ′′2

2µ

× (2l + 1)vΘ(Λ− p′)Pl(p̂′′, p̂′)|~p ′′|l|~p ′|l|~p ′〉 ,
(4)

where µ is the reduced mass of the two interacting particles of masses m1 and m2 and we
have used the normalization

|~p〉〈~p| ≡
∫
d3p ,

〈~p|~p ′〉 = δ(3)(~p− ~p ′) .
(5)

Using the expression of the Legendre functions in terms of the spherical harmonics,

Pl(p̂, p̂
′′) =

4π

2l + 1

∑
m

Ylm(p̂)Y ∗lm(p̂′′) , (6)

and their normalization condition,∫
dΩY ∗lm(p̂)Yl′m′(p̂) = δll′δmm′ , (7)

Eq. (4) becomes

T (2) = (2l + 1)vΘ(Λ− p)vΘ(Λ− p′)Pl(p̂, p̂′)|~p|l|~p ′|l

×
∫
p′′<Λ

d3p′′
|~p ′′|2l

E −m1 −m2 − ~p ′′2

2µ

.
(8)

Repeating the procedure for the other terms of the expression of the Lippmann-Schwinger
equation, leads to the expression of the scattering amplitude

T = (2l + 1)Pl(p̂, p̂
′)Θ(Λ− p)Θ(Λ− p′)|~p|l|~p ′|lt (9)

with

t = v + v G t , t =
v

(1− vG)
=

1

v−1 −G
, (10)

where

G =

∫
p′′<Λ

d3p′′
|~p ′′|2l

E −m1 −m2 − ~p ′′2

2µ

. (11)

We can see that the factor 2l + 1 does not appear in the equation for t.
We can also see that v in Eq. (10) does not contain |~p|l, which is now absorbed into the

definition of the loop function G of Eq. (11). Other approaches for p-waves, like the one of
[34, 35], factorize on shell |~p|l and associate it to the potential. In those cases, G does not
have the factor |~p′′|2l in Eq. (11). The procedure leads to the same ImT but can induce
differences in the ReT . Later on we shall see that the option chosen here, which stems from
the form of the potential in Eq. (1), allows one to generalize the sum rule for the couplings
found in [28], which is lost if one uses the on shell factorized form.
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B. Bound states in the one channel case: wave function in the momentum space

From the Schrödinger equation follows

|Ψ〉 =
V

E −H0

|Ψ〉 , (12)

which has the solution

〈~p|Ψ〉 =

∫
d3k

∫
d3k′〈~p| 1

E −H0

|~k〉〈~k|V |~k′〉〈~k′|Ψ〉 . (13)

Substituting the potential (1) and using

〈~p| 1

E −H0

|~k〉 = δ(3)(~p− ~k)
1

E −m1 −m2 − ~p2

2µ

, (14)

we obtain

〈~p|Ψ〉 =

∫
k′<Λ

d3k′(2l + 1)vΘ(Λ− p) 1

E −m1 −m2 − ~p2

2µ

|~p|l|~k′|lPl(p̂, k̂′)〈~k′|Ψ〉

= 4π
∑
m

Θ(Λ− p)|~p|lv
E −m1 −m2 − ~p2

2µ

Ylm(p̂)

∫
k<Λ

d3kY ∗lm(k̂)|~k|l〈~k|Ψ〉 ,
(15)

which gives us the expression of the wave function in momentum space.

Defining 〈~k|Ψ̃〉 as

〈~k|Ψ〉 ∼= (4π)1/2
∑
m′

am′Ylm′(k̂)〈~k|Ψ̃〉 , (16)

with the coefficients am′ normalized as∑
m′

|am′|2 = 1 , (17)

we can write Eq. (15) as

〈~p|Ψ〉 = (4π)1/2
∑
m

amYlm(p̂)〈~p|Ψ̃〉

= (4π)1/2
∑
m

Θ(Λ− p)|~p|lv
E −m1 −m2 − ~p2

2µ

amYlm(p̂)

∫
k<Λ

d3k|~k|l〈~k|Ψ̃〉
(18)

obtaining

〈~p|Ψ̃〉 =
Θ(Λ− p)|~p|lv

E −m1 −m2 − ~p2

2µ

∫
k<Λ

d3k|~k|l〈~k|Ψ̃〉 . (19)

Integrating in d3p and multiplying both sides by |~p|l, Eq. (19) becomes∫
d3p|~p|l〈~p|Ψ̃〉 =

∫
p<Λ

d3p
|~p|2lv

E −m1 −m2 − ~p2

2µ

∫
k<Λ

d3k〈~k|Ψ̃〉|~k|l

= G v

∫
k<Λ

d3k〈~k|Ψ̃〉|~k|l ,
(20)

giving us the condition for a pole in t-matrix corresponding to a bound state,

1−G(E) v = 0 , (21)

which will occur for some value Eα < m1 +m2.
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C. Normalization of the wave function

