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Abstract

We present a lattice QCD calculation of the up, down, strange and charm
quark masses performed using the gauge configurations produced by the Euro-
pean Twisted Mass Collaboration with Nf = 2 + 1 + 1 dynamical quarks, which
include in the sea, besides two light mass degenerate quarks, also the strange
and charm quarks with masses close to their physical values. The simulations
are based on a unitary setup for the two light quarks and on a mixed action ap-
proach for the strange and charm quarks. The analysis uses data at three values
of the lattice spacing and pion masses in the range 210÷ 450 MeV, allowing for
accurate continuum limit and controlled chiral extrapolation. The quark mass
renormalization is carried out non-perturbatively using the RI′-MOM method.
The results for the quark masses converted to the MS scheme are: mud(2 GeV) =
3.70(17) MeV, ms(2 GeV) = 99.6(4.3) MeV and mc(mc) = 1.348(46) GeV. We
obtain also the quark mass ratios ms/mud = 26.66(32) and mc/ms = 11.62(16).
By studying the mass splitting between the neutral and charged kaons and us-
ing available lattice results for the electromagnetic contributions, we evaluate
mu/md = 0.470(56), leading to mu = 2.36(24) MeV and md = 5.03(26) MeV.
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1 Introduction

The precise knowledge of the quark masses and of the hadronic parameters in general
plays a fundamental role both in testing the Standard Model (SM) and in the search
for new physics (NP). Despite its unquestionable successes in describing experimental
data the SM does not provide any explanation for the quark masses. On the theoretical
side, the understanding of the hierarchical pattern of the quark masses remains an open
and fascinating challenge. On the phenomenological side, since several important
observables depend on the quark masses, a precise determination of these values is
crucial to constrain the SM and through comparisons between theory and experiments
to search for NP.

In the determination of the quark masses lattice QCD (LQCD) plays a primary role
as it is a non-perturbative approach based on first principles. It consists in simulating
QCD by formulating the Lagrangian on a discrete and finite Euclidean space-time
which allows for a numerical computation of the path integral via MonteCarlo methods.
The finite volume, the lattice spacing and generally the lower bound on the simulated
light quark masses, which are limited by the currently available computing power,
introduce errors which have to be well under control and accounted for.

Thanks to the increased computational power as well as to the algorithm and action
improvements of the last decade, LQCD simulations have made significant progresses
reaching a remarkable level of precision. In particular, this is due to the so-called
unquenched calculations, where the contribution of loops of dynamical sea quarks is
taken into account. As a matter of fact, most of the recent lattice determinations of
quark masses have been performed with either two (up and down) [1, 2] or three (up,
down and strange) [3]-[10] dynamical sea quarks.

In this paper we present an accurate determination of the up, down, strange and
charm quark masses using the gauge configurations produced by the European Twisted
Mass (ETM) Collaboration with four flavors of dynamical quarks (Nf = 2 + 1 + 1),
which include in the sea, besides two light mass degenerate quarks, also the strange
and charm quarks with masses close to their physical values. Such a setup is the
closest one to the real world, adopted till now only by the ETM [11, 12, 13, 14] and
the MILC [15] Collaborations.

The simulations have been carried out at three different values of the inverse bare
lattice coupling β, namely β = 1.90, 1.95 and 2.10, to allow for a controlled extrapo-
lation to the continuum limit. For β = 1.90 and β = 1.95 two different lattice volumes
have been considered. We also used non-perturbative renormalization constants eval-
uated in the RI′-MOM scheme, whose calculation is discussed in A. The fermions were
simulated using the Wilson Twisted Mass Action [16, 17] which, at maximal twist,
allows for automatic O(a)-improvement [18, 19]. In order to avoid the mixing in the
strange and charm sectors we adopted the non-unitary set up described in Ref. [19], in
which the strange and charm valence quarks are regularized as Osterwalder-Seiler (OS)
fermions [20]. For the links the Iwasaki action [21] was adopted, because it proved to
relieve simulations with light quark masses allowing to bring the simulated pion mass
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down to approximately 210 MeV.
Since simulations were not performed at the physical point for the up and down

quark masses, a chiral extrapolation is needed. In order to estimate the associated
systematic error we studied the dependence on the light quark mass by using different
fit formulae based on the predictions of Chiral Perturbation Theory (ChPT) as well
as on polynomial expressions.

To account for finite size effects (FSE) we used the resummed asymptotic formulae
developed in Ref. [22] for the pion sector, which include the effects due to the neutral
and charged pion mass splitting (present in the twisted mass formulation), and the
formulae of Ref. [23] for the kaon sector. We checked the accuracy of these predictions
for FSE on the lattice data obtained at fixed quark masses and lattice spacings, but
different lattice volumes.

As for the continuum limit, in order to lower the impact of discretization effects
as much as possible and to keep the continuum extrapolation under control we tried
two different procedures, which both use fπ to set the scale. The first one involves the
Sommer parameter r0 [24] in units of the lattice spacing a, i.e. r0/a, as the intermediate
scaling variable, while in the second one we used the mass of a fictitious pseudoscalar
(PS) meson made of two strange-like quarks (or a strange-like and a charm-like quark),
aMs′s′ (or aMc′s′), trying to exploit cancellation of discretization effects in ratios like
MK/Ms′s′ (or MDs/Mc′s′). In particular for the kaon and Ds(D) meson masses these
ratios lead to a significant reduction of discretization effects. Of course, in order to
determine the lattice scale, the continuum limit of Ms′s′ (or Mc′s′) has to be performed
eventually. The fact that we obtain compatible predictions from the two procedures
strengthens the validity of our results and shows that the impact of the discretization
effects is safely kept under control.

As described in A, by using dedicated ensembles of gauge configurations produced
with Nf = 4 degenerate flavors of sea quarks [25], we computed the quark mass renor-
malization constants (RCs) Zµ = 1/ZP in the RI′-MOM scheme using two different
methods, labelled as M1 and M2. The first method (M1) aims at removing O(a2p2)
effects, while in the second method (M2) the renormalization constants are taken at
a fixed reference value of p2. The use of the two sets of renormalization constants is
expected to lead to the same final results once the continuum limit for the physical
quantity of interest is performed.

Summarizing, our analysis has followed eight branches differing in the choice of
the scaling variable (either r0/a or aMs′s′), the fitting procedures (either ChPT or
polynomial expansion) and the method (either M1 or M2) used to determine the
values of the RCs ZP .

First we calculated the up/down average quark mass from the analysis of the pion
mass and decay constant. Then, using either r0 or Ms′s′ (Mc′s′) as well as the lattice
spacing and the light quark mass determined from the pion sector, we extracted the
strange and charm quark masses from the analysis of K- and D-meson correlators,
respectively. The differences among the results obtained within the various branches
of the analysis have been used to estimate the systematic uncertainties.
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The final results obtained for the quark masses in the MS scheme are:

mud(2 GeV) = 3.70 (17) MeV ,

ms(2 GeV) = 99.6 (4.3) MeV ,

mc(mc) = 1.348 (46) GeV , (1)

where the errors are the sum in quadrature of the statistical and systematic uncer-
tainties.

By studying the light-quark mass dependence of the squared kaon mass we cal-
culated also the leading strong isospin breaking (IB) effect on the charged and neu-
tral kaon masses, M̂K0 and M̂K+ , which occurs in the pure QCD sector of the SM
due to the quark mass difference (md − mu). Adopting the recent FLAG estimate
M̂K+ − M̂K0 = −6.1(4) MeV [26], based on the results for the electromagnetic self-
energies in neutral and charged PS mesons obtained in Refs. [27, 28, 29, 30, 31, 32],
we find

mu

md

= 0.470 (56) , (2)

which is independent of both the renormalization scheme and scale. Combining
Eqs. (1-2) we obtain the following predictions for the up and down quark masses:

mu(2 GeV) = 2.36 (24) MeV ,

md(2 GeV) = 5.03 (26) MeV . (3)

Finally, by introducing suitable ratios of meson masses (see Sections 4.6 and 5.4)
we determined the quark mass ratios ms/mud and mc/ms, obtaining

ms

mud

= 26.66 (32) ,

mc

ms

= 11.62 (16) , (4)

which are independent of both the renormalization scheme and scale. We also quote
our results for the ratios

R ≡ ms −mud

md −mu

= 35.6 (5.1) ,

Q ≡
√
m2
s −m2

ud

m2
d −m2

u

= 22.2 (1.6) , (5)

which provide information on the relative size of SU(3) and SU(2) symmetry breaking
effects.
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2 Simulation details

The present work is based on the Nf = 2 + 1 + 1 gauge field configurations generated
by the ETMC [11, 13] using the following action

S = Sg + S`tm + Shtm , (6)

where the gluon action Sg is the Iwasaki one [21]. For the fermions we have adopted the
Wilson twisted-mass action, given explicitly for the mass-degenerate up/down quark
doublet by [16]

S`tm = a4
∑

x
ψ(x)

{
1

2
γµ(∇µ +∇∗µ)− iγ5τ

3
[
m0 −

a

2
∇µ∇∗µ

]
+ µ`

}
ψ(x) (7)

and for the strange and charm doublet by [17]

Shtm = a4
∑

x
ψ(x)

{
1

2
γµ(∇µ +∇∗µ)− iγ5τ

1
[
m0 −

a

2
∇µ∇∗µ

]
+ µσ + µδτ

3

}
ψ(x), (8)

where ∇µ and ∇∗µ are nearest-neighbor forward and backward covariant derivatives,
µ` is the light quark mass and m0 is the “untwisted” mass. The latter is tuned to
its critical value mcr as discussed in Ref. [11] in order to guarantee the automatic
O(a)-improvement at maximal twist [18, 19]. Finally in Eq. (8) the twisted masses µσ
and µδ are related to the renormalized strange and charm sea quark masses via the
relation [19]

msea
c,s =

1

ZP

(
µσ ±

ZP
ZS

µδ

)
(9)

with ZP and ZS being the pseudoscalar and scalar renormalization constants, respec-
tively.

The twisted-mass action (6) leads to a mixing in the strange and charm sectors
[17, 12]. In order to avoid the mixing of K- and D-meson states in the correlation
functions, we adopted a non-unitary set up [19] in which the strange and charm valence
quarks are regularized as Osterwalder-Seiler (OS) fermions [20]. Thus, while we keep
the light sector unitary, the action in the strange and charm sectors (f = s, c) reads
as

SfOS = a4
∑

x
qf (x)

{
1

2
γµ(∇µ +∇∗µ)− iγ5rf

[
m0 −

a

2
∇µ∇∗µ

]
+ µf

}
qf (x) , (10)

where rf = ±1. When constructing meson correlation functions (including the pion)
the Wilson parameters of the two valence quarks are always chosen to have opposite
values. This choice guarantees that the squared PS meson mass, M2

PS, differs from its
continuum counterpart only by terms of O(a2µ) [18, 33].

The details of our lattice set up are collected in Table 1, where the number of gauge
configurations analyzed (Ncfg) corresponds to a separation of 20 trajectories. At each
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lattice spacing, different values of the light sea quark masses have been considered.
The light valence and sea quark masses are always taken to be degenerate. The masses
of both the strange and the charm sea quarks are fixed, at each β, to values close to the
physical ones [11]. We have simulated three values of the valence strange quark mass
and six values of the valence heavy quark mass, which are needed for the interpolation
in the physical charm region as well as to extrapolate to the b-quark sector for future
studies. In particular, for the light sector the quark masses were simulated in the range
3 mphys

` . µ` . 12 mphys
` , for the strange sector in 0.7 mphys

s . µs . 1.2 mphys
s , while

for the charm sector in 0.7 mphys
c . µc . 2.5 mphys

c . Quark propagators with different
valence masses are obtained using the so-called multiple mass solver method [35, 36],
which allows to invert the Dirac operator for several quark masses at a relatively low
computational cost.

ensemble β V/a4 aµsea = aµ` aµσ aµδ Ncfg aµs aµc

A30.32 1.90 323 × 64 0.0030 0.15 0.19 150 0.0145, 0.1800, 0.2200,

A40.32 0.0040 90 0.0185, 0.2600, 0.3000,

A50.32 0.0050 150 0.0225 0.3600, 0.4400

A40.24 1.90 243 × 48 0.0040 0.15 0.19 150

A60.24 0.0060 150

A80.24 0.0080 150

A100.24 0.0100 150

B25.32 1.95 323 × 64 0.0025 0.135 0.170 150 0.0141, 0.1750, 0.2140,

B35.32 0.0035 150 0.0180, 0.2530, 0.2920,

B55.32 0.0055 150 0.0219 0.3510, 0.4290

B75.32 0.0075 75

B85.24 1.95 243 × 48 0.0085 0.135 0.170 150

D15.48 2.10 483 × 96 0.0015 0.12 0.1385 60 0.0118, 0.1470, 0.1795,

D20.48 0.0020 90 0.0151, 0.2120, 0.2450,

D30.48 0.0030 90 0.0184 0.2945, 0.3595

Table 1: Values of the simulated sea and valence quark bare masses for each ensemble
used in this work.

We studied the dependence of the PS meson masses and of the pion decay constant
on the renormalized light quark mass fitting simultaneously the data at different lattice
spacings and volumes. In particular, we anticipate that the values of the lattice spacing
found in our pion analysis are a = 0.0885(36), 0.0815(30), 0.0619(18) fm at β =
1.90, 1.95 and 2.10, respectively, so that the lattice volume goes from ' 2 to ' 3 fm.
In Table 2 we provide for each ensemble the central values of the pion mass (covering
the range ' 210÷ 450 MeV), of the lattice size L and of the product MπL.

The statistical accuracy of the meson correlators is significantly improved by us-
ing the so-called “one-end” stochastic method [37], which includes spatial stochastic
sources at a single time slice chosen randomly. Statistical errors on the meson masses
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ensemble β L(fm) Mπ(MeV) MπL

A30.32 1.90 2.84 245 3.53

A40.32 282 4.06

A50.32 314 4.53

A40.24 1.90 2.13 282 3.05

A60.24 344 3.71

A80.24 396 4.27

A100.24 443 4.78

B25.32 1.95 2.61 239 3.16

B35.32 281 3.72

B55.32 350 4.64

B75.32 408 5.41

B85.24 1.95 1.96 435 4.32

D15.48 2.10 2.97 211 3.19

D20.48 243 3.66

D30.48 296 4.46

Table 2: Central values of the pion mass Mπ, of the lattice size L and of the product
MπL for the various ensembles used in this work. The values of Mπ are extrapolated
to the continuum and infinite volume limits, according to the ChPT fit (16), described
in Section 3.1.

are evaluated using the jackknife procedure, while statistical errors based on data
obtained from independent ensembles of gauge configurations, like the errors of the
fitting procedures, are evaluated using a bootstrap sampling with O(100) events to
take properly into account cross-correlations.

