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SUMMARY 

The performance of NACA 65-series. compressor blade sections in 
cascade has been investigated systematically in a low-speed cascade 
tunnel. Porous test-section side walls and, for high-pressure-rise 
conditions, porous flexible end walls were employed to establish condi-
tions closely simulating two-dimensional flow. Blade sections of 
cambers from C1  of 0 to C1 of 2.7 were tested over the usable 

angle-of-attack range for various combinations of inlet angle 
of 30°, 14.5°, .600, and 70°, and solidity a of 0. 50 , 0. 75, 1.00, 1.25, 
and 1.50. Design points were chosen on the basis of optimum high-speed 
operation. A sufficient number of combinations were tested to permit 
interpolation and extrapolation of the data to all conditions within 
the usual range of application. 

The results of this investigation indicate a continuous variation 
of blade-section performance as the major cascade parameters, blade 
camber, inlet angle and solidity were varied over the test range. 
Summary curves of the results have been prepared to enable compressor 
designers to select the proper blade camber and angle of attack when 
the compressor velocity diagram and desired solidity have been 
determined. 

At a few test conditions, an upper limit to the camber that could 
perform satisfactorily was found. -These results provide information as 
to the maximum value of the loading parameter, expressed as the product 
of solidity and section lift coefficient based on the vector mean 
velocity, that can be used effectively in compressor design. Analysis 
of the trends indicated that the common practice of employing a constant 
maximum value of the loading parameter for all inlet angles and solidi-
ties fails to define the observed performance of the compressor blades 
studied in this investigation.
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An index that the positive and negative limits of useful angle-of-
attack range occurred when the section drag coefficient reached twice 
the minimum value was used to estimate the operating range of the com-
pressor blade sections studied. A broad operating range for these sec-
tions was observed, except for conditions of highest pressure rise 
across the cascade corresponding to high cambers at high inlet angles. 
These conditions are not typical of usual design practice and no dif-
ficulty should ordinarily be encountered in employing these blade sec-
tions. In general, the observed performance of NACA 65-series compres-
sor blades in cascade is considered to be very satisfactory. 

INTRODUCTION 

The design of an axial-flow compressor of high performance 
involves three-dimensional high-speed flow of compressible viscous 
gases through successive rows of closely spaced blades.. No adequate 
theoretical solution for this comlete problem has yet appeaied nor 
considering the complexity of the problem does it seem likely that com-
plete relationships will be established for some time. Various aspects 
of the problem have been treated theoretically, and the results of 
those studies are quite useful in design calculations. All such studies, 
however, have been based on idealized flow, neglecting effects of one 
or more such physical realities as compressibility, finite blade 
spacing, and viscosity. Consideration of viscosity effects has been 
particularly difficult. It appears, therefore, that in spite of 
advanães in theoretical methods, theory must be supplemented by experi-
mental data for some time to come. 

Some of the information required can be obtained only by experi-
ment in single-stage-and multistage compressors. Much of the inforina-
tion, however, can be obtained more easily by isolating the effects of 
each parameter for detailed measurement. The effects of inlet angle, 
blade shape, angle of attack and solidity on the turning angle and drag 
produced can be studied by tests of compressor blades in two-dimensional 
cascade tunnels. Cascade tests can provide many basic data concerning 
the performance of compressors under widely varying conditions of opera-
tion with relative ease, rapidity, and low cost. A number of successful 
high-speed axial-flow compressors have been designed using low-speed 
cascade data directly. A more refined procedure, however, would use 
cascade data, not as the final answer, but as a broad base from which 
to work out the three-dimensional relations. 	 - 

A large number of two-dimensional cascade tests have been run in 
this and other countries during the last 15 years. It is believed that, 
although the cascade configurations were geometrically two-dimensional, 
in no case except that of the porous-wall cascade of reference 1 was the 

0



NACA RN L51G31	 _9_	 3 

flow two-dimensional. This situation is ordinarily accepted on the 
grounds that the flow in the compressor is also subject to three-
dimensional end effects. That similar end conditions would exist in 
stationary cascades and rotating blade rows seems unlikely. As discussed 
in reference 1, there is evidence, however; that the flow through 
typical axial compressor blades is more nearly like that in aerodynami-
cally two-dimensional cascades than like that in cascades which are 
only geometrically two-dimensional. Excellent correlation between 
porous-wall cascade and rotor blade pressure-distribution and turning-
angle values is shown for the design conditions of the compressor 
investigation reported in reference 2. The proper basic approach to - 
the compressor design problem, therefore, would seem to be to-separate 
the two-dimensional effects from the three-dimensional. This should 
also did in the evaluation of the separate effects of tip clearance and 
secondary flow in axial compressors. Figure-15 of reference 3, as well 
asunpublished data, indicates that design-angle data measured at low 
speeds are applicable at speeds up to critical. Therefore, a systematic 
series of low-speed cascade tests of the NACA 65-series compressor 
blade sections were made using the porous-wall technique to insure two-
dimensionality of the flow. Test results and preliminary analysis are 
presented In this paper.	 - 

/ 
SYMBOLS 

a	 mean-line loading designation 

b	 blade height or span, feet 

c	 blade chord, feet 

Ca	 section drag coefficient 

CF	 resultant-force coefficient 

Cj	 section lift coefficient 

C 1	 camber, expressed as design lift coefficient of isolated 
airfoil 

CN	 section normal-force coefficient 

CNM	 section normal-force coefficient obtained by calculation of 

momentum and pressure changes across blade row 

CNp	 section normal-force coefficient obtained by integration of 
blade-surface pressure distribution



