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ABSTRACT. An analysis of morphological changes during the last six decades is
presented for the Rambla de Cervera, a Mediterranean ephemeral stream located in
the eastern sector of the Iberian Mountain Range. The studied channel (16.5 km) has
two contrasted sectors: a horst confined sector (5.5 km) and a graben sector
(11 km). Channel changes were analysed through the analysis of aerial photographs,
with geographical information systems (GIS) and comparison of topographic
surveys made with a GPS-RTK. Between 1946 and 2006 the Rambla de Cervera,
underwent channel adjustments comparable to those observed in other
Mediterranean rivers. The gravel channel markedly narrowed, losing width (68.5%)
and channel surface area (45.7%), and incision processes occurred along the entire
study reach at an average depth of 3.5 m. The progressive reduction of discharge
and sediment supply due to land use changes, gravel mining and hydroclimatic
variability has been considered responsible for these changes. However, these
morphological changes exhibit an interesting temporal variability, with a maximum
decrease of the gravel channel in the period 1946-1956 and another clear narrowing
stage between 1977 and 1991, whereas incision mainly progressed after 1977. In
addition, a contrasted behavior between the graben and horst sectors has been
observed and analyzed. The horst sector underwent a constant and continuous trend,
whereas the graben sector had more intense changes and two stages with significant
reverse trajectories. The differential behavior of the graben and horst sectors was
caused by the different responses generated by the overlapping of the lack of
sediment supply, the timing and intensity of flood events and the particular hydraulic
conditions of both sectors. The hydraulic geometry of the different river sections
conditioned the effectiveness of flood events, influencing on the existence or absence
of floodplain destructive trajectories and on the stability of fluvial forms.
Variabilidad espacial de los cambios de cauce en una rambla mediterránea en
las seis últimas décadas (1946-2006)
RESUMEN. En el presente trabajo se realiza un análisis de los cambios morfoló-
gicos ocurridos en la cuenca y el cauce de la Rambla de Cervera, situada en la parte
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oriental del Sistema Ibérico. El tramo de estudio (16.5 km) discurre primero confi-
nado en un horst (5.5 km), y posteriormente en un graben (11 km). Los cambios en
el cauce han sido estudiados y cartografiados a partir de la fotografía aérea y
levantamientos topográficos realizados con un GPS-RTK, para ser después anali-
zados mediante SIG. Entre 1946 y 2006 la rambla redujo la anchura de su cauce en
un 68.5%, la superficie del canal de gravas se redujo en un 47.5% y se registró una
incisión media de 3.5 m. Estos cambios, al igual que en otros ríos mediterráneos, se
han atribuido a la progresiva disminución del caudal y del sedimento disponible a
lo largo del siglo XX, producidos fundamentalmente por los cambios de usos del
suelo, la extracción de áridos y la variabilidad hidroclimática. Los cambios obser-
vados presentan una interesante variabilidad temporal, con una reducción máxima
del canal de gravas entre 1946 y 1956 y un segundo período entre 1977-1991, mien-
tras que la incisión se aceleró a partir de 1977. El trabajo se centra en el análisis
del comportamiento diferencial entre los sectores del horst y el graben del tramo flu-
vial. El primero muestra una tendencia evolutiva más regular, mientras que el
segundo sector presenta periodos de inversión de tendencias. En el presente traba-
jo se analizan esas diferencias y se establece un modelo explicativo sobre los facto-
res locales que influyen en este contrastado comportamiento. Los cambios en la
geometría hidráulica provocados por el confinamiento y por la incisión, así como
la variabilidad hidrológica espacio-temporal son responsables de las diferencias
entre ambos sectores. Así, el cambio de un sector confinado a otro no confinado y
el incremento del radio hidráulico influyen en el comportamiento de las crecidas a
lo largo del período.
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1. Introduction
Over the last two centuries, continuous adjustments have taken place in the

Mediterranean fluvial systems, as a result of the fluctuations of flow and sediment supply.
Climatic changes and human activities have been associated with these adjustments,
influencing erosion and deposition of sediment. Much discussion has focused on the
effect of human activities and its relative importance compared with climatic impacts in
fluvial systems, and several studies have analyzed the links between morphological
changes and anthropogenic activity in the region (Hooke, 2006; Gurnell et al., 2009).

Channel adjustments in recent decades, in particular incision, narrowing and
morphologic changes have been documented and attributed to the decrease in flow and
sediment supply. Causal interpretation has often been addressed through retrospective
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analyses of anthropogenic actions such as dam construction, reforestation, torrent
control works, or river channelization (Bravard et al., 1997; Rinaldi, 2003; Surian and
Rinaldi, 2003; Surian and Cisotto, 2007; García-Ruíz and Lana-Renault, 2011). Gravel
extraction has also had a profound impact on rivers around the world (Kondolf et al.,
2002; Liébault and Piégay, 2002; Surian and Rinaldi, 2003; Piégay et al., 2004; Rinaldi
et al., 2005; Wishart et al., 2008; Surian et al., 2009).

Researchers have attempted to establish a chronology of recent historical changes in
river morphology in the Mediterranean region of Europe. In French rivers, channel
narrowing in the first half of the twentieth century has been associated with decreased
discharge and sediment supply at the end of the Little Ice Age. In contrast, channel
reduction in the second half of the twentieth century is considered a human-induced fluvial
adjustment (Bravard et al., 1997; Liébault and Piégay, 2002; Arnaud-Fassetta, 2003;
Liébault et al., 2005). In Italy, Surian et al. (2009) detected small width changes during the
nineteenth century, but with no significant trend. From the end of the nineteenth century to
the 1980s/1990s, channel narrowing and incision occurred, with particular intensity after
the 1950s. Finally, during the last two decades, widening sedimentation and bed-level
stabilization predominate, although some river reaches are still narrowing. In Spanish
rivers, several studies have shown an increase in flood frequency in the Mediterranean
region over the past centuries, with a particular rise in the eighteenth and nineteenth
centuries, which they attribute primarily to climatic fluctuations during or at the end of the
Little Ice Age (e.g. Barriendos and Rodrigo, 2006; Benito et al., 2008; Glaser et al., 2010).
López-Bermúdez et al. (2002) examined the occurrence of floods in ephemeral streams at
the beginning of the twentieth century in the Mediterranean region, which they attribute
primarily to deforestation. Additionally, important changes occurred in the second part of
the twentieth century dealing mainly with land use changes (Beguería et al., 2006; López-
Moreno et al., 2006; García-Ruíz, 2010; Gallart et al., 2011) and torrent control works
(Boix-Fayos et al., 2007). The impact of gravel mining was particularly severe in the
period 1950–1980, and it is a major contributor to river incision in Spanish rivers (Batalla,
2003; Rovira et al., 2005, Martín-Vide et al., 2010).

