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Abstract

Recently, many efforts are being put in studying three-hadron systems made of mesons and baryons and interesting results are
being found. In this talk, I summarize the main features of the formalism used to study such three hadron systems with strangeness
S = −1,0 within a framework built on the basis of unitary chiral theories and solution of the Faddeev equations. In particular, I
present the results obtained for theπKN, KKN andKKK systems and their respective coupled channels. In the first case, we find
four Σ’s and twoΛ’s with spin-parityJP = 1/2+, in the 1500− 1800 MeV region, as two meson-one baryons-wave resonances.
In the second case, a 1/2+ N∗ around 1900 MeV is found. For the last one a kaon close to 1420 MeV is formed, which can be
identified withK(1460).

c© 2012 Published by Elsevier Ltd.

1. Introduction

In the conventional quark model, hadrons can be classified intwo groups on the basis of their quark content:
baryons, constituted by three quarks, and mesons, formed bya quark-antiquark pair. Keeping this idea in mind, it
was just a matter of time to build up the different baryons and mesons observed in nature within quark models. All
one needed was to write all the possible combinations of three quarks or quark-antiquark pairs as a function of their
charge and strangeness. Radial and orbital excitations of these quarks from the ground state to different high energy
levels could generate more hadrons having a relatively short lifetime, which are called resonances.

However, this picture of the hadron resonances seems to be too simple to understand the properties of the different
states present in nature. For example, the lowest excited state found of the nucleon is theN∗(1440). However, in a
three-quark model for a baryon, the stateN∗(1535) is expected to be the first excitation of the nucleon, with a radial
excitation of a quark. From the kinematical point of view, this implies providing an energy of around 600 MeV to one
of the three quarks in the nucleon. This energy is sufficient to create, for example, a pion or two pions or an eta meson.
Therefore, it is plausible to think that to describe the properties of states as the ones mentioned above, the interaction
of a pion and an nucleon, or an eta and a nucleon could be more crucial than the quark structure of the state.

Therefore, a theory which uses the hadrons as the degrees of freedom instead of quarks can be more useful to
understand the properties of some of the meson and baryon resonances found in nature. This situation is in fact very
much expected when one studies interactions of hadrons in a low and an intermediate energy region. Here, due to the
inherent confinement of the quarks, these can not be considered as the asymptotic states of the theory.

Having this idea in mind, in the last years, non-perturbative unitarity techniques based on chiral Lagrangians have
been applied to the study of different meson-baryon and meson-meson systems, for example,KN, πΣ, πN, KK, etc.,
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and dynamical generation of many baryon and meson resonances has been found. For instance,Λ(1405),Λ(1520),
N∗(1535), etc., in the baryon sector andf0(980),a0(980), f0(500), etc., in the meson sector [1, 2, 3, 4].

Since the interaction in such two-body systems is strongly attractive, the addition of one more meson or baryon
could further lead to the generation of new states in which case the interaction of the three hadrons could be determi-
nant in understanding some of the experimental findings.

With the motivation to search for such states and to understand their properties, we have extended the well studied
two-body chiral formalism to three-body systems. Here, I summarize the method developed for the investigation of
three hadron systems as well as the results found for the generation of resonances and/or bound states inπKN, KKN,
andKKK systems.

2. Formalism

A rigorous study of three-body systems requires solving theFaddeev equations [5]. In this formalism, theT matrix
of the three-body system is written as sum of three partitions,T1, T2 andT3, i.e.,

T = T1 + T2 + T3. (1)

Each of these partitions,T i , with i = 1, 2, 3, represents that contribution to the totalT matrix in which particlesj and
k, with i , j , k=1,2,3, are the last ones in interacting. Thus, particlei is a spectator in the last interaction. In this
way, the summation of the three partitions in Eq. (1) accounts for the different permutations and combinations of the
sequence of different pair interactions among the three particles. These partitions satisfy the Faddeev equations:

T i = ti + tiG[T j + Tk], (2)

whereti denotes thet-matrix for that two body subsystem where particlei is absent andG is the three-body Green’s
function for the system.

The solution of the Faddeev equations in its exact form is a cumbersome task, due to which one often resorts
to approximations. While most conventional studies of three-body systems use potentials in the momentum space,
usually separable potentials to make the solution of the Faddeev equations feasible, we used two particlet matrices
generated from the solution of the Bethe-Salpeter equationin its on-shell factorization form [1, 2]:

ti = (1− Vig)−1Vi . (3)

In our approach, the kernelVi present in Eq. (3) is obtained from the lowest order chiral Lagrangian describing the
interaction between the particles andg is the two-body loop function, divergent in nature and whichis regularized
using a natural cut-off or subtraction constant when using dimensional regularization [1, 2]. Equation (3) is solved in
a coupled channel approach, generating in this way different hadron resonances where the hadron-hadron interaction
is essential for understanding the properties of the statesfound. It is worth mentioning that the availability of more
precise data in recent times is helping in constraining the parameters involved in the higher order terms of the chiral
Lagrangians, leading to more precise determination of observables [4, 6, 7]. The contribution of these higher order
terms in the three-body calculation should be checked in thefuture.

