
ar
X

iv
:h

ep
-p

h/
05

08
13

8v
1 

 1
1 

A
ug

 2
00

5

IFIC/05-37
hep-ph/0508138

Multigluonic scattering amplitudes of heavy quarks

Germán Rodrigo (a)∗

(a) Instituto de Fı́sica Corpuscular, CSIC-Universitat de València,
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1 Introduction

Production of jets at large transverse momentum with respect to the beam is the typical signature at high
energy hadron colliders, both for signal and background. The LHC will produce an enormous amount of
heavy quarks. Indeed it can be considered a heavy quark factory. Since heavy quarks will appear associ-
ated to jets, the calculation of multipartonic scattering amplitudes with heavy fermions is mandatory in
order to provide accurate phenomenological predictions. But the complexity of perturbative calculations
increases exponentially with the number of jets, in such a way that the usual expansion in Feynman
diagrams becomes prohibitive. Recursion relations withinthe helicity amplitude formalism [1, 2, 3]
have been proven to be an elegant and efficient tool to calculate multipartonic scattering amplitudes,
and might allow to overcome this problem. Together with the calculation of the scattering amplitudes,
more efficient methods to integrate over the intricate multipartonic phase-space are also required for the
development of Monte Carlo event generators.

Recursion relations have been extensively used in the literature at tree [4, 5] and one-loop level [6, 7]
in the past. Witten’s idea of a duality between supersymmetric Yang-Mills and topological string theories
in twistor space [8] has reopened the interest in this issue.Since then, a new method for the evaluation
of scattering amplitudes in gauge theories has been proposed [9]. It is based on the recursive use of off-
shell Maximal Helicity Violating amplitudes (MHV) [10]. Recent works have accomplished interesting
progress since the original formulation, and the method hasbeen refined by introducing more efficient
recursion relations [11, 12], and extending this approach to the one-loop level [13, 14]. Although ini-
tially formulated for massless particles the MHV rules havebeen generalized to include heavy particles.
Within this formalism recursion relations for massive scalar particles at tree-level have been introduced
in Ref. [16] and for vector boson and fermions in Ref. [15]. Those recursion relations have been used by
the authors of Ref. [17] to calculate multigluonic amplitudes with heavy scalars.

Due to the phenomenological impact of heavy quark production at LHC, we analyze in this paper
the potentiality of the Berends-Giele recursion relations[4] to evaluate several helicity amplitudes with
heavy quarks and an arbitrary number of gluons. We obtain compact expressions for some helicity
configurations. We find that this method provides efficientlyvaluable information for the calculation of
scattering amplitudes with heavy particles, in a complementary way to the MHV approach.

2 Scattering amplitudes with one quark-antiquark pair

Spinors for massive fermions can be constructed from two null vectors [18, 19, 20]. The decomposition
is however not unique, and the freedom to choose such vectorsmakes the helicity amplitude method
very powerful also for massive particles. We shall considerprocesses where quark-antiquark pairs are
produced. We denote bypµ

1 andpµ
2 , with p2

1 = p2
2 = m2, the end point four-momentum of the fermion

line. In terms of two light-like vectors (̂p2
1 = p̂2

2 = 0) the outgoing fermion-antifermion four-momenta
can be written as

pµ
1 =

1 + β

2
p̂µ

1 +
1 − β

2
p̂µ

2 ,

pµ
2 =

1 − β

2
p̂µ

1 +
1 + β

2
p̂µ

2 , (1)
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whereβ =
√

1 − 4m2/s12 is the velocity of the quark, ands12 = (p1+p2)
2. This momentum transforma-

tion is of course not unique. The advantage of our choice of normalization is that it preserves momentum
conservation since triviallŷp1 + p̂2 = p1 + p2, and hencês12 = (p̂1 + p̂2)

2 = s12. Furthermore, in the
massless limit we have:p1 → p̂1 andp2 → p̂2. The inverse transformation reads:

p̂µ
1 =

1 + β

2β
pµ

1 − 1 − β

2β
pµ

2 ,

p̂µ
2 = −1 − β

2β
pµ

1 +
1 + β

2β
pµ

2 . (2)

Then, we usêp1 andp̂2 as reference null vectors to define the quark-antiquark spinors:

