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Abstract. The measurement of the pion form factor and, more generally, of the cross section for electron–
positron annihilation into hadrons through the radiative return has become an important task for high
luminosity colliders such as the Φ- or B-meson factories. For detailed understanding and analysis of this
reaction, the construction of a Monte Carlo program, PHOKHARA, has been undertaken. Version 2.0 was
based on a next-to-leading order (NLO) treatment of the corrections from initial-state radiation (ISR). In
the present paper a further extension of PHOKHARA (version 3.0) is described, which incorporates NLO
corrections to final-state radiation (FSR). The impact of combined ISR and FSR on various distributions
is investigated and methods are presented, which will allow the extraction of the form factor, and even give
access to inclusive photon emission due to FSR. The dependence of the results on the model for FSR is
discussed and the impact of this contribution on the anomalous magnetic moment of the muon is evaluated.

1 Introduction

Electron–positron annihilation into hadrons is one of the
basic reactions of particle physics, crucial for the under-
standing of hadronic interactions. At high energies, around
the Z resonance, the measurement of the inclusive cross
section and its interpretation within perturbative QCD [1,
2] give rise to one of the most precise and theoretically
founded determinations of the strong coupling constant
αs [3]. Also, measurements in the intermediate energy re-
gion, between 3 GeV and 11 GeV can be used to determine
αs and at the same time give rise to precise measurements
of charm and bottom quark masses [4]. The low energy re-
gion is crucial for predictions of the hadronic contributions
to aµ, the anomalous magnetic moment of the muon, and
to the running of the electromagnetic coupling from its
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value at low energy up to MZ (for reviews see e.g. [5,6,
7,8,9]; the most recent experimental result for aµ is pre-
sented in [10]). Last, but not least, the investigation of the
exclusive final states at large momenta allows for tests of
our theoretical understanding of form factors within the
framework of perturbative QCD. Beyond the intrinsic in-
terest in this reaction, these studies may provide impor-
tant clues for the interpretation of exclusive decays of B-
mesons, a topic of evident importance for the extraction
of CKM matrix elements.

Measurements of the cross section for electron–positron
annihilation were traditionally performed in the scanning
mode, i.e. by varying the beam energies of the collider.
The recent advent of Φ- and B-meson factories with enor-
mous luminosities allows us to exploit the radiative re-
turn to explore the whole energy region from threshold
up to the nominal energy of the collider. Photon radiation
from the initial state reduces the cross section by a fac-
tor O(α/π). However, this is easily compensated by the
enormous luminosity of ‘factories’ and the advantage of
performing the measurement over a wide range of ener-
gies in one homogeneous data sample [11] (for an early
proposal along these lines, see [12]). In principle the reac-
tion e+e− → γ+hadrons receives contributions from both
initial- and final-state radiation. Only the former is of in-
terest for the radiative return; the latter has to be elim-
inated by suitably chosen cuts. The proper analysis thus
requires the construction of Monte Carlo event generators.
The event generator EVA was based on a leading order
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treatment of ISR and FSR, supplemented by an approx-
imate inclusion of additional collinear radiation based on
structure functions and included two-pion [11] and four-
pion final states [13]. Subsequently the event generator
PHOKHARA was developed; it is based on a complete
next-to-leading order (NLO) treatment of ISR [14,15,16,
17,18,19,20]. In its version 2.0 it included ISR at NLO
and FSR at leading order (LO) for π+π− and µ+µ− fi-
nal states (and four-pion final states without FSR in the
formulation described in detail in [13]).

Recent preliminary experimental results indeed demon-
strate the power of the method and seem to indicate that a
precision of one per cent or better is within reach [21,22,
23,24,25,26,27,28,29,30,31,32]. In view of this progress
a further improvement of our theoretical understanding
seems to be required. In the present work we therefore
present a new version (version 3.0) of PHOKHARA, which
allows for the ‘simultaneous’ emission of one photon from
the initial and one photon from the final state, requiring
only one of them to be hard. This includes in particular the
radiative return to π+π−(γ) and thus the measurement of
the (one-photon) inclusive π+π− cross section. The new
version of PHOKHARA and various tests of its technical
precision will be presented and several suggestions for a
model-independent extraction of the form factor will be
discussed.

The issue of photon radiation from the final states is
closely connected to the question of π+π−(γ) contribu-
tions to aµ (for related discussions, see e.g. [7,33]). Soft
photon emission is clearly described by the point-like pion
model. Hard photon emission, with Eγ ≥ O(100 MeV),
however, might be sensitive to unknown hadronic physics.
We will therefore study the size of virtual, soft and hard
corrections separately, and argue that contributions from
the hard region, above 100 MeV, are small with respect to
the present experimental and theory-induced uncertainty.