In Table 3 we present the values of the RCs ZP corresponding to the two methods
M1 and M2, described in Section 1 (see also A), and the values of r0/a used to convert
the data at different values of lattice spacing to the common scale given by the Sommer
parameter r0. For each β the values of r0/a have been calculated at the various values
of the light quark mass [11, 13] and then extrapolated to the chiral limit, assuming
either a linear or a quadratic dependence in aµsea. Our results for r0/a are consistent
within the errors with the findings of Refs. [14, 38], where the extrapolation to the
chiral limit was performed using only a linear dependence on aµsea. The errors reported
in Table 3 represent the sum in quadrature of the statistical uncertainty and of the
systematic error associated to the two different chiral extrapolations.

Since the renormalization constants ZP and the values of r0/a have been evaluated
using different ensembles of gauge configurations, their uncertainties have been taken
into account in the fitting procedures as follows. First we generated randomly a set of
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β ZMS
P (2 GeV)(M1) ZMS

P (2 GeV)(M2) r0/a

1.90 0.529(7) 0.574(4) 5.31(8)

1.95 0.509(4) 0.546(2) 5.77(6)

2.10 0.516(2) 0.545(2) 7.60(8)

Table 3: Input values for the renormalization constant ZMS
P (2 GeV), corresponding to

the methods M1 and M2 (see A), and the chirally extrapolated values of r0/a for each
value of β (see text).

values of (r0/a)i and (ZP )i for the bootstrap event i assuming gaussian distributions
corresponding to the central values and the standard deviations given in Table 3. Then
we added in the definition of the χ2 the following contribution

∑
β

[
(r0/a)fiti − (r0/a)i

]2

σ2
r0/a

+
∑

β

[
(ZP )fiti − (ZP )i

]2

σ2
ZP

, (11)

where (r0/a)fiti and (ZP )fiti are free parameters of the fitting procedure for the boot-
strap event i. The use of Eq. (11) allows the quantities r0/a and ZP to slightly change
from their central values (in the given bootstrap event) with a weight in the χ2 given
by their uncertainties. This procedure corresponds to impose a gaussian prior for ZP
and r0/a.

Before closing this section we have collected in Table 4 the time intervals (conser-
vatively) adopted for the extraction of the PS meson masses (and of the pion decay
constant) from the 2-point correlators at each β and lattice volume in the light, strange
and charm sectors.

β V/a4 [tmin, tmax](``,`s)/a [tmin, tmax](`c,sc)/a

1.90 243 × 48 [12, 23] [15, 21]

1.90 323 × 64 [12, 31] [15, 29]

1.95 243 × 48 [13, 23] [16, 21]

1.95 323 × 64 [13, 31] [16, 29]

2.10 483 × 96 [18, 40] [20, 40]

Table 4: Time intervals [tmin, tmax]/a adopted for the extraction of the PS meson
masses (and of the pion decay constant) from the 2-point correlators in the light (`),
strange (s) and charm (c) sectors.
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3 Average up and down quark mass

For each ensemble we computed the 2-point PS correlators defined as

C(t) =
1

L3

∑
~x,~z

〈0|P5(x)P †5 (z) |0〉 δt,(tx−tz) , (12)

where P5(x) = u(x)γ5d(x)1. As it is well known at large time distances one has

C(t) −−−−−−−−−−−→
t�a, (T−t)�a

Zπ
2Mπ

(
e−Mπt + e−Mπ(T−t)) , (13)

so that the pion mass and the matrix element Zπ = |〈π|uγ5d|0〉|2 can be extracted
from the exponential fit given in the r.h.s. of Eq. (13). The time intervals used for
the pion case can be read off from Table 4. For maximally twisted fermions the value
of Zπ determines the pion decay constant without the need of the knowledge of any
renormalization constant [16, 18], namely

afπ = 2aµ`

√
a4Zπ

aMπsinh(aMπ)
. (14)

Then we have studied the dependence of the pion mass and decay constant on the
renormalized light quark mass

m` = (aµ`)
1

aZP
(15)

through simultaneous fits based either on ChPT at next-to-leading order (NLO) or
on a polynomial expansion in m`. This was done following two procedures that differ
for the choice of the scaling variable. In the first one we used r0/a, while in the
second one the fictitious meson mass aMs′s′ is adopted in order to reduce the impact
of discretization effects of the PS meson masses.

3.1 Analyses in units of r0 (analyses A and B)

Since the chiral extrapolation is an important source of uncertainty in our analysis, we
have fitted the dependence of both M2

π and fπ on the renormalized light quark mass
m` using two different fitting functions: the one predicted by ChPT at NLO and a
polynomial expansion. These two choices correspond to expanding the squared pion
mass and decay constant either around the chiral point m` = 0 up to higher masses
including the effects of chiral logarithms, or around a non-vanishing mass m` = m∗`
down to the physical pion point without reaching the chiral limit, where non-analytic
terms arise in the expansion. The ChPT approach at NLO is expected to be more
accurate in the region of low m`, but to suffer from possible higher order corrections at
large values of m`, where the polynomial expansion is expected to be more accurate.

1We remind that the Wilson parameters of the two valence quarks in any PS meson considered in
this work are always chosen to have opposite values.
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Both solutions are in principle legitimate to perform the chiral extrapolation. Since
both fits turn out to describe our lattice data nicely, the spread between the results
obtained using NLO ChPT and those corresponding to the polynomial expansion
represents our uncertainty on the chiral extrapolation and it will be used to estimate
the corresponding systematics. This is reasonable also because the polynomial ansatz
might underestimate the curvatures of fπ and M2

π/m` at small values of m` (as it does
not contain any chiral logarithm), while the NLO ChPT fit applied to the range of
our pion data (see Table 2) might overestimate the curvatures in the small m` region,
as suggested by the results of NNLO fits (see later Section 3.3) and indicated also by
the findings of Refs. [39, 40] at Nf = 2 and of Refs. [41, 42] at Nf = 2 + 1.

Let us consider the SU(2) ChPT approach in units of r0 which hereafter will be
referred to as analysis A. The ChPT predictions at NLO can be written in the following
way

(Mπr0)2 = 2(Br0)(m`r0)

[
1 + ξ` log ξ` + P1ξ` +

a2

r2
0

(
P2 +

4c2

(4πf)2
log ξ`

)]
KFSE
M2 , (16)

(fπr0) = (fr0)

[
1− 2ξ` log ξ` + P3ξ` +

a2

r2
0

(
P4 −

4c2

(4πf)2
log ξ`

)]
KFSE
f , (17)

where P1 - P4 are free parameters and

ξ` =
2Bm`

16π2f 2
, (18)

with B and f being the SU(2) low-energy constants (LECs) entering the LO chiral
Lagrangian, which have been left free to vary in our fits.

In Eqs. (16-17) the parameters P1 and P3 are related to the NLO LECs `3 and `4

by

P1 = −`3 − log

(
Mphys

π

4πf

)2

, P3 = 2`4 + 2 log

(
Mphys

π

4πf

)2

(19)

with Mphys
π being the value of the pion mass at the physical point, while the quantities

KFSE
M2 and KFSE

f represent the finite size effects (FSE) for the squared pion mass and
the pion decay constant, respectively. They will be discussed in a while.

For the moment notice the presence of the terms proportional to a2 log ξ` in Eqs. (16-
17). These terms originate from the mass splitting between the charged and the neutral
pions, which is a discretization effect appearing within the twisted mass formulation.
Its impact on the ChPT expansion of M2

π and fπ (see Ref. [43] and references therein)
has been worked out in Ref. [34], where a power counting scheme was adopted in which
a2Λ4

QCD ≈ 2Bm`. We have expanded the resulting formulae up to O(a2), leading to
Eqs. (16-17) with the presence of the parameter c2 which is directly related to the
neutral and charged pion mass splitting at LO by(

M2
π0 −M2

π±

)
LO

= 4a2c2 . (20)
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In the χ2-minimization procedure we have given to c2 a prior based on the values
found in Ref. [38] by analyzing charged and neutral pion data for a set of ETMC
ensembles consistent with the one considered in this work2. In Ref. [38] two different
determinations of c2 are reported, one in which the chiral limit is performed through a
constant fit in M2

π and the other one in which the fit was assumed to be linear. In the
present work we have used an average of the two determinations including the spread
in the error, which in units of r0 reads as c2r

4
0 = −1.7± 0.6.

On the theoretical side the impact of FSE on Mπ and fπ has been studied within
ChPT at NLO in Ref. [44] and using a resummed asymptotic formula in Ref. [23],
where both leading and sub-leading exponential terms are taken into account and the
chiral expansion is applied to the π−π forward scattering amplitude. When the leading
chiral representation of the latter is considered, the resummed approach coincides with
the NLO result of Ref. [44]. Viceversa at NNLO the resummation technique includes
only part of the two-loop effects as well as of higher-loop effects. The resummed
approach was positively checked against a full NNLO calculation of the pion mass in
Ref. [45], showing that the missing two-loop contributions are actually negligible for
MπL ∼> 2 and L ∼> 2 fm. Finally, we considered that the cutoff effects, giving rise to
the splitting between charged and neutral pions, enter also the determination of FSE,
as explicitly worked out within the resummed approach in Ref. [22].

Thus, as far as FSE are concerned, we have investigated three different approaches:
the NLO ChPT predictions of Ref. [44] (which will be labelled hereafter as GL), the
resummed formulae of Ref. [23] including higher order corrections (labelled as CDH)
and the formulae developed in Ref. [22] which accounts for the π0− π+ mass splitting
(labelled as CWW).

The predictions of both CDH and CWW approaches require the knowledge of the
LECs `1− `4 and eventually of the splitting parameter c2. The LECs `3 and `4, which
are related to the ξ`-dependent NLO terms in M2

π and fπ [see Eqs. (16-19)], have been
treated as free parameters in our fitting procedures, while for `1 and `2 we used the
values given in Ref. [22]. The CWW corrections depend also on the neutral pion mass
Mπ0 , which was estimated at LO through Eq. (20) using (Mπ+)LO = 2Bm`. We have
checked that such values of Mπ0 are consistent with those extracted directly from the
neutral PS correlator in Refs. [14, 38].

In order to check how well the finite volume corrections predicted by the three
chosen approaches are working, we have used the two ensembles A40.32 and A40.24
(see Table 1), which correspond to the same quark mass and lattice spacing, but
different lattice volumes. Notice that the ensemble A40.24 has both the lowest value
of the quantityMπL (see Table 2) and the largest pion mass splitting, beingMπ0/M+

π ≈
0.5 [14, 38]. Therefore FSE are expected to be maximal for this ensemble.

The terms KFSE
M2 and KFSE

f , appearing in the ChPT formulae (16-17), relate the
squared pion mass and decay constant calculated at finite volume with their infinite

2We treated the prior for c2 in the same way as those for the renormalization constants ZP and
the quantities r0/a in Eq. (11).
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volume counterparts. For the ensemble A40.32 and A40.24 we can write

M2
[32] = M2

[∞]K
FSE
M2,[32] ,

M2
[24] = M2

[∞]K
FSE
M2,[24] (21)

and in analogous way for KFSE
f,[32] and KFSE

f,[24] in the case of the decay constant fπ.
Taking the ratio of the above relations we see that for an ideal correction the ratio of
the multiplicative factors KFSE should match the ratio of the uncorrected lattice data
independently of the infinite volume values. The more accurate the correction is, the
more the prediction for (KFSE

M2,[32]/K
FSE
M2,[24]) matches the lattice data (M2

[32]/M
2
[24]). The

corresponding numerical results are reported in Tables 5 and 6 for the pion mass and
the decay constant, respectively.

GL CDH CWW Lattice data (M2
[32]/M

2
[24])

KFSE
M2,[32]/K

FSE
M2,[24] 0.988 0.970 0.962 0.945(25)

Table 5: Values of the ratio of the FSE correction factor KFSE
M2 for the ensembles

A40.32 and A40.24, obtained within the approaches GL, CDH and CWW (see text),
compared with the corresponding ratio of lattice data.

GL CDH CWW Lattice data (f[32]/f[24])

KFSE
f,[32]/K

FSE
f,[24] 1.023 1.040 1.054 1.050(19)

Table 6: The same as in Table 5, but for the decay constant fπ.

From these tables one can see that the corrections calculated using the CWW
approach are well compatible with the lattice data for both the pion mass and the
decay constant. It is also possible to see how large the relative contribution of the
various FSE corrections is.

In table 7 we collected the values of the coefficients (KFSE
M2,[24]− 1) and (KFSE

f,[24]− 1),
representing the FSE correction for the ensemble A40.24, which, as already noted, is
affected by the largest FSE correction in the whole set of ensembles. By comparing
CDH and CWW predictions it can also be seen that the O(a2) term related to the
pion mass splitting, though not negligible, is not the dominant one and appears to be
at the percent level. In what follows, the pion data will be corrected for FSE using
the CWW formulae unless explicitly stated otherwise.

The dependence of our lattice data for r0M
2
π/m` and r0fπ on the renormalized

quark mass r0m` is shown in Figs. 1 and 2, respectively. The behaviors of the chiral
extrapolations for each lattice spacing and in the continuum limit are also presented.
In what follows, unless otherwise stated, the data shown in the figures correspond to
the RCs ZP computed with the method M1.
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GL CDH CWW

KFSE
M2,[24] − 1 0.0140 0.0377 0.0492

KFSE
f,[24] − 1 −0.0280 −0.0469 −0.0632

Table 7: Values of KFSE
M2 − 1 and KFSE

f − 1 for the ensembles A40.24 obtained within
the various FSE approaches GL, CDH and CWW (see text).

From Figs. 1 and 2 it can be seen that the impact of discretization effects using
the values of r0/a is almost completely negligible in the case of r0fπ, while it is at the
level of ' 10% in the case of r0M

2
π/m` (using the difference between the continuum

results and the ones at the finest lattice spacing).
The value of the physical average up/down quark mass, mud, can be extracted

from the ratio M2
π/f

2
π using as input its experimental value, obtained from the central

values of Ref. [46] (see Ref. [26] for the explanation of the use of the experimental mass
of the neutral pion as the pion mass in pure QCD and in the isospin symmetric limit)

M exp.
π = Mπ0 = 134.98 MeV , f exp.π = fπ+ = 130.41 MeV . (22)

The numerical results for mud as well as those for the lattice spacing and the relevant
LECs will be collected and discussed in Section 3.3.

As anticipated in Section 1, we studied the chiral extrapolation also by replacing
the NLO ChPT ansatz with a simple polynomial expansion in the renormalized light
quark mass, namely

(Mπr0)2 = 2(Br0)(m`r0)

(
1 + P ′1(m`r0) + P ′2

a2

r2
0

+ P ′3(m`r0)2

)
·KFSE

M2 , (23)

(fπr0) = (fr0)

(
1 + P ′4(m`r0) + P ′5

a2

r2
0

+ P ′6(m`r0)2

)
·KFSE

f , (24)

where B, f and P ′1 - P ′6 are free parameters. This analysis will be referred to as analysis
B. Since the calculation of KFSE

M2 and KFSE
f is based on ChPT, the FSE corrections

have been taken from the analysis A and applied directly to the lattice data.
The chiral extrapolations of our lattice data for r0M

2
π/m` and r0fπ, obtained using

the polynomial fits (23-24), are shown for each lattice spacing and in the continuum
limit in Figs. 3 and 4, respectively.

