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Introduction

Salt stress has become a major concern worldwide as salinization of 
agricultural fields occurs due to irrigation. Some time ago, Munns 
described the salt stress physiology throughout the two-phase 
growth model, in which plant physiological responses occur in 
the period imposed by the two stress components that character-
ize salinity: hyperosmotic and hyperionic cues.1 According to this 
view, salt stress physiology demands the study of ion toxicity rather 
than osmotic stress, thus implying the need to perform experi-
ments where plants are salt acclimated, instead of salt shocked.1,2 
However, most of the reports rely on experiments where plants 
are subjected to osmotic stress or salt shock. Although this strat-
egy has rendered amazing molecular breakthroughs (i.e., the ionic 
regulatory SOS pathway by Zhu3), data is lacking concerning 
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signaling under long-term salt stress. On the other hand, poly-
amines have been associated to abiotic stress response. There are 
several works that assess for Putrescine as responsible of salt-stress 
tolerance.4 Others state that Spermine rather than Putrescine 
would be involved in this favorable response.5 In plants, arginine 
decarboxylase (ADC) is considered to be the rate-limiting step for 
polyamine biosynthesis under abiotic stress, leading to an increase 
in Putrescine biosynthesis, a precursor for the higher polyamines 
Spermidine and Spermine.4

We used model plant Arabidopsis thaliana and the stress-
responsive gene RD29A to assess stress signaling in salt acclimated 
plants. RD29A expression is responsive to abscisic acid (ABA), 
cold and osmotic stress, all of them driven by ABA-dependent 
and ABA-independent signaling, through ABRE and DRE cis-
elements present in the promoter region.6,7 RD29A gene has 
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a 33% when compared to the control (Fig. 1A). Leaf Na+ content 
was increased by almost 80% while K+ content decreased almost 
to 60% when compared to the control (Fig. 1B). Furthermore, 
the compatible solute proline accumulated seven fold (Fig. 1C). 
No statistically significant increases in lipid peroxidation were 
observed (Fig. 1D), and treated plants were able to complete their 
life cycle and set seeds even when subjected to a higher salt treat-
ment (150 mM NaCl, final concentration). Chlorophyll content 
is frequently diminished under salt stress due to stress-induced 
senescence.14,15 However, under our salt acclimation conditions we 
observed a significant increase in chlorophyll and carotene con-
tents in salinized plants (Fig. 1E and F), as it has been described 
in other salt acclimated plant species.16-18 Taken together, these 
observations suggest that plants were indeed acclimated to the 
salt treatment, with no signs of early salt-induced senescence. We 
did not observe changes in Water Content (WC) under salt stress 
and Relative Water Content (RWC) decreased 11% (Table 1), 
probably because of salt accumulation and osmotic adjustment. 
When analyzing ionic content in sos mutants, the hypersensi-
tive mutants sos1-1, sos2-2 and sos3-1 showed a significant Na+ 
accumulation (Fig. 2A), while no significant change in K+ accu-
mulation was observed for the last two when compared to WT 
(Fig. 2B) after salt treatment.

When analyzing polyamine content (final concentration 
50 mM) WT, sos2-1 and sos3-1 mutants did not present changes 
in free Putrescine content when salt acclimated, although the last 
ones accumulated statistically more spermidine and spermine 
than WT in this condition (unpublished results).

Characterization of the pRD29A::oatADC and 
pRD29A::GUS transgenic plants

There are some previous reports suggesting that Putrescine could 
be responsible for abiotic stress resistance.19 Since sos1-1 pre-
sented a significant accumulation of Putrescine when subjected 
to salt stress (resembling the diamine WT accumulation under 
similar stress conditions), we raised the question whether plants 
increasing the endogenous Putrescine content upon stress would 
be capable to survive salt acclimation. Previous reports have pro-
vided consistent data demonstrating that RD29A gene is tran-
siently responsive to salt stress shock, probably due to osmotic 
elicitation.7,8 In order to study the effect of long-term salt stress 
on RD29A expression driving the induction of Putrescine accu-
mulation, we generated A. thaliana transgenic lines harboring 
pRD29A::oatADC and pRD29A::GUS.

become a powerful tool for elucidating stress signaling and 
molecular mechanisms underlying plant responses to stress.6,8,9 
In order to assess the effect of polyamine accumulation on salt-
acclimation stress, we obtained transgenic lines of the oat ADC 
under the control of RD29A promoter (pRD29A::oatADC) in 
A. thaliana.10 In this work we have integrated the relationship 
between SOS depletion, response to salt stress and polyamine 
homeostasis. Finally, we describe the comparative expression 
of RD29A, ADC1 and ADC2 promoters under conditions of 
endogenous Spermine increase, which is a common situation 
under long-term salt stress.5,11-13