Let Eα < m1 +m2 be the solution of Eq. (21). Since we are dealing with a bound state,
its wave function will satisfy the normalization condition∫

d3p|〈~p|Ψ〉|2 = 1 . (22)

We can now substitute the expression of the wave function (18) in the above equation,∫
d3p|〈~p|Ψ〉|2 =

∫
d3p(4π)1/2

∑
m

Θ(Λ− p)|~p|lv
E −m1 −m2 − ~p2

2µ

a∗mY
∗
lm(p̂)

∫
k<Λ

d3k〈Ψ̃|~k〉|~k|l

× (4π)1/2
∑
m′

Θ(Λ− p)|~p|lv
E −m1 −m2 − ~p2

2µ

am′Ylm′(p̂)

∫
k′<Λ

d3k′〈~k′|Ψ̃〉|~k′|l

=

∫
p<Λ

d3p

(
|~p|lv

E −m1 −m2 − ~p2

2µ

)2∑
m

|am|2
∣∣∣∣∫
k<Λ

d3k|~k|l〈~k|Ψ̃〉
∣∣∣∣2 .

(23)

Taking into account the normalization in Eq. (17) and Eq. (11), we obtain

− dG

dE
v2

∣∣∣∣∫
k<Λ

d3k|~k|l〈~k|Ψ̃〉
∣∣∣∣2 = 1 . (24)

Eq. (24) is relevant for our purposes. By construction, the left-hand side is the probability
that the bound state found couples to the hadron-hadron component under consideration.
We shall see in the following sections that, when we have several interacting hadron-hadron
pairs, it is replaced by a sum over the different coupled channels, and each of the terms
indicates the probability to find each hadron-hadron pair in the wave function. Yet, it could
be that a physical state couples not only to hadron-hadron pairs, but also to a different
component of non molecular type, say qq̄ for mesons or qqq for baryons. One example of
this can be found in studies with the chiral bag model [36] where the ∆ has a big qqq
component and a smaller πN one. In this case the normalization would be given by

− dG

dE
v2

∣∣∣∣∫
k<Λ

d3k|~k|l〈~k|Ψ̃〉
∣∣∣∣2 + |〈β|Ψ〉|2 = 1 , (25)

and then

− dG

dE
v2

∣∣∣∣∫
k<Λ

d3k|~k|l〈~k|Ψ̃〉
∣∣∣∣2 = 1− Z ; Z = |〈β|Ψ〉|2 , (26)

where |β〉 is the genuine component of the state (the qqq in the bag model of [36]).
This is the statement of the compositeness condition of Weinberg, although derived and

formulated in a different way. The idea is that the first term in Eq. (24) represents the
probability to find the hadron-hadron component in the wave function, and its diversion
from unity is the probability to find some other components which have not been considered
if one has neglected important channels of the more general coupled channels problem. Yet,
the theorem can be stated in a more practical way as we show in the following section.
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D. Couplings

Now we want to use the other form of the Lippmann-Schwinger equation, Eq. (3). We
have

〈~p|T |~p ′〉 = 〈~p|V |~p ′〉+
∑
nn′

〈~p|V |n〉〈n| 1

E −H
|n′〉〈n′|V |~p ′〉 , (27)

where |n〉 and |n′〉 are complete sets of eigenstates of the full Hamiltonian H.
In the vicinity of the pole, E = Eα, we can take into account only the dominant contri-

bution coming from the eigenstate |α〉. Then,

〈~p|T |~p ′〉 ∼ 〈~p|V |~p ′〉+

∫
d3k

∫
d3k′〈~p|V |~k〉〈~k|α〉 1

E − Eα
〈α|~k′〉〈~k′|V |~p ′〉 . (28)

We can write Eq. (28) explicitly

〈~p|T |~p ′〉 = 4πΘ(Λ− p)Θ(Λ− p′)t|~p|l|~p ′|l
∑
m

Ylm(p̂)Y ∗lm(p̂′)

= 4πΘ(Λ− p)Θ(Λ− p′)v|~p|l|~p ′|l
∑
m

Ylm(p̂)Y ∗lm(p̂′)

+

∫
k<Λ

d3k

∫
k′<Λ

d3k′4πΘ(Λ− p)v|~p|l|~k|l
∑
m′

Ylm′(p̂)Y ∗lm′(k̂)

× 〈~k|α〉 1

E − Eα
〈α|~k′〉4πΘ(Λ− p′)v|~k′|l|~p ′|l

∑
m′′

Ylm′′(k̂′)Y ∗lm′′(p̂′) .