Mean incision values have been estimated in the Italian perennial rivers (3-4 m)
(Surian and Rinaldi, 2003; Surian and Cisotto, 2007; Rinaldi et al., 2009; Surian et al.,
2009; Preciso et al., 2012; Gurnell et al., 2012), French rivers (1-5 m) (Bravard et al.,
1997; Liébault and Piégay, 2002; Arnaud-Fassetta, 2003; Liébault et al., 2005), and
Spanish rivers (0.6-5.5 m) (Boix-Fayos et al., 2007; Martín-Vide et al., 2010; Segura-
Beltrán and Sanchis-Ibor, 2013). These values range in the same order of magnitude as
those observed in ephemeral streams in the USA (Rinaldi et al., 2005; Cadol et al.,
2011) and Israel (Rozin and Schick, 1996). The time sequence is in most cases similar:
incision is detected in the 1940s and increases later, especially in those rivers where
gravel mining progresses (Rinaldi et al., 2005).

However in Mediterranean Europe, most of the research has been developed in
perennial rivers where the impact of flow on channel morphology is permanent. Less is
known about river adjustments in ephemeral streams, where there are long periods of
stability and a higher dependence of morphological changes on extreme or flash-flood
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events (Segura-Beltrán and Sanchis-Ibor, 2013). Moreover, scarce attention has been paid to
the spatial variability of these changes, which occur over long time scales, vary as a
function of distance from sediment sources and depend on local channel characteristics.

Between 1946 and 2006 the Rambla de Cervera, an ephemeral stream in the north of
Valencia Region (Spain) (Fig. 1), underwent channel adjustments comparable to those
observed in other Mediterranean rivers. The gravel channel markedly narrowed, losing
width (68.5%) and channel surface area (45.7%), and incision processes occurred along
the entire study reach at an average depth of 3.5 m. These morphological changes exhibit
an interesting temporal variability, with a maximum decrease of the gravel channel in the
period 1946-1956 and another clear narrowing stage between 1977 and 1991, whereas
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Figure 1. Sketch of location: (Upper panel, A) Rambla de Cervera and Cervol River basins and
weather stations, with the study reach in white. 1. Barranc del Molinar, 2. Barranc de la Font
and 3. Barranc de Mateu Sant; (Lower panel, B) Rambla de Cervera study reach and sections
where incision and width were measured. The channel width (the sum of the single branches
widths) has been measured every 500 m. Eleven sections were selected in order to measure

incision processes. The hillshade map shows the contrast between the horst and the graben area.



incision mainly progressed after 1977. Natural and human-induced factors producing
contradictory effects have been considered responsible for these changes in the Rambla
de Cervera (Segura-Beltrán and Sanchis-Ibor, 2013). The elaboration of a conceptual
cause-effect framework has defined the major influencing factors and the timing of
processes affecting recent historical changes in the Rambla de Cervera (Fig. 2). The
driving factors of these changes are decreasing sediment load, caused by revegetation
processes and gravel-mining, and the spatio-temporal variability of floods.

Figure 2. Trends of river adjustments, main human disturbance factors, and natural reforestation
causing bed river changes in the Rambla de Cervera (Segura-Beltrán and Sanchis-Ibor, 2013).

However, previous works (Segura-Beltrán and Sanchis-Ibor, 2013) have shown a
contrasted behavior between the graben and horst sectors, which has not been
previously analyzed. For this reason, the present work aims to study these differences,
searching for an explanatory model of the local factors that contributed to these
changes in both sectors. This article focuses on the following questions: a) the analysis
of the spatial distribution channel changes in the Rambla de Cervera between 1946 and
2006; b) the causal explanation of these changes considering the particularities of
ephemeral rivers; c) the influence of the hydraulic geometry on the river channel forms.

2. Regional setting
The basin of the Rambla de Cervera (339.6 km2) is located in the Oriental Sector

of the Iberian Mountain Range (Fig. 1A). The mountain range was folded during the
paroxysmal compressive phase in the Oligocene, when anticlinal and synclinal
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structures with a NW-SE direction were formed. Later, at the end of the Tertiary and
the beginning of the Quaternary, two distensive phases generated horsts and grabens,
transverse to the Iberian Mountain Range direction.

The stream rises at 1160 m. a.s.l. and flows 44 km in an easterly direction to the
Mediterranean Sea, crossing horsts and grabens perpendicularly. The studied channel reach
is 16.5 km long, 5.5 km in the confined sector and 11 km in the graben part (Fig. 1B). In
the horst area, the channel is constricted and the river adopts a wandering pattern; in the
graben, lateral shift is important, and the river has a multithread braided pattern.

The headwaters are composed of Mesozoic calcareous rocks, mainly limestone,
dolomies and several marls. Limestones and dolomies are hardly karstified and very
permeable. Local calcareous aquifers, thick but very deep, favor the formation of
ephemeral streams. In the graben, the rambla formed an important alluvial fan during
the Oligocene. Several Quaternary terraces can be located along the studied reach,
especially in the graben part. The river has a slope of 1.4% and the channel bed is
mainly composed of cobbles and gravels, with an average size of 25.8 mm. Most of the
river bed is armoured (Segura, 1990).

The mean annual rainfall ranges between 700 mm and 480 mm, decreasing from
west to east. The maximum monthly rainfall typically occurs in autumn and spring,
with a summer minimum in July. The river only flows after heavy rains. Runoff
appears from two to four times a year on average; and it is usually discontinuous along
the channel. The combination of the basin physical characteristics (permeable rock,
thin soils, steep slopes, and sparse vegetation) and intense, heavy, and irregularly
distributed rainfall generates flash floods. Hydrographs have sharp rising limbs and
short lag times (Segura, 1990; Camarasa-Belmonte and Segura-Beltrán, 2001).