NACA RN L51G31 

Cw	 wake momentum difference coefficient 

F'	 force on blades, pounds 

FM	 force on blades due to momentum change through blade row, 
pounds 

F	 force on blades due to pressure change through blade row, 
pounds 

Fw	 force on blades due to momentum difference in wake, pounds 

g	 tangential spacing between blades, feet 

P	 total pressure, pounds per square foot 

p	 static pressure, pounds per square foot 

q	 dynamic pressure, pounds per square foot 

nondimensional static-pressure-rise' parameter 

R	 Reynolds number based on blade chord 

fP - p 
S	 pressure coefficient 

- 

U	 rotor blade rotational speed, feet per second 

V	 flow velocity, feet per second 

W	 flow velocity relative to blades, feet per second 

x	 chordwise distance from blade leading edge, feet 

y	 perpendicular distance from blade chord line, feet 

angle between flow direction and blade chord, degrees 

p3	 angle between flow direction and axis, degrees 

-.e	 - flow turning angle, degrees 

Y	 angle between resultant-force direction and tangential 
direction, degrees
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P	 mass density of flow, slugs per cubic foot 

a	 solidity, chord of blades divided by tangential spacing 

Subscripts: 

a	 component in axial direction 

d	 design, when used with angles 

1	 local 

m	 referred to vector-mean velocity, Wm 

u	 component in tangential , direction 

s	 flow outside wake 

1	 upstream of blade row 

2	 downstream of blade row 

APPARATUS, TEST PROGRAM, AND PROCEDURE 


Description of Test Equipment 

The test facility used in this investigation was the Langley 5-inch 
low-speed, porous-wall cascade tunnel described in reference 1 and 
shown in figures 1 and 2. During the course of this program some fur-
ther Improvements were required to establish proper, testing conditions 
at higher pressure rise conditions. In particular, there was sufficient 
boundary-layer buildup behind the slot on the convex flexible end wall 
with high pressure rise cascades to cause separation and destroy simu-
lation of the infinite cascade even though the blade flow was not 
separated. This was corrected by replacing the end wall with a porous 
flexible wall and suction chamber. In addition the large difference in 
flow length from the entrance cone to the side-wall slots between the 
tunnel ends at the higher inlet.alr angles gave quite different 
boundary-layer thickness along the length of the side-wall slots and 
made uniform flow entering the test section difficult to obtain. This 
condition was Improved by making the changeable side plates porous and 
drawing a small amount of air through them. The concave flexible end 
wall was made porous to provide a further control of flow conditions 
through the test section.



6 	 NACA RN L51G31 

The porous material found to be most satisfactoiy is commercial 
woven monel filter cloth. This is available in various meshes in 
widths up to 36 inches and can be calendered at the factory to reduce 
porosity and improve surface smoothness. The combination found most 
suitable for the present work was .a twill Dutch double weave of 30 by 
250 mesh with warp wire-diameter of 0.010 inch and fill wire diameter 
of 0.008 inch. The original thickness of about 0.026 inch was reduced 
to 0.018 inch by calendering. The resulting material has the porosity 
characteristics shown in figure 3. The primary advantages of this 
material over others tried previously are its uniformity, flexibility, 
strength, 'surface smoothness, and relatively low cost. 

Description of Airfoils 

The blade family used in this investigation is formed by combining 
a basic thickness form with cambered mean lines. The basic thiOknesg 
form used is the NACA 65(216) -010 thickness form . with the ordinates 
increased by 0.0015 times the chordwise stations to provide slightly 
increased thickness toward the trailing edge. This thickness form has 
been designated the 65-010 blower blade section in references 4and 5. 
It was not derived for 10-percent thickness but was scaled down from 
the NACA 65,2-016 airfoil given on page 80 of reference 6. As discussed 
in reference 6, the scaling procedure gives the best results when it is 
restricted to maximum thickness changes of a few percent. Since the 
start of the program the NACA 65-010 basic thickness has been derived 
and is given on page 82 of reference 6. These basic thickness forms 
differ slightly but are considered to be interchangeable within the 
accuracy of the results reported herein. Ordinates for both the scaled 
and derived thickness forms are given in table I. 

The basic mean line used is the a =.l.0 mean line given on 
page 97 of reference 6. The amount of camber is expressed in refer-
ence 6 as design lift coefficient C2 0 for the isolated airfoil, and 

that system has been retained. Ordinates and slopes for the a = l;o 
mean line are given in table II for C2 0 = 1.0. Both ordinates and 
slopes are scaled directly to obtain other cambers.- Cambered blade 
sections are obtained by applying the thickness perpendicular to the 
mean line at stations laid out along the chord line. The blade sec-
tions tested are shown in figure 4. In the designation the camber is 
given by the first number after the dash in tenths of C i 0 . For 
example, the NACA 65-810 and NACA 65-(l2)lo blade sections are 
cambered for CI O = 0.8 and CI  = 1.2, respectively.
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Test Program and Procedure 

Test program. - The test program was planned to provide sufficient 
information to satisfy any conventional vector diagram of the type 
shown in figure 5. Tests of 7-blade cascades were run with various 
combinations of inlet air angle 0 1 of 300 , 145°, 60° and 700, solid-
ity a of 0.5, 0. 75, 1.0, 1.25 and 1.5, and cambers from C10 
of 0 to 2.7 over the useful angle-of-attack : range. The most complete 
test series were run at solidities of 1.0 and 1.5; sufficient tests 
were made at the other solidities to guide interpolation and extrapola-
tion. The combinations of 3, a, and blade section which were tested 
are tabulated in table III. The camber range covered at solidities 
of 1.0. and 1.5 was determined by one of two limitations. At the 11ghr 
inlet angles progressively higher camber8 xer.e use_un.ti1_the_1ijt 
loä ng ha been reached, that is, imtil the design condition coincided 
wffat lower inlet angles, however, desi n turni angle exceeded 
Inlet angle before. the limit loading had been reached and the tes s were 
terminated there. Limit conditions were attained at 1 3 = 70

0 , a = 1.0, 
1. 25, and 1.5, and , = 600 , a =1.0 and 1.5. 