(29)

Using the fact that

〈~k|α〉 1

E − Eα
〈α|~k′〉 → 4π

1

E − Eα
〈~k|α̃〉〈α̃|~k′〉

∑
m

Ylm(k̂)Y ∗lm(k̂′) , (30)

from Eq. (29) we can easily find

t = v + v2 1

E − Eα

∣∣∣∣∫
k<Λ

d3k〈~k|α̃〉|~k|l
∣∣∣∣2 . (31)

Close to the pole the coupling g is defined such that the amplitude can be written as

t =
g2

E − Eα
, (32)

and hence

g2 = lim
E→Eα

(E − Eα) t = v2

∣∣∣∣∫
k<Λ

d3k〈~k|α̃〉|~k|l
∣∣∣∣2 . (33)

Eq. (33) allows to write v2
∣∣∣∫k<Λ

d3k〈~k|α̃〉|~k|l
∣∣∣2 in terms of the couplings, which can be

determined experimentally, and then Eq. (24) can be stated, for a composite state, as

− g2dG

dE
= 1 (34)
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and, in general, as

− g2dG

dE
= 1− Z , (35)

in the case we have coupling to a genuine component, with Z the probability to find this
component in the wave function. Since g can be determined experimentally, one can see
the value of Eq. (35) to determine the nature of the states, as has been made manifest in
[25, 27].

We have been assuming implicitly that v is energy independent. Indeed, Eq. (34) can be
obtained from Eq. (10) using l’Hôpital rule

g2 = lim
E→Eα

(E − Eα)t = lim
E→Eα

E − Eα
v−1 −G

=
1

−dG
dE

, (36)

where in the last step we have assumed that v is energy independent. Here we see the
convenience of avoiding the on shell factorization, where the vertex |~p|2l is incorporated in
v, because then the new v is necessarily energy dependent and we cannot obtain Eq. (36).

Actually, as seen in [25, 27], Z means the probability to have the genuine component of
the state. When dealing with a physical system in which Z 6= 0, one can accomodate it
in the present formalism by taking a potential v energy independent, which accounts for
the couplings to the hadron-hadron component, and a CDD pole term [37] of the type
a/(E − ER), which accounts for the coupling to the genuine component. As shown in [38],
this is a good tool for the analysis of data that return Z ≤ 1 as it should be, with Z related
to the strenght of the CDD pole, a.

E. Wave function in coordinate space

We can evaluate the wave function in coordinate space as

〈~x|Ψ〉 =

∫
d3p〈~x|~p〉〈~p|Ψ〉 =

∫
d3p

(2π)2/3
ei~p~x〈~p|Ψ〉

=

∫
p<Λ

d3p

(2π)2/3
ei~p~x

|~p|l

E −m1 −m2 − ~p2

2µ

g(4π)1/2
∑
m

amYlm(p̂) ,
(37)

where we have used Eqs. (18) and (34) in the expression of the wave function in momentum
space.

Recalling the expansion of the plane wave in terms of spherical harmonics and Bessel
functions

ei~p~x = 4π
∑
lm

iljl(pr)Y
∗
lm(p̂)Ylm(r̂) , (38)

Eq. (37) becomes

〈~x|Ψ〉 = g

∫
p<Λ

d3p

(2π)2/3
iljl(pr)

|~p|l

E −m1 −m2 − ~p2

2µ

(4π)1/2
∑
m

amYlm(r̂) , (39)

which gives us the expression of the wave function in coordinate space.
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The Bessel functions satisfy

jl(z)
z→∞−→ 1

z
cos

[
z − l + 1

2
π

]
. (40)

Thus, the asymptotic behaviour of the wave function is

〈~x|Ψ〉 r→∞−→ −g 2µ
√

2π

(
1 +O

(
1

Λ

))∑
m

amYlm(r̂)(iγ)l
e−γr

r
, (41)

where γ =
√

2µ|EB|, with EB the binding energy, EB = E −m1 −m2 < 0.

F. The meaning of the couplings in terms of wave functions

Now we want to establish the relation between the coupling and the wave function at the
origin in coordinate space.

From the behaviour of the Bessel functions for small values of the argument,

jl(pr) −→
|~p|l|~r|l

(2l + 1)!!
|~p||~r| → 0 , (42)

follows the expression of the wave function at the origin

Ψ(~x→ 0) = 〈~x→ 0|Ψ〉 = g G
il|~r|l

(2π)2/3(2l + 1)!!
(4π)1/2

∑
m

amYlm(r̂) . (43)

Eq. (43) leads to the relation between the coupling and the wave function

g = G−1 Ψ̂ , (44)

where we have defined

Ψ̂ =
(2π)2/3(2l + 1)!!

il|~r|l(4π)1/2
∑

m amYlm(r̂)
Ψ(~x→ 0) . (45)

For l = 0 this equation leads to
(2π)3/2Ψ(0) = gG , (46)

which is the result obtained in [28].