Notice that the impact of discretization effects on r0M
2
π/m` obtained using the

polynomial fit (see Fig. 3) is very similar to the one found in the case of the NLO
ChPT prediction (see Fig. 1), while in the case of r0fπ, at variance with the NLO
ChPT fit (see Fig. 2), the polynomial expansion exhibits visible cutoff effects (see
Fig. 4) though limited at the level of few percent only. Nevertheless, both the NLO
ChPT and the polynomial fits describe quite well the lattice data for the pion mass
and the decay constant, yielding only slightly different results, at the percent level, at
the physical pion point.
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Figure 1: Chiral and continuum extrapolation of r0M
2
π/m` based on the NLO ChPT fit

given by Eq. (16). Lattice data have been corrected for FSE using the CWW approach
[22] and correspond to the RCs ZP calculated with the method M1 (see text).
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Figure 2: The same as in Fig. 1, but for the decay constant r0fπ.
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Figure 3: Chiral and continuum extrapolation of r0M
2
π/m` obtained using the polyno-

mial fit given by Eq. (23).
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Figure 4: The same as in Fig. 3, but for the decay constant r0fπ.

3.2 Analyses in units of Ms′s′ (analyses C and D)

The results presented in Figs. 1 and 3 show that the impact of discretization effects
using r0 as the scaling variable is at the level of ' 10% for the squared pion mass.
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In order to keep the extrapolation to the continuum limit under better control we
repeated the analyses A and B adopting a different choice for the scaling variable,
namely instead of r0 we introduced the mass Ms′s′ of a fictitious PS meson made
of two strange-like valence quarks3. The PS mass Ms′s′ has a very mild dependence
on the light-quark mass and is affected by cutoff effects similar to the ones of a K
meson. Thus, we tried to improve the continuum extrapolation by considering the
ratio M2

π/M
2
s′s′ which may exploit a partial cancellation of discretization effects.

To construct the meson mass ratio we first performed a slight interpolation in the
strange valence quark mass to get the quantity aMs′s′ at a common (but arbitrary)
value r0ms′ = 0.22 for each β and light quark mass. Since, as expected, we found no
significant dependence of aMs′s′ on the light quark mass, we performed a constant fit
in aµ` to obtain the values of aMs′s′ at each β. In this way we find

aMs′s′|β=1.90, 1.95, 2.10 = {0.3258(2), 0.2896(2), 0.2162(3)} (method M1)

= {0.3391(2), 0.2986(2), 0.2220(3)} (method M2) . (25)

The values of aMs′s′ have been used to bring to a common scale all lattice quantities,
covering the role that in analysis A and B was played by r0/a. The (quite small) errors
on aMs′s′ are propagated via the bootstrap sampling.

The new analyses, which will be referred to as analyses C and D, proceed in the
same way as in the previous Section, namely in the case of the NLO ChPT fit (analysis
C) one employs the ansatz

M2
π

M2
s′s′

=
2Bm`

M2
s′s′

[
1 + ξ` log ξ` + P1ξ` + (aMs′s′)

2

(
P2 +

4c2

(4πf)2
log ξ`

)]
KFSE
M2 , (26)

fπ
Ms′s′

=
f

Ms′s′

[
1− 2ξ` log ξ` + P3ξ` + (aMs′s′)

2

(
P4 −

4c2

(4πf)2
log ξ`

)]
KFSE
f , (27)

where again the parameters P1 and P3 are related to the NLO LECs `3 and `4 through
Eq. (19). In the case of the polynomial fit (analysis D) one fits the data with the
analogue of Eqs. (23) and (24) expressed in units of Ms′s′ .

In Fig. 5 and 6 we show the dependencies of M2
π/(m`Ms′s′) and fπ/Ms′s′on m`/Ms′s′

at each lattice spacing and in the continuum limit within the analysis C (ChPT fit).
Similar results have been obtained within the analysis D (polynomial fit).

The comparison of Figs. 1 and 5 clearly shows that, when Ms′s′ is chosen as the
scaling variable, the discretization effects on the squared pion mass are significantly
reduced from ' 10% down to ' 4.5%. At the same time the discretization effects on
the pion decay constant, which are almost negligible in units of r0 (see Fig. 2), are
kept to be within ' 4% when Ms′s′ is used as the scaling variable (see Fig. 6).

3To be more precise we consider the fictitious PS meson made of two strange-like quarks s′ and
s′′ having the same mass, ms′ = ms′′ , and opposite values of the Wilson r-parameter, rs′ = −rs′′ .
For the sake of simplicity we will refer to the mass of such a PS meson as Ms′s′ .
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Figure 5: Chiral and continuum extrapolation of M2
π/(m`Ms′s′) obtained using the NLO

ChPT fit (26).
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Figure 6: The same as in Fig. 5, but for the pion decay constant fπ in units of Ms′s′.

3.3 Results for the pion sector

In this section we present the results of the four analyses (A, B, C, D) carried out
in the pion sector. We have adopted the values of the RCs ZP corresponding to the
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methods M1 and M2, so that we end up with eight analyses, which will be referred to
as analyses A1, B1, C1, D1 and A2, B2, C2, D2, respectively.

Using the experimental value of the ratioM2
π/f

2
π [see Eq. (22)], the average up/down

quark mass mud is determined, so that the quantity (r0fπ) is calculated at the physical
point within the analyses A1 (A2) and B1 (B2). Then, using the experimental value
of fπ as input, the Sommer parameter r0 is extracted and this in turn allows to get
the values of the lattice spacing at each β using the determinations of r0/a collected
in Table 3.

The analyses C1 (C2) and D1 (D2) proceed in the same way: the average up/down
quark mass mud is determined through the experimental value of the ratio M2

π/f
2
π ,

while the mass Ms′s′ is obtained by combining the value of fπ/Ms′s′ , calculated at the
physical point, and the experimental value of fπ. However, in order to determine the
lattice spacing at each β we did not use the quantities aMs′s′ given in Eq. (25), since
they are affected by discretization effects larger than those occurring in the values of
r0/a. Thus we proceeded as follows. First we converted the results (25) for aMs′s′

to r0Ms′s′ using the values of r0/a from Table 3, and then we performed a simple fit
of the form r0Ms′s′ = P 1 + P 2a

2/r2
0. Finally, we determined the values of the lattice

spacing at each β by combining the values of a/r0 with the continuum extrapolation
of r0Ms′s′ and the value of Ms′s′ obtained from the experimental value of fπ.

For convenience the results obtained for the quark mass mud, the scaling variables
r0 and Ms′s′ , the values of the lattice spacing and the LECs B, f , `3 and `4, are
collected in Tables 8 and 9.

It is quite reassuring to find that different ways of handling both the chiral extrap-
olation and the discretization effects produce consistent results.

Combining the results reported in Tables 8 and 9 provides us with the final de-
terminations and the estimates of the various sources of systematic uncertainties. For
each quantity we have a set of N results (where N = 4 or N = 8 depending on the
specific quantity) coming from the various analyses A1 - D2. We assign to all analyses
the same weight and therefore we assume that the observable x has a distribution
f(x) given by f(x) = (1/N)

∑N
i=1 fi(x), where fi(x) is the distribution provided by

the bootstrap sample of the i-th analysis and characterized by central value xi and
standard deviation σi. Thus we estimate the central value and the error for the ob-
servable x through the mean value and the standard deviation of the distribution f(x),
which are given by

x =
1

N

N∑
i=1

xi ,

σ2 =
1

N

N∑
i=1

σ2
i +

1

N

N∑
i=1

(xi − x)2 . (28)

The second term in the r.h.s. of Eq. (28), coming from the spread among the results
of the different analyses, corresponds to a systematic error which accounts for the
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r0 Analysis Ms′s′ Analysis

Quantity ChPT Fit (A1) Polyn. Fit (B1) ChPT Fit (C1) Polyn. Fit (D1)

mud(MeV) 3.72(13) 3.87(17) 3.66(10) 3.75(13)

r0(GeV−1) 2.39(6) 2.42(7) - -

r0(fm) 0.470(12) 0.477(14) - -

Ms′s′(GeV) - - 0.672(9) 0.654(10)

a(β = 1.90)(fm) 0.0886(27) 0.0899(31) 0.0868(33) 0.0892(34)

a(β = 1.95)(fm) 0.0815(21) 0.0827(25) 0.0799(27) 0.0820(28)

a(β = 2.10)(fm) 0.0619(11) 0.0628(13) 0.0607(14) 0.0623(15)

B(MeV) 2515(90) 2381(117) 2551(73) 2463(95)

f(MeV) 121.1(2) 126.1(7) 121.3(2) 125.9(6)

`3 3.24(25) - 2.94(20) -

`4 4.69(10) - 4.65(8) -

Table 8: Summary of the results of the analyses in the pion sector using the set of
values of the RCs ZP from the method M1.

r0 Analysis Ms′s′ Analysis

Quantity ChPT Fit (A2) Polyn. Fit (B2) ChPT Fit (C2) Polyn. Fit (D2)

mud(MeV) 3.63(12) 3.78(16) 3.55(9) 3.63(12)

r0(GeV−1) 2.40(6) 2.42(7) - -

r0(fm) 0.471(11) 0.477(13) - -

Ms′s′(GeV) - - 0.685(9) 0.667(10)

a(β = 1.90)(fm) 0.0887(27) 0.0898(31) 0.0865(34) 0.0888(35)

a(β = 1.95)(fm) 0.0816(21) 0.0826(25) 0.0796(28) 0.0817(29)

a(β = 2.10)(fm) 0.0620(11) 0.0627(13) 0.0604(15) 0.0620(15)

B(MeV) 2584(88) 2438(120) 2634(67) 2546(93)

f(MeV) 121.1(2) 126.0(8) 121.2(2) 125.9(7)

`3 3.31(26) - 2.93(21) -

`4 4.73(10) - 4.68(8) -

Table 9: The same as in Table 8, but using the set of values of the RCs ZP from the
method M2.

uncertainties due to the chiral extrapolation, the cutoff effects and the RCs ZP . Fi-
nally we add in quadrature to Eq. (28) the systematic uncertainties associated to the
calculation of the FSE and to the conversion from the RI′-MOM to the MS schemes
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(see A.3).
Combining all the sources of uncertainties we get the following estimate for the

average up/down quark mass in the MS scheme at a renormalization scale of 2 GeV:

mud = 3.70 (13)stat+fit(6)Chiral(5)Disc(5)ZP (4)FSE(5)Pert MeV

= 3.70 (13)stat+fit(11)syst MeV

= 3.70 (17) MeV . (29)

The first error includes the statistical one as well as the error associated with the
fitting procedure. This error is larger than the typical statistical error of the lattice
data, being amplified by the chiral and continuum extrapolations. For mud we get a
(stat+fit) error equal to ' 3.5%.

In order to separate in Eq. (29) the uncertainties related to the chiral extrapolation,
the discretization effects and the choice of the RCs ZP we split the contribution coming
from the second term in the r.h.s. of Eq. (28) into those related to the differences of the
results obtained using r0 or Ms′s′ (labelled as Disc), chiral or polynomial fits (labelled
as Chiral) and the two methods M1 and M2 for the RCs ZP (labelled as ZP ). In this
way we found them to be at the level of 1.6%, 1.6% and 1.4%, respectively.

For the FSE we considered the difference between the result obtained using the
most accurate correction, i.e. the CWW one, and the one corresponding to no FSE
correction at all. This gave rise to an error on mud equal to ' 1.1%.

The last systematic error appearing in Eq. (29) is the one related to the conversion
between the RI′-MOM and the MS(2 GeV) schemes, estimated to be ' 1.3% (see A.3).

Our determination (29) for mud is the first one obtained at Nf = 2 + 1 + 1.
The recent lattice averages, provided by FLAG [26] and based on the findings of
Refs. [1, 4, 5, 47, 48], are: mud = 3.6(2) MeV at Nf = 2 and mud = 3.42(9) MeV at
Nf = 2 + 1. The comparison of these results with our finding (29) shows that the
partial quenching of the strange and/or charm sea quarks is not yet visible at the (few
percent) level of the present total systematic uncertainty.

For the Sommer scale r0 we get

r0 = (0.474± 0.014)fm , (30)

while the values of the lattice spacing at each β are found to be

a|β=1.90, 1.95, 2.10 = {0.0885(36), 0.0815(30), 0.0619(18)}fm . (31)

As it is known (see the findings of Refs. [39, 40] at Nf = 2 and of Refs. [41, 42]
at Nf = 2 + 1), a precise determination of the NLO LECs `3 and `4 requires refined
analyses addressing the impact of the choice of pion mass range used for the chiral
extrapolation as well as the effects of NNLO corrections. Such analyses are beyond
the scope of the present work. Here we mention only that we have performed NNLO
fits in the whole mass range covered by our data (Mπ < 450 MeV) as well as NLO
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fits restricted to pion masses smaller than 300, 350 or 400 MeV. The results of these
fits (see Table 10) indicate that the curvatures of M2

π/m` and fπ are within the range
already selected by the polynomial and the NLO ChPT fits performed in the full
range of simulated pion masses. In particular, for the average up/down quark mass
mud, whose determination is one of the main goals of the present work, and for the
LECs B and f , we have found results always in between those obtained with the
polynomial and the NLO ChPT fits.

Quantity NLO Fit (A1) Polyn. Fit (B1) NLO Fit NNLO Fit

Mπ < 450 MeV Mπ < 450 MeV Mπ < 300 MeV Mπ < 450 MeV

mud(MeV) 3.72(13) 3.87(17) 3.77(21) 3.82(16)

r0(fm) 0.470(12) 0.477(14) 0.472(12) 0.462(10)

B(MeV) 2515(90) 2381(117) 2474(157) 2447(107)

f(MeV) 121.1(2) 126.1(7) 122.2(8) 124.0(7)

`3 3.24(0.25) – 2.76(1.28) 3.84(0.88)

`4 4.69(10) – 4.18(38) 3.42(37)

Table 10: Comparison of different chiral extrapolations for various quantities extracted
in the pion analyses A1 and B1 (see text). The errors include the (stat + fit) uncer-
tainty.

It is interesting to show in detail the impact of the various approaches used to
calculate the FSE for the various quantities extracted from the pion analysis. The
results obtained within the eight analyses A1 - D2 are quite similar to each other. In
Table 11 we have reported the findings corresponding to the analysis A1.