The headwaters area encompasses the basin located upstream of the highest point
of the Rambla de Cervera study reach. It is 114.8 km2 if we consider the basin of
Catinells ravine, which flows into the Rambla Cervera just at the beginning of the horst
sector. The direct tributaries of the study reach are few and very short: the ravine of El
Molinar (6.8 km2) in the horst sector, and the Barranc de la Font (3.6 km2), at the
beginning of the graben sector. The last one is the largest, the ravine of Sant Mateu
(67.1 km2), but flows just at the end of the study reach and hence has not significant
impact as a sediment source for this study. The Rambla the Cervera and these four
tributaries have been ungauged during the study period.

3. Methods

3.1. Changes in river planform
In order to investigate recent changes in the study reach, we used aerial

photographs and orthophotos from different dates (Table 1). The photographs were
scanned at a resolution of 400 dpi to obtain average pixel dimensions of ~1 m. They
were georeferenced to orthophotos using ArcGIS™ version 9.3 (ESRI, Redlands, CA,
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2009). Ground control points (GCPs) were selected from the image (for ~10-12 points
along the river corridor) to georectify the images through a second order polynomial.
We adopted bilinear interpolation resampling and admitted a maximum acceptable root
mean square error (RMS) of <5 pixels. Completely correcting the georectifying error
between adjacent photos was impossible, especially in the older photographs.
According to Mount et al. (2003), we estimated errors for channel width measurements
based on the aerial photograph sources. Image distortion errors (θ) ranged between 3
(1946) and 6.4 m (1956), whereas the location errors (pR) ranged between 1.8 (1977)
and 3.5 m (1956) and the mean width error (ew) was 10.6 m.

Table 1. Images analysed in the present study.

The images were then interpreted to identify changes in river corridor morphology.
The margins of each form were manually digitized; and an attribute table was created for
the resulting polygons. The channel forms were classified following a modification of the
conceptual model of Gurnell et al. (2001) and Zanoni et al. (2008). We distinguished
between: (i) gravel channels, unvegetated branches of the river bed, frequently affected by
flow; (ii) incipient islands, gravel or cobble patches covered by less than the 20%
scattered bushes and sparse grass cover; (iii) established islands, covered by more than the
20% scattered bushes or trees and completely covered by a dense grass layer or occupied
by crops (olive trees or vines); and (iv) dissected floodplain islands, the remaining parts of
the floodplain incorporated to the active corridor by chute cutoff processes.

These floodplain islands differ from those established by the alignment of the
crops and plots on either side of the chute cutoff, and they can be identified by
comparing subsequent or previous photographs. Although underrepresented, the chute
channels have been separated from the gravel channel category because they indicate
processes of floodplain dissection. The outer limit of the active corridor was defined by
the boundary between areas of gravel and any remaining, extended vegetated surface
that had not been classified as island at any period (Zanoni et al., 2008).

Year Type Scale Agency
Pixel

resampling
(m)

Film
and color

1946 Aerial photograph 1/43 000 Ministry of Defense (CECAF) 1 Panchromatic
Black-and-white

1956 Aerial photograph 1/33 333 Ministry of Defense (CECAF) 1.15 Panchromatic
Black-and-white

1977 Aerial photograph 1/18 000 Ministry of Agriculture (IRYDA) 0.60 Panchromatic
Black-and-white

1991 Aerial photograph 1/25 000 Valencian Institute of Cartography (ICV) 0.85 Panchromatic
Black-and-white

2006 Orthophoto 1/5 000 Valencian Institute of Cartography (ICV) 0.50 Digital color
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3.2. Channel incision and channel width measurement assessed by topographic survey
and aerial photographs
Channel width is considered in this work the result of measuring the total unvegetated

width, that is, the sum of the single channel branches widths, plus the unvegetated gravel
bars (Bertoldi et al., 2009; Michalková et al., 2010). Channel width was measured on the
aerial photographs every 500 m along the entire study reach (16.5 km).

The incision was measured indirectly from a survey conducted in 2011 on the first
10 km of the study area. We assumed that incision has not increased since 2006
because no significant flow event occurred during the last six years. The measurements
were made using GPS-RTK (accuracy of 15 cm), and they covered an area of 314 400 m2

with 9242 points (0.029 points m-2). A DEM of 1-m resolution generated from survey
data was used to make cross sections.

The active corridor of 1946, 1956, 1977, 1991, and 2006 was used to define the
external limit of channel courses during the last 60 years. Using ArcGis spatial analyst
tools, we calculated numerous profiles, selecting 11 of them considered optimal for
incision estimation (Fig. 1). The distance between them is variable and different for those
sections where width was calculated. The necessary conditions for selection were: (i)
sections where the corridor has narrowed in all the periods; (ii) clear channel boundaries;
and (iii) boundaries coincident with microterraces, identified through photointerpretation
and field work. The incision was calculated in each section measuring the height of the
boundary channel each year (1946, 1956, 1977, 1999 and 2006). Stereoscopic analysis and
fieldwork contributed to corroborate the information provided by cross section analysis.

3.3. Natural and human-induced influencing factors
3.3.1. Rainfall and flood series

The most relevant floods of the Cervol River and Rambla de Cervera have been
reconstructed consulting archives and newspapers, rainfall data, and stream flow gauging
data of the Cervol River. This river, adjacent to the Rambla de Cervera, was gauged
between 1911-1929. In addition to this, we have considered rainfall series from four
weather stations representing different climatic conditions of this basin (Table 2).
Climatic series were studied in order to identify the whole of total rainfall events >65 mm,
assuming that this threshold establishes the minimum rainfall for runoff production in the
region (Segura, 1990; Camarasa-Belmonte and Segura-Beltrán, 2001).

Table 2. Rainfall series characteristics in the weather stations of the study area.

Weather station Period
Mean annual
rainfall
(mm)

Total
years Complete Incomplete Gaps X-UTM Y-UTM

Morella 1920-2010 566 91 53 13 25 745317 4500696

Morella-La Vella 1945-2004 584.11 60 33 9 18 741738 4502957

Sant Mateu 1943-1962 601 21 18 3 769608 4484861

Sant Mateu HS 1971-2001 692 32 27 5 769344 4483678
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3.3.2. Land use changes
The land uses in the Rambla de Cervera basin between 1946 and 2006 were

mapped. Seven land use types were selected to classify the study area: (i) urban areas;
(ii) forested areas (>50% of forest strata coverage); (iii) bush or shrub areas; (iv)
rainfed annual crops; (v) rainfed cultivated trees; (vi) sparsely vegetated areas, also
including small bare rock patches and recent burnt areas; and (vii) river beds. The basin
area affecting the horst and graben sectors was analyzed separately.