ū±(p1, m) =
β
−1/2
+

〈2∓|1±〉〈2
∓| (p/1 + m) , v±(p2, m) =

β
−1/2
+

〈2∓|1±〉(p/2 − m) |1±〉 , (3)

whereβ± = (1 ± β)/2, and we use the shorthand notation|i±〉 = |p̂±i 〉. With this definition the massive
spinors have a smooth massless limit. Form = 0:

ū±(p1) = 〈1±| , v±(p2) = |2∓〉 . (4)

We consider now a quark-antiquark vector current. In the helicity basis, we find:

Sµ(1±q , 2∓q̄ ) = ū±(p1, m)γµv∓(p2, m) = 〈1±|γµ|2±〉 . (5)

Namely, the vector current has the same functional form as the massless one but replacing the massless
momenta by the corresponding null vectors used to define the massive spinors. For massive fermions,
we shall consider also the case of helicity flip along the fermion line, which would vanish in the massless
limit. We obtain:

Sµ(1±q , 2±q̄ ) = ū±(p1, m)γµv±(p2, m) =
2 m

〈2∓|1±〉 (p̂2 − p̂1)
µ . (6)

Generalizing these results to the insertion of an arbitraryodd number of gamma matrices between
the spinors, the following useful properties hold:

Sµ1...µ2n+1(1±q , 2∓q̄ ) = ū±(p1, m)γµ1 · · · γµ2n+1v∓(p2, m)

= β+〈1±|γµ1 · · · γµ2n+1 |2±〉 + β−〈1±|γµ2n+1 · · · γµ1 |2±〉 , (7)

and

Sµ1...µ2n+1(1±q , 2±q̄ ) = ū±(p1, m)γµ1 · · · γµ2n+1v±(p2, m)

=
m

〈2∓|1±〉
(

〈2∓|γµ1 · · ·γµ2n+1 |2∓〉 − 〈1±|γµ1 · · · γµ2n+1 |1±〉
)

. (8)

In the massless limitβ+ → 1 andβ− → 0, and only the first term in Eq. (7) survives, while Eq. (8)
obviously vanishes. Similar relations can be derived for the insertion of an even number of gamma
matrices as well, but those are not needed for the current purpose of this paper.

In the following we will consider the quark-antiquark vector current, with emission of an arbitrary
number of gluonsV µ → qq̄ + (n − 2)g. The colour decomposition is such that

Ŝµ(1q; 2, 3, . . . , n − 1; nq̄) = gn−2
S

∑

P (2,...,n−1)

(T a2T a3 · · ·T an−1) Sµ(1q; 2, 3, . . . , n − 1; nq̄) , (9)

whereP (2, . . . , n − 1) is the permutation group of all the gluons, andT ai are colour matrices in the
fundamental representation.

2



3 Spinorial off-shell currents

Recursion relations for the calculation of the spinorial current of a quark-antiquark pair andn-gluons,
where either the quark or the antiquark are off-shell, have been derived long time ago [4]. Those recur-
sion relations are valid regardless the massive or masslesscharacter of the quark-antiquark pair, although
explicit results where obtained only in the massless approximation. In this Section, we use these recur-
sion relations to extend their results to the heavy quark case.

The colour ordered spinorial current of an on-shell quark offour-momentump1 and(m − 1)-gluons
of four-momentap2 to pm is given in terms of the spinorial current of the on-shell quark with less gluons,
and the off-shell gluonic currentJµ of the rest of the gluons:

S(1q; 2, . . . , m) = −
m−1
∑

k=1

S(1q; 2, . . . , k)J/(k + 1, . . . , m)
1

p/1,m − m
, (10)

wherep1,m = p1 + p2 + . . . + pm andS(1q) = ū(p1, m). For all gluons of positive helicity the gluonic
current has the form [4]:

Jµ(i+, . . . , j+) =
〈ξ|γµp/i,j|ξ〉√

2〈ξi〉〈i (i + 1)〉 · · · 〈jξ〉
. (11)

The null vectorξ is the reference gauge vector which is assumed to be the same for all the gluons.
Conversely, for the off-shell quark current one has

S(m + 1, . . . , n − 1; nq̄) =
1

p/m+1,n + m

n
∑

k=m+2

J/(m + 1, . . . , k − 1)S(k, . . . , n − 1; nq̄) , (12)

the antiquark carrying four-momentumpn, andS(nq̄) = v(pn, m).