G. Generalization to coupled channels

Now we have

〈~p|V |~p ′〉 ≡ (2l + 1) v Θ(Λ− p)Θ(Λ− p)|~p|l|~p ′|lPl(cos θ) , (47)

where v is a N ×N matrix with N the number of channels. The expressions obtained can
be generalized to many channels.
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H. Couplings in coupled channels

We can write the t matrix as
t = [1− vG]−1v , (48)

where G is the diagonal matrix 
G1

G2

. . .
GN

 (49)

with Gi given by Eq. (11) for each channel. This can be rewritten as

t =
Av

det(1− vG)
, (50)

where A is defined as
A = [det(1 − vG)](1 − vG)−1 (51)

and is introduced to single out the source of the pole in coupled channels, which is given by
the condition

det(1− vG) = 0 . (52)

Now we have

gigj = lim
E→Eα

(E − Eα) tij =

[
(Av)ij

d
dE
det(1− vG)

]
E=Eα

, (53)

and hence
gj
gi

=

[
(Av)ij
(Av)ii

]
E=Eα

. (54)

I. Wave functions in momentum space

Eq. (18) is generalized as follows

〈~p|Ψi〉 =
|~p|lΘ(Λ− p)(2l + 1)

E −Mi − ~p2

2µi

∑
j

vij

∫
k<Λ

d3k|~k|lPl(k̂, p̂)〈~k|Ψj〉 , (55)

and using Eq. (16) we find

〈~p|Ψ̃i〉 =
|~p|lΘ(Λ− p)
E −Mi − ~p2

2µi

∑
j

vij

∫
k<Λ

d3k|~k|l〈~k|Ψ̃j〉 , (56)

where Mi = m1i +m2i.
Integrating in d3p and multiplying by |~p|l both sides, we obtain the following equation,

written in matrix form ∫
d3p|~p|l〈~p|Ψ̃〉 = G v

∫
k<Λ

d3k|~k|l〈~k|Ψ̃〉 . (57)
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From Eq. (57) follows again the condition to find the pole

det(1−Gv) = 0 . (58)

Eq. (57) can be rewritten as∑
j

vij

∫
d3p|~p|l〈~p|Ψ̃j〉 = [Gα

i ]−1

∫
d3p|~p|l〈~p|Ψ̃i〉 , (59)

which, substituted in Eq. (56), gives

〈~p|Ψ̃i〉 =
|~p|lΘ(Λ− p)
E −Mi − ~p2

2µi

[Gα
i ]−1

∫
k<Λ

d3k|~k|l〈~k|Ψ̃i〉 . (60)

We can now define the partial probability

Pi =

∫
d3p|〈~p|Ψi〉|2 (61)

and write the normalization condition for the wave functions∑
i

Pi = 1 . (62)

Substituting Eq. (55) in the last equation we find the generalization to many channels of
Eq. (24)

Pi =

[
−dGi

dE

]
E=Eα

1

[Gα
i ]2

∣∣∣∣∫
k<Λ

d3k|~k|l〈~k|Ψ̃i〉
∣∣∣∣2 . (63)

J. Wave functions in coordinate space

In coordinate space we have

〈~x|Ψi〉 =

∫
d3p

(2π)2/3
ei~p~x〈~p|Ψi〉 =

∫
p<Λ

d3p

(2π)2/3
ei~p~x(4π)1/2

×
∑
m

amYlm(p̂)
|~p|l

E −Mi − ~p2

2µi

1

Gα
i

∫
k<Λ

d3k|~k|l〈~k|Ψ̃i〉 ,
(64)

which, expanding the plane wave by means of Eq. (38), becomes

Ψi(~x) = 〈~x|Ψi〉 =

∫
p<Λ

d3p

(2π)2/3
(4π)1/2

∑
m

amYlm(r̂) il jl(pr)
|~p|l

E −Mi − ~p2

2µi

1

Gα
i

×
∫
k<Λ

d3k|~k|l〈~k|Ψ̃i〉 .
(65)

As in the previous case, we obtain the expression of the wave function at the origin in
coordinate space using Eq. (42):

Ψi(~x ≡ 0) =
(4π)1/2

∑
m amYlm(r̂)il|~r|l

(2π)3/2(2l + 1)!!

∫
k<Λ

d3k|~k|l〈~k|Ψ̃i〉 . (66)
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Now we go back to Eq. (57). Defining, as in the previous section

Ψ̂i ≡ Ψi(~x→ 0)

[
(4π)1/2

∑
m amYlm(r̂)il|~r|l

(2π)3/2(2l + 1)!!

]−1

=

∫
k<Λ

d3k|~k|l〈~k|Ψ̃〉 , (67)

we are allowed to rewrite Eq. (57) as

Ψ̂ = G v Ψ̂ . (68)

Eq. (68) requires for its solution

det(1− vG) = 0 , (69)

which is guaranteed for a bound eigenstate of energy Eα. So, this equation can be rewritten
as

[Gα]−1 Ψ̂ = vΨ̂ , (70)

which allows us to write the expression of the wave function in momentum space in terms
of the wave function at the origin of coordinate space, as

〈~p|Ψi〉 = (4π)1/2
∑
m

amYlm(p̂)
Θ(Λ− p)|~p|l

E −Mi − ~p2

2µi

[Gα
i ]−1 Ψ̂i . (71)

From the normalization condition in Eq. (62) follows again∑
i

〈Ψi|Ψi〉 =

∫
d3p
∑
i

|〈~p|Ψi〉|2

= −
∑
i

[
dGi

dE

]
E=Eα

1

[Gα
i ]2

Ψ̂i
2

= 1 .