3.3.3. Gravel mining data
Gravel mining data are difficult to obtain because the Spanish administration did

not register continuous and standardized information on mining concessions, and they
did not control extractions rigorously. Extractions started in 1972 in the study reach,
but the available public data cover a shorter period. We obtained different information
from the administration: (i) annual data between 1980 and 1988 (Pardo, 1991); (ii) total
data of the periods 2000-2005 and 2006-2007 (information obtained from the
Confederación Hidrográfica del Júcar); and (iii) no data between 1972 and 1979 or
between 1989 and 1999. These data reflect the amount of gravel extracted by the two
companies working in the whole river, impeding the quantification of the amount
extracted in the study area. Photointerpretation and local interviews were conducted for
a better understanding of the spatio-temporal distribution gravel mining impact.

4. Natural and man-induced changes in basin and river conditions

4.1. Climatic and hydrological changes
Rainfall data analysis shows a different behavior between the headwaters (Morella

and Morella la Vella) and the study reach (Sant Mateu and Sant Mateu HS) weather
stations. From the comparison we have made between the climatic series, we observe
that the number of events that exceed the runoff treshold (>65 mm) is considerably
higher in the study reach sector, doubling and tripling the headwaters figures; events
>200 mm are also more frequent in the graben (Fig. 3).

Figure 3. Number of rainfall events > 65 mm recorded in each of the study periods
in Morella (A) and Sant Mateu (B).
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The contrasted magnitude of rainfall in coastal and interior weather stations of this
region has been analyzed by several authors. Millán et al. (2005) have identified a
different pattern in the period 1950-2000 between those weather stations at a distance
higher or lower than 40 km from the coastline (approximately in mean annual
precipitation 400 m a.s.l.). These authors have found that the interior weather stations
have lost 30 mm during this period, whereas the coastal series remain stable over time.
This fact is a consequence of the reduction of the convective and frontal rains, parallel
to the increase of cut-off low events causing heavy coastal rains.

The higher frequency of effective rainfall in the study reach sector is compensated
by the small size and number of tributaries. Hence, sediment supply is highly
dependent on headwaters rainfall. Moreover, large floods only take place when there
are heavy rains in both the headwaters and the study reach sectors. Smaller events have
only a local impact because of high transmission losses. The lack of gauging data
hinders the interpretation of the differential impact of rainfall between the graben and
horst sectors. Information on historical and recent flood events permits, at least, to
identify a basic sequence of the fluvial activity (Table 3).

Table 3. Rainfall events in the Rambla de Cervera (1945-2006). In bold events >200 mm
in both horst and graben sectors. nd: no data.

Morella Morella - La Vella Sant Mateu Sant Mateu HS
14/11/1945 228.2 252.2 231.8
18/02/1948 105.7 214.3
18/12/1948 170 225.2 219.6
22/03/1949 105.7 40.2 198.5
23/04/1951 nd 97 230.5
08/09/1951 nd 95.3 240.4
10/10/1956 nd 278.1 231.5
01/10/1957 nd nd 249.4
18/11/1958 nd 46 331.4
08/09/1959 nd nd 203
09/10/1962 205.9 nd 495.4
14/12/1964 253.9 nd nd
28/09/1965 289.6 nd nd
21/10/1967 215.5 nd nd
02/12/1971 270 nd 244.1
20/09/1972 nd 83 319
03/02/1975 nd 55 200
18/10/1982 224.3 247.4 260
28/10/1983 183 nd 268
30/09/1986 123.5 nd 224.5
29/03/1988 257.4 nd 204
31/08/1989 nd nd 199.5
08/11/1989 nd nd 293.2
26/12/1989 nd nd 319.5
28/11/1991 150.1 114.8 224
21/09/1994 263.2 71.6 374
29/12/1996 104.7 86.2 215
23/01/1998 71.9 48.1 198
22/10/2000 511.3 377 459

Sanchis-Ibor y Segura Beltrán

98 CIG 40 (1), 2014, p. 89-118, ISSN 0211-6820



4.2. Land use changes
Land use changes follow similar trends in the basin area affecting the graben and horst

sectors during the study period. The only significant difference is the major predominance
of forests and bush in the headwaters area. In 1946, forest and bush covered the 72% of the
horst basin area. If we consider the graben basin area (the horst basin area plus the drainage
area of the direct tributaries to the graben reach), both categories only reached the 53%.

Subsequent depopulation processes and progressive abandonment of extensive
mountain exploitation practices (grazing and fuel wood collection) led to the regeneration of
local forests in the whole basin, particularly in the headwaters area. Between 1946 and 2006
holmoaks and coniferous forests doubled their surface in both horst and graben drainage
areas (Table 4 and Fig. 4). The agricultural surface clearly decreased, resulting in forest and
bush increases. Bush presents an apparent stability or slight decrease along the study period,
behaving as a transitional stage between the cultivated plots and the forest cover.

Table 4. Land use changes in the horst and graben sectors (%).

Figure 4. Land use changes in the basin areas affecting the graben and horst sectors.

Horst Graben
1946 2006 1946 2006

Forest 22,4 44,7 15,6 33,1
Bush 50,8 44,1 37,8 39,5
Annual crops 12 2 13,2 2,6
Tree crops 10,4 6 28,9 21,7
River channel 0,6 0,3 1,4 0,8
Sparsely vegetated 3,7 2,8 2,9 1,9
Urban 0,1 0,2 0,2 0,4
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Considering that the headwaters area –the basin located upstream of the highest
point of the Rambla de Cervera study reach– is the main source of sediments in
these basins, the predominance of forest and bush land uses is effectively protecting
soil and generating low erosion rates (García-Ruiz and Lana-Renault, 2011). Thus,
land use change can be considered a major factor in the decrease of sediment supply
along the study period. Despite the common trend, the small differences in forest
and bush coverage between the horst and graben sectors, and the distribution of
tributary rivers, could indicate that the lack of sediment supply is more relevant in
the graben sector.

4.3. Gravel mining

In spite of the poor quality of the official data, it is possible to identify the
general trend and range of gravel mining in the Rambla de Cervera. As we have
stated above, these data are partial and incomplete, but interviews and
photointerpretation enable us to corroborate the observed general trend.

Gravel mining started in 1972, and it was particularly intense between 1980 and
1988, when the administration did not establish restrictions, reaching an average of
36600 m3 yr (Table 5). During the period 2000-2007, extractions decreased to 3500 m3 yr,
because the administration has intended to reduce the impact of gravel mining on rivers
and the companies have started exploiting former agricultural plots in the floodplain.
Photointerpretation has shown that the most impacted area was the graben sector.