Test procedure.- It was shown in reference 1 that two-dimensional' 
flow can be achieved by controlling the removal of boundary-layer air 
through porous test section side walls so that the downstream static 
pressure equals the. ideal valie, corresponding-to the turning angle, 
corrected for the blocking effect of the wake. This criterion was 
accordingly used in these tests. In addition, the flexible end wall 
shapes and suction flow quantities were adjusted to obtain uniform 
upstream flow direction and-wall static presures, criteria of two-
dimensional flow simulating an infinite cascade. This procedure neces-
sitated an approximate measurement of turning angle and wake size and 
an estimate of the correct pressure rise before the final settings 
could be made. Initially this required some cut-and-try procedure but 
after the initial tests at each 13 - a combination a chart similar to. 
figure 5 of reference 1 could be drawn to assist in estimating the 
pressure rise. An experienced operator could make the required esti-
mates and settings very quickly using this procedure. Spot calcula-
tions of the correct pressure rises were made after completion of tests 
to check the accuracy Of the values used. 

Tests were made . at each cascade combination shown in table III 
over a range of angles of attack at intervals of 20 to 30• In general 
the tests covered the interval from negative to positive stall, where 
stall was determined by a large increase in wakesize. The prinQipal 
exceptions occurred for low cambered blades where negative stall would 
have occurred at negative turning. Itwas found that the small wall 
boundary-layer buildup for negative turnings and hence negative pressure 
rises would have required a less porous material than that norm all 
used, to avoid excess air removal while maintaining sufficient suction 

1
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pressure differential to avoid local reverse flow through the porous 
material. It was not deemed worthwhile to change the porous material 
to obtain data in this relatively uninteresting range. For the NACA 
65-010 section at 13 = 300 , however, the difficulty persisted well 
above 0 0 turning, and this combination was tested with both porous and 
solid walls. 

The tests were entirely within a speed 'range considered incompres-
sible. The bulk of the tests at solidities of 1.0 and 1.5 were run at 
an entering velocity ojeet per second. For the usual 5-inch blade 
chord, the Reynolds number was 214.5,000. Some information near the 
design point was obtained at higher effective Reynolds number for most 
cascade combinations by addingroughness to the blade leading edges in 

the form of 
"4
1-inch-wide strips of masking tape draped around the 

leading edges from wall to wall. In addition, some tests near design 
were run at a speed offeet per second and Reynolds number of 
346,000 with and without roughness. Two cascade combinations were run 
at design over a range of Reynolds numbers from 160,000 to 11.70,000 to 
assist in estimating performance at Reynolds numbers other than the 
usual test value. In order -to provide further information on scale 
effects, two cascade combinations were tested through the 'a range with 
leading-edge roughness at the standard Reynolds number and in the smooth 
condition at a Reynolds number of 4 145,000. For solidities of 0.5 
and 0.75 the tunnel could not accommodate -seven blades of 5-inch chord; 
the blade chord was reduced to 2.5 inches and the Reynolds number to 
approximately 200,000 for those tests. Tests with roughness were made 
near the design point for soliditiee below 1.0, but Reynolds numbers 
higher than 200,000 could not be obtained with the existing equipment. 

Test measurements.- Blade pressure distribution was measured at 
the midspan position of the central airfoil at each angle of attack. 
In addition, surveys of wake total-pressure loss and turning angle were 
made downstream of the cascade. The total-pressure surveys were made 
with a nonintegrating multitube rake approximately 1 chord downstream 
of the blade trailing edges. Turning angle surveys were made by the 
"null method" with a claw type yaw head; since the yaw device was 
mounted on a track at the rear of the tunnel the distance from the 
blades varied from about 1 to 3 chords in the flow direction depending' 
upon the inlet- and turning-angle combination. Flow discharge angle 
readings were taken at a number of points downstream of several blade 
passages along the tunnel center line. These readings were averaged 
to obtain the final value. Since . the angle readings in the wake 
deviatd several degrees frcim the average reading, and the direction 
of the deviation varied consistntly with the direction of the total 
pressure gradient, the accuracy of readings in the wake was questioned. 
Therefore, the values obtained when the wake readings were included and 
excluded in the averaging prpcess were compared for a number of tests.
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The resulting turning-angle curves compared very well, but there was con-
siderably less scatter when only the readings outside the wake were used 
to obtain the turning-angle value. This latter procedure has been 
adopted as the standard method of measuring the flow discharge direc-
tion. Upstream conditions were measured in the same manner as in 
reference 1. 

Calculations. - Pressure distribution and wake-survey data were 
recorded and force values calculated nondimensionally as coefficients 
based numerically on the upstream dynamic pressure q 1 . This choice 
was dictated partly by convenience in reducing the data (standardiza-
tion of q1 permits use of manometer scales which give nondimensional 
values directly) and partly by the belief that information based on 
entering flow is most convenient for design use, particularly when 
critical speed is important. 

All forces due to pressure and momentum changes across the blade 
row were summed to obtain the resultant blade force coefficient CF1. 
In this process the wake total-pressure deficit was converted to an 
integrated momentum difference by the method given for the drag calcu-
lation in the appendix of reference 6. This wake momentum difference, 
expressed nondimensionally, is designated the wake coefficient 
it represents the momentum difference between the wake and the stream 
outside the wake, and is based on q 1 numerically. The wake coeffi-
cient Is not considered to be a true drag coefficient, but is used 
merely for, convenience in assessing the contribution of the wake in 
the sununation of forces. 

