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Abstract

We analyse the singular behaviour of one-loop integrals sradtering amplitudes in the

framework of the loop—tree duality approach. We show thattelis a partial cancellation of

singularities at the loop integrand level among the difitccomponents of the corresponding
dual representation that can be interpreted in terms ofdigyisThe remaining threshold and

infrared singularities are restricted to a finite regionhad toop momentum space, which is
of the size of the external momenta and can be mapped to tise{space of real corrections
to cancel the soft and collinear divergences.
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1 Introduction

The recent discovery of the Higgs boson at the LHC represegtgeat success of the Standard Model
(SM) of elementary particles. While at the same time, theeabs so far of a clear signal of physics
beyond the SM leaves a certain degree of dissatisfactioes&two facts, together with the high quality
of data that the LHC will provide in the next run, increases télevance of high-precision theoretical
predictions for the analysis of known phenomena and for figdnnovative strategies to achieve new
discoveries.

The domain of perturbative calculations in quantum fieldbties, e.g. the SM and beyond, has
shown an extraordinary progress in the recent years. T@day,4 processes at next-to-leading order
(NLO) are state of the art[1] 2} 3,14, 5], and even higher mplitities are affordable [6]. Several tools for
the automated calculation of NLO differential cross sewtiare available [7, 8], including the merging
with parton showers [9]. There has been also a lot of advainaesxt-to-next-to-leading order (NNLO)
calculations[[10, 11, 12, 13, 14]. Still, besides ultragtadingularities which are easily removed by
renormalization, the cancellation of infrared singulagtby the coherent sum over different real and
virtual soft and collinear partonic configurations in theafistate is at the core and the main source of
cumbersomeness of any perturbative calculation at higtiers[15| 16, 17, 18, 19].

The loop—tree duality method [20,/21,22] 23] establishasdkneric loop quantities (loop integrals
and scattering amplitudes) in any relativistic, local amitary field theory can be written as a sum of
tree-level objects obtained after making all possible tutbe internal lines of the corresponding Feyn-
man diagrams, with one single cut per loop and integrated @awaeasure that closely resembles the
phase-space of the corresponding real corrections. Thilstyltelation is realized by a modification of
the customary +i0 prescription of the Feynman propagafrene-loop, the new prescription compen-
sates for the absence of multiple-cut contributions thaeapin the Feynman Tree Theorem|[24, 25].
The modified phase-space raises the intriguing possilhiétvirtual and real corrections can be brought
together under a common integral and treated with MonteoGadhniques at the same time. In this pa-
per we analyse the singular behaviour of one-loop integmadsscattering amplitudes in the framework
of the loop—tree duality method. On the one hand, workingp@lbop momentum space is an attractive
approach because it allows a rather direct physical intééspon of the singularities of the loop quanti-
ties [26]. On the other hand, the possibility to relate \attand real corrections opens an interesting line
to understand explicitly the cancellation of infrared sitagities.

The outline of the paper is as follows. In Sectidn 2 we disdhsssingular behaviour of scalar
loop integrals in the loop momentum space. In Sedtion 3 weeptbat there is a partial cancellation
of singularities at the integrand level among differenttabations of the dual representation of a loop
integral. In Sectiofl4, collinear factorization is used ketsh a phase-space mapping between virtual
and real corrections for the local cancellation of infradacergences. Finally, conclusions and outlook
are presented in Sectibh 5.



2 The singular behaviour of the loop integrand

We consider a general one-lodpleg scalar integral
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are Feynman propagators that depend on the loop momeftumich flows anti-clockwise, and the
four-momenta of the external legs, i € oy = {1,2,... N}, which are taken as outgoing and are
ordered clockwise. We use dimensional regularization withe number of space-time dimensions. The
momenta of the internal lineg,, = (¢:0, q;), Whereg; o is the energy (time component) andare the
spacial components, are definedgas= ¢ + k; with k; = p; + ... 4+ p;, andky = 0 by momentum
conservation. We also defikg; = ¢; — g;.

The loop integrand becomes singular in regions of the loomerdum space in which subsets of
internal lines go on-shell, although the existence of dargpoints of the integrand is not enough to
ensure the emergence in the loop integral of divergencdseimitnensional regularization parameter.
Nevertheless, numerical integration over integrablewdangfies still requires a contour deformation [27,
28,129,30/ 31, 32, 33, 34], namely, to promote the loop moomarib the complex plane in order to
smoothen the loop matrix elements in the singular regioniseofoop integrand. Hence, the relevance to
identify accurately all the integrand singularities.