It is convenient to work in the gauge whereξ = p̂n, wherep̂n is the reference null vector of the
antiquark. In that gauge, diagrams with gluons of positive helicity attached to an antiquark of negative
helicity do not contribute in the massless approximation. This is not the case for massive quarks, but
that choice of gauge still provides some simplifications. Furthermore:m2 = β+β−〈1ξ〉[ξ1]. For the
complementary helicity configurations it would be convenient to chooseξ = p̂1 instead.

The no-gluon, one-gluon, and two-gluon spinorial quark currents are

S(1+
q ) = ū+(p1, m) =

β
−1/2
+

〈ξ1〉 〈ξ|(p/1 + m) = β
1/2
+ [1| + β

−1/2
+

m

〈ξ1〉 〈ξ| , (13)

S(1+
q ; 2+) = −S(1+

q ) ε/+
2

1

p/12 − m
= −S(1+

q )
|2]

y12〈ξ2〉
〈ξ|(p/12 + m) , (14)

S(1+
q ; 2+, 3+) = −

(

S(1+
q ; 2+)ε/+

3 + S(1+
q )J/(2+, 3+)

) 1

p/1,3 − m

=
S(1+

q )

y1,3 〈ξ2〉〈ξ3〉

(

|2]

y12

〈ξ|p/12|3] +
p/23|ξ〉
〈23〉

)

〈ξ|(p/1,3 + m) , (15)
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where we definedy1,n = p2
1,n − m2. After some algebra we can simplify further the two-gluon current

S(1+
q ; 2+, 3+) = − S(1+

q )

〈23〉y12

(

|2]

〈ξ3〉 + β−

|ξ][23]

y1,3

)

〈ξ|(p/1,3 + m) . (16)

Then, we factorize the off-shell current into the form

S(1+
q ; 2+, . . . , n+) = −S(1+

q )

y12
X(1+

q ; 2+, . . . , n+) 〈ξ|(p/1,n + m) , (17)

where

X(1+
q ; 2+) =

|2]

〈ξ2〉 ,

X(1+
q ; 2+, 3+) =

1

〈23〉

(

|2]

〈ξ3〉 + β−

|ξ][23]

y1,3

)

. (18)

The massless limit forces the off-shell massive current to have the following structure

X(1+
q ; 2+, . . . , n+) =

1

〈23〉〈34〉 . . . 〈(n − 1)n〉

[

|2]

〈ξn〉 + β− |ξ] A(1+
q ; 2+, . . . , n+)

]

. (19)

From Eq. (12), we can easily derive a recursion relation for theX factor of the off-shell current

X(1+
q ; 2+, . . . , n+) =

1

〈ξn〉 y1,n

[

− p/2,n|ξ〉 y12

〈ξ2〉〈23〉 . . . 〈(n − 1)n〉

+
n−2
∑

k=2

X(1+
q ; 2+, . . . , k+)

〈ξ|p/1,kp/k+1,n|ξ〉
〈ξ(k + 1)〉〈(k + 1)(k + 2)〉 . . . 〈(n − 1)n〉

− X(1+
q ; 2+, . . . , n − 1+)〈ξ|p/1,n−1|n]

]

. (20)

To simplify this recursion relation further and derive an equivalent recursion relation for the functionA,
we multiply and divide the last term of Eq. (20) by〈(n − 1)n〉, such that

〈ξ|p/1,n−1|n]〈(n − 1)n〉 = 〈n − 1|p/np/1,n−1|ξ〉 = 〈n − 1|(p/1,n − p/1,n−2)p/1,n)|ξ〉
= 〈n − 1|p2

1,n − p/1,n−2(p/1,n−2 + p/n−1,n)|ξ〉
= −y1,n〈ξ(n − 1)〉 − 〈n − 1|y1,n−2 + p/1,n−2p/n−1,n|ξ〉 . (21)