Table 5. Gravel extracted from the Rambla de Cervera according
to the official data.

Year/period Volume (m3)
1972-1979 -

1980 17 500

1981 14 500

1982 14500

1983 55 500

1984 94 800

1985 38 100

1986 32 990

1987 39 900

1988 21 850

1989-1999 -

2000-2005 10 400

2006-2007 18 000

Total 1980-2007 358 040
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5. Results
5.1. River incision

The annual incision ratio in the study reach between 1946 and 2006 is 0.054 m yr-1,
although there are important differences between the four periods. During the two first
stages, incision was not intense (0.028 m yr-1 in 1946-1956 and 0.021 m yr-1 in 1956-
1977), but increased considerably five years after the start of the gravel mining activity:
0.088 m yr-1 (1977-1991) and 0.081 m yr-1 (1991-2011).

Comparing the progress of incision in the study reach with the river mean width,
we observe a marked divergence (Fig. 2). On the one hand, incision slowly progressed
during the two first stages and increased markedly after 1977; on the other, the channel
width decreased significantly in the initial period and, after a stage of readjustment
1956-1977, continued decreasing moderately until 2006. This different behavior is
probably reflecting the impact of gravel mining in the incision processes.

The average bed incision of the study reach is 3.5 m, but there is an important
spatio-temporal variability. P4 and P7 present the maximum streambed degradation,
clearly conditioned by local factors. P4 (distance = 4728 m, incision = 5 m, width
section = 57 m) is located in the narrowest section of the study reach (Fig. 1B). At this
point, the hydraulic radius is high, enhancing incision during floods. P7 (distance =
5078, incision = 6.44 m, width section = 200 m) is located immediately downstream of
the CV-312 250 m long bridge. Here, incision has been mainly caused by local scour,
generating an artificial knickpoint. The concrete footing of the bridge acts as a dyke,
stopping headwater erosion and hindering slope regularization. In fact, the lowest
values are found at P6 (distance = 5582, incision= 1.75 m and width = 215), located
upstream of the bridge (Figs. 5 and 6).

Figure 5. Accumulated incision in the study reach.
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Figure 6. Changes in the longitudinal profile according to the incision estimated
in the study area.

Regarding the temporal variability, incision between 1946 and 1956, was
exclusively detected in two sections, P4 (0.5 m) and P7 (2.4 m). In the second period
(1956-1977) was particularly relevant (between 1.5 and 2 m) in P1 and P10, and moved
to the points P2 (1.29 m), P6 (1.51 m) and P11(2 m) during the third period. Between
1991 and 2006 the maximum values were P4 (4.5 m), P5 (2 m) and P8 (2.6 m). Thus,
there is a significant spatio-temporal variability, with maximums moving upstream and
downstream between the different periods. This behavior is determined by natural
factors, but also by the development of the gravel mining activity. Moreover, the
marked spatio-temporal variability is probably indicating that the river adjustments
have not finished and the equilibrium profile is far from being reached. Other authors
have detected long periods of adjustment after intense gravel mining impacts in
Mediterranean rivers (Rovira et al., 2005).

5.2. Spatial variability of changes in channel width
The channel width has undergone a progressive reduction through time, from the

first available measurements in 1946 until 2006. During this period, the mean width of
the study reach decreased from 214.6 to 67.6 m. The most important reduction (45.7%)
took place between 1946 and 1956. This trend was interrupted in the period 1956-1977,
when the channel width slightly increased by 2.9%. Between 1977 and 1991, width
channel decreased by 39.8%, and in the last period there was a small width loss of 5.8%.

The channel width reduction has not been uniform. During the period 1946-2006,
the mean width reduction was 62.3% in the horst sector and 70.2% in the graben sector
(Fig. 7). The major decrease took place in the graben sector between 1946 and 1956,
when the channel lost 51.6% width, doubling the horst losses (25.7%). During the
period 1956-1977 both sectors followed different trends, increasing width in the graben
sector (10%), but decreasing in the horst area (15.5%). Subsequently, both sectors
decreased, markedly between 1977 and 1991 (34.4% in the horst and 41.5% in the
graben) and smoothly after 1991 (7.3% in the horst and 5.1% in the graben).
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The spatial variability of the channel width changes is particularly relevant. Fig.
7B shows a dual behavior between horst and graben sectors. The horst area underwent
a slow and almost constant decrease before 1991, reaching stability during the last
period. However, the graben followed a more variable trend. The reduction of the
periods 1946-1956 and 1977-1999 was balanced during the other two periods,
particularly by the gains of the period 1956-1977.

Figure 7. Changes in channel width: (A) Mean values of channel width in the horst and graben
sectors; (B) Spatio-temporal distribution of accumulated width change.

The channel width is an extremely changing variable in braided rivers, frequently
presenting a sequence of alternative wide and narrow sections. Consequently, the
correlation between the initial channel width (1946) and the change of channel width in
each period provide relevant information about the scope of channel width changes
(Fig. 8). Between 1946 and 1956, there is a direct correlation between the initial width
and the width reduction. The most significant reduction took place in the wider channel
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sections. In the three following periods, the correlation decreases, but it is possible to
distinguish between two statistical populations, with a boundary width of 200 m. This
boundary separates the horst and graben areas, because only two sections of the horst
are >200 m and only 3 graben sections are <200 m. Fig. 8 also suggests that:

(i) the correlation of 1956-1977 data show a enlargement trend in sections >200 m
and a smooth reduction in sections <200m.

(ii) the period 1977-1991 inverts this trend, presenting stabilization or smooth
increase in sections <200 m and severe decrease in sections >200 m.

(iii) the last period (1991-2006) has not a clear trend, but also presents two clear
populations separated by the 200 m boundary.

Figure 8. Correlation between the initial channel width (1946) and the change of channel
width in each of the study periods.

These data suggest that, when the narrowing process affects the whole river, there
is a direct and positive correlation between the initial width and the width reduction.
However, when the river undergoes through mixed trends, the correlation is weaker.
Thus, the 1956-1978 and 1991-2006 data show that the wider sections grow whereas
the narrower are stable or decreasing.
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5.3. Changes in river forms
River forms have been substantially altered during the study period. The most

significant change is the reduction of the gravel channel, which decreased in sixty years
from 275 to 103 ha. Changes in river morphology followed this sequence in the study
reach:

i) 1946-1956. The gravel channel underwent the major loss (97 ha). In this period,
the gravel channel was occupied by incipient and established islands, whereas the
floodplain surface slightly increased (Fig. 9).