In Cartesian coordinates, the Feynman propagator inEdpg@mes singular at hyperboloids with
origin in —k;, where the minimal distance between each hyperboloid aratigin is determined by the
internal massn;. This is illustrated in Fig.11, where for simplicity we wonk il = 2 space-time dimen-
sions. Figuréll (left) shows a typical kinematical situatichere two momenta; andk,, are separated
by a time-like distancet2, > 0, and a third momentund;, is space-like separated with respect to the
other two,k?, < 0 andk3, < 0. The on-shell forward hyperboloids;(, > 0) are represented in Figl 1
by solid lines, and the backward hyperboloids (< 0) by dashed lines. For the discussion that will fol-
low it is important to stress that Feynman propagators beqouositive inside the respective hyperboloid
and negative outside. Two or more Feynman propagators leesomultaneously singular where their
respective hyperboloids intersect. In most cases, thagelsrities, due to normal or anomalous thresh-
olds [35,/36] of intermediate states, are integrable. Handl/two massless propagators are separated
by a light-like distancekf.i = 0, then the overlap of the respective light-cones is tanggrats illustrated
in Fig.[d (right), and leads to non-integrable collineargsilarities. In addition, massless propagators
can generate soft singularities@t= 0.

The dual representation of the scalar one-loop integrabin(E) is the sum ofV dual integrals([20,
21]:

LY (p1,pa, ... ,pn) = _ZA5<Qi) 11 Golaa) . 3)
e g
where 1
GD(%CIJ'): 2 (4)
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Figure 1. On-shell hyperboloids for three arbitrary pragtags in Cartesian coordinates in thg,(.)
space (left). Kinematical configuration with infrared ditayities (right). In the latter case, the on-shell
hyperboloids degenerate to light-cones.

are the so-called dual propagators, as defined in Ref. [2f, yva future-like vector, n? > 0, with
positive definite energy, > 0. The delta function (¢;) = 27 6(g;0) 6(¢? — m?) sets the internal lines
on-shell by selecting the pole of the propagators with pa@sinergyg;  and negative imaginary part.
In the following we takey, = (1,0), and thus—i0n k;; = —i0 kj;; . This is equivalent to performing
the loop integration along the on-shell forward hyperbddoi Let us mention that in the light-cone
coordinates{,, /_, 1,), wherely = (¢, & ¢4_,)/+/2, Feynman propagators vanish at hyperboloids in
the plane (,/_) which are similar to those depicted in Hig. 1 but rotated 5yddgrees. Consequently,
by selecting the forward hyperboloids the integration igrof either?/, or /_ are restricted and the
restrictions are different for each dual integral. For tieigson, although Ed.](3) is valid for any system
of coordinates, we will stick for the rest of the paper to €sidn coordinates where all the dual integrals
share the same integration limits for the loop three-moomant

A crucial point of our discussion is the observation thatlguapagators can be rewritten as

- 8(gio — a o) 1
o (qz) GD(C]z'Q Qj) =27 ’ =
208 (gl + Kjio)? — (¢15)?

0 =/ +m?—i0 (6)

is the loop energy measured along the on-shell hyperboldldavigin at —k;. By definition we have
Re(g\s)) > 0. The factorl /q{; can become singular fon, = 0, but the integralf, §(¢;o — a.0’)/a’y

is still convergent by two powers in the infrared. Soft silagities require two dual propagators, where
each of the two dual propagators contributes with one powére infrared. From EqL{5) it is obvious
that dual propagators become singu@y,' (¢;; ¢;) = 0, if one of the following conditions is fulfilled:

: ®)

where

qi(,J(S) + q](fo) +kjio=0, (7)
qi(,Jé) - q](-,JG) + kjio=0. (8)
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The first condition, Eq.{7), is satisfied if the forward hylpaoid of —k; intersects with the backward
hyperboloid of—%;. The second condition, Eq./(8), is true when the two forwayenboloids intersect
each other.

In the massless case, Ef] (7) and Ed. (8) are the equationsnaf sections in the loop three-
momentum space;i(fg) and q;g) are the distance to tHeci located at-k; and —k;, respectively, and

the distance between the foci,iék?i. If internal masses are non-vanishing, Ed. (6) can be ngirgeed

as the distance associated to a four-dimensional spaceongttimassive” dimension and the foci now
located at{—k;, —m;) and(—k;, —m;), respectively. Then, the singularity arises at the inteige of
the conic sections given by Edl (7) or EQl (8) in this geneegalispace with the zero mass plane. This
picture is useful to identify the singular regions of thegantegrand in the loop three-momentum space.