Once thet matrices are obtained by solving Eq. (3), we can proceed to solve Eq. (2). The Faddeev equations
are integral equations and thet matrices which enter in the equations are off-shell. The interesting point of using
chiral amplitudes for solving Eq. (2) is that they can be split into two terms: one which is called on-shell, since it is
calculated as a function of the Mandelstam variableswith the external particles on their mass shell, and other off-shell
which goes asq2 −m2, with q the momentum andm the mass of the particle, and which vanishes when the external
particles are on-shell. We found that when the chiral amplitude is inserted in Eq. (2) a cancellation occurs between
the contribution arising from the off-shell part of these amplitudes and three hadron contact terms originating from
the chiral Lagrangians. This cancellation is exact and analytical in the SU(3) limit as shown in the case ofs-wave
interactions in Refs. [8, 9, 10]. We have further checked that when the condition of the SU(3) limit is removed, the
sum of the contributions coming from the off-shell part of the two-bodyt matrices and three hadron contact terms,
which constitutes the sources of three-body forces, turns out to be very small as compared to the one obtained from the
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on-shell part. Thus one can consider only the on-shell two-body t-matrices and ignore the three-body forces coming
from the chiral Lagrangians. This gives rise to the use of on-shell amplitudes in the solution of the Faddeev equations,
which in terms of these on-shell two-bodyt matrices read as

T i j
R = tigi j t j + ti [Gi ji T ji

R +Gi jkT jk
R ]. (4)

In Eq. (4)gi j ≡ G is the three-body Green function of the system andGi jk a loop function involving three-hadron
propagators (for more details, see Refs. [8, 9, 10]). The Faddeev partitions of Eq. (2) are related to theT i j

R partitions
through:

T i = tiδ3(~ki − ~k′i ) + TR,

TR ≡
3
∑

i=1

3
∑

j,i=1

T i j
R , (5)

where~ki (~k′i ) is the momentum of the particlei in the initial (final) state.
The two-bodyt matrices andG functions entering in Eq. (4) depend on the invariant massesof the corresponding

subsystems,si j , and the total energy of the system,s. In this way, theT i j
R amplitudes are calculated as a function

of s and the invariant mass of one of the pairs, for example the onerelated to particles 2 and 3,s23, since the other
kinematic variables can be obtained as a function of these two variables [8, 9, 10].

After solving Eq. (4) for a certain system, since we work in the charge basis, we project the resulting amplitudes in
an isospin base in which the states are labelled by the total isospin of the three-body system,I , and the isospin related
to one of the subsystems,Isub, and search for peaks in the squared amplitude which can be identified with resonances.

3. Results

3.1. TheπKN system and coupled channels.

One of the successes of unitary chiral dynamics is the reproduction of theΛ(1405)S01 (JP = 1/2−) properties,
which has been found to get dynamically generated (with a twopole structure [2]) from theKN interaction and
its coupled channels. If another pseudoscalar meson is added to this system, inS-wave, it results into states with
spin-parityJP = 1/2+. The lightest pseudoscalar meson which can be added is the pion. The resulting three-body
system would posses a mass∼ 1570 MeV. This is exactly the region where the 1/2+ hyperon resonances are poorly
understood [11]. The poor status of these low-lyingS = −1 states is evident from the following facts: a) The spin-
parity assignment for many of these states is unknown, e.g.,for Σ(1480),Σ(1560), etc., b) the partial-wave analysis
and production experiments have been often archived separately in the PDG listings, e.g., forΣ(1620),Σ(1670), c)
other times, e.g., in case ofΛ(1600), it is stated that existence of two resonances, in this energy region, is quite possible
[11]. This situation lead us to question if some of these poorly understood states could be understood as three-hadron
resonances. In such a case, it would be difficult to investigate them considering only two hadron decay channels,
which would result in poor information related to these resonances. In fact, some of them, likeΛ(1600),Σ(1660),
decay to three-body final states with large branching ratios[12, 13], implying that some of the wave functions of the
1/2+ resonances in theS = −1 sector have an appreciable two-mesons and one baryon contribution, likeπKN, ππΣ,
ππΛ, andπKΞ.