The first term in the rhs of Eq. (21) generates the first term of the rhs of Eq. (19). Then, it is clear that
in order to fulfill the massless limit, the remaining contributions have to either cancel to each other or be
proportional toβ−. The proof follows by induction. Assuming that Eq. (19) is true forn − 1, we show
that it is also true forn through the recursion relation in Eq. (20). For that, we use recursively the Fierz
identity:

〈k| =
1

〈ξ(k − 1)〉 (〈k(k − 1)〉〈ξ|+ 〈ξk〉〈k − 1|) , (22)

and
〈k|y1,k + p/1,kp/k+1,n|ξ〉 = 〈k|y1,k−1 + p/1,k−1p/k,n|ξ〉 . (23)
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This results into the following recursion relation for the correspondingA function:

A(1+
q ; 2+, . . . , n+) =

1

〈ξn〉y1,n

[

n−1
∑

k=2

A(1+
q ; 2+, . . . , k+)

〈k(k + 1)〉
〈ξ(k + 1)〉 〈ξ|p/1,kp/k+1,n|ξ〉 − [2|p/3,n|ξ〉

]

,

(24)

where

A(1+
q ; 2+) = 0, A(1+

q ; 2+, 3+) =
[23]

y1,3
. (25)

From Eq. (24) we find

A(1+
q ; 2+, 3+, 4+) = A(1+

q ; 2+, 3+)

(

〈ξ3〉
〈ξ4〉 +

[2|p/1p/23|4]

[23] y1,4

)

. (26)

To obtain this result we have transformed he last term in the rhs of Eq. (24) in the following way

[2|p/3,n|ξ〉 = A(1+
q ; 2+, 3+)

[2|y1,3p/3,n|ξ〉
[23]

= A(1+
q ; 2+, 3+)

(

[2|p/1p/23p/4,n|ξ〉
[23]

+ 〈3|p/12p/3,n|ξ〉
)

. (27)

Assuming that for an arbitrary number of gluons larger than two theA function has the form

A(1+
q ; 2+, . . . , n+) = A(1+

q ; 2+, 3+)

(

〈ξ3〉
〈ξn〉 +

Ā(1+
q ; 2+, . . . , n+)

[23]

)

, (28)

theĀ function fulfills the recursion relation

Ā(1+
q ; 2+, . . . , n+) =

1

〈ξn〉y1,n

[

n−1
∑

k=4

Ā(1+
q ; 2+, . . . , k+)

〈k(k + 1)〉
〈ξ(k + 1)〉 〈ξ|p/1,kp/k+1,n|ξ〉 − [2|p/1p/23p/4,n|ξ〉

]

.

(29)

By solving this equation recursively, we get finally

Ā(1+
q ; 2+, . . . , n+) =

n−4
∑

j=1

Ā(1+
q ; 2+, 3+, 4+)〈45〉〈ξ|p/1,4p/5,w1

|ξ〉 − 〈ξ5〉[2|p/1p/23p/4,w1
|ξ〉

y1,w1
· · · y1,wj

× 〈w1(w1 + 1)〉 · · · 〈wj−1(wj−1 + 1)〉〈ξ|p/1,w1
p/w1+1,w2

|ξ〉 · · · 〈ξ|p/1,wj−1
p/wj−1+1,wj

|ξ〉
〈ξ5〉〈ξw1〉〈ξ(w1 + 1)〉 · · · 〈ξwj−1〉〈ξ(wj−1 + 1)〉〈ξn〉 ,

(30)

wherewk ǫ {5, n}, andw1 < w2 < . . . < wj with wj = n. This completes the calculation of the off-shell
quark spinorial current.

3.1 Antiquark off-shell current

Very similar results can be obtained for the antiquark spinorial current when the antiquark carries nega-
tive helicity. The no-gluon, one-gluon and two-gluon currents are given by

S(n−
q̄ ) = β

1/2
+ |ξ〉 + β

−1/2
+

m

[1ξ]
|1] = −β

1/2
+

m
(p/n − m)|ξ〉 , (31)
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S(2+; 3−q̄ ) = (p/23 − m)|ξ〉 [2|
〈ξ2〉y23

S(3−q̄ ) , (32)