(72)

K. Couplings

Now we want to define the couplings in terms of Ψ̂i.
We use the version of Eq. (3) for the Lippmann-Schwinger equation. Recalling that close

to the pole of the eigenfunction of the Hamiltonian associated to the Eα, only this state |α〉
contributes in the sum over the eigenstates, we find

tij = vij +
∑
mn

vimΨ̂m
1

E − Eα
Ψ̂nvnj . (73)

When we look for the couplings as the residues in the pole of the t-matrix, we obtain

gigj = lim
E→Eα

(E − Eα)tij =
∑
mn

vimΨ̂mvnjΨ̂n

=
[
G−1
i Ψ̂iG

−1
j Ψ̂j

]
E=Eα

,

(74)

which allows us to write the couplings in terms of the wave function at the origin of coordinate
space,

12



gi = [Gα
i ]−1 Ψ̂i . (75)

It is also possible to rewrite Eq. (72) as∑
i

g2
i

[
dGi

dE

]
E=Eα

= −1 , (76)

in complete analogy with the case of only one channel.
Each of the terms in Eq. (76) (with opposite sign) gives the probability to find a certain

channel in the wave function of the bound states.

III. GENERALIZATION TO OPEN CHANNELS

Now we want to adapt the formalism to the case of open channels.
We work directly in coupled channels where at least one is open. We take again

〈~p|V |~p ′〉 ≡ (2l + 1) v Θ(Λ− p)Θ(Λ− p′)|~p|l|~p ′|lPl(cos θ) . (77)

A. Lippmann-Schwinger equation for open channels

In order to create a resonance from the interaction of many channels at a certain energy,
we must take a channel which is open at this energy and make the two particles collide,
starting from an infinite separation at t = −∞. We call this channel, which is asymptotically
the scattering state, channel 1.

The equations we have to solve are

|Ψ〉 = |Φ〉+
1

E −H0

V |Ψ〉 , (78)

where

|Ψ〉 =


|Ψ1〉
|Ψ2〉

...
|ΨN〉

 , |Φ〉 =


|Φ1〉

0
...
0

 , (79)

and |Φ〉 = |~p ′〉. Once again µi is the reduced mass of the system of total massMi = m1i+m2i.

B. Wave function in momentum space

We can proceed analogously to the bound states case and write the wave functions in
momentum space as

〈~p|Ψ1〉 − 〈~p|Φ1〉 = (4π)1/2
∑
m

amYlm(p̂)
|~p|lΘ(Λ− p)

E −M1 − ~p2

2µ1
+ iε

∑
j

v1j

∫
k<Λ

d3k|~k|l〈~k|Ψ̃j〉 ,

〈~p|Ψi〉 = (4π)1/2
∑
m

amYlm(p̂)
|~p|lΘ(Λ− p)

E −Mi − ~p2

2µi
+ iε

∑
j

vij

∫
k<Λ

d3k|~k|l〈~k|Ψ̃j〉 , i 6= 1 .

(80)

13



In the bound state case we had E < Mi and E−Mi−~p2/2µ cannot be zero for any value of E.
We only have descrete eigenstates for some energies. Now, we are dealing with open channels
and, since any value of E is allowed and we can have singularities when E = Mi + ~p2/2µi,
we need to put +iε in order to guarantee a solution to the Lippmann-Schwinger equations.

In order to make the problem technically easy we shall prepare the state |Φ1〉 such that
it contains only the l-wave:

|Φ1〉 =

∫
d3p′a(~p ′)|~p ′〉 . (81)

We can choose a(~p ′) such that

a(~p ′) = (4π)1/2Ylm(p̂′)a(p′) , (82)

where a(p′) is, for instance, a Gaussian around p1 and m is fixed.
Thus, we find that

〈~p|Φ1〉 =

∫
d3p′(4π)1/2Ylm(p̂′)a(p′)〈~p|~p ′〉

=

∫
d3p′(4π)1/2Ylm(p̂′)δ(3)(~p− ~p ′)a(p′)

= (4π)1/2Ylm(p̂)a(p) ,

(83)

with a(p) normalized such that
∫
d3p a(p)|~p|l = 1.

Now all the terms in |Ψi〉 have the same angular dependence and we can write

〈~p|Ψ̃1〉 = a(p) +
Θ(Λ− p)|~p|l

E −M1 − ~p2

2µ1
+ iε

∑
j

v1j

∫
k<Λ

d3k|~k|l〈~k|Ψ̃j〉 ,

〈~p|Ψ̃i〉 =
Θ(Λ− p)|~p|l

E −Mi − ~p2

2µi
+ iε

∑
j

vij

∫
k<Λ

d3k|~k|l〈~k|Ψ̃j〉 , i 6= 1 .