Quantity no correction GL CDH CWW

mud(MeV) 3.68(14) 3.76(14) 3.73(13) 3.72(13)

r0(fm) 0.464(12) 0.466(12) 0.468(12) 0.470(12)

B(MeV) 2548(99) 2497(97) 2500(93) 2515(90)

f(MeV) 120.8(1) 120.9(1) 120.9(1) 121.1(2)

`3 3.42(20) 3.35(20) 3.34(21) 3.24(25)

`4 4.83(9) 4.77(9) 4.76(9) 4.69(10)

Table 11: Comparison of different FSE corrections for various quantities extracted in
the pion analysis A1. The errors include the (stat + fit) uncertainty.

From Table 11 it can be seen that, though the FSE corrections in some particular
ensemble can be as large as 4.9% and 6.3% for the pion mass and decay constant,
respectively (see Table 7 for the ensemble A40.24), the overall final impact on mud, r0

and the LECs B, f , `3 and `4 is limited to be well below the (stat+fit) error.
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Before closing this Section, we notice that a set of ETMC data consistent with the
ones considered in this work have been analyzed in Ref. [13] adopting ChPT at NLO for
the chiral extrapolation, but without accounting for the effect of the charged/neutral
pion mass splitting and without involving the determinations of the RCs ZP . The
findings of Ref. [13] concerning both the lattice spacings and the LECs B, f , `3 and
`4 nicely agree with our results of Tables 8-9 within one standard deviation. This
indicates that the role played in our analyses by the pion mass splitting and by the
RCs ZP is well under control.

4 Strange quark mass

In this Section we present our determination of the strange quark mass ms. The
analysis follows a strategy similar to the one presented for the pion sector. As a
preliminary step, however, we performed an interpolation of the lattice kaon data to a
fixed value of the strange quark mass in order to arrive iteratively at the physical one
(see next Section).

As in the pion sector, we handled discretization effects by performing a first analysis
which uses r0/a as scaling variable, and a second one in which the fictitious PS meson
mass aMs′s′ is used to build the ratios MK/Ms′s′ , which are expected to have milder
lattice artifacts. For both approaches we considered two different chiral extrapolations
in the light quark mass m`, namely either the predictions of SU(2) ChPT or the
polynomial expansion. All these analyses are then repeated with the two sets of values
of the RCs ZP obtained within the methods M1 or M2. In this way, as in the pion
sector, there are eight different branches of the analysis. In all cases the quark masses
are converted directly to physical units using the values of the lattice spacing found
in the pion sector.

To determine the strange quark mass we made use of several quantities extracted
from the pion sector, like the lattice spacing, the LECs B and f , the Sommer parameter
r0 and the results for the average up/down quark mass mud. In order to preserve the
physical correlations, in each of the eight kaon analyses we adopted the inputs coming
from the corresponding pion fit. For instance, if SU(2) ChPT is used for the pion,
then the same approach is applied to the kaon as well. The uncertainties on the input
quantities are propagated through the bootstrap sampling for each of the branches of
the kaon analysis. Combining the results from all the eight analyses we obtained our
final result for ms and the estimates of the various sources of systematic uncertainty.

4.1 Chiral extrapolation in units of r0 (analyses A and B)

The analysis is performed iteratively. We start from an initial guess for the physical
strange quark mass ms. Then, adopting a quadratic spline, the lattice data for the
kaon masses are interpolated in the strange quark mass to the (guessed) physical
value ms and brought to a common scale using r0/a. A combined fit is performed to
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extrapolate M2
K in the light quark mass and in the (squared) lattice spacing to the

physical point and to the continuum limit. Afterwards the value obtained for the kaon
mass, converted in physical units using the value of r0 obtained from the pion analyses,
is compared with the experimental one. If the latter is not reproduced, a new guess
for ms is done and the whole process is repeated again.

The experimental value of the kaon mass to be matched is the one in pure QCD
corrected for leading strong and electromagnetic isospin breaking effects according to

M exp
K =

√
M2

K+ +M2
K0

2
− (1 + ε+ 2εK0 − εm)

2

(
M2

π+ −M2
π0

)
' 494.2(4) MeV , (32)

where ε = 0.7(3), εK0 = 0.3(3) and εm = 0.04(2) [26].
For the analysis A we used the SU(2) ChPT predictions at NLO, which assume

the chiral symmetry to be satisfied only by the up and down quarks and read as

(r0MK)2 = P0(m` +ms)
[
1 + P1m` + P3a

2
]
KFSE
M2
K

. (33)

Alternatively we considered a polynomial fit (analysis B) according to the following
expression

(r0MK)2 = P ′0(m` +ms)
[
1 + P ′1m` + P ′2m

2
` + P ′3a

2
]
KFSE
M2
K

. (34)

Notice that for the squared kaon mass SU(2) ChPT predicts the absence of chiral
logarithms at NLO, so that the expressions (33) and (34) actually correspond to a
linear and a quadratic fit in m`, respectively.

The data for the kaon mass have been corrected for FSE using ChPT formulae.
The absence of the chiral log at NLO makes the corresponding FSE correction (GL)
vanishing identically, i.e. KFSE

M2
K

= 1. The first non-vanishing correction appears at

NNLO and it was calculated in Ref. [23]. The pion mass splitting is expected to give a
contribution to the FSE also for the kaon mass. However explicit calculations are not
yet available4. In Table 12 the relative size of the FSE correction for the kaon mass is
presented, together with a comparison to the lattice data. It can clearly be seen that:
i) FSE on the kaon mass are definitely smaller compared to the pion case (see Table
5), and ii) even if the contribution from the pion mass splitting is neglected, the CDH
predictions appear to work quite well, reproducing the observed ratio of lattice data.

The dependence of M2
K on the renormalized light quark mass at each lattice spacing

as well as its chiral and continuum extrapolation are shown in Figs. 7 and 8 in the
cases of the SU(2) ChPT (33) and polynomial (34) fits, respectively. In what follows,
the kaon data will be corrected for FSE using the CDH formulae [23] unless explicitly
stated.

In both cases the lattice data are reproduced quite well by the fitting formulae.
Notice the size of discretization effects, which can be quantified at the level of ' 10%

4A first step in this direction has been done recently in Ref. [49], where however the framework
differs by lattice artifacts from the non-unitary setup chosen in this work for valence and sea strange
quarks.
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GL CDH Lattice data (M2
K,[32]/M

2
K,[24])

KFSE
M2
K ,[32]

/KFSE
M2
K ,[24]

1 0.982 0.980(14)

Table 12: Values of the ratio of the FSE correction factor KFSE
M2
K

in the case of the

kaon mass for the ensembles A40.32 and A40.24, obtained within the approaches GL
and CDH (see text), compared with the corresponding ratio of lattice data.

taking the difference between the results at the finest lattice spacing and the ones in
the continuum limit.

4.2 Chiral extrapolations in units of Ms′s′ (analyses C and D)

Following the same strategy adopted in the pion analyses, the kaon masses simulated
at different β values can be brought to a common scale by constructing the ratios
M2

K/M
2
s′s′ , which are expected to suffer only marginally by discretization effects. The

values of aMs′s′ for each β are given in Eq. (25). The light quark mass m` is ex-
pressed directly in physical units by using the values of the lattice spacing found in
the corresponding pion analysis.

As for the analyses in units of r0, we considered two different chiral extrapolations,
adopting formulae similar to Eqs. (33) and (34), but expressed in units of Ms′s′ . Af-
ter the chiral extrapolation and the continuum limit are carried out, the result for
MK/Ms′s′ can be combined with the value of Ms′s′ obtained in the corresponding pion
analysis in order to compare with the experimental kaon mass (32).

The dependencies of M2
K/M

2
s′s′ on the renormalized light quark mass at the three

values of β as well as in the continuum limit are shown in Fig. 9 using the SU(2) ChPT
prediction (analysis C). Results of the same quality are obtained within the analysis
D, which makes use of the polynomial fit for the chiral extrapolation.

In the case of the kaon mass the use of the hadron scale Ms′s′ turns out to be an
extremely efficient choice for an almost total cancellation of the discretization effects,
namely from ' 10% (see Figs. 7 and 8) to about 0.4% (see Fig. 9). This allows us to
keep the extrapolation to the continuum limit under a very good control in the whole
range of values of the renormalized light quark mass.

4.3 Results for the kaon sector

Our results for the strange quark mass ms are those reproducing after the chiral
and continuum extrapolations the experimental value of the K-meson mass given in
Eq. (32). The results of the eight analyses for the strange quark mass, given in the
MS scheme at a renormalization scale of 2 GeV, are shown in Table 13.

After combining these results using Eq. (28), we obtain our estimate of the strange
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Figure 7: Chiral and continuum extrapolation of M2
K in units of r0 using the SU(2)

ChPT predictions given by Eq. (33).
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Figure 8: The same as in Fig. 7, but in the case of the polynomial fit (34).

quark mass ms and its systematic uncertainties in the MS(2 GeV) scheme, namely

ms = 99.6 (3.6)stat+fit(0.6)Chiral(1.1)Disc(1.4)ZP (0.5)FSE(1.3)Pert MeV

= 99.6 (3.6)stat+fit(2.3)syst MeV

= 99.6 (4.3) MeV . (35)
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Figure 9: Chiral and continuum extrapolation of M2
K in units of M2

s′s′ using SU(2)
ChPT at NLO.

r0 Analysis Ms′s′ Analysis

RCs ZP ChPT Fit (A) Polynomial Fit (B) ChPT Fit (C) Polynomial Fit (D)

method M1 101.6(4.4) 102.5(3.9) 99.4(2.9) 100.8(3.2)

method M2 99.0(4.4) 99.8(3.9) 96.3(2.7) 97.6(3.0)

Table 13: Values of the strange quark mass ms obtained within the eight branches of
the analysis. The results are given in MeV in the MS(2 GeV) scheme.

The chiral extrapolation error has been evaluated from the spread among the results
obtained using the chiral and the polynomial fits in units of either r0 or Ms′s′ . This
corresponds in the error budget to a 0.6% systematic uncertainty.

The discretization error has been calculated from the spread among the results
obtained in units of r0 or Ms′s′ and represents a 1.1% uncertainty on ms.

The two different sets of values of ZP , calculated using the methods M1 and M2,
introduce an additional uncertainty of 1.4%.

The difference of the results for the strange quark mass obtained without correcting
for the FSE and the one obtained using the CDH approach [23] has been conservatively
taken as the estimate of the corresponding systematic uncertainty, which turns out to
be equal to 0.5%.

The last systematic error appearing in Eq. (35) is the one related to the conversion
between the RI′-MOM and the MS(2 GeV) schemes, estimated to be ' 1.3% (see A.3).

The largest uncertainty, equal to 3.6%, comes from the statistical error plus the
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uncertainties due to the fitting procedure. The latter is the dominating one and it
mainly depends on the distance between the lowest simulated quark mass and the
physical point mud in the chiral extrapolation.

Our determination (35) for ms is the first one obtained at Nf = 2 + 1 + 1. The
recent lattice averages, provided by FLAG [26] and based on the findings of Refs. [1, 2,
5, 47, 48, 50], are: ms = 101(3) MeV at Nf = 2 and ms = 93.8(2.4) MeV at Nf = 2+1.
The comparison of these results with our finding (35) shows that the partial quenching
of the strange and/or charm sea quarks is not yet visible at the (few percent) level of
the present total systematic uncertainty.

4.4 The ratio mu/md

The light quark mass dependence of the squared kaon mass can be used to calculate the
mass difference between the u and d quark masses, leading to an estimate of the ratio
mu/md. In the limit of vanishing electromagnetic interactions the difference between
the neutral and charged squared kaon masses can be expanded in terms of the (small)
quark mass difference (md −mu) as (see Ref. [51] and references therein)

M̂2
K0 − M̂2

K+ = (md −mu) ·
(
∂M2

K

∂m`

)
m`=mud

+O[(md −mu)
2] . (36)

The slope (∂M2
K/∂m`)m`=mud is defined in the isospin symmetric limit and therefore it

can be computed directly using our ensembles by taking the derivative of the contin-
uum and infinite volume limits of our fitting formulae, like Eqs. (33-34), with respect
to m`, obtaining(

∂M2
K/∂m`

)
m`=mud

= 2.29 (18)stat+fit(17)Chiral(8)Disc(6)ZP (14)FSE GeV

= 2.29 (18)stat+fit(24)syst GeV

= 2.29 (30) GeV (37)

We observe that in Ref. [51], using a different method based on the insertion of the
isovector scalar density, the slope was found to be equal to (∂M2

K/∂m`)m`=mud =
2.57(8) GeV at Nf = 2.

The charged and neutral kaon masses, M̂K0 and M̂K+ , are those defined in pure
QCD. For them we adopt the FLAG estimate M̂K+ − M̂K0 = −6.1(4) MeV [26], based
on the findings of Refs. [27, 28, 29, 30, 31, 32], and the value (M̂K+ + M̂K0)/2 =
494.2(4) MeV given by Eq. (32). From Eqs. (36-37) we then evaluate (md −mu) and
consequently the ratio mu/md using Eq. (29) for the average value of the up and down
quark masses. After implementing the above strategy for all the eight branches of the
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analysis we get the result

mu

md

= 0.470 (41)stat+fit(26)Chiral(15)Disc(1)ZP (23)FSE

= 0.470 (41)stat+fit(38)syst

= 0.470 (56) . (38)

Our Nf = 2 + 1 + 1 result is consistent with the FLAG averages mu/md = 0.50(4) at
Nf = 2 and mu/md = 0.46(3) at Nf = 2 + 1 [26], based on the results of Refs. [32, 47,
48, 50].

For the up and down quark masses in the MS(2 GeV) scheme we get

mu = 2.36 (20)stat+fit(6)Chiral(8)Disc(3)ZP (9)FSE(3)Pert MeV

= 2.36 (20)stat+fit(14)syst MeV

= 2.36 (24) MeV , (39)

md = 5.03 (16)stat+fit(16)Chiral(4)Disc(8)ZP (7)FSE(7)Pert MeV

= 5.03 (16)stat+fit(21)syst MeV

= 5.03 (26) MeV . (40)

4.5 Determinations of the strange and charm sea quark masses

As discussed in Section 2, within the twisted mass formulation adopted in the present
work the (renormalized) strange and charm sea quark mass are related to the bare
twisted parameters µσ and µδ by

msea
s =

1

ZP

(
µσ −

ZP
ZS

µδ

)
(41)

msea
c =

1

ZP

(
µσ +

ZP
ZS

µδ

)
. (42)

Using the results found for the RCs ZP and ZP/ZS (see A for the latter), it turns
out that the values of msea

s obtained from Eq. (41) are plagued by large uncertainties
that can reach the 20% level, mainly because of a large cancellation between the two
terms in the r.h.s. of Eq. (41). Moreover, the definition (41) is affected by the lattice
artifacts that unavoidably enter the determination of the RCs.

A more accurate determination ofmsea
s can be obtained using the results of Refs. [11,

12, 13, 14, 52], where for all the ensembles used in the present work the kaon mass
has been determined in the twisted-mass unitary setup, in which the valence quarks
are described by the same action (8) adopted for the sea quarks.