The resultant-force coefficient was resolved into components per-
pendicular and parallel to the vector mean velocity Mm (see fig. 5) 
to obtain the lift coefficient C1 1 and the drag coefficient Cd1, 
respectively. The mean velocity was calculated as the vector average 
of the velocities far upstream and far downstream. The velocity far 
downstream was obtained from measurements just behind the blades by 
using a momentum-weighted average of the velocity just behind the 
blades. This rather detailed method was found necessary to give con-
sistent drag values. Since the resultant force Is very nearly perpen-
dicularto the mean velocity, the value of the component parallel to 
the mean velocity is quite sensitive to mean-velocity direction. 
Attempts at using the downstream velocity outside the wake for aver-
aging rather than the momentum-average velocity gave very erratic drag 
results indicating that mean velocity directions obtained in that 
manner were not reliable. In addition to the lift and drag, the blade 
normal-force coefficient CNN1 was obtained by computing the component 

of the resultant-force coefficient perpendicular to the blade chord 
line. This normal-force coefficient was compared with the normal-force 
coefficient CNpl. obtained by integration of the blade surface
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pressure distribution as a check on the accuracy of individual tests. 
A detailed derivation of the method of calculating the force coeffi-
cients is given in the appendix. 

Accuracy of results.- In general the turning-angle values measured 

are believed to be accurate within 	 near the design values. The 

correlationprocedure used. is believed to have improved further the 
accuracy of the design values in the final results. For tests far from 
design, that is, near positive or negative stall, the accuracy was 
reduced somewhat. In addition, at an inlet angle of 700 'with sections 
of zero camber, satisfactory measurements were very difficult to obtain 
and the accuracy was reduced. 

As noted in the section describing calculation methods, the blade 
normal-force coefficient CNM1 calculated from pressure-rise and 

momentum considerations was dompared with the normal-force coeffi-
cient CNp1 obtained, from the pressure distribution as a check on the 

over-all accuracy of individual tests. Since these values would be 
affected by error in turning-angle, surface pressure or wake-survey 
readings, or by failure to achieve two-dimensionality of the flow, this 
comparison is a check on the over-all acceptability of the results. A 
difference of 5 percent between the two normal-force coefficients was 
set as the outside limit for acceptance of individual tests for lift 
coefficients above 0.2; below lift coefficients of 0.2 a direct numeri-
cal comparison was made using a limit of plus or minus 0.01. The 
agreement was well within the 5-percent limit for most of the tests as 
originally run, and only a few conditions had to be repeated: The 
accuracy of the lift coefficients is directly comparable to that of the 
normal-force coefficients. The'accuracy of wake-coefficient and drag-
coefficient values will be discussed later under Reynolds number effects. 

PRESENTATION OF RESULTS 

Detailed blade-performancedata for all cascade combinations 
tested are presented in the form of surface-pressure distributions and 
blade-section-characteristic plots in figures 6 to 84. The representa-
tive pressure distributions presented have been selected to illustrate 
the variation through the angle-of-attack range for each combination. 
The section characteristics presented through the angle-of-attack range 
are turning angle, lift coefficient, wake coefficient, drag coefficient, 
and lift-drag ratio. The effects of changes in Reynolds number and 
blade-surface condition on section characteristics are given in 
figure .8. '	 .	 ,



NACA RN L51G31	 11 

Trends of section operating range, in terms of angle-of-attack 
range, with camber for the four inlet angles tested are presented in 
figure 86. Variation of ideal and actual dynamic-pressure ratio across 
the cascade with turning angle and inlet angle is presented in fig-
tire 87. Figure 88 gives the relation between inlet dynamic pressure 
and mean dynamic pressure for convenience in converting coefficients 
from one reference velocity to the other. Limit loading information 
is summarized in figure 89. Comparison of the present porous-wall-
cascade turning-angle data with that of the solid-wall cascade of refer-
ence 4 is made in figure 90 for a typical inlet angle and solidity 
combination.	 - 

The information which is most useful for choosing the blade sec-
tions to fulfill compressor design vector diagrams is summarized in 
figures 91 to 111 inclusive. The variation of turning angle with angle' 
of attack for the blade sections tested is presented for one combina-
tion of inlet angle and solidity in each of the figures 91 to 106. 
Trends of the slopes of the turning-angle, angle-of-attack curves near 
design are given in figure 107. Figures 108 to 111 are design and 
correlation charts; the variation of design turning angle anddesign 
angle of attack with the parameters, camber, inlet angle, and solidity, 
is presented for several combinations of the parameters so that 
interpolation to the conditions of a design velocity diagram is 
relatively easy.

DISCUSSION


Design Conditions 

The values and shape of the blade-surface-pressure distribution 
are important criteria for predicting the conditions of best operation 
at high Mach numbers. Velocity peaks occurring on either surface in 
low-speed tests would be accentuated at high speeds, and supersonic 
velocities with attendant shock losses would occur at relatively low 
entering Mach numbers. The selection of the angle of attack designated 
as "design" for each combination of inlet angle, solidity, and camber 
is based on the premise that the blade section will be required to 
operate at Mach numbers near the critical value. The trend of pressure-
distribution shape over the angle-of-attack range was examined for each 
cascade combinatiofl, and the angle for which no velocity peaks occurred 
on either surface r was selected as being optimum from the standpoint of 
high-speed usage. In general the design angle so selected is near the 
middle of the low-drag range thus indicating efficient section opera-
tion for angles a few degrees higher or lower than the design condi-
tion. The design-angle-of-attack choices are indicated by an arrow on 
the blade-section-characteristic plàts of figures 6 to' 84. The'design
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angles are also shown by cross bars on the turning-angle summary curves 
in figures 91 to 106. 

Correlation of the design angles of attack and design turning 
angles over the range of camber, solidity, and inlet angle is given by 
figures 108 to ill in a manner convenient for design use. The correla- 
tion is excellent; smooth curves result when any two of the three 
parameters are used as independent variables. It should be noted that 
the design angle of attack is the same for all inlet angles at any 
given solidity and camber. 