Figure 9. Compared evolution of channel forms in the horst and graben sections.

ii) 1956-1977. The gravel channel increased in 8.5 ha, whereas the incipient
islands decrease in 9.7 ha and the established islands increase in 25.6 ha. This fact
suggests that the widening trend of this period is materialized through the destruction
of incipient islands, whereas the established islands are not affected by the river flow.

iii) 1978-1991. The gravel channel decreased again, losing 75 ha. Incipient islands
slightly increased and established islands grew considerably (66 ha). Floodplain had a
small growth (5.3 ha).

iv) 1991-2006. Floodplain increased significantly (24 ha), whereas islands
decreased (3.8 ha in incipient islands and 11.4 ha in established islands).

The most commonly observed trend began when incipient islands were formed in
some gravel patches covered by grass and scattered bushes. Further accumulation
and growth of vegetation, woody debris, and sediment around these incipient islands
supported their enlargement and coalescence, culminating in the formation of larger
established islands. In some cases, early occupation by crops helped to fix the established
islands. These trajectories reflect floodplain construction processes, through the progressive
reduction of the gravel channel by the lateral growth and the relative elevation of islands.
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Incipient islands acted as a transitional stage and, for this reason, their surface is
quite stable along the whole study period (Fig. 9 and Table 6). Only in 1946 are
underrepresented, because of the impact of the recent flood of 1945, which covered
most of the fluvial forms with a layer of cobbles. This is also one of the reasons which
explains the important gravel channel change in the period 1946-1956, consolidated by
a prolonged dry period (1946-1962) that fostered vegetation recovery and islands
development.

Table 6. Surface of the corridor forms in the Rambla de Cervera study reach (1946-2006).
Horst and graben sectors.

In many occasions, the stabilization of the established islands is a consequence of
agricultural colonization processes. Farmers fix the islands with woody crops and dry-
stone walls, usually perpendicular to flow direction. After the floods, if the flow has
covered the fields, farmers restore their plots consolidating natural processes. This is a
common phenomenon in Mediterranean ephemeral streams, particularly intense in this
study area due to: a) the pressure on agricultural land in the decades of 1940, 1950 and
early 1960s; b) the low perception and assessment of flood hazard, exacerbated during
the prolonged dry periods such as 1946-1962.

Reverse (destructive) processes have also been found locally. In some areas and
periods, islands destruction is produced as a consequence of channel gravel
enlargement or divergence. Established islands are partially eroded and transformed
into incipient islands, which in turn can become channels because of lateral shift, losing
vegetation. However, complete floodplain dissection through chute channels has only
been documented once (Fig. 10). The flood of 1945, which took place in a not incised
river conditions, was the only event capable of causing floodplain dissection in the
whole study period. This destructive process was subsequently reversed. In general
terms, although these reverse trajectories are not spatially relevant, they result
significant, because they prove the capacity of this ephemeral stream to temporally
reverse trends and boost self-regeneration processes.

1946 1956 1978 1991 2006

Total Horst Graben Total Horst Graben Total Horst Graben Total Horst Graben Total Horst Graben

Gravel channel 72.9 87.9 69.3 47.2 72.2 41.3 49.5 63.5 46.5 29.6 43.8 26.2 27.2 35.5 25.2

Incipient islands 6.9 1.8 8.1 18.4 11.7 20 15.8 11.3 16.5 17.1 11.8 18.3 16 10.6 17.3

Consolidated islands 9.3 9.8 9.2 23.7 15.5 25.7 30.6 24.8 31.9 48 43.9 49 45 52.8 43

Dissected floodplain
islands

2.1 0 2.6 0.5 0 0.6 0 0 0 0 0 0 0 0 0

Floodplain 7.9 0.1 9.7 9.1 0.1 11.2 3.7 0 4.5 5.1 0 6.3 11.4 0 14.1

Bare rock 0.1 0.4 0 0.1 0.4 0 0.1 0.4 0 0.1 0.4 0 0.1 0.4 0

Chute channels 0.9 0 1.1 1 0 1.3 0.4 0 0.5 0.1 0 0.2 0.4 0.7 0.3
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Figure 10. Evolution of a floodplain
dissected island in the graben sector.
A chute-channel dissected part of the
floodplain during the flood of 1945.

Subsequent events in the period 1956-1957
consolidated this channel form. Incision
processes induced by gravel mining in the
main gravel channel left the chute-channel
lifted and, after the flood of 2000, it has been
inactive. After 2006, part of the old channel
has been planted with new olive groves.



During the study period, the scope of these morphological changes differs in the two
sections of the study area (Fig. 9):

– During the whole study period, changes are more sustained and gradual in the
horst area, whereas in the graben sector important oscillations take place.

– Graben changes condition the evolution of the total study reach, because of the
larger size of this sector. Thus, important changes in the graben forms, such as
the drastic reduction of the gravel channel in the period 1946-1956 or the
subsequent recovery (1956-1977), are also reflected as general trends.

– Incipient islands are less significant in the horst sector, and they present also
more stability.

– Floodplain is not relevant in the evolution of the horst sector; it remains almost
unaltered through all the periods.

Therefore, horst and graben sectors present different morphological trends, which
can be observed through a compared analysis. According to the observed trajectories,
the turnovers between the different forms were classified as constructive or destructive.
Surfaces were calculated for each category and the most significant values (>4%) are
shown in Fig. 11. Floodplain and island constructive processes predominate over the
whole period, but four stages have been identified:

– 1946-1956. Floodplain constructive trajectory prevailed. The most notable
processes were the turnover of the gravel channel in the incipient and
established islands. Horst sector presents a considerable stability through all the
period (72%), significantly higher than the graben stability (40%).

– 1956-1977. Period with a mixed evolution that nearly equals the constructive
and destructive trends. The channel grew in the graben sector, mainly at the
expense of established islands, whereas in the horst sector reverse trends were
not significant and constructive forms prevailed.

– 1977-1991. Clearly constructive period. The channel evolved into incipient
islands and these to established islands in both sectors. Stability mainly affected
the established islands, which for the first time exceeded the gravel channel in
the graben sector.