In terms of the valence (m` and ms) and strange sea (msea
s ) quark masses the

OS kaon masses, computed in the present study, can be represented as MOS
K =
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MK(m`,ms;m
sea
s ), while the unitary ones correspond toMunitary

K = MK(m`,m
sea
s ;msea

s )
up to lattice artifacts that may be different in the two setups. We have then com-
puted for each ensemble the ratio of the unitary over OS values of the combination
2M2

K −M2
π , namely

Rsea(m`,ms,m
sea
s ) ≡ 2M2

K(m`,m
sea
s ;msea

s )−M2
π(m`;m

sea
s )

2M2
K(m`,ms;msea

s )−M2
π(m`;msea

s )
. (43)

This ratio is equal to the ratio msea
s /ms in ChPT at LO and it is equal to unity when

msea
s = ms up to lattice artifacts corresponding to the difference of the discretization

effects in the unitary and OS setups. Therefore, for each ensemble a smooth local
interpolation (carried out with quadratic splines) allows us to find the value of the
valence strange quark mass ms that makes the ratio Rsea(m`,ms,m

sea
s ) equal to unity.

The results of the above procedure are shown in Fig. 10, where it can be seen that
the matching mass can be determined with good precision and it is almost independent
on the values of the light quark mass for fixed β.
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Figure 10: The ratio Rsea(m`,ms,m
sea
s ) for the various ensembles considered in this

work versus the valence strange quark mass ms. For each value of β and m` the
crossing of the interpolation curves of the lattice data with the solid line corresponding
to Rsea = 1 identifies the location of the matching mass ms = msea

s up to lattice
artifacts (see text). The vertical dashed lines correspond to the determination (35) of
the physical strange quark mass.

In this way, using at each β the weighted average of the matching masses obtained
at the various values of the light-quark mass, we get the results

msea
s |β=1.90, 1.95, 2.10 = {99.2 (3.5), 88.3 (3.8), 106.4 (4.6)} MeV , (44)
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where each error includes also the spread of the matching mass with respect to the
light quark mass (see Fig. 10). The results (44) differ from the determination (35)
of the physical strange quark mass by ≈ 10% at most, with the largest difference at
β = 1.95.

We tried to estimate the effect of the mistuning of the strange sea quark mass using
the SU(3) ChPT predictions developed in Refs. [53]-[55] for arbitrary values of sea and
valence quark masses. For the squared pion and kaon masses one gets at NLO

∆M2
π ≡ M2

π(m`;m
sea
s )−M2

π(m`;ms)

=
4B0m`

f 2
0

{
8 [2Lr6(µ)− Lr4(µ)] (χseas − χs) +

1

6
A(χseaη )− 1

6
A(χη)

}
, (45)

∆M2
K ≡ M2

K(m`,ms;m
sea
s )−M2

K(m`,ms;ms)

=
2B0

f 2
0

(m` +ms) {8 [2Lr6(µ)− Lr4(µ)] (χseas − χs)

− 1

3
A(χs)

χs − χseas
χs − χseaη

− 1

3
A(χseaη )

χseaη − χseas
χseaη − χs

+
1

3
A(χη)

}
, (46)

where

χ` ≡ 2B0m` ,

χs ≡ 2B0ms , χseas ≡ 2B0m
sea
s ,

χη ≡
1

3
(χ` + 2χs) , χseaη ≡

1

3
(χ` + 2χseas ) ,

A(χ) ≡ − χ

16π2
log

(
χ

µ2

)
(47)

and B0 and f0 are the LO SU(3) LECs, while Lr4(µ) and Lr6(µ) are the NLO LECs
evaluated at the renormalization scale µ. For the pion decay constant one gets

∆fπ ≡ fπ(m`;m
sea
s )− fπ(m`;ms)

=
2

f0

{
4Lr4(µ) (χseas − χs) +

1

2
A

(
χ` + χseas

2

)
− 1

2
A

(
χ` + χs

2

)}
. (48)

Using from the results quoted in Ref. [26] the values B0/f0 = 19 (2) and

2Lr6(µ)− Lr4(µ) = 0.14 (12) · 10−3 ,

Lr4(µ) = 0.09 (34) · 10−3 (49)

at µ = Mρ = 0.770 GeV, the corrections (45), (46) and (48) are below the 1% level at
our simulated quark masses and at the physical point.
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We have also verified that by including the corrections (45), (46) and (48) in the
lattice data the changes observed in the predictions of our analyses for mud and ms

are smaller than the other systematic uncertainties.
We close this subsection by presenting the estimate of the charm sea quark mass

msea
c . As in the case of the strange sea quark mass, msea

c can be estimated either
from Eq. (42), which requires the values of the RCs ZP and ZS, or by investigating
the matching between the unitary and OS determinations of the D-meson mass. In
both cases we got consistent results, namely msea

c = {1.21 (5), 1.21 (5), 1.38 (4)}GeV
at β = {1.90, 1.95, 2.10}, which should be compared with the determination of the
physical charm quark mass presented in Section 5.3. In the MS(2 GeV) scheme the
latter reads mc = 1.176 (39) GeV [see Eq. (60)]. It follows that, while there is a good
agreement within the errors at β = 1.90 and 1.95, a ≈ 18% mistuning is present at
β = 2.10. Since scaling distortions are not visible in our data, we expect that the
mistuning of the charm sea quark mass has a negligible effect with respect to the one
of the strange sea quark and, therefore, it does not affect our determination of the
quark masses in a significant way.

4.6 Determination of the ratio ms/mud

The results for the strange quark mass ms and for the average up/down quark mass
mud (see Tables 8, 9 and 13) can be used to estimate the ratio ms/mud. One gets

ms

mud

= 26.94 (1.35)stat+fit(0.30)Chiral(0.13)Disc(0.02)ZP (0.32)FSE

= 26.94 (1.35)stat+fit(0.46)syst

= 26.94 (1.43) (50)

with a total uncertainty of 5.3%.
In order to reduce the uncertainty we have investigated an alternative approach,

which leads to a more precise determination of the ratio ms/mud.
Using the kaon and pion lattice data we define the quantity R(ms,m`, a

2) as

R(ms,m`, a
2) ≡ m`

ms

2M2
K −M2

π

M2
π

, (51)

which, by construction, is independent on the values of ZP as well as of the lattice
spacing up to cutoff effects.

In ChPT at LO the ratio R(ms,m`, a
2) is equal to unity. At the physical point

one gets [(2M2
K −M2

π)/M2
π ]phys ' 25.8 and, adopting the estimate (50) for (ms/mud),

one has Rphys ≡ R(ms,mud, 0) ' 0.96. Therefore, the dependence of R(ms,m`, a
2) on

the strange and light quark masses is expected to give rise to small corrections only.
This is a very useful feature, since the mild dependence on the strange quark mass
allow us to interpolate the ratio R(ms,m`, a

2) at the physical value (35) with a small
sensitivity to the error on ms, while the mild dependence on the light quark mass m`
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represents a way to reduce the uncertainty introduced by the chiral extrapolation. In
this way a precise determination of the mass ratio ms/mud can be obtained as

ms

mud

=

(
2M2

K −M2
π

M2
π

)phys
1

Rphys
, (52)

where Rphys is computed on the lattice.
In Fig. 11 the lattice data for R(ms,m`, a

2), interpolated at the physical strange
mass (35) and corrected for FSE (using the CWW predictions [22] for Mπ and the
CDH ones [23] for MK), are shown versus the light quark mass m` for our ensembles.
As expected, the dependence on the light quark mass is found to be quite mild and
the ratio R(ms,m`, a

2) is close to unity at all the simulated quark masses.
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Figure 11: Chiral and continuum extrapolations of the quantity R(ms,m`, a
2), defined

in Eq. (51), through a linear fit in m`. The data are interpolated at the physical strange
mass (35) and corrected for FSE.

We performed the chiral and continuum extrapolations through a simple fit of the
form

R(ms,m`, a
2) = R0 +R1m` +R3a

2 . (53)

The results are presented in Fig. 11 for each β value and in the continuum limit. It
can be seen that discretization effects are quite small, being the difference between
the result at the finest lattice spacing and the one in the continuum less than ' 1%.
From the result Rphys = 0.9681 (116)stat+fit(7)ZP (3)FSE, obtained in the continuum
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limit and at the physical point, we get from Eq. (52) the result

ms

mud

= 26.66 (32)stat+fit(2)ZP (1)FSE

= 26.66 (32) , (54)

which has an accuracy at the level of 1.2%.
For comparison, the updated FLAG averages [26] are ms/mud = 28.1(1.2) at Nf =

2 and ms/mud = 27.5(4) at Nf = 2+1, based on the findings of Refs. [1, 5, 47, 48, 50].

5 Charm quark mass

In this Section we present our determination of the mass of the charm quark obtained
by analyzing both the D- and Ds-meson masses, following a strategy similar to the
one presented for the K-meson.

The lattice data for the D- and Ds-meson masses are interpolated to the physi-
cal strange and charm quark masses using a quadratic spline. The physical strange
quark mass is the one determined in the previous Section, while the physical charm
quark mass is defined such that the experimental value of the D- or Ds-meson mass
is reproduced. Then the dependence of MD and MDs on the light quark mass and on
the lattice spacing is studied at fixed strange and charm quark masses, and the con-
tinuum limit and the chiral extrapolation to the physical point mud of the light quark
mass are performed. The analysis based on the Ds-meson masses is expected to have
smaller systematic uncertainty associated to the chiral extrapolation because of the
milder light quark dependence, which occurs only through the sea effects. Therefore,
our final result for the charm quark mass is derived from the Ds-meson analysis and
the value obtained from fitting the D-meson mass is used as a consistency check.

As in the cases of the pion and kaon analyses, the lattice data for the charmed
meson masses are converted in units of either the Sommer parameter r0 or the mass
Mc′s′ of a fictitious PS meson, made with one valence strange-like and one valence
charm-like quarks (with opposite values of the Wilson r-parameter). Such a reference
mass Mc′s′ , which is expected to have discretization effects close to the ones of MD or
MDs , has been constructed choosing the arbitrary values r0ms′ = 0.22 and r0mc′ = 2.4
at each ensemble. As in the case of the mass Ms′s′ , the continuum limit of Mc′s′ is
required and it is calculated by combining the value of fπ/Mc′s′ , calculated at the
physical point, and the experimental value of fπ.

For the chiral extrapolation in the light quark mass, the Heavy Meson ChPT
(HMChPT) predicts no chiral logarithms at NLO for both D- and Ds-meson masses.
Therefore, we have adopted either a linear or a quadratic expansion in m` and the
latter is used only to estimate the uncertainty related to the chiral extrapolation.
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5.1 Fit in units of r0

Our analyses follow closely the strategy already applied to the kaon case. We start
from an initial guess for the physical charm quark mass mc and consider the value of
the physical strange quark mass ms given in (35). After a smooth interpolation in
the strange and charm quark masses, the D- and Ds-meson masses, extracted from
the corresponding 2-point correlators, are brought to a common scale using r0/a. The
light quark mass is directly converted in physical units using the values of the lattice
spacing obtained in the pion sector.

As discussed in the previous Section, the dependence of both r0MD and r0MDs on
the light quark mass m` is well described by a simple polynomial dependence, namely

r0MD = P0 + P1m` + P2m
2
` + P3a

2 , (55)

r0MDs = P ′0 + P ′1m` + P ′2m
2
` + P ′3a

2 , (56)

where P0 - P3 and P ′0 - P ′3 are free parameters. For both D and Ds mesons we have
investigated either a linear (i.e. with P2 = P ′2 = 0 in Eqs. (55-56)) or a quadratic fit.

As in the previous analyses, the prior information on ZP and r0/a is introduced
through the contribution to the χ2 given in Eq. (11). Moreover, since the results
for the D- and Ds-meson masses corresponding to the ensembles A40.24 and A40.32
(which differ only for the lattice volume) almost coincide, we did not apply any FSE
correction.

The dependence of MDs on the light quark mass m` for each β value and in the
continuum limit is illustrated in Figs. 12-13, adopting a linear or a quadratic fit,
respectively. It can be seen that the discretization effects, which can be quantified
by the difference between the results at the finest lattice spacing and those in the
continuum limit, are found to be of the order of 3%.

5.2 Fit in units of Mc′s′

The impact of discretization effects can be reduced using the reference meson mass
Mc′s′ as a scaling variable. Let us divide aMDs by the mass aMc′s′ evaluated for each
ensemble choosing the values r0ms′ = 0.22 and r0mc′ = 2.4 for the valence strange-
like and charm-like quark masses, respectively. As in the case of aMs′s′ we found no
significant dependence of aMc′s′ on the light sea quark mass. Therefore we performed
a constant fit in aµ` to obtain the following reference values of aMc′s′

aMc′s′|β=1.90, 1.95, 2.10 = {0.8592(3), 0.7681(4), 0.5779(3)} (method M1)

= {0.9009(3), 0.7961(4), 0.5963(3)} (method M2) . (57)

Then the chiral and continuum extrapolations of MDs/Mc′s′ is performed using the
fitting formula

MDs

Mc′s′
= P 0 + P 1m` + P 2m

2
` + P 3a

2 (58)
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Figure 12: Chiral and continuum extrapolation of r0MDs adopting a linear fit in m`,
i.e. with P ′2 = 0 in Eq. (56).
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Figure 13: The same as in Fig. 12, but in case of the quadratic fit of Eq. (56).

and similarly for MD/Mc′s′ The dependence of the Ds-meson mass on the light quark
mass at each β and in the continuum limit, corresponding to a linear or a quadratic
fit in Eq. (58), are shown in Figs. 14 and 15, respectively.

The comparison of the results in units of r0 presented in Figs. 12-13 with those
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Figure 14: Chiral and continuum extrapolations of MDs/Mc′s′ performing a linear fit
in m`, i.e. with P 2 = 0 in Eq. (58).
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Figure 15: The same as in Fig. 14, but in case of the quadratic fit of Eq. (58).

in units of Mc′s′ shown in Figs. 14-15 indicates that discretization effects are strongly
reduced in the ratio MDs/Mc′s′ , as expected. The gap between the continuum and the
finest lattice spacing results decreases from 3% down to 0.3% of the continuum result.
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5.3 Results for the charm mass

After the continuum limit and the extrapolation to the physical light quark mass mud

are performed, the masses of the D and Ds mesons are converted in physical units using
the values of either r0 or the continuum extrapolation of Mc′s′ . Then, by successive
iterations the physical charm quark mass mc is determined by matching the mass of
either the D- or the Ds-meson to the corresponding (isospin averaged) experimental
values [46]

M exp
D =

MD± +MD0

2
= 1.867 GeV , M exp

Ds
= MD±s

= 1.969 GeV . (59)

The results for the charm quark mass in the MS(2 GeV) scheme, obtained form
the Ds-meson analysis, are shown in Table 14. Each entry in the Table is already the
average value evaluated according to Eq. (28) of the results of analyses which differ
only for the choice of the set of the input parameters: those coming from pion and
kaon analysis A (chiral extrapolation) and B (polynomial extrapolation) when r0 is
used as scaling variable, and those coming from the analyses C and D when Mc′s′ is
considered.