(84)

Now again we integrate in d3p and multiply by |~p|l, and since∫
d3p|~p|l〈~p|Φ̃1〉 = 1, (85)

we find ∫
d3p|~p|l〈~p|Ψ̃1〉 = 1 +G1

∑
j

v1j

∫
k<Λ

d3k|~k|l〈~k|Ψ̃j〉 ,∫
d3p|~p|l〈~p|Ψ̃i〉 = Gi

∑
j

vij

∫
k<Λ

d3k|~k|l〈~k|Ψ̃j〉 , i 6= 1 ,

(86)

with Gi defined as

Gi =

∫
p<Λ

d3p
|~p|2l

E −Mi − ~p2

2µi
+ iε

. (87)

As in the previous case we can define

Ψ̂i =

∫
p<Λ

d3p|~p|l〈~p|Ψ̃i〉 , (88)
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which allows us to rewrite Eqs. (86) as

Ψ̂1 = 1 +G1

∑
j

v1jΨ̂j ,

Ψ̂i = Gi

∑
j

vijΨ̂j , i 6= 1 .
(89)

In matrix form, we have

(1−Gv)Ψ̂ =


1
0
...
0

 (90)

and hence

Ψ̂i = (1−Gv)−1
i1 . (91)

The N ×N scattering matrix is still given by

t = (1− vG)−1v = (v−1 −G)−1 , (92)

and by means of Eq. (91) we can write

vijΨ̂j = vij(1−Gv)−1
j1

= (v−1 −G)−1
i1 = ti1 .

(93)

Going back to Eq. (84), follows

〈~p|Ψ1〉 = (4π)1/2Ylm(p̂)

(
a(p) +

Θ(Λ− p)|~p|l

E −M1 − ~p2

2µ1
+ iε

t11

)
,

〈~p|Ψi〉 = (4π)1/2Ylm(p̂)
Θ(Λ− p)|~p|l

E −Mi − ~p2

2µi
+ iε

ti1 , i 6= 1 .

(94)

C. Wave functions in coordinate space

In coordinate space, the wave functions can be written as

〈~x|Ψ1〉 = (4π)1/2 il Ylm(r̂)

∫
d3p

(2π)3/2
jl(pr)

(
a(p) +

Θ(Λ− p)|~p|l

E −M1 − ~p2

2µ1
+ iε

t11

)
,

〈~x|Ψi〉 = (4π)1/2 il Ylm(r̂)

∫
d3p

(2π)3/2
jl(pr)

Θ(Λ− p)|~p|l

E −Mi − ~p2

2µi
+ iε

ti1 i 6= 1 .

(95)
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We take again the limit of small argument for the Bessel’s functions, Eq. (42), obtaining

〈~x→ 0|Ψ1〉 =
(4π)1/2Ylm(r̂)il|~r|l

(2π)3/2(2l + 1)!!
[1 +G1t11]

=
(4π)1/2Ylm(r̂)il|~r|l

(2π)3/2(2l + 1)!!

[
1 +G1

∑
j

vijΨ̂j

]

=
(4π)1/2Ylm(r̂)il|~r|l

(2π)3/2(2l + 1)!!
Ψ̂1 ,

(96)

and, similarly

〈~x→ 0|Ψi〉 =
(4π)1/2Ylm(r̂)il|~r|l

(2π)3/2(2l + 1)!!
Ψ̂i , i 6= 1 . (97)

D. Relation between couplings and wave functions at the origin

In the vicinity of a resonance

tij '
gigj

E − ER + iΓ
2

. (98)

Hence
ti1
t11

=
gi
g1

=
Ψ̂iG

−1
i

Ψ̂1G
−1
1

. (99)

We can also use Eq. (3) for the Lippmann-Schwinger equation and repeat the steps of
section (II K), and find analogously that

gi = Ψ̂iG
−1
i . (100)

In the case of resonances we cannot directly derive the sum rule in Eq. (76), since it
follows from the normalization condition of the wave function in coordinate space, which is
not finite anymore. However, it still holds in the pole in the complex plane (see [29] for a
different derivation), where again we have∑

i

g2
i

[
dGi

dE

]
E=EP

= −1 , (101)

with EP the position of the complex pole.

IV. THE TEST FOR THE ρ RESONANCE

By means of the sum rule in Eq. (101) we can try to find out whether a resonance is
created by the interaction of two particles or not. We want to apply this tool to the specific
case of the ρ resonance.

It is known that the ρ is not dynamically generated by the interaction of two π mesons,
but it is basically a genuine resonance. Thus, we expect the sum rule not to be satisfied.