Results

Physiological assessment of salt acclimated plants. There are 
several reports on salt shock but very few on salt acclimation. To 
get an insight to salt acclimation responses, we have subjected 
WT and sos mutants plants to progressive salt acclimation. sos 
mutants are severely affected by ionic stress and cannot survive 
at a final concentration of 150 mM NaCl. We therefore used 
50 mM NaCl as final concentration for our analyses (Fig. 1). As 
expected, when salinized, growth of WT was reduced almost to 

Figure 1. General physiological parameters determined in control 
(white bars) or salt stress acclimated A. thaliana WT plants (final NaCl 
concentration of 50 mM, black bars). FW: fresh weight, Na: sodium, K: 
potassium, eq MDA: equivalents of malonaldehide. (A) Plant growth 
as estimated by shoot fresh weight. Bars represent mean ± SD of three 
independent experiments, each containing five independent replicates. 
(B) Sodium and potassium content, expressed as mM in a FW basis. Bars 
represent mean ± SD of five independent replicates. (C) Proline content. 
Bars represent mean ± SD of four independent replicates. (E and F) Total 
chlorophyll (chl a + chl b) and total carotenoid content. Bars represent 
mean ± SD of six independent replicates. (D) Lipid peroxidation, esti-
mated by TBARs and expressed as equivalents of malonaldehide. Bars 
represent mean ± SD of four independent replicates. In all cases, salt 
stress treatment differs statistically to control at p < 0.05 according to 
Student-t test, except in (D).

Table 1. Water content and relative water content of control and 
stressed plants

Treatment WC% RWC%

Control 94.53 ± 0.13 82.51 ± 0.99

Salt 94.23 ± 0.14 71.87 ± 0.10**

“Salt” refers to salt acclimation treatment (final concentration: 50 mM 
NaCl). Data are mean ± SE of 4 independent samples, each containing 
eight rosette leaves of a plant. Statistical differences between treat-
ments and respective non-salinized and salinized controls are shown 
as: *p < 0.05, **p < 0.01 (ANOVA-Dunnet’s multiple comparison test).
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A. thaliana pRD29A::GUS plants were treated with ABA and 
subjected to a β-glucuronidase assay20 to confirm the activation 
of the RD29A promoter under our experimental growth condi-
tions (data not shown). These experiments confirmed the active 
induction of RD29A promoter in the transgenic lines used in 
this work, in agreement with previous reports using a heterolo-
gous system.10

To check the expression of the oatADC in pRD29A::oatADC 
lines, transgenic lines were induced with ABA and the trans-
gene expression analyzed by Quantitative-Real Time-PCR (q-rt-
PCR) with specific primers. As expected, oatADC expression 
was not detectable in the non-transformed WT whereas in four 
independent transgenic lines it was highly induced after ABA 
treatment, and correlated with the induction of ADC activity 
(Fig. 3A and  B). Moreover, ABA-induction kinetics of ADC 
activity in transgenic lines was similar to that described for 
RD29A, whereas there was not significant variation in WT ADC 
activity under the same conditions (data not shown). No sig-
nificant differences were found in Putrescine levels between WT 
and transgenic lines under control conditions (Fig. 3C). After 
ABA induction, at least three of the transgenic lines showed sig-
nificant Putrescine accumulation (21J, 30J and 25D2, Fig. 3C). 
On the other hand, there were no significant differences on the 
free contents of Spermidine and Spermine between WT and the 
transgenic lines under control conditions or after ABA treatment 
(data not shown).

It is relevant to note that neither pRD29A::GUS nor 
pRD29A::oatADC transgenic lines presented phenotypic dif-
ferences when compared to WT in germination, vegetative 
growth or development under normal growth conditions (data 
not shown).

Figure 2. Na+ and K+ content in A. thaliana WT (Control), sos1-1, sos2-1 
and sos3-1 under non-salinization (white bars) or under salt acclimation 
(final concentration: 50 mM, black bars). Bars represent media ± SD of 
sextuplicates. Different letters means values statistically different, ac-
cording to ANOVA-Bonferroni test (p < 0.05). Figure 3. Real-time RT-PCR quantification of oat ADC expression (A), 

ADC activity (B) and free Putrescine content (C) in WT and transgenic 
plants under ABA treatment. Plants grown in soil for 21 days were 
harvested after 24 hs of ABA treatment. Control was harvested at the 
same time than treated plants. No significant difference was observed 
in oat ADC expression (A) inside each group (control or ABA treated). 
All genotypes but WT presented statistical difference between treated 
and control ADC activity (B) (data not shown). Different letter means 
statistical difference inside each group (Control and ABA) according to 
Two-way ANOVA-Bonferroni test (p < 0.05).