It is interesting to compare the results for mc obtained analyzing the Ds-meson
mass with those obtained using the D-meson mass. The latter are presented in Table
15. It can be clearly seen that there is indeed a full compatibility, the differences being
much smaller than the quoted uncertainties.

The quality of the chiral and continuum extrapolation performed on the D-meson
mass is illustrated in Fig. 16 in the case of the quadratic fit in m`.

The results from Table 14 corresponding to the linear fit in the light quark mass
have been averaged to get our final result for mc and its systematic uncertainties in
the MS(2 GeV) scheme, namely

mc = 1.176 (31)stat+fit(2)Chiral(5)Disc(17)ZP (15)Pert GeV

= 1.176 (31)stat+fit(23)syst GeV

= 1.176 (39) GeV (60)

The results of the quadratic fit in m` have not been included in the average, but they
have been considered to estimate the uncertainty related to the chiral extrapolation
by taking the difference with the results of the linear fit. This error is found to be
quite small as expected, since the light quark mass dependence of the Ds-meson mass
arises only from sea quark effects.

After evolving the perturbative scale from 2 GeV to the value of mc using N3LO
perturbation theory with four quark flavors, one obtains

mc(mc) = 1.348 (36)stat+fit(2)Chiral(6)Disc(20)ZP (19)Pert GeV

= 1.348 (36)stat+fit(28)syst GeV

= 1.348 (46) GeV (61)
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Linear Fit Quadratic Fit

RCs ZP r0 Analysis Mc′s′ Analysis r0 Analysis Mc′s′ Analysis

(A and B) (C and D) (A and B) (C and D)

method M1 1.188(32) 1.198(31) 1.190(32) 1.199(31)

method M2 1.154(32) 1.163(31) 1.157(32) 1.164(31)

Table 14: Results for the physical charm quark mass mc obtained from the various
analyses of the Ds-meson mass explained in the text. The results are expressed in
GeV in the MS(2 GeV) scheme.

Linear Fit Quadratic Fit

RCs ZP r0 Analysis Mc′s′ Analysis r0 Analysis Mc′s′ Analysis

(A and B) (C and D) (A and B) (C and D)

method M1 1.178(35) 1.179(31) 1.190(37) 1.190(32)

method M2 1.146(35) 1.144(31) 1.158(38) 1.156(32)

Table 15: The same as in Table 14, but using the data for the D-meson mass.
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Figure 16: Chiral and continuum extrapolations of r0MD performing a quadratic fit in
m`.

with a total uncertainty equal to 3.4% of the central value.
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The strategy followed to separate the various sources of the systematic error is the
same as the one used in the pion and kaon cases.

The first error in Eq. (61) includes the statistical uncertainties combined with the
systematic error associated with the fitting procedure, the physical strange quark mass
and the scale setting. This error is the dominant one and corresponds to a 2.7% of
the central value.

The systematic uncertainty due the chiral extrapolation, estimated from the dif-
ference between the results of the linear and quadratic fits, is equal to 0.15%.

The difference among the results obtained using r0 or Mc′s′ is used to estimate the
uncertainty coming from the discretization effects, which results to be of the order of
0.45%.

The effect of choosing the values of ZP obtained either from the method M1 or M2
gives rise to a systematic uncertainty of 1.5%.

Finally the uncertainty related to the conversion between the RI′-MOM and the
MS(mc) schemes is estimated to be of the order of 1.4% (see A.3).

Our determination (61) for mc(mc) is the first one obtained at Nf = 2 + 1 + 1 and
it is consistent with the result mc(mc) = 1.28(4) GeV obtained in Ref. [1] at Nf = 2,
with the finding mc(mc) = 1.273(6) GeV of Ref. [9] at Nf = 2 + 1 as well as with the
PDG value mc(mc) = 1.275(25) GeV [46].

5.4 Determination of the ratio mc/ms

The results for the strange and charm quark masses given in Tables 13 and 14 can be
used to evaluate the mass ratio mc/ms. One obtains

mc

ms

= 11.80 (51)stat+fit(7)Chiral(18)Disc(11)ZP (6)FSE

= 11.80 (51)stat+fit(23)syst

= 11.80 (56) (62)

with a total uncertainty of 4.7%.
In order to improve the precision of this determination we followed an approach

similar to the one used in the case of the mass ratio ms/mud discussed in Section 4.6.
Using the lattice data for the masses of the ηc and Ds mesons, we define the quantity
R(mc,ms,m`, a

2) as

R(mc,ms,m`, a
2) ≡ ms

mc

(Mηc −MDs)(2MDs −Mηc)

2M2
K −M2

π

, (63)

which by construction is independent of the values of ZP and of the lattice spacing
up to cutoff effects. In Eq. (63) the mass Mηc of the ηc meson corresponds to the
(fermionic) connected diagram only, or in other words it is the mass of a fictitious cc̃
PS meson with mc̃ = mc and rc̃ = −rc.
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Let us explain the choice of the ratio (63). For a PS meson made of two valence
quarks with (renormalized) masses m1 and m2, in which one of the two quarks is
around the charm mass, the meson mass M12 can be written up to cutoff effects as

M12 ≡ A+B(m1 +m2) [1 + r(m1,m2)] , (64)

where the function r(m1,m2) includes higher order contributions in the quark masses.
Therefore, up to cutoff effects, the ratio R(mc,ms,m`, a

2) has a leading term, which
is a constant and receives corrections only from terms in mc appearing in Eq. (64) at
orders higher than the linear one5 .

As in the case of the ratio R(ms,m`, a
2) defined in Section 4.6, the useful features

of R(mc,ms,m`, a
2) are that: i) its interpolation at the physical charm and strange

quark masses is only slightly sensitive to the uncertainties on mc and ms, and ii) its
dependence on the light quark mass m` is expected to be mild, so that the uncertainty
introduced by the chiral extrapolation is largely reduced. A determination of the mass
ratio mc/ms is then obtained from

mc

ms

=

[
(Mηc −MDs)(2MDs −Mηc)

2M2
K −M2

π

]phys
1

R
phys

, (65)

where R
phys ≡ R(mc,ms,mud, 0) is computed from lattice data.

In Fig. 17 the lattice data for R(mc,ms,m`, a
2), interpolated at the physical strange

[Eq. (35)] and charm [Eq. (61)] quark masses, are shown versus the light quark mass
m` for all the ensembles.

The chiral and continuum extrapolations are performed through a simple linear fit
of the form

R(mc,ms,m`, a
2) = R0 +R1m` +R3a

2 (66)

and the results are shown in Fig. 17 as the solid lines at each β value and in the
continuum. It can be seen that the dependence on the light quark mass is very mild,

allowing to get a precise chiral extrapolation to the physical point, namely R
phys

=
0.1772 (24)stat+fit(2)ZP .

From the PDG [46] one gets: Mηc = 2.9837(7) GeV and MD±s
= 1.9690(14) GeV.

The disconnected contribution to the physical ηc meson, which is neglected in the
present calculation, can be estimated from the annihilation rate into gluons, leading
to an estimate of ' 2.5 MeV (see Ref. [8] and references therein). Assuming a 50%
error on the latter, the “connected” ηc mass to be used in Eq. (65) is equal to 2.981(1)
GeV. Thus, for the mass ratio mc/ms we obtain the result

mc

ms

= 11.62 (16)stat+fit(1)ZP

= 11.62 (16) (67)

5Of course alternative definitions of the ratio R(mc,ms,m`, a
2) are possible, like for instance

R(mc,ms,m`, a
2) = (ms/mc)(Mηc −MD)/(MDs

−MD). However, the latter definition suffers from
much larger statistical errors with respect to the one considered in Eq. (63).
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Figure 17: Chiral and continuum extrapolations of R(mc,ms,m`, a
2), defined in

Eq. (63), using a linear fit in m`. The data are interpolated at the physical strange
and charm quark masses.

with an error of 1.4%. Note that the systematic uncertainty related to the FSE has
not been reported in Eq. (67), since it was found to be much less than all the other
uncertainties.

For comparison recent results for the ratio mc/ms are: mc/ms = 12.0(3) [1] and
mc/ms = 11.27(40) [56] at Nf = 2, and mc/ms = 11.85(16) [8] at Nf = 2 + 1.

6 Conclusions

We have presented results for the up, down, strange and charm quark masses, ob-
tained with Nf = 2 + 1 + 1 twisted-mass Wilson fermions. We have used the gauge
configurations produced by the ETMC, which include in the sea, besides two light
mass degenerate quarks, also the strange and the charm quarks with masses close to
their physical values. Such a setup is the closest one to the real world, adopted till
now only by the ETM [11, 12, 13, 14] and the MILC [15] Collaborations.

The analysis includes data at three values of the lattice spacing and pion masses in
the range 210÷ 450 MeV, allowing for accurate continuum limit and controlled chiral
extrapolation. In order to estimate the systematic error associated with the chiral
extrapolation we studied the dependence on the light quark mass by using different
fitting formulae based either on the predictions of ChPT or on polynomial expressions.

As for the continuum limit, in order to lower as much as possible the impact
of discretization effects and to keep the continuum extrapolation under control we
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investigated two different procedures, which both use fπ to set the scale. The first one
involves the Sommer parameter r0 as the intermediate scaling variable, while in the
second one we used the mass of a fictitious pseudoscalar meson made of two strange-
like quarks (or a strange-like and a charm-like quark), Ms′s′ (or Mc′s′), trying to exploit
cancellation of discretization effects in ratios like MK/Ms′s′ (or MDs/Mc′s′). For the
kaon and Ds(D) meson masses these ratios really lead to a significant reduction of
discretization effects.

To account for FSE we used the resummed asymptotic formulae developed in
Ref. [22] for the pion sector, which include the effects due to the neutral and charged
pion mass splitting (present in the twisted mass formulation), and the formulae of
Ref. [23] for the kaon sector. We checked the accuracy of these predictions for FSE
on the lattice data obtained at fixed quark masses and lattice spacings, but different
lattice sizes.

The quark mass renormalization has been carried out non-perturbatively using the
RI′-MOM method, adopting dedicated ensembles of gauge configurations produced by
ETMC with Nf = 4 degenerate flavors of sea quarks.

The main results obtained in this paper for the up, down, strange and charm quark
masses and for some important quark mass ratios have been collected in Section 1, see
Eqs. (1)-(5).
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A Renormalization constants

In order to obtain results for the quark mass mf (f = u, d, s, c) in the MS scheme at
a given renormalization scale, chosen to be 2 GeV in the present study, a necessary
step is the evaluation of the quark mass renormalization constant (RC) in a suitable
intermediate lattice renormalization scheme, which here we take to be the RI′-MOM
scheme [57].

In the lattice framework employed in the present paper, which technically is a mixed
action setup based on twisted mass Wilson fermions (see Section 2), what we really
need is the renormalization constant of the valence quark mass µf appearing in the
valence fermion action (10). As discussed in Refs. [19, 18, 16], such a renormalization
constant, Zµ, is independent of the flavor f and the sign of rf in Eq. (10), as well as of
all the sea Wilson parameters. The RC Zµ can be conveniently chosen and evaluated
as

Zµ =
1

ZP
, (68)

i.e. as the inverse of the renormalization constant ZP of the pseudoscalar, flavor non-
singlet density Pff ′ = q̄fγ5qf ′ , where qf and qf ′ are two distinct valence flavors of
maximally twisted Wilson fermions with action as in Eq. (10) and rf ′ = −rf .

Since RI′-MOM is a mass-independent scheme [58], the RCs of operators with
non-vanishing anomalous dimension must be defined in the massless limit of the UV-
regulated theory, i.e. QCD with Nf = 4 massless quark flavors. For this purpose the
ensembles with fixed (non small) strange and charm sea quark masses, summarized
in Table 1 and employed to compute physical observables (the so-called “production
ensembles”), are not well suited. Rather one needs to produce dedicated ensembles
with Nf = 4 “moderately light” and, for simplicity, degenerate dynamical quarks in a
lattice setup whose chiral limit coincides with the one of the lattice formulation chosen
for the “production ensembles”. Doing so for a sequence of progressively smaller
dynamical quark mass values allows for a controlled extrapolation of massive RC-
estimators to the desired chiral limit.

With an eye to Section 2, a moment of thought reveals that in the chiral limit
the relevant lattice regulated theory is unique (up to a choice of sign for the Wilson
parameters ru, rd, rs, rc) and corresponds to the Iwasaki action in the pure gauge
sector and the standard Wilson action for Nf = 4 massless fermions in the quark
sector6.

Since RC-dedicated simulations have eventually to be performed outside the chiral
limit, different numerical strategies are conceivable. The simplest and most attractive
one for a RI′-MOM scheme computation of RCs probably amounts to working with
two degenerate maximally twisted doublets with twisted masses µu,d,s,c = µ, which is
obtained by setting m0 = mcr, rd = −ru and rc = −rs. In such a setup RC-estimators

6Taking the chiral limit of the lattice action in Eq. (10) one obtains the massless standard Wilson
action written in a quark basis where the critical Wilson term appears multiplied by −iγ5rf .
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are free of O(a) lattice artifacts at arbitrary values of the twisted mass µ and momenta
p [59].

However, for at least two (β = 1.90 and β = 1.95) of the three β-values considered
in this paper, the strategy outlined above could not be carried out due to numerical
difficulties in implementing the maximal twist setup. In fact, in the region of small
PCAC quark masses, which must be accessed when m0 approaches mcr, Monte Carlo
simulation instabilities were observed leading to very large autocorrelation times [60].
Hence we opted for an alternative strategy to achieve O(a) improvement, already
proposed in Ref. [18], that does not require to work at maximal twist.

The method is based on averaging results obtained at opposite values of the PCAC
quark mass and thus requires a doubling of the (in any case reasonably low) CPU time
cost for producing ensembles at non-zero standard and twisted quark mass. Naturally,
as it is customary in RI′-MOM scheme studies of RCs, we have to consider several
values of the valence mass parameters for each given choice of sea mass parameters [60,
25] in order to have stable and reliable valence quark mass chiral extrapolations.

The corresponding RC computational setup, which can be viewed as a partially
(un)quenched setting for Wilson tmLQCD with Nf = 4 mass degenerate quark flavors
at generic twist angle(s), is outlined in A.1, where also the choice of the relevant quark
mass parameters is discussed.

In A.2 we recall why O(a) artifacts get canceled in correlation functions of parity-
even (multi-)local operators upon averaging results obtained at opposite values of the
PCAC quark mass. This is sufficient to prove the O(a) improvement of Zq and, with
little more effort, of ZP and the other RCs of bilinear quark operators. In A.3 we
report on the numerical parameters of our RC-dedicated simulations and the analysis
procedure we followed. The latter is illustrated in its key aspects for a few typical
examples. Our final results for the RCs in the RI′-MOM scheme for the three β
values considered here are given in Tables 17 and 18 together with few remarks on the
conversion to the MS scheme at the 2 GeV scale.