– 1991-2006. Period with mixed trends. In the graben sector destructive processes
affected an important surface, but numerous incipient islands were transformed
into established islands, and these were attached to the floodplain. In the horst
sector constructive processes prevailed again, and established islands stability
exceeded the gravel channel.

In general terms, the constructive stages present similar values in both sectors, but
the intensity of the morphological changes is always higher in the graben sector,
particularly during the first stage (1946-1956). The horst sector is not affected by
destructive processes, despite their significant impact on graben forms. The stability of
horst forms is also more significant in all the periods, ranging between 83% and 69%,
whereas in the graben sector oscillates between 67% and 51%.
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Figure 11. Evolutionary trends of corridor morphological units. The numbers express
percentages (>4%) of the surfaces moving from one category to another or remaining stable.
Floodplain constructive trajectories (arrows in black) reflect gravel channel evolving to

incipient islands and these to established islands, reducing the gravel channel.
Regressive trends (in red) reflect floodplain destructive processes.

6. Discussion

6.1. Conceptual model of evolution
According to these results and to the natural and man-induced changes in basin

and river conditions, we attempted to conceptualize the spatio-temporal variability of
the channel changes in the Rambla de Cervera:

– 1946-1956. In the aerial photograph taken in the winter of 1946, the sediments
from the recent flood (22/11/1945) cover former established islands, which had
previously been occupied by agricultural plots. The river shows an
aggradational pattern. However, in 1956, the river has undergone important
changes in planform, with a differential behavior between the horst and graben
sectors. The horst sector shows a moderated stability, whereas in the graben
sector floodplain construction processes clearly predominate. The gravel
channel decrease markedly and incipient and established islands grow. Incision
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is not relevant; it is only significant in the P7, immediately downstream the CV-
312 bridge. Several authors have documented similar changes in a context of
natural hillslope reforestation (Liébault et al., 2005; Boix-Fayos et al., 2007;
García-Ruiz and Lana-Renault, 2011; Preciso et al., 2012) and during prolonged
dry periods (Rozin and Schick, 1996). These environmental changes took place
in the Rambla de Cervera, where no significant flood events were registered
between 1946 and 1962. The lack of rainfall events in the headwaters (Fig. 3)
contributed to intensify the disconnection between the river basin and the river
channel and to reduce the sediment supply. The absence of floods stimulated
vegetation colonization of bars and islands, particularly intense in those sections
wider than 200 m, mainly placed at the graben sector (Fig. 8). The spatial
variability of the hydraulic geometry explains the unequal distribution of the
gravel channel reduction and the development of fluvial islands between the horst
and graben sections. The scarce flow was more efficiently translated in the narrow
sections, and lost erosional capacity in the wider ones. Thus, in the graben sector
flow spreads, being affected by important transmission loses and reducing the
effect of peak discharges over fluvial forms.

– 1956-1978. After 1962, the Rambla de Cervera underwent a decade with an
important increase of flood events (1962, 1964, 1965, 1967 and 1971), which
had a different impact in the graben and horst sectors. In the horst sector, the
gravel channel reducing trend slightly slowed down, and the incipient islands
moderately decreased (Fig. 9). In the graben sector, the action of recurrent large
floods over a not incised channel facilitated the destruction of established
islands and also the formation of a large dissected floodplain island (Fig. 10),
causing an enlargement of the gravel cannel. These destructive processes related
to the occurrence of high magnitude floods or to a high frequency of significant
flow events have been documented in other Mediterranean rivers (Zanoni et al.,
2008; Piégay et al., 2009; Rinaldi et al., 2009; Surian et al., 2009).

– 1978-1991. This stage presents trends very similar to the first period, with an
important decrease of the gravel channel, increase of established islands and
stability of fluvial forms. However, in this stage, there were two different, or
even contrary, contextual factors. First, during these 14 years, three flood events
were registered (1982, 1983 and 1988) and there was an important number of
effective rainfall events. Second, the sediment deficit increased because of the
impact of gravel mining, which also affected the hydraulic geometry of the river
channel. These different driving factors lead to a similar behavior of the river
forms, because of the influence of the hydraulic geometry. Channel incision,
mainly induced by gravel mining since 1972, left the bars and the floodplain as
a raised surface. Hence, the river flow could be concentrated in a major
hydraulic radius, only causing sub-bankfull flow and reducing the impacts on
the established islands. For this reason, the sequence of important floods was
not capable of modifying the narrowing trend. Under these conditions, graben
and horst sectors present very similar responses in this period, in terms of
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change and stability of fluvial forms. The only small difference is the slightly
higher stability of the gravel channel in the horst sector (Fig. 11), consistent
with the trend followed during the whole study period.

– 1991-2006. This period presents again a clear divergence between the horst and
graben response to the common contextual factors. In the horst sector the gravel
channel considerably decreases, increasing established islands. In the graben
sector, the gravel channel remains stable, but in several places adopts a single
channel form, because numerous established islands are attached to the floodplain.
The horst sector shows a clear constructive trajectory, whereas the graben sector
presents a mixed performance, with an increasing floodplain and important
destructions of incipient and established islands. The dual behavior of graben and
horst forms, which takes place under similar contextual factors (maximum of
hillslope reforestation, decreasing gravel mining, decreasing rainfall events), was
caused by the different impact of the extraordinary flood of October 2000. This
large flood, which almost doubled in magnitude the rainfall registered in the rest of
the flood events of the study period, was most likely responsible for the smooth
growth and widening of the gravel channel in the graben sector (Table 3).

Therefore, during the whole study period, the horst sector presents higher stability
and more constant trends, whereas the graben sector has a more irregular behavior,
combining constructive and destructive or mixed stages, but following a similar general
trend. Under similar basin environmental conditions, the single channel or wandering
pattern of the horst sector shows a higher resilience to large events than the braided pattern
of the graben sector. Large flows are transported by the horst sector without important
impacts on river forms, whereas in the graben area, the higher mobility of the gravel
channel affects a higher surface in the fluvial islands.

Thus, in this ephemeral stream, the visibility of the short-term reactions of the
river planform to rainfall oscillations and floods recurrence is higher in the graben area,
whereas the general trend of the fluvial adjustment, conditioned by the prolonged and
continuous reduction of sediment supply in the whole basin, could be more properly
identified in the horst sector.