S(2+, 3+; 4−q̄ ) = (p/2,4 − m)|ξ〉
(

[3|
〈ξ2〉 − β+

[23][ξ|
y2,4

)

S(4−q̄ )

〈23〉y34
. (33)

For an arbitrary number of gluons, we have in general

S(k+, . . . , n − 1+; n−
q̄ ) = (p/k,n − m)|ξ〉X(k+, . . . , n − 1+; n−

q̄ )
S(n−

q̄ )

yn−1,n
, (34)

with

X(k+, . . . , n − 1+; n−
q̄ ) =

1

〈k(k + 1)〉 · · · 〈(n − 2)(n − 1)〉

×
[

[n − 1|
〈ξk〉 − β+ [ξ|A(k+, . . . , n − 1+; n−

q̄ )

]

, (35)

where

A(k+, . . . , n − 1+; n−
q̄ ) = A(n − 2+, n − 1+; n−

q̄ )

(

〈ξ(n − 2)〉
〈ξk〉 + Ā(k+, . . . , n − 1+; n−

q̄ )

)

. (36)

A recursion relation similar to Eq. (29) can also be obtainedfor this antiquark current, leading to an
expression similar to Eq. (30) where now the labeling of the four-momenta runs backwards.

4 On-shell scattering amplitudes

From the spinorial off-shell current one can calculate the amplitude for the process ofn − 2 outgoing
gluons and a quark-antiquark pair. This amplitude is obtained from the quark-gluon spinorial current
with n − 2 gluons, by removing the propagator of the off-shell quark, contracting the current with the
antiquark spinor and imposing momentum conservation

S(1+
q ; 2+, . . . , n − 1+; n∓

q̄ ) = −y1,n−1

y12

S(1+
q )X(1+

q ; 2+, . . . , n − 1+)〈ξ|S(n∓
q̄ )
∣

∣

∣

∣

p1,n=0
. (37)

The helicity conserving amplitude annihilates, and for thehelicity flip amplitude we get

S(1+
q ; 2+, . . . , n − 1+; n+

q̄ ) =
m3

β+y12

y1,n−1A(1+
q ; 2+, . . . , n − 1+)

〈23〉〈34〉 · · · 〈(n − 2)(n − 1)〉〈n1〉

∣

∣

∣

∣

∣

y1,n−1=0

. (38)

In particular

S(1+
q ; 2+, 3+; 4+

q̄ ) =
m3

β+y12

[23]

〈23〉〈41〉 . (39)
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5 Quark-antiquark vector current

From the results obtained in the previous sections we can also calculate the off-shell quark-antiquark
vector current

Sµ(1q; 2, . . . , n − 1; nq̄) =
n−1
∑

k=1

S(1q; 2, . . . , k)γµS(k + 1, . . . , n − 1; nq̄) . (40)

For all gluons of positive helicity all the terms contributing to the sum in Eq. (40) have the form

Sµ
k (1+

q ; 2+, . . . , n − 1+; n∓
q̄ ) ∝ 〈ξ|(p/1,k + m)γµ(p/k+1,n − m)|ξ±〉 . (41)

Then, after some algebra we find that

Sµ
k (1+

q ; 2+, . . . , n − 1+; n−
q̄ ) ∝ −m〈ξ|p̂/1,n−1γ

µ|ξ〉 , (42)

Sµ
k (1+

q ; 2+, . . . , n − 1+; n+
q̄ ) ∝ 〈ξ|p/1,kγ

µp/k+1,n|ξ] − 2m2ξµ , (43)

Particularly interesting is the helicity conserving current. In that case all the terms are proportional to
the same quantity, where now the quark four-momentum has been replaced by its reference null vector
p̂1. Since in Eq. (42) only massless vectors appear some properties that hold for massless scattering
amplitudes can be generalized to the massive case directly without further proof. For some applications
see Section 6. We obtain the following expression for the helicity conserving vector current:

Sµ(1+
q ; 2+, . . . , n − 1+; n−

q̄ ) =
1

〈23〉〈34〉 · · · 〈(n − 2)(n − 1)〉

{

β+[12]

〈ξ(n − 1)〉y12
− β−[1(n − 1)]