Salt acclimation and differences in RD29A, ADC1 
and ADC2 promoter induction

As expected, free Putrescine content increased almost by 53% in 
transgenic pRD29A::oatADC lines after salt acclimation when 
compared to WT (Fig. 4A). Even though transgenic plants accu-
mulated more Putrescine than WT after treatment, there were 
no phenotypic differences between them by the end of stress, 
showing that an inducible Putrescine accumulation is not an 
advantage under salt acclimation. When looking at the free lev-
els of higher polyamines, we observed an increased level of free 
Spermine (almost 37%) in WT and transgenic lines after treat-
ment (Fig. 4B) with no significant difference between them. In 
WT, Putrescine levels do not change when Spermine levels do, 
while in 30J Putrescine and Spermine levels are both increased. 
We then investigated whether differences between WT and 30J 
could be due to changes in promoter expression patterns. In fact, 
RD29A promoter expression increased after salt acclimation 
under our growth conditions almost by 80% (Fig. 4C). As an 
increase in free Spermine levels seems to be a conserved response 
under long-term salt stress,5,11-13 we wondered whether the increase 
in Putrescine level observed in the transgenic line could be due to 
a positive feed-back effect of Spm over RD29A promoter activity. 
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Discussion

We have described a suitable experimental tool for analyzing the 
ionic effect of salt stress under long-term salt acclimation. We 
have also related this type of stress with polyamine responses, 
stating that Putrescine accumulation is not an advantage under 
long-term salt stress. There are recent reports that have related 
Putrescine accumulation to a better tolerance to saline stress.19 
Although there was a higher ADC activity and free Putrescine 
accumulation in the transgenic lines in this study, there were no 
phenotypic differences between WT and transgenic lines when 
salt acclimated. This different response could be due to the dif-
ferent treatment applied. While the long-term salt stress assayed 
in this study allows us to analyze the ionic effect of salt stress, 
the previously reported stress resembles a short-term salt stress 
or “salt shock.”2 Under long-term salt stress, we observed that 
Spermine content in WT and 30J lines was higher than in the 
corresponding control condition. This is in agreement with pre-
vious reports where it has been shown that Spermine would be 
involved in a better response of plants to salt stress.11,12,15 The fact 
that both WT and transgenic lines accumulated the same level 
of this polyamine could explain the similar phenotype observed 
when both lines were salt acclimated.

Simultaneously, we have also described a binary construction 
harboring an inducible promoter (pRD29A::oatADC). This bio-
technological approach is useful for the evaluation of Putrescine 
role in ABA-dependent and ABA-independent stress signaling. 
In addition, these transgenic lines would be relevant in studying 
a consecutive stress to salt acclimation, since RD29A, ADC1 and 
ADC2 promoters behave in a different way upon high Spermine 
levels, a polyamine described as the one that accumulates under 
long-term salt stress. In fact, RD29A expression was induced 
while ADC1 and ADC2 expression was reduced when Spermine 
concentration was increased. This result suggests not only a post-
translational regulation, as it has been described for oat ADC,21 
but also a transcriptional regulation. The inhibition in ADC1 
and ADC2 expression could be due to a negative feedback loop, 
which makes sense if we take into account that Spermine is toxic 
for plants at high concentrations levels.22 Further studies are 
needed to assess a potential retro-regulatory response.

Materials and Methods

Plant material, growth conditions and treatments. Abdelhak 
El Amrani and the Arabidopsis Biological Resource Center 
(Ohio State University, Columbus) kindly provided A. thaliana 
pADC1::GUS and pADC2::GUS23 and Col-0 gl1 and sos mutants 
seeds respectively. Since all sos mutants, oat ADC and GUS trans-
genic plants were gl1 background, we utilized gl1 mutant as control 
and is termed as WT in this work to simplify nomenclature. In 
our lab we utilized binary vectors harboring GUS- or oatADC-
encoding sequences under the control of the stress-inducible 
promoter RD29A10 to transform A. thaliana Col-0 gl1 plants by 
floral dip. The seeds selection was performed in a medium MS 
with Kanamycine until reached T3. For experimental work, we 
selected four independent lines harboring the pRD29A::oatADC 