The solution to Eq[(7) is an ellipsoid and clearly requitgs < 0. Moreover, since it is the result of
the intersection of a forward with a backward hyperboloel distance between the two propagators has
to be future-likeka.i > 0. Actually, internal masses restrict this condition. Begiin mind the image of
the conic sections in the generalized massive space so wiedaiee intuitively that Eq[{7) has solution
for

ki —(mj +m;)* >0, kjio <O, forward with backward hyperboloids . 9)

The second equation, E@] (8), leads to a hyperboloid in thergdized space, and there are solutions for
k;i o either positive or negative, namely when either of the twamenta are set on-shell. However, by
interpreting the result in the generalized space it is dlear the intersection with the zero mass plane
does not always exist, and if it exists, it can be either aipssid or a hyperboloid in the loop three-
momentum space. Here, the distance between the momenta pfdpagators has to be space-like,
although also time-like configurations can fulfil Egl (8) asds the time-like distance is small or close
to light-like. The following condition is necessary:

k3 — (mj —m;)* <0, two forward hyperboloids . (10)

In any other configuration, the singularity appears for ltope-momenta with imaginary components.

3 Cancellation of singularities among dual integrands

In this section we prove one of the main properties of thedd@e duality method, namely the partial
cancellation of singularities among different dual intagis. This represents a significant advantage
with respect to the integration of regular loop integralgha d-dimensional space, where one single
integrand cannot obviously lead to such cancellation.

Let’s consider first two Feynman propagators separated Imaeeslike distancel;f-i < 0 (or more
generally fulfilling Eq. [10)). In the corresponding duapresentation one of these propagators is set
on-shell and the other becomes dual, and the integratiom@ong the respective on-shell forward
hyperboloids. See again Fig. 1 (left) for a graphical repnéstion of this set-up. There, the two forward
hyperboloids of—k%; and —k3 intersect at a single point. Integrating overalong the forward hyper-
boloid of —k; we find that the dual propagat6t, (q:; ¢3), which is negative below the intersection point
where the integrand becomes singular, changes sign ahev@oint as we move from outside to inside
the on-shell hyperboloid of k3. The opposite occurs if we set on-shell;G(gs; ¢1) is positive below

4



the intersection point, and negative above. The changeaoflsads to the cancellation of the common
singularity. Notice that also the dudl prescription changes sign. In order to prove analyticdllg t
cancellation, we defing = q(Jg) q](-fg) + kj; 0. Inthe limitz — 0:

tim (5 (q:) Golass ) + (6 7)) = (3 - 3) qum 5 (a) +O"). (12)

T T

and thus the leading singular behaviour cancels among thetal contributions. The cancellation of
these singularities is not altered by the presence of otbesvanishing dual propagators (neither by
numerators) because

1
hm Gplg;; q) = lim
z=0 ( J(-E) + krio — Kjio)? — (%SB)P

= lim Gp(g;ar) , (12)

where we have used the identiy; o = ki o — kji 0. If instead, the separation is time-like (in the sense

of Eq. (9)), we define: = g} + ¢'} + k;, and find

tim (5 (6) Gl g5) + (1 3)) = —0(~hy0) ~ —

— 5(a ; : 0
lim » 2q](-f6) d(q)+ (i j)+0(z”). (13)
In this case the singularity of the integrand remains bexafithe Heaviside step function.

We should consider also the case in which more than two pedpegjbecome simultaneously singu-
lar. To analyse the intersection of three forward hyperislove define

Az = q§,o) - qj D+ ko Ay = qi(E) - q,ifo) + ki - (14)

As before, we use the identity,; o = ki; 0 — kji 0, and thusq 0 — q,~CO + kijo = A(y — x). In the limit
in which the three propagators become simultaneously tangu

,l\ii% (5 () Gpl(ai;¢;) Gplais qi) + perm.) =

L [1 1 1 11 )
- (L | .
X2 <$y+93(93—y) +y(y—g;)) 245 2q(+)6(qz)+O(A ) (15)

and again the leading singular behaviour cancels in the s@ilthough not shown for simplicity in
Eq. (I5), also thé (A1) terms cancel in the sum, thus rendering the integrand fimitied limit A\ — 0.
For three propagators there are also more possibilitiesfdwvard hyperboloids might intersect simul-
taneously with a backward hyperboloid, or two backward hyploids might intersect with a forward

hyperboloid. In the former case, we defme = g\t + ay) + Ko, andAy = ¢\ + gt + ko, with
krio < 0andky,o < 0, and hencqi,0 qj 0 )+ k:ﬂo = A( y). IntheX — 0 limit

lim <5 (QZ) GD((]“ q]) GD(C]z, Qk) -+ perm. ) —

A—0

O(—kpio) 9(—/%,0)% (m (yl_ ) + ; (xl_ y>) 1(+) 1(+) 5 (q) + O\ (16)