6.2. Driving factors of the variability of channel changes
The different response of the graben and horst sectors to the common pattern of

land use changes and hydroclimatic oscillations is explained by the local influence of
the hydraulic conditions. Channel hydraulic configuration varies enormously between
the graben and horst sectors. The graben section mean width doubles the horst section
dimensions during the whole study period. The Rambla Cervera mean width was 110 m
in horst and 258 m graben section in 1946, but 45 m in horst and 76 m in graben
section in 2006. As a result of this, the Rambla de Cervera graben sector evolved from
a clear braided pattern into the present wandering or simple channel.

The scope of the impact of rainfall and floods in this change in channel forms is also
conditioned, in this study case, by the effective combination of the rainfall registered in the
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headwaters and study reach weather stations (Morella and Sant Mateu), because of the
hydrographical configuration of the basin of the Rambla de Cervera. Soil moisture
antecedent conditions, land use changes and soil properties, spatial and temporal variability
in rainfall intensities (Camarasa-Belmonte and Segura-Beltrán, 2001), and transmission
losses (Thornes, 1976; Shanon et al., 2002) result in high spatio-temporal variability of
discharge and sediment supply. In this ephemeral stream, local rainfall events (registered
only in one of the weather stations) have only a local effect and do not seem capable of
causing significant adjustments in the channel planform (Table 3). Only the registered
historical floods, result of the combination of important rainfall events in both headwaters
and study reach sectors are capable of generating significant impacts in the river
adjustment, with different rhythms in the horst and graben sectors of the river channel.

The timing of floods is also one of the key explanatory factors of the spatio-temporal
variability of the recent morphological changes in the Rambla de Cervera. Adjustments
are caused by limited and infrequent flow events and little changes take place in between
events (Wolman and Gerson, 1978). Moreover, in ephemeral rivers recent works have
shown that the influence of vegetation on river changes is strongly dependent on the
variations of the temporal sequence of flood events (Hooke and Mant, 2002; Sandercock
et al., 2007; Segura-Beltran and Sanchis-Ibor, 2013). These facts may contribute to
produce adjustments with high spatio-temporal variability and higher asynchrony
between causal factors and channel adjustments. The comparison of the graben and horst
sectors have shown how, in this study case, the resilience of the channel forms of the
horst sector to the timing and intensity of floods is considerably higher, whereas the river
forms of the graben sector are more sensitive to this temporal variability.

Incision has played a major role in the adjustment of the river forms of this study
reach. The transformation of incipient islands into established islands was boosted by
incision processes, because of the relative and progressive elevation of the islands with
regard to the gravel channel. The correlation of incision and changes in planform shows
interesting results (Figs. 12 and 13). The increase of the established islands and the gravel
channel decrease is well adjusted to the incision trends in the horst sector. They present,
respectively, a positive and negative logarithmic adjustment, which ratifies the influence
of incision in the evolution of these forms. In the graben sector the coefficient of
correlation is significant, but not as high as in the horst sector. This fact is attributed to the
higher impact of destructive changes in the braided sector during the larger flood events.

Other two factors must be considered to properly analyze the dual behavior
between the graben and horst sectors. First, despite the poor information provided by
the administration on gravel mining, photointerpretation shows that this activity was
particularly intense in the graben sector. However, the scarce scope of the floodplain
destructive processes in the 1977-1991 period, when this activity reached a maximum,
proves the limited direct impact of gravel mining in channel planform changes in this
study case. The evolution of the study reach proves that gravel mining has had a direct
impact on incision processes, but the influence of this activity on the change of channel
forms has been indirect, translated through the alteration of the hydraulic radius.
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Figure 12. Correlation between gravel channel surface (%) and incision in
the horst and graben sectors.

Figure 13. Correlation between consolidated islands surface (%) and incision in the horst
and graben sectors.
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Second, the distance to the sediment sources could have had a significant
influence on the behavior of the graben sector. The exacerbated reduction of the gravel
channel in the graben area and the formation of vegetated islands (particularly in the
period 1946-1956) suggest that the lack of sediments is directly proportional to the
distance to headwaters, usually considered as the main source of sediment supply.

7. Conclusions
Data analysis suggests that the decrease in sediment supply, caused by land use

changes since 1946 and exacerbated by gravel mining since 1972, is the driving
variable of narrowing and incision processes in the Rambla de Cervera. The absence of
flow and the randomness of floods have determined the rhythm of these river
adjustment processes, mainly through the active corridor vegetation encroachment.
Despite the existence of a general narrowing and incision trend in the whole study area,
the graben and horst sectors show a dual behavior during six decades. The horst sector
underwent a constant and continuous trend, whereas changes in the graben sector were
more intense, and went through two stages with significant reverse trajectories.

The differential behavior of the graben and horst sectors is caused by the different
responses generated by the overlapping of three factors: the lack of sediment supply,
the timing and intensity of flood events and the particular hydraulic conditions of both
sectors. The hydraulic geometry of the different river sections conditions the
effectiveness of flood events, influencing on the existence or absence of floodplain
destructive trajectories and on the stability of fluvial forms.

These trends could continue in the future. Several works have predicted the
behavior of some of the variables that are causing changes in the flow and sediment
load of the Rambla de Cervera, and therefore, in the morphologic changes detected in
the river channel. Future regional scenarios for different variables suggest an increased
reduction on flow and sediments due to:

i) Decrease in rainfall as a result of the reduction of the convective and frontal
rains (Millán et al., 2005).

ii) Expansion of forests and shrubs in the headwaters favors infiltration,
evapotranspiration, and interception, while improves soil protection and reduces
erosion (Gallart et al., 2011). This process is clearly in progress: in the horst area, a
large proportion of land abandoned several decades ago is still in the primary stages of
revegetation, covered by sparse shrub that should evolve into more developed stands of
forest (García-Ruiz et al., 2011); in the graben area, land abandonment processes are
progressing as a result of population aging.

iii) Gravel mining has decreased, but it is still legally practiced.

Finally, the different effectiveness of floods in the conditions previous and
subsequent to the development of the gravel mining activity, proved in this study case,
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raises the question of the restoration of the Mediterranean ephemeral streams affected
by intense gravel mining. Before 1972, without gravel mining and moderated hillslope
reforestation, several floods were capable of having a significant destructive impact on
the river forms. After 1977, a similar rainfall and floods pattern did not cause reverse
trends, and only the extraordinary flood of 2000 –which took place when lack of
sediment supply was higher– was capable of slowing down the constructive trends.
This different behavior illustrates the limitations of the natural recovery of the braided
pattern in a context of lack of sediment supply and persistent incision, and proves the
difficulty to recover the original gravel channel width after the impact of gravel mining.
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