The section-characteristic curves of figures 6 to 84 indicate that, 
in general., the design points chosen do not give maximum lift-to-drag 
ratios for low- and medium-speed operation. For designs which will not 
operate near critical speed, therefore, higher efficiency could be 
obtained by using angles of attack several degrees higher : than the 
design points presented. This procedure must be used with caution at 
the higher camber and inlet-angle combinations, however, since the sec-, 
tion operating range becomes quite narrow for combinations of highest 
camber and inlet angle corresponding to the highest values of Ap/q1. 
It is recommended that the individual pressure distributions and section-
characteristic curves be examined before departure from the specified 
design points is made.

Reynolds Number Effects 

Pressure distribution and boundary layers. - For many of the tests 
at angles of attack near and below design, there is evidence that a 
region of laminar separation of the boundary-layer flow occurred on the 
convex blade surface; this separated boundary layer then became turbu-
lent and reattached to the blade surface as a relatively thick turbu-
lent boundary layer. The mechanism of such a flow sequence is described 
for the isolated airfoil in reference 7. The laminar separation is 
indicated by a relatively flat region in the pressure distribution and 
the turbulent reattachment is characterized by a rapid pressure recovery 
just downstream of the separated region. This flow pattern can be seen 
clearly in many of the figures but it is particularly evident in fig-
ures 2(a), 42(c), 56(b) to 56(d), and 66(a) to. 66(e). For some tests, 
it appears that laminar separation occurred on the concave surface as 
well. This is noticeable in figures 42(b), 112(d), 42(e), 66(c), 
and 66(d). 

The extent of laminar boundary-layer flow which occurs on an air-
foil surface is. affected by Reynolds number, stream turbulence level, 
airfoil surface condition, and surface pressure gradient. Increases 
in Reynolds number, stream turbulence, and surface roughness would 
promote earlier transition. Qualitatively a gradient of decreasing
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surface pressure would be required to maintain laminar flow if the 
Reynolds number, stream turbulence, surface roughness, or the combina-
tion of these, which might be referred to as "effective Reynolds number," 
were high enough to favor transition. At the turbulence level of the 
5-inch cascade tunnel, however, laminar flow and laminar separation on 
the convex surface persisted to Reynolds numbers up to 245,000 even 
when the surface pressure gradient was slightly unfavorable. The addi-
tion of leading-edge roughness, as described in the "Testing Methods" 
section reduced the extent of the laminar separation region, but did 
not eliminate it in some cases. In view of the thick boundary layer 
which results from laminar separation and reattachment, it appears that 
the minimum final boundary-layer thickness and section drag coefficient 
would result if the Reynolds- 'number and turbulence values were such as 
to cause transition before laminar separation occurred. Use of leading-
edge roughness to reduce an extended laminar separation region would 
probably result in a thinner final boundary layer than that for the 
smooth blade at the same Reynolds number but would probably result in a 
thicker boundary layer than that for the smooth blade at high Reynolds 
number. A thick turbulent boundary layer would be expected to promote 
turbulent separation near the trailing edge of compressor blades which 
produce a significant pressure rise. 

Wake coefficient and drag coefficient.- As noted previously, the 
wake coefficient Cw1 expresses the momentum difference between the 
wake flow and the downstream flow outside the wake in a manner conven-
ient for use in summing blade forces. The wake coefficient is, of 
course, directly dependent upon boundary-layer thickness and shape, and 
changes in the boundary layer with changes in effective Reynolds number 
are reflected in the wake-coefficient values. Furthermore, if the 
effective Reynolds number is near the condition where laminar separa-
tion may or may not occur, the change in surface pressure gradient with 
change in angle of attack would control the presence and extent of 
laminar separation on either blade surface. Obviously erratic varia-
tions in the value of the wake coefficients would result under those 
circumstances. The blade-section-characteristic curves of figures 6 
to 84 show that in most cases the wake-coefficient values were irregular 
as the angle of attack was varied in the region near design at the usual 
test Reynolds number of 245,000: With higher Reynolds number and/or 
leading-edge roughness the rapid local pressure recovery associated with 
boundary-layer reattachment was less evident in the surface pressure-
distributions and the wake coefficient usually was reduced. For ,a few 
cases, notably those of figures 34(g), 35( g), 68(g), and 84(g), leading-
edge roughness increased the wake coefficient, however; in those cases 
the roughness apparently produced a more severe turbulent boundary 
Layer than laminar separation and reattachment did. 

The trend of drag coefficient C d1, defined as the component of 
-esultant force parallel to the mean-velocity, was similar to that of
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wake coefficient. The drag curves were quite irregular near design - 
angle of attack and the values measured varied as much as 30 percent 
with Reynolds number and roughness. Obviously the values of both drag 
coefficient and lift-drag ratio near design are not sufficiently 
reliable to use directly in a design analysis. These values should be 
of some use for comparison purposes, however. The large drag rise 
associated with positive and negative stall should be relatively insen-
sitive to Reynolds number 'effects, because the pressure gradients on-
the critical surfaces are then unfavorable to laminar flow, and so 
should be useful for determining effective operating range. 

The trend of drag coefficient with Reynolds number near the design 
condition for the NACA 65-(12)10 blade section at f3 of 60°, a of 1.0, 
and 3 of 450 , a of 1.5 shown in figure 85(a) serves to indicate the 
magnitude of the Reynolds number effect. Increasing the stream turbu- 

lence by the use of a 1_inch_mesh screen upstream of the test section 

• lowered the drag coefficients at low Reynolds number, and reduced the 
Reynolds number at which the drag coefficients become essentially con-
stant with Reynolds number. The comparison of Cd values through the 
angle-of-attack range for the same cascade combinations at two Reynolds 
numbers in figures 85(b) and 85(c) gives some further indication of 
Reynolds number effect. For R of 445,000, the drag coefficients are 
lower and the curves are smoother than for R of 245,000. The addi-
tion of leading-edge roughness in figure 85(b) smoothed the drag curve 
but did not give the same decrease in' drag that the high R did. 
There appears to be some effect on the angle of attack at which the 
drag rises rapidly in figure 85(c) 'but since the effect was not the 
same in figure 85(b) no conclusions can be drawn. 