In order to quantify the statement, we perform two test. First we use a good model based
on chiral unitary theory for the ρ meson, and then we propose a pure phenomenological test,
where only ππ data are used.
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A. Model for the ρ meson

We follow here the approach of [34] but slightly modified in order to account for the
p-wave character of the loop function. Hence, we take

v = − 2

3f 2

(
1 +

2G2
V

f 2

s

M2
ρ − s

)
, (102)

where Mρ is the bare ρ mass, f is the π decay constant and GV the coupling to ππ in the

formalism of [5], where GV ' f/
√

2.
In [39] this model was fitted to ππ data in I = 1 and the values f = 87.4 MeV , GV =

53 MeV and Mρ = 837.3 MeV were obtained (very similar to those used in [34]). Here we
use the same potential but the factor p2 in V is removed to get the potential v of Eq. (1),
which does not depend on the momentum. Instead, here, the p2 factor is included in the
loop function (see discussion after Eq. (11)). This means we have to redo the fit to the data
using

t =
1

v−1 −G
, (103)

with

G(s) =

∫
d3q

(2π)3

q2

s− (ω1 + ω2)2 + iε

(
ω1 + ω2

2ω1ω2

)
, (104)

and ω1 = ω2 =
√
m2
π + q2, where a relativistic reformulation is assumed [9]. The loop

function of Eq. (104) is regularized by means of a cutoff qmax. The ππ phase shift is then
given by (see [34, 39])

T = p2t =
−8π
√
s

p cot δ(p)− ip
, (105)

with p the momentum of the pion. The best fit produces the values

f = 93 MeV ,

GV = 53 MeV ,

Mρ = 855.36 MeV ,

qmax = 661.52 MeV .

(106)

The results can be seen in Fig. 1. The results at higher energies could be improved including
the KK̄ channel and it will be shown in subsection IV C. In order to apply the sum rule
to the case of a resonance, we need to extrapolate the amplitude to the complex plane and
look for the complex pole s0 in the second Riemann sheet. This is done by changing G to
GII in Eq. (103), as will be described below to obtain tII .
GII(s) is the analytic continuation to the complex plane of the loop function in p-wave

for the two pions,

GII(s) = GI(s) + i
p3

4π
√
s
, Im(p) > 0 , (107)

GI and GII are the loop functions in the first and second Riemann sheet and GI is given by
Eq. (104).

We are now able to determine the coupling g̃ρ as the residue in the pole of the amplitude,

g̃2
ρ = lim

s→s0
(s− s0)tII . (108)
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FIG. 1. The solid curve represents the ππ scattering p-wave phase shift obtained in [39] using the

model based on chiral unitary theory [39]. The dashed curve is the best fit obtained with the new

approach. The data are taken from [40], obtained using the Roy equations.

We can use the sum rule for the single ππ channel in order to evaluate the contribution
of this channel to the production of the resonance,

− g̃2
ρ

[
dGII(s)

ds

]
s=s0

= 1− Z , (109)

where Z represents the probability that the ρ is not a ππ molecule but something else.
For the best fit to the data, we find the pole in

√
s0 = (761.70 + i 71.39) MeV , (110)

while the value of the coupling is

g̃ρ = (6.86 + i 0.41) , (111)

in good agreement with those obtained in [39].
Then, we find

1− Z = (0.004 + i 0.267) ,

|1− Z| = 0.267 ,
(112)

which indicates that the amount of ππ in the wave function is small.
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B. Phenomenological test

The exercise done before requires a theoretical model. It would be good to see if it is
possible to reach similar conclusions using only data with a pure phenomenological analysis.
This is done in this subsection.

Our aim is to test the sum rule using only experimental data. For s-wave there is no
problem because the coupling g can be obtained from experiments and dG

dE
is a convergent

magnitude, even when qmax → ∞. This is, however, not the case for a p-wave resonance,
such that extra work is required.

The ρ amplitude in a relativistic form can be written as

tρ =
g2
ρ

s−m2
ρ + imρΓon

(
p
pon

)3 , (113)

where

p =
λ1/2(s,m2

π,m
2
π)

2
√
s

(114)

is the three-momentum of the two pions in the center of mass reference frame,

pon = p(
√
s = mρ) , (115)

and the coupling is related to the width through the equation

g2
ρ =

8πm2
ρΓon

p3
on

. (116)

The values of the mass mρ and width Γon of the ρ are given by experiment.
We obtain tρ in the second Riemann sheet from Eq. (113) by taking s complex, s = a+i b,

and p→ −p in the width term. Then we proceed as in the former subsection to get the pole
and the coupling. We obtain

√
s0 = (751.13 + i 68.38) MeV ,

gρ = (6.58 + i 1.01) ,
(117)

similar to those obtained before.
However, when doing the 1 − Z test, one does not know which value of the cutoff qmax

should be used to regularize the G function. Hence, the best one can do is to use natural
values of the cutoff and hope that the results are stable for a certain range of qmax, since dG

ds
is only logarithmically divergent.

The values of the strenght 1−Z obtained for the ρ, changing the cutoff qmax, are shown
in Table I. As we can see, the results are rather stable and similar to those obtained in the
former subsection, particularly for |1− Z|, with the same conclusion.

Note that since 1−Z is a small number, even relatively large uncertainties in this quantity
are small errors on Z, which measures the amount by which the ρ is not a ππ composite
state.
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qmax [GeV ] 1− Z |1− Z|
0.6 0.03− i0.26 0.26

0.8 0.09− i0.23 0.25

1 0.13− i0.21 0.25

1.3 0.18− i0.19 0.26

1.5 0.20− i0.19 0.28

1.7 0.22− i0.18 0.28

2 0.24− i0.17 0.29

TABLE I. Values of 1− Z for different cutoffs qmax.