Motivated by this, to search for possible three-body states, we started by taking all the combinations of a pseu-
doscalar meson of the 0− SU(3) octet and a baryon of the 1/2+ octet which couple toS = −1 with any charge. To this

system we add a pion and obtain twenty-two coupled channels with net charge zero:π0K−p, π0K
0
n, π0π0Σ0, π0π+Σ−,

π0π−Σ+, π0π0Λ, π0ηΣ0, π0ηΛ, π0K+Ξ−, π0K0Ξ0, π+K−n, π+π0Σ−, π+π−Σ0, π+π−Λ, π+ηΣ−, π+K0Ξ−, π−K
0
p, π−π0Σ+,

π−π+Σ0, π−π+Λ, π−ηΣ+, π−K+Ξ0.
In Fig.1, we show a plot of the squaredTR-matrix, calculated within the formalism explained in the previous

section, corresponding to theππΣ channel for total isospinI = 1 with two pions in isospinIππ = 2. We see two peaks;
one at

√
s= 1656 MeV with∼ 30 MeV of width and another at

√
s= 1630 MeV with 39 MeV of width. We identify

the former peak with the well establishedΣ(1660− i100/2) [11] and predict aΣ(1630). AΣ∗ state with mass around
1630 MeV andJπ = 1/2+ is not listed by the Particle Data Group (PDG), however, the findings of Refs. [14, 15] hint
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Figure 1. TwoΣ resonances in theππΣ amplitude inI = 1, Iπ = 2 configuration. In the figure
√

s is the total energy of the system, and
√

s23 is the
invariant mass of theπΣ subsystem .

towards its existence. It is interesting to notice that theΣ∗’s found appear for different values of theπΣ invariant mass,√
s23, around 1430 and 1410 MeV, respectively. The observation oftheseΣ∗ resonances in a particular experiment

could be difficult, since the mass difference between these states is smaller than their respective widths. However, the
fact that they are generated for different values of

√
s23 should be helpful in identifying them in a Dalitz plot involving

the variables
√

s and
√

s23.
In addition, we found some moreΣ andΛ resonances. We summarize our findings in Table 1. As can be seen,

we are able to generate all the low-lying 1/2+ Λ andΣ resonances listed by the PDG in the energy region 1500-1800
MeV as two mesons one baryon states.

Here we have limited the discussions tos-wave interactions, however, it should be mentioned that a study of
theπKN system includingp-wave interactions has been done in Ref. [16], where a 3/2− Σ resonance of molecular
structure is predicted with a mass of 1570 MeV.

3.2. The KKN system

TheKKN system was studied in Ref. [17] using effective potentials to describe the interaction between the differ-
ent subsystems. As a result, aN∗ with I = 1/2 andJP=1/2+ was found around 1910 MeV when theKN pair forms the
Λ(1405) and, simultaneously, theKK pair is resonating asa0(980). The hadron-hadron distances found in Ref. [17]
for theKKN state are of about 2 fm, which is as large as typical nucleon-nucleon distance in nuclei.

To confirm or revoke the findings in Ref. [17], we solved the Faddeev equations for theKKN system and coupled
channels [18, 19]. In Fig. 2 we show the contour plots corresponding to the three-dimensional plots of the squared
three-bodyTR matrix for I = 1/2, IKN = 0 (upper panel) andI = 1/2, IKK = 1 (lower panel) plotted as functions of
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Γ (PDG) Peak position (this work) Γ (this work)
(MeV) (MeV) (MeV)

Isospin= 1
Σ(1560) 10 - 100 1590 70
Σ(1620) 10 - 100 1630 39
Σ(1660) 40 - 200 1656 30
Σ(1770) 60 - 100 1790 2

Isospin= 0
Λ(1600) 50 - 250 1568, 1700 60, 136
Λ(1810) 50 - 250 1740 20

Table 1. A comparison of the resonances found in our work withthe states listed by the PDG.
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Figure 2. Contour plots of the three-body squared amplitude|TR|2 for the N∗ resonance in theKKN system as functions of the total three-body
energy,

√
s, and the invariant mass of theKN subsystem withIKN = 0 (upper panel) or the invariant mass of theKK subsystem withIKK = 1

(lower panel).

the total energy of the three-body system,
√

s, and theKN invariant mass,
√

sKN, and theKK invariant mass,
√

sKK ,
respectively. As can be seen in the upper panel, a peak in the squared amplitude is obtained around

√
s∼ 1922 MeV

when theKN subsystem in isospin zero has an invariant mass close to 1428MeV. In the lower panel, the peak shows
up when the invariant mass of theKK subsystem is around 987 MeV. Thus, it can be concluded that aN∗ resonance
with JP = 1/2+ is formed in theKKN system when theΛ(1405) is generated in theKN subsystem and thea0(980)
state is formed in theKK subsystem, in agreement with the findings of Ref. [17].
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A N∗ state with these characteristics is not catalogued in the PDG [11]. However, there is a peak in theγp→ K+Λ
reaction at around 1920 MeV, clearly visible in the integrated cross section and also at all angles from forward to
backward [20, 21, 22] which could correspond to this state, as suggested in Ref. [23].