Turning angle and lift. - Figure 85( a) shows that the effect of 
Reynolds number on turning angle near design a. is almost insignifi-
cant for R between 220,000 and 470,000. This is borne out by the 
fact that throughout figures 6 to 84 changes in e with Reynolds num-
ber and roughness were, in general,. within the limits of measuring 
accuracy. Below R of 220,000 a decrease of design turning angle can 
be expected. There appears to be some R effect on turning angle near 
stall in figure 85(c), but again the effect has not been definitely 
established. It can be concluded that the design turning angles pre-
sented are correct for R above 220,000, but that the effect of R 
near stall is unknown. 	 • 

Laminar separation had no apreciable effect on the measured lift. 
The lift-coefficient values for a given test agreed well at low and 
high Reynolds numbers and with and without roughness. The normal-force 
coefficients obtained by integration of the pressure distributions also 
changed very little with changes in Reynolds number and roughness.



NACA RN L51G31	 15 

Operating Range 

In order to estimate the useful operating range of the various 
sections at the several solidity and inlet angle conditions tested, 
Howell's index of twice the minimum drag (reference 8) was used to 
select the upper and lower limits of angle of attack. As discussed 
previously\in the section concerning Reynold's number effects, the 
accuracy of the measured values of drag coefficient near design angle 
of attack suffered due to laminar-flow separation. The minimum value 
of drag coefficient could not be determined exactly and an approximate 
value was used todetermine the operating range. For most of the test 
configurations, the drag coefficient changed rapidly with angle of 
attack near, the ends of-the useful range, so an error in the value of 
minimum drag used would have only a small affect on the operating range 
value. Some scatter in the results was evident, however. 

No' Most values at 
constant camber and inlet angle fell within the scatter of the points. 
A tendency for the range to increase slightly as the solidity was 
Increased was detectable at 13 = 150, but this was not evident for other 
inlet angles. The results plotted In figure 86 indicate that the major 
determinant of operating range is inlet angle. As the Inlet angle is 
increased, the usable range of angle of attack is decreased, with 
greater changes indicated for angles above design than for angles lower 
than design. The camber of the section affects the operating range in 
the following manner for angles of attack above design: at an inlet 
angle of 30° f the range increased with increasing camber; at inlet 
angles of 14.50 , 600 and 70 , the opposite trend occurred. For values 
of 'a less than design, little change in range with camber was indi- 
cated for 13 =300; at higher inlet angles, the range decreased-as 
the section camber increased. 

With high entering velocities, the section operating range would 
be reduced due to a more rapid increase of drag at angles of attack 
well above or below design. Further, the comparison, between sections 
of different camber, at constant inlet angle and solidity, would be 
altered as the flow velocities relative to the blade surfaces exceed 
the local velocity of sound.

Pressure Rise 

The ideal, nondiinensional pressure rise p/q 1 - across a two-
dimensional cascade , is specified when the inlet angle and turning angle 
are known, since the ratio of the flow areas determines the pressure 
rise. Since-the mass flow is consiant, the actual pressure rise is 
less than the ideal because of the "blocking" effect of the wake on 
the downstream flow area. For given inlet and turning angles,-the
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• blocking effect would be more severe for higher solidity, since the 
unaffected flow area is reduced. For incompressible flow the nondimen-
sional pressure rise is equal to one,minus the dynamic-pressure ratio, 

that is,	 = 1 - -& The actual dynamic-pressure ratio becomes 

higher than the ideal because of the wake blocking effect. The ideal 
dynamic-pressure ratios, and the actual ratios at design turning angles 
for two solidities, are sunmiarized in figure 87 for the range of inlet 
and turning angles tested. The dynamic-pressure ratios for individual 
tests are given by the short bars at the 100-percent points of the 
pressure-distribution plots. Wake blocking effects would be changed by 
the same Reynolds 'number and roughness factors which change the wake 
coefficient; however, the percentage change in dynamic-pressure ratio 
would be small.  

/

Limit Loading 

Information on the maximum loading which can be achieved in a com-
pressor blade row is important in the design of high performance axial-
flow compressors. As noted previously, the high pressure rise associated 
with large turning at high inlet angles promotes turbulent separation so 
that at inlet angles of 600 and 70° the stall angle of attack moved 
progressively closer to the design angle with increasing section camber. 
The limit turning Is reached when the maximum turning is no greater than 
design turning. The practical limit would be somewhat lower to give a 
reasonable operating range. 	 - 

Approximate limit turning was reached at 13 of 6o°, a of 1.0 and 
1. 5, and at 13 of 700, Cr of 1.0, 1.25, and 1. 5. Information from those 
tests is given in terms of a commonly used loading parameter, aCim, 

in figure 89. Both the actual test values of the parameter, and the 
ideal values calculated using the test inlet and turning angles are 
presented. Note that the lift coefficient is here based, numerically, 
on the mean velocity, to conform to the usual form of theparameter. 

Arbitrarily chosen constant values of clC jm have often been used 

as maximum allowable values in design analyses. The fallacy of using 
'any constant value as a limit is clearly shown in figure 89; the true 
limiting value increases with increasing solidity and decreases with 
increasing inlet angle. Since no limits were reached for inlet angles 
of 15° and 30°, it is clear that the limitation has very little signif-
icance there except, perhaps, at very low solidities. The phenomenon 
is not yet well enough understood to permit the choice of a parameter 
which could define the over-all limitation as a single value. 

V
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Comparison with Solid-Wall Cascade Data 

The comparison between pressure-distribution and turning-angle data 
for a solid-wall cascade tunnel and for the present porous-wall cascade 
tunnel is given in reference 1 for the NPLCA 65-(12)10 blade section 
at 1i of 600 and -a of 1.0. The comparison has been extended in fig-
ure 90 to include turning-angle data for all the cambers reported for 

of 600 and a of 1.0 in reference 4. The turning-angle curves 

compare fairly well for cambers up . to C1 0 of 0.8, but beyond that the 

data of reference 4 deviate significantly from the present results. 
Comparisons at other conditions would show similar trends. 