A.1 RC computational setup

The lattice setup for the computation of the RCs can be summarized as follows. In
the so-called twisted basis, which is the one adopted for the definition and the deter-
mination of the RCs, the full Nf = 4 (possibly partially quenched) local action is of
the form

S(Nf=4) = SYM [U ] + Ssea
tm [χsea

f , U ] + Sval
tm [χf , φf , U ] , f = u, d, s, c , (69)

where SYM [U ] stands for the Iwasaki gluon action. The sea quark sector action reads

Ssea
tm = a4

∑
x,f

χ̄sea
f

[
γ · ∇̃+Wcr + (msea

0,f −mcr) + irsea
f µsea

f γ5

]
χsea
f , (70)

with γ · ∇̃ = γµ
2

(∇µ +∇∗µ), Wcr = −a
2
∇∗µ∇µ +mcr and rsea

d = −rsea
u , rsea

c = −rsea
s . This

choice guarantees positivity of the fermion determinant for the case of fully degenerate
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quark flavors of interest here, where we set

µsea
u = µsea

d = µsea
s = µsea

c ≡ µsea . (71)

In the valence fermion sector we have Sval
tm = Sval + Sghost, where

Sval = a4
∑
x,f

χ̄val
f

[
γ · ∇̃ − a

2
∇∗µ∇µ +mval

0,f + irval
f µval

f γ5

]
χval
f , (72)

while the ghost sector term Sghost, that must appear to cancel the valence determinant
and ensure locality, will be immaterial in what follows. As usual, the possible values of
the parameters rval,sea

f are restricted to ±1, while the twisted mass parameters aµval,sea
f

are assumed to be non-negative.
In the partially quenched situation of interest, with all flavors mass-degenerate, a

convenient and chiral covariant choice of renormalized quark mass parameters is given
by [19]

Msea,val = Z−1
P Msea,val

0 = Z−1
P

√
(ZAm

sea,val
PCAC)2 + (µsea,val)2 ,

tg θsea,val
f =

ZAm
sea,val
PCAC

rsea,val
f µsea,val

. (73)

Here ZA stands for the RC of the (flavor non-singlet) axial current for untwisted
Wilson fermions and msea

PCAC denotes the standard PCAC quark mass computed in
the unitary setup, while mval

PCAC is the analogous quantity that is obtained from
correlators defined in terms of valence quark fields, with valence mass parameters
possibly different from their sea counterparts. More precisely, the angles θsea

f and

θval
f are fully determined via the formulae Msea/val cos(θ

sea/val
f ) = r

sea/val
f µsea/val and

Msea/val sin(θ
sea/val
f ) = ZAm

sea/val
PCAC .

We mention in passing that, out of maximal twist, in the partially quenched frame-
work the valence PCAC mass vanishes at a value of mval

0 different from the mcr defined
in the unitary setup. This known fact is properly taken into account if the mass pa-
rameters of Eq. (73) are employed in the analysis7.

The parameter choice of Eq. (73) is convenient because the renormalized correlators
and all the derived quantities in the target continuum limit theory are expected to
depend only on Mval and Msea and not on the twist angles. This property is most
transparent (see next subsection) in the so-called physical quark basis appropriate for
generic twist angles

ωsea,val
f =

π

2
− θsea,val

f , (74)

7This feature represents a slight numerical complication for the determination of the valence critical
mass with respect to the case of maximally twisted LQCD, where the linearly UV-divergent standard
valence mass counterterm, being constrained by symmetry [19] to depend only on even powers of µsea

and µval, can receive no O(a0(µval − µsea)) contribution.
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where the quark/antiquark fields are defined by the chiral transformation

qsea,val
f = exp

( i
2
ωsea,val
f γ5

)
χsea,val
f ,

q̄sea,val
f = χ̄sea,val

f exp
( i

2
ωsea,val
f γ5

)
. (75)

We recall that the multiplicatively renormalizable quark masses Msea,val
0 in Eq. (73)

differ from their classical level analogs8

Msea
0,class =

√
(msea

0,f −mcr)2+(µsea)2 ,

Mval
0,class =

√
(mval

0,f −mval
cr,f )

2+(µval)2 , (76)

which are trivially defined in terms of bare parameters of the Lagrangians (70) and
(72). This is due to loop effects induced by the chiral-breaking Wilson terms. For the
same reason the twist angles ωsea,val

f differ from their tree-level counterparts

ωsea
f,class =

π

2
− atan

(msea
0,f −mcr

rsea
f µsea

)
,

ωval
f,class =

π

2
− atan

(mval
0,f −mval

cr,f

rval
f µval

)
. (77)

A.2 O(a) improvement via θ-average

In the physical quark basis the parity P entails the standard fermion field transforma-
tions9 (xP ≡ (x0,−~x))

qsea,val(x) → γ0q
sea,val(xP ) ,

qsea,val(x) → qsea,val(xP )γ0 , (78)

(besides the obvious ones necessary for gauge fields) making immediate to build and/or
identify P -even (P -odd) operators.

The lattice vacuum expectation value (vev) of a (multi-)local operator O of definite
parity admits a Symanzik local effective Lagrangian (SLEL) description of the form

〈O(y, z, ...)〉latt
m,ω = 〈O(y, z, ...)〉L4 − a

∫
d4x〈O(y, z, ...)L5(x)〉L4 + O(a2) (79)

where L4 is the formal Lagrangian of the partially quenched (Euclidean) continuum
QCD,

L4 =
1

4
F · F + `sea

4 + `val
4 ,

`sea,val
4 = qsea,val( 6D +Msea,val)qsea,val (80)

8We define mval
cr,f as the value of mval

0,f where mval
PCAC = 0 at given sea quark masses.

9In this Section to lighten notation we shall omit the flavor labels.
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with four degenerate quark flavors of renormalized mass Msea and Mval, while the
dimension-five Symanzik operator, L5, takes the form10

L5 = `sea
5 + `val

5 +Msea cos(ωsea)[cgF · F + csea
q `sea

4 ] +Mval cos(ωval)cval
q `val

4 ,

`sea,val
5 = csea,val

Pauli q
sea,val exp(−iωsea,valγ5)iσ · Fqsea,val +

+ csea,val
Kin qsea,val exp(−iωsea,valγ5)(−D2)qsea,val +

+ csea,val
M2 (Msea,val)2 qsea,val exp(−iωsea,valγ5)qsea,val , (81)

with the various csea... = csea... [g2
0, (θ

sea)2] and cval... = cval... [g2
0, (θ

val)2, (θsea)2] being appro-
priate O(1) coefficient functions.

In the physically interesting case where O is P -even, one can check by inserting the
expression (81) of L5 into Eq. (79) that terms linear in a appear either as vev’s of P -odd
operators (in the target continuum L4-theory) times a factor sin(ωsea) or sin(ωval), or
as vev’s of P -even operators multiplied by a factor cos(ωsea) or cos(ωval). The former
terms vanish by parity, which is a symmetry of the target L4-theory, while the latter
are in general non-zero. They however get canceled if the lattice correlator 〈O〉latt

M,ω of
Eq. (79) is averaged with its counterpart 〈O〉latt

M,π−ω, as cos(π−ωsea,val) = − cos(ωsea,val).
Notice that, in view of the twist angle definition (74), the average over ωsea,val and
π − ωsea,val corresponds to averaging over θsea,val and −θsea,val.

This O(a) improvement property can be viewed [60, 25] as a consequence of the
formal invariance of the lattice mixed action (69) rewritten in the physical quark basis
(75) under the spurionic transformation Dd× (Msea,val

0,class → −Msea,val
0,class)×P × (θsea,val

0,class →
−θsea,val

0,class). Since Dd × (Msea,val
0,class → −Msea,val

0,class) just counts the parity of the dimension
of Lagrangian terms, the above spurionic invariance implies that in the SLEL of the
vev’s of multiplicatively renormalizable P -even (multi-)local operators all the lattice
artifact contributions with odd powers of a appear with a coefficient also odd in θsea

and θval. Hence they get canceled upon averaging vev’s taken at opposite values of
θsea and θval. We remark that by definition (see Eqs. (73) and (77)) a sign change in
θsea,val is equivalent to a sign change in θsea,val

class . In the following this way of removing
the cutoff effects of first order (as a matter of fact of all odd integer orders) in a will
be referred to as θ-average.

A.2.1 O(a) improvement of Zq

In the RI′-MOM scheme the quark wave function renormalization constant, Zq, at the
scale p2 is defined by the condition

Z−1
q

−i
12

Tr
[ 6pS−1

χ (p)

p2

]
= Z−1

q

−i
12

Tr
[ 6pS−1

q (p)

p2

]
= 1 (82)

10In L5 the occurrence of terms like q̄sea,val(γ5γ · D)qsea,val is forbidden by charge conjugation
invariance, while F · F̃ terms are ruled out by the P × (u ↔ d) × (c ↔ s) symmetry (thanks to
rseau,c = −rsead,s ).
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where

Sq(p) = a4
∑
x

e−ipx〈qval
f (x)q̄val

f (0)〉latt
M,ω , (83)

Sχ(p) = a4
∑
x

e−ipx〈χval
f (x)χ̄val

f (0)〉latt
M,ω

= e−iω
valγ5/2Sq(p)e

−iωvalγ5/2 , (84)

are the (momentum space) lattice propagators of the valence quark field of flavor f in
the chiral limit expressed in the physical (q) and twisted (χ) basis, respectively.

In practice one imposes the condition (82) at non-zero quark mass obtaining Zq-
estimators that must be subsequently extrapolated to the chiral limit. Applying to the
massive quark propagator Sq(p) the arguments on leading cutoff effects developed in
the introductory part of A.2 and noting the P -invariance of S−1

q (p), it follows that in
the lattice expression (82) the cutoff effects linear in a get canceled if S−1

q (p) is replaced
by its θ-average, i.e. by the average of S−1

q (p) evaluated at (M, ω) and its analog
evaluated at (M, π − ω). The θ-average procedure guarantees O(a) improvement
already at the level of the RC-estimators in the massive theory.

A.2.2 O(a) improvement of ZP , ZS and ZT

With the usual notation, according to which RCs are denoted by the name they would
have in the twisted basis, where the fermionic sector of the Lagrangian is given by
Eqs. (70) and (72), the formulae that define in the chiral limit the RCs of quark
bilinear operators in the RI′-MOM scheme read

Zq
ZΓ

= Tr
[
S−1
χ1

(p)
(
a8
∑
x,y

e−ip(x−y)〈χval
1 (x)(χval

1 Γχval
2 )(0)χval

2 (y)〉latt
M,ω

)
S−1
χ2

(p)PΓ

]
, (85)

where Γ = 11, γ5, γµ, γµγ5, σµν , PΓ is a Dirac projector satisfying Tr(ΓPΓ) = 1, while χval
1

and χval
2 are valence quark fields with flavor indices f = 1 and f = 2, and parameters

rval
1 and rval

2 , respectively.
For the case of rval

2 = −rval
1 in the valence fermion Lagrangian (72), passing to the

physical quark basis we have ωval
2 = −ωval

1 . If Γ = γ5 in Eq. (85) we thus find the
identity

Tr
[
S−1
χ1

(p)
(∑

x,y

e−ip(x−y)〈χval
1 (x)(χ̄val

1 γ5χ
val
2 )(0)χ̄val

2 (y)〉latt
M,ω

)
S−1
χ2

(p)Pγ5

]
= Tr

[
S−1
q1

(p)
(∑

x,y

e−ip(x−y)〈qval
1 (x)(q̄val

1 γ5q
val
2 )(0)q̄val

2 (y)〉latt
M,ω

)
S−1
q2

(p)Pγ5

]
. (86)

From this identity, applying the arguments developed in the introductory part of A.2
to a8

∑
x,y e

−ip(x−y) 〈qval
1 (x)(q̄val

1 γ5q
val
2 )(0)q̄val

2 (y)〉latt
M,ω, as well as to S−1

q1
(p) and S−1

q2
(p),
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and noting that the Dirac trace of their combination in the r.h.s. is a parity invariant
form factor, we conclude that taking the θ-average of the lattice expression in Eq. (86),
improved estimators of Zq/ZP for all values of Mval and Msea are obtained. Once an
O(a) improved determination of Zq is available, ZP can be extracted with only O(a2)
artifacts by appropriate chiral extrapolations.

The argument for the O(a) improvement via θ-average of the lattice estimators of
ZS and ZT is identical to the one given above for ZP , because for Γ = 1 or Γ = σµν
and rval

2 = −rval
1 we find identities completely analogous to Eq. (86) – of course with

γ5 and Pγ5 replaced by the relevant Dirac matrix Γ and associated projector PΓ.

A.2.3 O(a) improvement of ZV and ZA

As the massive lattice estimators for Zq/ZV,A in the RI′-MOM approach are provided
by Eq. (85) with Γ = γµ or Γ = γµγ5, passing from the twisted to the physical quark
basis, in the case of rval

2 = −rval
1 , identities analogous to Eq. (86) are obtained, but

(owing to anti-commutation of Γ with the γ5 occurring in the equation relating χval
f

and qval
f ) with a more complicated r.h.s.

If, for instance, Γ = γµ, upon setting −ωval
2 = ωval

1 ≡ ωval, we find

Tr
[
S−1
χ1

(p)
(∑

x,y

e−ip(x−y)〈χval
1 (x)(χ̄val

1 γµχ
val
2 )(0)χ̄val

2 (y)〉latt
M,ω

)
S−1
χ2

(p)Pγµ

]
= C2 Tr

[
S−1
q1

(p)
(∑

x,y

e−ip(x−y)〈qval
1 (x)V12,µ(0)q̄val

2 (y)〉latt
M,ω

)
S−1
q2

(p)Pγµ

]
+

+S2 Tr
[
S−1
q1

(p)
(∑

x,y

e−ip(x−y)〈qval
1 (x)A12,µ(0)q̄val

2 (y)〉latt
M,ω

)
S−1
q2

(p)Pγµγ5

]
+

−iCS Tr
[
S−1
q1

(p)
(∑

x,y

e−ip(x−y)〈qval
1 (x)V12,µ(0)q̄val

2 (y)〉latt
M,ω

)
S−1
q2

(p)Pγµγ5

]
+

+iCS Tr
[
S−1
q1

(p)
(∑

x,y

e−ip(x−y)〈qval
1 (x)A12,µ(0)q̄val

2 (y)〉latt
M,ω

)
S−1
q2

(p)Pγµ

]
(87)

with C = cosω, S = sinω, V12,µ = q̄val
1 γµq

val
2 and A12,µ = q̄val

1 γµγ5q
val
2 . Looking at the

r.h.s. of this identity, we note that the expressions with pre-factors C2 and S2 (±iCS)
are parity-even (parity-odd) form factors. Then applying the Symanzik analysis ar-
guments developed in the introductory part of A.2 to

∑
x,y e

−ip(x−y) 〈qval
1 (x)V12,µ(0)

[A12,µ(0)]q̄val
2 (y)〉latt

M,ω, as well as to S−1
q1

(p) and S−1
q2

(p), we see that

• to order zero in a, the terms with pre-factors ±iCS vanish by parity, while those
with pre-factors C2 and S2 are non-zero (and coinciding in the limit of unbroken
chiral symmetry);

• to first order in a the contributions that do not vanish by parity are those ob-
tained either by inserting the P -even piece of L5 in the terms on the the r.h.s. of
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Eq. (87) with pre-factors C2 and S2 or by inserting the P -odd piece of L5 in the
terms with pre-factors ±iCS.