3.3. The KKK system

Another interesting system to study is the one formed by two kaons and an anti-kaon. In theKK system the
f0(980) anda0(980) are dynamically generated and if the attraction between the twoKK pairs is strong enough to
overcome the repulsion between the kaons, a bound state could be formed.
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Figure 3. Contour plots of the three-body squared amplitude
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∣
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∣

2
for the KKK → KKK transition with totalI = 1/2 as functions of the total

three-body energy,
√

s, and the invariant mass of theKK subsystem withI23 = 0 (upper panel) or the invariant mass of theKK subsystem with
I23 = 1 (lower panel).

With this idea in mind, we perform a Faddeev calculation of the KKK, Kππ andKπη systems treating them as
coupled channels. In Fig. 3, we show the contour plots associated to|TR|2 for the processKKK → KKK in the cases
I = 1/2, I23 = IKK = 0 (upper panel) andI = 1/2, I23 = 1 (lower panel). First of all, we see in both panels of Fig. 3 a
peak structure at an energy around 3mK ∼ 1488 MeV (withmK = 496 MeV the kaon mass) which appears when the
invariant masses of the respectiveKK subsystems have a value around 2mK , i.e., their threshold values. If we only
considererKππ andKπη as coupled channels, the signal at 1488 MeV is not present. Thus, we conclude that the peak
which shows up at 1488 MeV corresponds then to the opening of the three-bodyKKK threshold. Apart from this, we
find a peak at

√
s ∼ 1420 MeV and a width of∼ 50 MeV when

√
s23 ∼ 983 MeV for the caseI23 = 0, as shown in

the upper panel of Fig. 3. As can be seen in the lower panel of Fig. 3, this resonance state also shows up for a value of√
s23 ∼ 950 MeV and

√
s ∼ 1420 MeV whenI23 = 1. Thus, a state at 1420 MeV shows up when the invariant mass
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of theKK pair with isospin zero is close to a value of 983 MeV, implyingthen that thef0(980) resonance is formed in
the subsystem. However, when theKK is projected onI23 = 1, the invariant mass for theKK pair has a value around
950 MeV. This value is not exactly in the region where thea0(980) gets dynamically generated, but it is also not very
far away, and the attraction present in the system helps in forming a three-body bound state. In fact, a recent study of
the two body systemK f0(980) shows the generation of a kaon around 1460 MeV [24].

Following Ref. [17], we have also studied theKKK system using effective potentials to describe the interaction
between the pairs of the system. TheKK interaction strengths were determined to have a quasiboundstate with mass
980 MeV and width 60 MeV in isospin 0 and isospin 1, which correspond to thef0(980) anda0(980) resonances,
respectively. This means that the attractiveKK interactions have the same strengths for bothIKK = 0 andIKK = 1.
The strength of the repulsiveKK interaction inIKK = 1 was fixed to reproduce the scattering lengthaK+K+ = −0.14,
which has been obtained from a lattice QCD calculation [25].In the potential model, the three-body wave function is
also obtained. With the wave function we can investigate thespacial structure of the three-body quasibound state. We
obtain the root mean squared radius of theKKK quasibound state to be 1.6 fm. This value is similar to the onefound
for theKKN system [17], which was 1.7 fm. The averageK-K distance and the distance between theKK cluster and
K are calculated and found to be 2.8 fm and 1.7 fm, respectively. The distance of the repulsiveKK is also very similar
to the corresponding result for theKN distance in theKKN system.

The kaonic state obtained within the two methods can probably be associated to theK(1460) listed by the PDG
[11] (which is omitted from the summary table) and observed in Kππ partial wave analysis. However, the poor
experimental information available in this energy region for kaonic states suggests that more experiments are needed
to confirm the existence of this state. We get as a result a quasibound state of theKKK system with 21 MeV binding
energy and 110 MeV width. This state appears for an energy similar to the one of the resonance obtained in the
Faddeev calculation. It is interesting to notice that although the two methods are very different, the energy position
of the quasiboundKKK state does not differ very much. Note, however, that in the potential model usedwe consider
only the singleKKK channel and do not take into account the possible modification of the two-body interaction in
the presence of the third particle. In such simple calculation, for weakly bound systems, the resulting binding energy
and width correspond to the sum of the binding energies and widths of the two-body subsystems,f0(980) anda0(980)
in the present case, as discussed in Ref. [17].

4. Summary

In this talk I have presented an approach for solving the Faddeev equations based on unitarized chiral theories, due
to which a cancellation between the off shell part of the two body scattering matrices and three bodycontact terms
stemming from the same theory is found. As a consequence on-shell two bodyt matrices can be used as input to
the Faddeev equations. Within this formalism, I have shown the results found in three systems and their respective
coupled channels, obtaining the generation of several resonances. It is thus interesting to continue with such studies
of three hadron systems.
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