Turning Angle, Angle-of-Attack Relationships 

Summaries of the turning angle, angle-of-attack relationships 
through the caniber range are given for each inlet angle and solidity. 
in figures 91 to 106. The variations are quite consistent for most of 
the range. Some inconsistency in the shape of the curves at stall is 
a result of reduced accuracy of measurement there. For combinations 
giving moderate pressure rises there are straight-line relationships 
for considerable portions of the curves. For the highest pressure 
rises, however, there are no definite straight-line relationships. The 
variation of the elopes near design is given in figure 107 to assist in 
estimating relationships at conditions other than those tested. These 
slopes are average slopes for the camber range, and do not apply for 
the highest cambers. Theymust be used with particular caution for 
inlet angles near 700, since very narrow straight-line regions are 
prevalent there.

SUMMARY OF RESULTS 

The systematic investigation of NACA 65-series compressor blade 
sections in a low-speed cascade tunnel has provided design data for all 
conditions within the usual range of application. The results of this 
investigation indicate a continuous variation of blade-section perform-
ance as the major cascade parameters, blade camber, inlet angle, and 
solidity are varied over the useful range. Summary curves have been 
prepared to facilitate selection of blade sections and settings for 
compressor-design velocity diagrams for optimum high-speed operation. 

- Upper limits for the loading parameter aCI m have been established 

for some conditions, and the invalidity of using a constant value of the 
parameter has been shown.
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The variation of the useful section operating range with camber, 
inlet angle, and solidity has been shown. The operating range was 
found to be broad except for the highest pressure-rise conditions. 

Langley Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va.
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APPENDIX 

/ 
CALCULATION OF BLADE FORCE COEFFICIENTS 

The two-dimensional resultant force on a blade in cascade is the 
vector sum of all the pressure and momentum forces exerted by the fluid. 
At any appreciable distance behind the blade row the static pressure is 
constant along a line parallel to the blade row, since any prior pres-
sure gradients would have been converted to momentum changes. Assuming 
a pressure force acting in the upstream direction to be positive: 

FP = (P2 -	
('i) 

Sum momentum forces In the axial and tangential directions. Assume 
axial momentum forces positive if the force on the blade is in the 
upstream direction, and tangential momentum forces positive If t

'
 he 

tangential velocity change is in the usual direction shown in figure 5. 
The axial momentum force then is 

	

'M =f P2Va2 ( Va2 - Va1)b dg	 (2) 
g. 

and the tangential momentum force is 

	

• F = f P2Va2(11u1. - w)b dg 	 (3) 

Since momentum values In the wake can be obtained most easily as differ-
ences between the wake values and the downstream value outside the wake, 
it is convenient to rewrite equations (2) and (3) 

F Ma= PihTa1 ( 1a2 - s1a1)t +f P2Va(Va - Va2 )b dg	 () 

	

F. Plval(Wu1 wu2)b +	 P2Va2(WU25	 - W)b dg	 (5) 

But the wake momentum force, as calculated from. wake surveys, is
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F f P2Va2 (W2 - w2 )b dg	 (6) 

If, now, the flow direction In the wake can be assumed to be the same 
as the average downstream flow direction, the wake force can be resolved 
into components In the axial and tangential directions. Using the same 
sign convention as before 

Fwa 	 w cos 
2 =fg P2

Va2  ('Ts,2, - Va)b dg	 (7) 

	

= 
Fw sin 02 = r P2Va2 ( 1u2 - w 2 )b dg	 (8)


Jg 

These are the integral terms in equations (4) and (5). Substituting 
equation (7) in equation (4) and equation (8) in equation (5), the axial 
and tangential force components become 

Fa = F + FMa = (P2 - p1)bg + PfTai(1a2 - Va1)b - Fw cos 

FU = F = PlVal(Wul - wu2 )b + FV sin 02 

For convenience use coefficients based on q1 

Fa	 =	
+ 2V a1(2s - Va 

CFa1.	
1W12bc a L1	 w12	

- C COB 

F	
2Val 	 -	 )1 

	

I+C	 sin 02
CFu1 .ipW12bc 

The resultant-force coefficient is given by 

C = 	 2+c 2 
Fl ^CFa1	 u1
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If y is used to denote the angle between the resultant force and the 
tangential direction

C 
-1 

y=tan	
Pa 1

Pu1 

The lift coefficient C1 1 and drag coefficient Cd1 are the com-

ponents of Cp1 perpendicular and \parallel to the vector mean velocity, 

Wm, respectively, where Wm is the vector average of the velocities 
far upstream and far downstream. The upstream velocity can be easily 
measured. The velocity far downstream Is obtained by proper averaging 
of the velocities just behind the blades. Since the axial area controls 
the axial velocity, conservation of mass determines the axial component 
of the velocity far downstream. Since there are no physical boundaries 
in the tangential direction to support pressure gradients, conservation 
of momentum controls the tangential component far downstream. The dis-
cussion up to this point applies to compressible as well as incompres-
sible flow. 