As WT pADC1 and pADC2 and transgenic pRD29A promoters 
differ in their cis-regulatory elements (Fig. 5), we tested whether 
Spermine could be activating this pathway in transgenic lines in 
a way that it could be over-activating RD29A expression, being 
the reason for the higher levels of Putrescine in transgenic lines. 
Interestingly, while RD29A expression increased with higher 
concentrations of Spermine, both pADC1 and pADC2 promot-
ers repressed their expression under the same conditions (Fig. 6). 
We conclude from this assay that the effects of Spm on RD29A 
promoter activity differ from ADC1 and ADC2 promoters. That 
ADC1 and ADC2 promoter activity is downregulated by Spm 
suggests a negative regulatory feedback loop over Put biosynthe-
sis, which may contribute to polyamine homeostasis under salt 
acclimation and may represent an advantage for the transgenic 
plants under a different or consecutive stress.

Figure 4. Salt acclimation effect on WT and transgenic lines. WT and 
transgenic lines were grown in soil. During its life cycle they were sub-
jected to salt acclimation raising the NaCl concentration in the nutrient 
solution every 3 days (0, 25, 50, 75, 100, 125, 150 mM). After 1 week at 
150 mM NaCl, plants were harvested for polyamine quantification (A 
and B) and GUS activity determination relative to WT (C). Different letter 
means statistical difference according to t test (p < 0.05).
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CCT TA-3', UBQ-10 (At4g05320) F: 5'-TAA TCC CTG ATG 
AAT AAG TGT TCT AC-3' and R: 5'-AAA ACG AAG CGA 
TGA TAA AGA AG-3'.

Statistical analysis. Student t test and ANOVA analysis were 
performed to asses statistical differences among treatments, using 
the GraphPad Prizm 4.0 software.
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Physiological and analytical determinations. Percentages of 
Water Content (WC) and Relative Water Content (RWC) were 
used as general physiological markers of water balance status 
(Koide et al. 1992).30 Photosynthetic pigments were determined 
as described by Lichtenthaler.24 Proline content was determined 
by ninhydrin reaction under conditions described in reference 
11, and lipid peroxidation was estimated spectrophotometrically 
as thiobarbituric acid reactive substances (TBARs) according to 
Hodges et al.25 We estimated the levels of Na+ and K+ by stan-
dard flame photometry. GUS activity was determined as described 
by Jefferson,20 and normalized to the corresponding controls (see 
figure legends). We determined the protein content by Bradford 
method using bovine serum albumin as the reference standard.26

Quantitative RT-PCR. We performed the quantitative 
RT-PCR of oatADC expression analysis on the ABIPrism® 7000 
Sequence Detection System (Applied Biosystems), and Power 
SYBR® Green PCR Master Mix (Applied Biosystems) was used to 
amplify and quantify the cDNA. As internal control, we utilized 
the gen Ubiquitin-10 (UBQ-10; At4g05320). The PCR condi-
tions were as follows: 95°C for 10 min, followed by 40 cycles of 
95°C for 30 s and 60°C for 1 min. Three replications performed 
for each sample in each experiment were developed. The melting 
curves were obtained with help of the Dissociation Curves® soft-
ware (Applied Biosystems) to ensure the amplification of the only 
one product. Analysis of gene expression data was done with the 
2-ΔΔCt method27 using the DART-PCR Version 1.0 datasheet as 
described by Peirson et al. Peirson et al. described similar amplifi-
cation efficiency.

PCR primers were oatADC F: 5'-AGT TAC GAC GTG AAA 
CAG GAT ATC A-3' and R: 5'-CCA CCA TTT CCC ACA 

Figure 5. cis-elements in the RD29A, ADC1 and ADC2 promoters. +1 
indicates the transcription start site and the regulatory sequence UTR 
5'. pRD29A: promoter for RD29A; pADC1: promoter for ADC1; pADC2: 
promoter for ADC2. SURE: sucrose-responsive element. LTR: low-
temperature responsive element. ERE: ethylene-responsive element. 
STRE: stress-responsive element. DRE: dehydration-responsive element. 
ABRE: ABA-responsive element. as1: cis-element involved in root ex-
pression on oxidative stress. (Adapted from ref. 6, 23 and 29).

Figure 6. RD29A, ADC1 and ADC2 promoter expression under Spermine 
treatment. pRD29A::GUS, pADC1::GUS and pADC2::GUS transgenic lines 
were germinated and grown in MS plates supplemented with 0, 50, 250 
and 500 μM Spermine. GUS activity was determined 11 days post-im-
bibition. Infograph represents decay constant K for pADC1 and pADC2 
expression. Different letter means statistical difference according to 
t-test (p < 0.05).
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