Notice that the singularity in/(x — y) cancels in Eq[(IG) (also &(\1)). In the latter case, we set as
before\ z = q(+) + q,i o Tt kkios and define\ z = ¢, , ) 4 qJ 0 ) 4 Ejio, then

lim (5 () Gp(ai;4;) Gp(ai; q) + perm) = —0(—kkip)
1 /1 11 -
<O(—kji0) = (—) 5(q) + O 17)
PRI \ gz 26.7](';) 2‘11(@ )

Similarly, it is straightforward to prove that four forwatd/perboloids do not lead to any common
singularity and more generally that the remaining multgilegularities are only driven by propagators
that are time-like connected and less energetic than thgagedor which is set on-shell.

Thus, we conclude that singularities of space-like sepdrptopagator@, occurring in the inter-
section of on-shell forward hyperboloids, are absent indhal representation of the loop integrand.
The cancellation of these singularities at the integrandllalready represents a big advantage of the
loop—tree duality with respect to the direct integratiorthia four dimensional loop space; it makes un-
necessary the use of contour deformation to deal numerigéih the integrable singularities of these
configurations. This conclusion is also valid for loop seattg amplitudes. Moreover, this property can
be extended in a straightforward manner to prove the padiatellation of infrared singularities.

Collinear singularities occur when two massless propagatee separated by a light-like distance,
k:]?i = 0. In that case, the corresponding light-cones overlap tamly along an infinite interval.
Assumingk;, > k;, however, the collinear singularity fdy > —k;, appears at the intersection of
the two forward light-cones, with the forward light-cone-ef; located inside the forward light-cone of
—k;, or equivalently, with the forward light-cone efk; located outside the forward light-cone ok,
Thus, the singular behaviour of the two dual componentsetaagainst each other, following the same
qualitative arguments given before. Fek;, < ¢, < —k;o, instead, it is the forward light-cone of
—k; that intersects tangentially with the backward light-cofie-k; according to Eq[(7). The collinear
divergences survive in this energy strip, which indeed kisits the range of the loop three-momentum
where infrared divergences can arise. If there are sevefalence momenta separated by light-like
distances the infrared strip is limited by the minimal andkmmal energies of the external momenta.
The soft singularity of the integrand @ffg) = (0 leads to soft divergences only if two other propagators,
each one contributing with one power in the infrared arbtHgke separated fromk:i. In Fig.[d (right)
this condition is fulfilled only at;r1 0 = 0, but not atq2 0 = 0 neither atq3 0 =

In summary, both threshold and infrared singularities arestrained in the dual representation of the
loop integrand to a finite region where the loop three-monm@ris of the order of the external momenta.
Singularities outside this region, occurring in the ingstton of on-shell forward hyperboloids or light-
cones, cancel in the sum of all the dual contributions.

4 Cancellation of infrared singularities with real corrections

Having constrained the loop singularities to a finite regbthe loop momentum space, we discuss now
how to map this region into the finite-size phase-space ofaghakcorrections for the cancellation of the

* Including light-like and time-like configurations such tt&g. (10) is fulfilled.



remaining infrared singularities. The use of collineatdazation and splitting matrices, encoding the
collinear singular behaviour of scattering amplitudesrioduced in Ref. [37, 38], is suitable for this
discussion.

€ »

Figure 2:Factorization of the dual one-loop and tree-level squared amplitudesin the collinear limit. The
dashed line represents the momentum conservation cut.

~
Dir .

We consider the interference of the one-loop scatteringlitudp Mg\l,) with the correspondingy-
parton tree-level scattering amplitudet(o), which is integrated with the appropriate phase-spaceifact

/déN(pl;pz,---,pN (H/ pz> (2m) sz , (18)

where we assume that only the external momengyris incoming ;o < 0). Then, we select the
corresponding dual contribution with the internal massla®s ¢; on-shell

IV = 2Re /d®N(p1;pz,---,pN)/5(qi) 0(pio — di))
)4

X <M§3)<p17apN)‘MN+2< "7pi7_qi7qi7pi+17"')> 9 (19)

where the loop energy in Eq. (19) is restricted by the enefgh@adjacent external massless particle
pio to select the infrared sector, according to the discussidheoprevious sections. We also consider
the N + 1-parton tree-level scattering amplitude