For compressible flow the effect of wake mixing on pressures and 
densities makes accurate determination of the axial velocity far down-
stream rather tedious. In the incompressible, two-dimensional case the 
downstream axial component is Va l, and the downstream tangential com-

ponent is the .Momentum-weighted average of Wu2. This tangential com-

ponent can be obtained by adding to the tangential momentum of the dis-
charge free stream the integrated tangential momentum of the wake. The 
integrated tangential momentum of the wake can be determined from the 
tangential component- of the wake coefficient. Having the correct. 
velocity far downstream, the vector mean-velocity direction Wm can be 
easily obtained. The direction of Wm should be determined accurately 
since - Cp1 is very nearly perpendicular to Wm, and the value of the 

drag component Cd1 is sensitive to small changes in the direction 
of Wm.
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TABLE I 

ORDINATES FOR NACA 65-010 BASIC THICKNESS FORMS 

[Stations and ordinates in percent of chordi 

ri

Station,	 x
Ordinates,	 ±Y 

65(216)-010-airfoil ;ombined Derived 65J010 airfoil 
with	 y = 0.0015x 

0 1 0 0 
. 5 .752 .772 
.75 .890 .932' 

1.25 1.124 1.169 
2.5	 .. 1.571 1.574. 
5.0 2.222 2.177 
7.5 2.709 2.647 

10 3.111	 . 3.0140 
ITS 3.746 3.666 
20 4.218 4.143 
25 .	 4.570 4.503 
30 4.824	 .. 4.760 
35 .	 4.982 4.924 
40 5.057	 . 4.996 
45 5.029 4.963 
50-	 . 4.870 4.812 
55 4.570 4.530 
.60 .	 4.151 4.146 
65 3.627 3.682 
70 .	 3.038 . 3.156 
75 2.451 2.584 
80 1.847 1.987 
85 1.251 1.385 
90 -	 .749 .810 
95 .354 .306 

100 .150 0 
L.E. radius .666 .687

w 
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TABLE II 

ORDINATES FOR THE NACA a = 1.0 MEAN LINE


[Stations and ordinates in percent of chorj

Cj	 =1.0 

Station,	 x Ord'inate,t y Slope,	 dy/dx 

.250 0.42120 
.75 .350 .38875 

1.25 .535 .34770 
2.5 .930 .29155 
5.0 1.58o .2330 
7.5 2.120 .19995 

10 2.585 .17485 
15 3.365 .13805 
20 3.980 .11030 
25 4.475 .08745 
30 4.86o .o6745 
35 5.150 .O925 

5.355 .03225 
5.75 .01595 

•50. 5.515 0 
55 5.475 -.01595 
6o 5.355 -.03225 
65 5.156 -.04925 
70 4.860 -.o6745 
75 4.475 -.08745 
80 3.980 -.11030 
85 3.365 -.13805 

.90 2.585 .171485 
95 1.580 -.23436 

100 0

/ 

1.0mowt-
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TABLE, III


CASCADE COMBINATIONS TESTED 

(deg) 

30 45 60 70 

65-410 65-4io 
.0 . 50 65-(12)lo 65-(12)10 

6-(18)io 65-(18)10 

65-410 65-410 
.75 65-(12)lo 65-(12)10 

6-(18)io 65-(18)io 

6-010 65-010 6-010 65-010 
6-410 6-410 65-410 65-410 
65-810 65-810 65-810 - 65-810 
65-(12)10- 65-(12)10 65-(12)10- 65-(12)10-

1.00 6-(15)10 65-(15)10 65-(15) 10 a65(15)10 
• 65-(18)io 65-(18)io 65-(18)10 

65-(21)10 65-(21)10 
65-(24)10  
65-(27)10 

65-410 65-410 65-410 65-410 
1.25 65-(12)lo 65-(12)lo 65-(12)lo 6-810 

65-(18)lo 65-(18)10 65-(18)lo 65-(12)10 
65-(1)10 

65-010 6-010 6-010 6-010 
65- 410 65-410 65-410 65-410 
65-810 65-810 65-810 6-810 

1.50 65-(12)lo 65-(12)10 65-(12)10 65-(12)10 
65-(15)10 65-(15)10 65-(15)10 65-(15)10 
65-(18)iO 65-(18)io 65-(18)lo 

65-(21)lo 65-(21)10 
65-(24)lo 65-(24)10

No design point was obtained for this combination. 
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Chord 

-I-----	 "—Tangent 

NACA 65-010

Chord 

NACA 65-410 	 "—Tangent 

Chord 

Tangent 
NACA 65-810 

)	
.	 Chord 

Tangent 
NACA 65-(12)10 

(a) Lower cambered sections. Angle between chord line and tangent to 
lower surface as shown for the various sections. 

Figure 14• - Blade sections tested in this investigation.
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Chord 

	

NACA 6-(15)10
	 Tangent 

Chord

	

 

NACA 6-(18)10	 Tangent 

Chord - 

•	 NACA6-(21)1O	 Tangent 

	

1IIIIT	 Chord 

-	 NACA 6-(2I)10	 Tangent 

Chord 

NACL6-(27)10 

(b) Higher cambered sections. Chord line and tangent line coincident. 


Figure 1. - Concluded.
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Figure 5.- Typical vector diagram for a compressor rotor. 
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Percent chord	 Percent chord 

(a) ar- 3.0°; 8= -3.4°	 (b) a 1 = 3.0°; 8= 2.4? 
o Convex surface 
c Concave surface

Percent chord Percent chord 
(c)a1=4.0°; 8= 2.9? (d)	 a1 = e.o°; 8=6.9? 

020406D80100	 020406080K0 
Percent chord	 Percent chord 

(e) a 1 = 11.0 0  8 = 9.30? -	 (f) a 1 = 17.0°; 8 = 14.3? 

Figure 6.- Blade-surface pressure distributons and blade section charac. 
teristics for the cascade combination, Pi = 

3Q0, .	
1.00, and 

blade section, NACA 67-010. 
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flagged symbol indicates leading-edge roughness. 

Figure 6.- Concluded.
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Figure 7.- Blade-surface pressure distributions and blade section 
characteristics for the cascade conth1nat1, 	 =30'1 a = 1.00, 
and blade section, NACA 65-41o.
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Figure 8.- Blade-surface pressure distributions and blade section 
characteristics for the cascade combination, 01 = 300, 

Cr = 1.00, 
and blade section, NACA 65-810.
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Figure 110.- Variation of design turning angle with inlet angle and 
solidity for typical sections.
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(e) Solidity of 1.50 

Figure lii.- Concluded. 
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