C. Test with two channels

In order to get confidence on the conclusions of the previous subsections, we redo the
analysis of the ππ data in terms of the ππ and KK̄ channels. This was done in [38]
and [39] using the transition potentials provided by chiral dynamics. Here we adopt a
phenomenological attitude following the procedure used in subsection IV A for one channel.

For this purpose we take the potentials

v11 = − 2

3f 2

(
1 +

2G2
V

f 2

s

M2
ρ − s

)
,

v12 = − 2

3f 2
α

(
1 + β

2G2
V

f 2

s

M2
ρ − s

)
,

v22 = − 2

3f 2
α

′
(

1 + β
′ 2G2

V

f 2

s

M2
ρ − s

)
,

(118)

where the subscript 1 is for the ππ channel and 2 is for KK̄. Thus, we keep the structure
provided by the chiral Lagrangians, but without adopting the same weights α, β, α

′
and

β
′
. From [38, 39] one has α =

√
2/2, β = 1, α

′
= 1/2 and β

′
= 1, but here we leave these

parameters as free.

We then evaluate the Bethe-Salpeter equation in coupled channels

t = [1− vG]−1 v , (119)

with G the diagonal matrix G = diag(Gππ, GKK̄), where Gππ and GKK̄ have the form of Eq.
(104) and we are now using two different cutoff parameters for each of them, qππmax and qKK̄max
respectively.
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Now we carry a χ2 fit to the data in Fig. 1 finding the parameters

f = 93.77 MeV ,

GV = 52.69 MeV ,

Mρ = 869.63 MeV ,

qππmax = 661.56 MeV ,

qKK̄max = 610.20 MeV ,

α = 0.69 ,

β = 0.81 ,

α
′
= 0.46,

β
′
= 0.79 ,

(120)

which lead to the result shown in Fig. 2. As expected, the data at higher energies improve.
As we can see, the values obtained for α, β, α

′
and β

′
do not differ much from those that

500 1000
E [MeV]

0

50

100

150

δ

FIG. 2. The solid curve is the best fit obtained with the new approach. The data are taken from

[40], obtained using the Roy equations.

would be provided by the chiral Lagrangians.

Now we proceed as before to find the pole and the new couplings, this time for both the
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ππ and KK̄ channels. We obtain
√
s0 = (768.66 + i 73.71) MeV ,

gππ = (6.94 + i 0.40) ,

gKK̄ = (4.25 + i 0.01) .

(121)

Using these values and the value of dGi
ds

, with i = ππ,KK̄, we find

(1− Z)ππ = −g2
ππ

dGππ

ds
= (−5.05 · 10−5 − i 0.27) ,

(1− Z)KK̄ = −g2
KK̄

dGKK̄

ds
= (1.28 · 10−2 + i 3.32 · 10−3) ,

(122)

from where it follows

|1− Z|ππ = 0.27 ,

|1− Z|KK̄ = 0.01.
(123)

Note that the KK̄ channel is not open and hence GKK̄ is evaluated in the first Riemann
sheet.

We can also evaluate

1− Z = −g2
ππ

dGππ

ds
− g2

KK̄

dGKK̄

ds
= (−1.28 · 10−2 − i 0.27) ,

|1− Z| = 0.27 .
(124)

The results in Eq. (123) lead us to the conclusion that the value of |1−Z| for the ππ channel
is essentially unaffected by the inclusion of the KK̄ channel. At the same time the exercise
has served to get a feeling of the amount of KK̄ present in the ρ meson wave function: we
found a negligible fraction of about 1%.

Thus, the three tests carried in the work lead us to conclude that the ρ meson is mostly a
dynamical structure with only a small component of ππ in its wave function and a negligible
one of KK̄.

V. CONCLUSIONS

We have made an analytical study of the scattering matrix and wave function for the
case of the interaction of a pair of hadrons in coupled channels. For this purpose we have
followed closely the formalism developed in the chiral unitary approach but using Quantum
Mechanics and making all derivations in detail. The study has been done for all partial
waves, generalizing work done before for s-waves. The study has been done both for bound
states and for scattering states. We find novel and interesting relations between the couplings
of bound states and resonances to the hadron-hadron channels and the wave function at the
origin. Of particular value are the sum rules obtained which allow us to determine the
probability to find a certain hadron-hadron component in the wave function. In particular,
when the sum of these probabilities is unity we can say that this state is a composite state
of hadron-hadron. When the sum differs from unity this difference measures the probability
to find a genuine component in the wave function of non hadron-hadron molecular nature.

22



In this sense we extend the rule of compositeness condition derived by Weinberg for s-waves,
one channel and small binding energies, to any partial wave, several coupled channels, bound
states and resonances. As a test we have applied these findings to the rho meson, determining
that it is largely a genuine state, with a small component of ππ and one much smaller of KK̄,
in agreement with other findings based on theoretical studies of the large Nc dependence of
the p-wave ππ amplitude.
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