Taking also into account the ω- and ωsea-dependence of L5 (see Eq. (81)), one checks
that, while the contributions of zero (actually even integer) order in a are even under
ω → π−ω, all the contributions of first (actually odd integer) order in a are odd under
ω → π − ω. Hence by taking the θ average of the lattice expression (87), the lattice
artifacts of odd order in a get canceled, leaving out the contributions of order a2n.

This proves the O(a) improvement by θ average of the massive lattice estimators
of ZV , from which the RC is extracted after chiral extrapolations. Identical arguments
clearly hold as well for ZA, because for Γ = γµγ5 we find an identity completely
analogous to Eq. (87) with the axial and vector operators and the associated projectors
properly interchanged.

We have focused here on the choice rval
2 = −rval

1 for the valence parameters of quark
bilinear operators, because this is the case with smallest statistical fluctuations in the
numerical evaluation of RCs and which the results quoted in the following refer to. The
discussion of the alternative (and computationally more noisy) choice rval

2 = rval
1 could

be carried out along similar lines11, finding again that upon θ average the estimators
of the RCs of all quark bilinear operators are O(a) improved.

A.3 Numerical details and results

In Table 16 we report the information on the relevant simulation parameters for the
three ensembles we have considered in this paper. Except for the θ-average, which is
implemented in order to achieve the O(a) improvement out of the maximal twist, the
other parts of the analysis follow closely the procedure described in Ref. [59].

For each ensemble in the table we compute the RC-estimators at values of momenta,
pµ = (2π/Lµ)nµ, with components lying in the following intervals

nµ = ([0, 2] , [0, 2] , [0, 2] , [0, 3])

([2, 3] , [2, 3] , [2, 3] , [4, 7]) , for β = 1.95,

nµ = ([0, 2] , [0, 2] , [0, 2] , [0, 3])

([2, 5] , [2, 5] , [2, 5] , [4, 9]) , for β = 1.90 and 2.10 (88)

and Lµ denoting the lattice size in the direction µ. Anti-periodic boundary condi-
tions on the quark fields in the time direction are implemented by a shift of the time
component of the four-momentum by the constant ∆p4 = π/L4. The final analysis of
the RC estimators has been performed at four-momenta that pass the “democratic”

11If rval2 = rval1 , however, the identities obtained when passing from the twisted to the physical
quark basis have a simple r.h.s. for the case of ZV,A and a more complicated one (like the one of
Eq. (87)) for ZP,S,T .
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aµsea amsea
PCAC amsea

0 θsea aµval amval
PCAC

β = 1.90 (L = 24, T = 48)

A4m 0.0080 -0.0390(01) 0.0285(01) -1.286(01) {0.0060, 0.0080, 0.0120, -0.0142(02)

A4p 0.0398(01) 0.0290(01) +1.291(01) 0.0170, 0.0210 ,0.0260} +0.0147(02)

A3m 0.0080 -0.0358(02) 0.0263(01) -1.262(02) {0.0060, 0.0080, 0.0120, -0.0152(02)

A3p 0.0356(02) 0.0262(01) +1.260(02) 0.0170, 0.0210 ,0.0260} +0.0147(03)

A2m 0.0080 -0.0318(01) 0.0237(01) -1.226(02) {0.0060, 0.0080, 0.0120, -0.0155(02)

A2p +0.0310(02) 0.0231(01) +1.218(02) 0.0170, 0.021 0,0.0260} +0.0154(02)

A1m 0.0080 -0.0273(02) 0.0207(01) -1.174(03) {0.0060, 0.0080, 0.0120, -0.0163(02)

A1p +0.0275(04) 0.0209(01) +1.177(05) 0.0170, 0.021 0,0.0260} +0.0159(02)

β = 1.95 (L = 24, T = 48)

B1m 0.0085 -0.0413(02) 0.0329(01) -1.309(01) {0.0085, 0.0150, 0.0203, -0.0216(02)

B1p +0.0425(02) 0.0338(01) +1.317(01) 0.0252, 0.02 98} +0.0195(02)

B7m 0.0085 -0.0353(01) 0.0285(01) -1.268(01) {0.0085, 0.0150, 0.0203, -0.0180(02)

B7p +0.0361(01) 0.0285(01) +1.268(01) 0.0252, 0.02 98} +0.0181(01)

B8m 0.0020 -0.0363(01) 0.0280(01) -1.499(01) {0.0085, 0.0150, 0.0203, -0.0194(01)

B8p +0.0363(01) 0.0274(01) +1.498(01) 0.0252, 0.02 98} +0.0183(02)

B3m 0.0180 -0.0160(02) 0.0218(01) -0.601(06) {0.0060,0.0085,0.0120,0.0150, -0.0160(02)

B3p +0.0163(02) 0.0219(01) +0.610(06) 0.0180,0.0203, 0.0252,0.0298} +0.0162(02)

B2m 0.0085 -0.0209(02) 0.0182(01) -1.085(03) {0.0085, 0.0150, 0.0203, -0.0213(02)

B2p +0.0191(02) 0.0170(02) +1.046(06) 0.0252, 0.02 98} +0.0191(02)

B4m 0.0085 -0.0146(02) 0.0141(01) -0.923(04) {0.0060,0.0085,0.0120,0.0150, -0.0146(02)

B4p +0.0151(02) 0.0144(01) +0.940(07) 0.0180,0.0203, 0.0252,0.0298} +0.0151(02)

β = 2.10 (L = 32, T = 64)

C5m 0.0078 -0.00821(11) 0.0102(01) -0.700(07) {0.0048,0.0078,0.0119, -0.0082(01)

C5p +0.00823(08) 0.0102(01) +0.701(05) 0.0190,0.0242 ,0.0293} +0.0082(01)

C4m 0.0064 -0.00682(13) 0.0084(01) -0.706(09) {0.0039,0.0078,0.0119, -0.0068(01)

C4p +0.00685(12) 0.0084(01) +0.708(09) 0.0190,0.0242 ,0.0293} +0.0069(01)

C3m 0.0046 -0.00585(08) 0.0066(01) -0.794(07) {0.0025,0.0046,0.0090,0.0152, -0.0059(01)

C3p +0.00559(14) 0.0064(01) +0.771(13) 0.0201,0.0249 ,0.0297} +0.0056(01)

C2m 0.0030 -0.00403(14) 0.0044(01) -0.821(17) {0.0013,0.0030,0.0080,0.0143, -0.0040(01)

C2p +0.00421(13) 0.0045(01) +0.843(15) 0.0195,0.0247 ,0.0298} +0.0042(01)

Table 16: Simulation and correlator analysis details. Here L4 ≡ T and L1,2,3 ≡ L.

momentum cut defined by

∆4(p) ≡
∑

µ p̃
4
µ

(
∑

µ p̃
2
µ)2

< 0.29, (89)

where

p̃µ ≡
1

a
sin(apµ) . (90)
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As a typical example, in Fig. 18 we show the effect of the subtraction of the
Goldstone pole in the amputated two-point correlators for the ensembles B4m and
B4p (the most critical ones at β = 1.95). The quantities VP and Vsub

P are defined
according to Eqs. (3.4) and (3.12)-(3.13) of Ref. [59].

Vsub
P
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β=1.95 (B4m)
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2
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Figure 18: Amputated pseudoscalar density two-point correlators before (VP , red
squares) and after (Vsub

P , blue dots) the Goldstone pole subtraction, at β = 1.95 and
(ap̃)2 ≈ 1.5. Panels (a) and (b) correspond to data from ensembles B4m and B4p,
respectively.
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Figure 19: Chiral extrapolations of θ-averaged B4m and B4p data at β = 1.95 and
(ap̃)2 ≈ 1.5. Panel (a): valence quark mass extrapolation of Zq data. Panel (b): sea
quark mass extrapolation of Zq and ZP data. The blue dots have been displaced by 0.2
from the red squares for better visibility.

In Fig. 19(a) we plot the valence mass extrapolation of Zq, while Fig. 19(b) shows
the sea quark mass extrapolation in the chiral limit of θ-averaged B4m and B4p data
for the cases of Zq and ZP at β = 1.95 and (ap̃)2 ≈ 1.5.

Our final estimates of the RCs of all the quark bilinear operators in the RI′-MOM(3
GeV), MS(3 GeV) and MS(2 GeV) schemes are collected in Tables 17-21. They have
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been obtained after subtracting the perturbative cutoff effects up to O(a2g2
boost), where

as usual g2
boost = 6/(β〈P 〉), with 〈P 〉 the average plaquette value. Perturbative esti-

mates of the discretization effects on the Green function of the operators of interest
can be found in Ref. [61]. The RCs Zq, ZP and ZS, obtained in the RI′-MOM(3 GeV)
scheme, have been converted to the MS(3 GeV) and MS(2 GeV) schemes using the
appropriate N3LO formulae from Ref. [62], while for the RC ZT the N2LO formula
of Ref. [63] has been employed. The uncertainty due to the matching between the
RI′-MOM and the MS schemes, performed at the scale of 3 GeV, cannot be neglected.
From the convergence of the matching at LO, NLO, N2LO and N3LO orders we esti-
mate an uncertainty of ' 1.3% due to higher perturbative orders12. In the same way
the evolution in the MS scheme from 3 to 2 GeV (or to mc) has an uncertainty of the
order of ' 0.1% (0.5%). By adding in quadrature such an uncertainty to the one due
to the matching, the perturbative error in the conversion from the RI′-MOM(3 GeV)
to MS(2 GeV) (or MS(mc)) schemes is found to be equal to ' 1.3% (1.4%). This
error, being not related to a genuine lattice uncertainty, is added directly as a further
systematic error to our determinations of the quark masses, separately from the one
due to the choice of the RCs from the methods M1 and M2 [see Eqs. (29, 35, 39, 40,
60, 61)], and it is not reported in Tables 19 and 20.

Recently, the RCs ZV , ZA, ZP and ZS have been computed perturbatively up
to three loops in Ref. [64] at β = 1.95 and 2.10. The comparison with our non-
perturbative results of Tables 17 and 21 shows a remarkable, fair agreement within
the quoted errors.

In Tables 17-20 we have given our results for the RCs derived from two different
methods, M1 and M2, that differ for the way one deals with the residual (ap̃)2 dis-
cretization effects [59]. The method M1 consists in extrapolating the RCs linearly to
(ap̃)2 → 0, after fitting the functions Zq,Γ(µ = 3 GeV; (ap̃)2) in the wide momentum
interval (ap̃)2 ∈ [1.5, 2.2]. The slopes of the fits, λq,Γ = dZq,Γ(µ = 3 GeV; (ap̃)2)/d(ap̃)2

at each value of β exhibit only a very mild dependence on the coupling constant. Fol-
lowing the discussion of Ref. [59] (see Section 3.2.2 and in particular the arguments
leading to Eq. (3.24) of that reference), we assume a simple linear dependence of λq,Γ
on β, and perform a simultaneous extrapolation of Zq,Γ(µ = 3 GeV; (ap̃)2) towards
(ap̃)2 → 0 for the three values of β (see for instance Fig. 20).

The method M2 consists in fitting the chirally extrapolated RC estimators to a
constant in the reduced momentum interval, p̃2 ∈ [11.5, 14.0] GeV2, for all the three
values of β. Since the momentum interval is kept constant while varying β, the O(a2)
artifacts occurring in the RCs of the method M2 will be removed once the continuum
limit of the physical quantities of interest is taken, as shown in Fig. 21 in the case of
the squared pion mass.

12The matching for the quark mass between the RI′-MOM and the MS schemes is given by [62]:

mMS/mRI′−MOM = 1 − 0.4244αs − 0.7102α2
s − 1.4782α3

s. Using αs(3 GeV) = 0.256, corresponding

to Nf = 4 and ΛQCD = 296 MeV [46], one gets mMS/mRI′−MOM = 1 − 0.1085 − 0.04654 − 0.02480.
At least an approximate factor 1/2 relates each term of the series with its next one and therefore we
take 1/2 of the last term as our estimate of the uncertainty in the perturbative matching.
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β Method Zq ZP ZS ZT

1.90 M1 0.721(5) 0.423(6) 0.598(10) 0.714(5)

M2 0.737(2) 0.459(4) 0.702(3) 0.702(3)

1.95 M1 0.733(4) 0.424(4) 0.608(7) 0.721(4)

M2 0.741(1) 0.454(2) 0.684(2) 0.707(2)

2.10 M1 0.766(4) 0.478(2) 0.649(5) 0.749(4)

M2 0.767(2) 0.505(2) 0.695(3) 0.742(2)

Table 17: RCs Zq, ZP , ZS and ZT obtained in the RI′-MOM scheme at the renormal-
ization scale 1/a(β) (see Eq. (31)), using the methods M1 and M2.

β Method Zq ZP ZS ZT

1.90 M1 0.713(05) 0.480(07) 0.678(11) 0.692(05)

M2 0.729(02) 0.521(04) 0.796(03) 0.680(03)

1.95 M1 0.727(04) 0.462(04) 0.663(08) 0.705(04)

M2 0.736(01) 0.495(02) 0.746(02) 0.691(02)

2.10 M1 0.767(04) 0.468(02) 0.635(05) 0.753(04)

M2 0.768(02) 0.494(02) 0.680(03) 0.746(02)

Table 18: The same as in Table 17, but at the renormalization scale of 3 GeV.

Finally, in Fig. 22 the scale evolution of the RC ZP determined non-perturbatively
is compared with the one predicted by perturbation theory at three loops [62], using
Nf = 4 and ΛQCD = 296 MeV [46]. Notice that at each lattice coupling the full
markers correspond to momenta (ap̃)2 in the range [1.5, 2.2] used in the method M1,
whereas the blue line on the x-axis identifies the range of the momenta [11.5, 14.0]
GeV2 adopted in the method M2. It can be seen that within the percent level of
accuracy our lattice data match the perturbative evolution at three loops for scales
above ' 2.5 GeV, providing also evidence that higher order perturbative contributions
are not relevant for describing the renormalization scale dependence of the RC ZP in
the region of momenta explored in this work.
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