MY (1t ) = M (bl = D)) (20)

where an extra particle is radiated from partonvith p,. = p; + p/., and the complementary scatter-
ing amplltude/\/lNJrl that contains all the tree-level contributions with the eption of those already

included |n/\/l§3+§’” The corresponding interference, integrated over thegebpace of the final-state
particles, is

#uﬂm/mwmm;»mmgmmwwMﬁmmamw (21)

For the simplicity of the presentation, we do not considgaliekly in this paper the square df/l§8+§’”,

which is related with a self-energy insertion in an extetegland whose infrared divergences are re-
moved by wave-function remormalizatidn [20]. The finaltstaxternal momenta of the loop and tree
amplitudes in EqL(19) and Eq.(21), although labelled withgame indices, are constrained by different
phase-space momentum conservation delta functions. Aim@pptween the primed (real amplitudes)



and unprimed (virtual amplitudes) momenta is necessarymow she cancellation of collinear diver-
gences.

In the limit wherep; andq; become collinear the dual one-loop matrix elerné}rllfﬁir2 in Eq. (19)
factorizes as

~ =) - [
|MN+2( - Pis =4, i - - )> = SP(O)(]% —di; _Qi—l) |MN+1(' ey —Gi-1,45, - )> + O( %2_1) ) (22)
where the reduced matrix elemeﬁﬁrl is obtained by replacing the two collinear partons/\dﬁ\%Q
by a single parent parton with light-like momentum

2 H
~1 wo g1 N

T, 23
q;_1 q;i—1 QnQi—l ( )

with n* a light-like vectorp? = 0. Similarly, in the limit wherep’, andp’. become collinear the tree-level
matrix elemeniM V; !" factorizes as

r _(0)
(MO (o1, - D)) = (M oo Bty B Prars - ISP P B + O(Vs,) , (24)

wheres!, = p/?, and
s, nt

npir
is the light-like momentum of the parent parton. A graphreglresentation of the collinear limit of both
virtual and real corrections is illustrated in Fig. 2. Thisgh suggests that in the collinear limit the
mapping between the four-momenta of the virtual and reatim@ements should be such that= 7/,

pj = p;(j # 1), —¢i-1 = p; andg; = p,. Notice thatp] is restricted by momentum conservation but

¢; is not. However, the relevant infrared region is boundqﬁﬁ) < pio in EQ. (19). This restriction
allows to mapg; to p/.. The mapping, nevertheless, is not as obvious as can bedddumm Fig.[2
as the propagators that become singular in the collineat iimthe virtual and real matrix elements
are different. Reconsidering as the parent parton momentum of the collinear splitting fine the
following relation between splitting matrices entering tieal matrix elements

ZA),;T _ p;*

Sp " (v, 13 Bly) = % S (Bl —pril) (26)
where (pl, — pl.)?/s,. = —npl/np,.. We show now that the facternp,/np,, is compensated by the
phase-space. By introducing the following identity in thepe-space of the real corrections

/ ddpzr 6 (pzr - pz - pr) ) (27)

and performing the integration over the three-momeniijrand the energy component gf., the real
phase-space becomes

N Ez/r
/dq)NH(pl;p/Qa---) :/dq)N(pl%--’p;m---) / 5(17;») B (28)
j 28 i

where the facto(np,/np..)(E../E!) equals unity in the collinear limit. Inserting EQ. (22) in .H49),
and Eq.[(Z24), Eq.[(26) and Ed. (28) in EQ.](21) the loop and ¢m#ributions show to have a very
similar structure with opposite sign and match each othénheaintegrand level in the collinear limit.
Correspondingly, soft singularities gt — 0 can be treated consistently as the endpoint limit of the
collinear mapping.




5 Conclusions and outlook

The loop—tree duality method exhibits attractive thecedtaspects and nice properties which are man-
ifested by a direct physical interpretation of the singudaehaviour of the loop integrand. Integrand
singularities occurring in the intersection of on-shetiward hyperboloids or light-cones cancel among
dual integrals. The remaining singularities, excluding tivergences, are found in the intersection of
forward with backward on-shell hyperboloids or light-cerad are produced by dual propagators that
are light-like or time-like separated and less energetn ttihe internal propagator that is set on-shell.
Therefore, these singularities can be interpreted in t@fncausality and are restricted to a finite region
of the loop three-momentum space, which is of the size of fereal momenta. As a result, a local
mapping at the integrand level is possible between onedodgree-level matrix elements to cancel soft
and collinear divergences. One can anticipate that a simnlalysis at higher orders of the loop—tree
duality relation is expected to provide equally interegtresults. We leave this analysis for a future
publication.
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