〈ξ2〉yn−1,n

+
m2

〈ξ1〉

[

1

y12
A(1+

q ; 2+, . . . , n − 1+) +
1

yn−1,n
A(2+, . . . , n − 1+; n−

q̄ )

]

− 1

y12 yn−1,n

m2

[1ξ]

n−2
∑

k=2

〈k(k + 1)〉
[

[12]

〈ξk〉 + β−[1ξ]A(1+
q ; 2+, . . . , k+)

]

×
[

[(n − 1)1]

〈ξ(k + 1)〉 + β+[1ξ]A(k + 1+, . . . , n − 1+; n−
q̄ )

]}

〈ξ|p̂/1,n−1γ
µ|ξ〉 . (44)

In the massless limit, the current in Eq. (44) agrees with theBerends-Giele current [4]:

Sµ(1+
q ; 2+, . . . , n − 1+; n−

q̄ )

∣

∣

∣

∣

m=0
=

〈ξ|p/1,n−1γ
µ|ξ〉

〈12〉〈23〉 · · · 〈(n − 1)ξ〉 . (45)

In the following we present some simple examples.

5.1 Single gluon emission

Let us consider a quark-antiquark vector current with emission of one single gluon off the quark-
antiquark pair. For the helicity conserving vector current, we find:

Sµ(1+
q ; 2+; 3−q̄ ) =

(

β+

y12
− β−

y23

)

[12]

〈ξ2〉〈ξ|p̂/12γ
µ|ξ〉 = β

[1|2|ξ〉
y12 y23

〈ξ|p̂/12γ
µ|ξ〉 . (46)

The helicity flip configuration is also quite simple, we get

Sµ(1+
q ; 2+; 3+

q̄ ) = m

[(

β+

y12

− β−

y23

)

[12]

〈ξ2〉 2(p̂3 − p̂1)
µ +

1

〈ξ1〉 [2|
(

p̂/1

y12

+
p̂/3

y23

)

γµ|2〉
]

, (47)

which clearly annihilates in the massless limit.
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5.2 Two gluons vector current

The helicity conserving vector current with emission of twogluons is

Sµ(1+
q ; 2+, 3+; 4−q̄ ) =

[

1

〈23〉

(

[12] β+

〈ξ3〉 y12

− β−[13]

y34 〈ξ2〉

)

− m2

y12 y34

[21][31]

〈ξ2〉〈ξ3〉[1ξ]

− m2[32]

〈23〉〈ξ1〉

(

1

y12 y1,3
+

1

y34 y2,4

)]

〈ξ|p̂/123γ
µ|ξ〉 . (48)

6 Higgs production together with heavy quarks

One of the main objectives of the LHC program is the discoveryof the Higgs boson. Gluons couple to
Higgs through a top quark loop dominantly, where the top can be integrating out leading to an effective
interaction. MHV rules for Higgs plus multiparton amplitudes have been presented in Refs. [21, 22]
in that effective theory. The naive off-shell continuationof the Higgs vertices depends of the gauge
spinor however, and therefore do not work as MHV amplitudes.This problem is solved by splitting the
Lagrangean into a self-dual and an anti-self-dual part, andintroducing a complex scalar where the Higgs
is one of its componentsφ = 1

2
(H + iA).

In the heavy top quark effective theory amplitudes ofφ-scalars coupled to a quark-antiquark pair and
any number of gluons of positive helicity vanish [22]

An(φ, q±1 , g+
2 , . . . , g+

n−1, q̄
∓
n ) = 0 . (49)

In this section we shall extend this result to the heavy quarkcase. The proof follows almost straitforward
from the amplitudes that we have calculated in Section 5. Thehelicity conserving vector current of a
heavy quark-antiquark pair andm − 2 gluons is

Sµ(1+
q , 2+, . . . , m − 1+, n−

q̄ ) = N2,m−1〈ξ|p̂/1,m−1γ
µ|ξ〉 , (50)

and the vector current of all gluons of positive helicity [4]reads

Jµ(m+, . . . , n − 1+) = Nm,n−1〈ξ|γµp/m,n−1|ξ〉 . (51)

The normalization factorsN are irrelevant for the present proof. What is important is that Eq. (50)
has the same functional form in the massive and in the massless case, wherêp1 is the null vector used
to define the quark spinor. The 3-pointφgg vertex of two off-shell gluons of momentak1 andk2 and
Lorentz indicesµ1 andµ2 is given by [22]:

V φ
µ1µ2

(k1, k2) = gµ1µ2
k1 · k2 − k1µ2

k2µ1
+ iεµ1µ2ν1ν2

kν1

1 kν2

2 . (52)

Then, one can computeAn(φ, q+
1 , g+

2 , . . . , g+
n−1, q̄

−
n ) by contracting the vertex with the currents in Eq. (50)

and Eq. (51), wherek1 = p1,m−1 + pn = p̂1,m−1 + p̂n, andk2 = pm,n−1.

The 3-pointφgg vertex contracted with the quark-antiquark and the Berends-Giele currents gives

V φ
µνS

µJν = (k1 · k2)(S · J) − (k1 · J)(k2 · S)

+
1

4

n−1
∑

i=m

(〈i|γµγνk/1|i] + [i|γµγνk/1|i〉) SµJν . (53)
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Fierzing the gluonic current

J/ = 2Nm,n−1

n−1
∑

j=m

(|j]〈ξ| + |ξ〉[j|) 〈jξ〉, (54)

and after some algebra, we find

V φ
µνS

µJν = Nm,n−1
k2

2

2
〈ξ|[S/, k/1]|ξ〉 , (55)

where[S/, k/1] is the commutator of the quark-antiquark current with its total momentum. Fierzing the
quark-antiquark current

S/ = 2N2,m−1

m−1
∑

i=1

(|i]〈ξ| + |ξ〉[i|) 〈ξi〉, (56)

the 3-point vertex obviously cancels since in Eq. (55):〈ξ|S/ = 0 andS/|ξ〉 = 0.

7 Conclusions

We have calculated several tree-level multigluonic helicity amplitudes with heavy quarks. Our approach
is based on the Berends-Giele recursive relations. We have shown that the method can be easily applied
for the evaluation of multipartonic scattering amplitudeswith heavy particles, and leads to compact
results. We have considered scattering amplitudes with allgluons of the same helicity only, but other
helicity configurations can be calculated efficiently as well. Furthermore, interesting phenomenological
implications can be derived from the general structure of multipartonic amplitudes.
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A Spinors and polarization vectors

Massive spinors of four-momentumpµ and massm can be constructed with the help of two null vectors
p̂µ andq̂µ as follows:

u±(p, m) =
N

〈p̂∓|q̂±〉(p/+ m) |q̂±〉 , ū±(p, m) =
N

〈q̂∓|p̂±〉〈q̂
∓| (p/+ m) ,

v±(p, m) =
N

〈p̂∓|q̂±〉(p/− m) |q̂±〉 , v̄±(p, m) =
N

〈q̂∓|p̂±〉〈q
∓| (p/− m) , (57)
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whereN = (p · q̂/p̂ · q̂)−1/2 is the normalization factor. Those spinors trivially fulfill the Dirac equation:

(p/− m) u(p, m) = 0 , (p/+ m) v(p, m) = 0 , (58)

and the completeness relation
∑

λ=±

u−λūλ = p/+ m ,
∑

λ=±

v−λv̄λ = p/− m . (59)

The polarization vector of an outgoing gluon of momentumkµ is defined as

ε±µ (k, ξ) = ±〈ξ∓|γµ|k∓〉√
2〈ξ∓|k±〉

, (60)

whereξµ is an arbitrary gauge reference momentum satisfyingξ2 = 0. The polarization vector contracted
with the gamma matrices reads as follows:

ε/±(k, ξ) = ±
√

2

〈ξ∓|k±〉
(

|k∓〉〈ξ∓| + |ξ±〉〈k±|
)

. (61)

Other practical properties helping to simplify calculations are

〈i∓| ε/±(k, ξ) k/ = 0 , k/ε/±(k, ξ) |i±〉 = 0 , (62)

and
〈ξ∓|ε/±(k, ξ) = 0 , ε/±(k, ξ)|ξ±〉 = 0 . (63)

Finally, if we choose the reference momenta for all gluons tobe the same, then it follows that

ε±(ki, ξ) · ε±(kj.ξ) = 0 . (64)
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