The outline of the present paper is the following. In
section 2 we recall the basic aspects of the radiative re-
turn in leading order, define strategies to separate ISR
and FSR through cuts, and discuss their markedly differ-
ent angular distribution and the characteristic feature of
ISR–FSR interference. In section 3 we present the estimate
of π+π−(γ) contributions to aµ. Section 4 is devoted to the
description of the additional two-photon corrections orig-
inating from simultaneous ISR–FSR emission and their
implementation in PHOKHARA 3.0. The impact of these
new terms on various distributions is described in section
5. A brief summary and our conclusions can be found in
section 6.

2 ISR versus FSR and the radiative return at

leading order

Let us, in a first step, recall the basic ingredients for a
proper exploitation of the enormous luminosity at Φ- and
B-meson factories through the radiative return. In this pa-
per we will concentrate on the measurement of the π+π−

final state, accompanied by one or two photons. We shall

e+e� �+��


(a)
e+e� �+��(b)

Fig. 1. Leading order contributions to the reaction e+e− →
π+π−γ from ISR (a) and FSR (b).

start with a discussion of the leading process, with only
one photon, radiated from the electron (positron) or the
hadronic system:

e+ e− → π+(p+) π−(p−) γ . (1)

For the radiative return this corresponds to the Born ap-
proximation, and higher order corrections will be discussed
below. The amplitude of interest describes radiation from
the initial state (ISR) and is depicted in Fig. 1a (per-
mutations of photon lines will always be omitted). It is
proportional to the pion form factor, evaluated at Q2 =
(p+ + p−)2. However, radiation from the charged pions
(FSR) (Fig. 1b) evidently leads to the same final state
and must be suppressed and controlled with sufficient pre-
cision. A variety of methods, which have already been de-
scribed in [11,16,18], will be recalled in the following.

The fully differential cross section describing photon
emission can be split into three pieces

dσ = dσISR + dσFSR + dσINT , (2)

which originate from the squared ISR and FSR amplitudes
respectively, plus the interference term. They depend on
two Dalitz variables, which characterize the energies of
π+ and π− and the photon, and on the three Euler angles
describing the orientation of the π+π−γ production plane
in the centre-of-mass system (cms). The dependence on
the azimuthal angle around the beam direction is trivial
in the case of unpolarized beams.

The interference term, dσINT, is antisymmetric under
the exchange of π+ and π− or e+ and e−. This allows us
to test the model for FSR and, furthermore, can even lead
to a measurement of the amplitude AFSR. The usefulness
of this method has already been emphasized in [11].

Let us, for the moment, concentrate on the charge-
symmetric pieces. The inclusive photon spectrum, sep-
arated according to ISR and FSR, is shown in Fig. 2.
The discrimination between ISR and FSR is based on
the markedly different angular distribution of the photon.
Without any assumption on the nature of FSR, the cross
section can be written in the form

Q2 dσ

dQ2d cos θγ

=
4α3

3s
|F (Q2)|2 β3(s)

4

×
[

(s2 + Q4)

s(s − Q2)

1

1 − cos2 θγ

− s − Q2

2s

]

+A1(s, Q
2) cos2 θγ + A2(s, Q

2) sin2 θγ , (3)
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Fig. 2. Contributions to the inclusive photon spectrum from ISR compared to ISR plus FSR at
√

s = 1.02 GeV (a) (without
and with cuts) and

√
s = 10.52 GeV (c). In (b) and (d) the relative contribution of FSR is plotted (multiplied by a factor of

10 for
√

s = 1.02 GeV, when cuts are applied).

where Q2 is the invariant mass of the π+, π− system, θγ

is the photon polar angle and β(s) =
√

1 − 4m2
π/s. Terms

∼ m2
e/s are neglected for simplicity, while they are present

in the program. Fitting the observed photon distribution
to this form allows an unambiguously separation of ISR
and FSR. The composition of the angular distribution of
photons from the two components is displayed in Fig. 3
for three photon energies.

The second option is based on the fact that FSR is
dominated by photons collinear to π+ or π−, ISR by pho-
tons collinear to the beam direction. This suggests that
we should consider only events with photons well sepa-
rated from the charged pions and preferentially close to
the beam [11,16,18]. The contamination of the events with
FSR is reduced to less than five per mille (Fig. 2b). Con-
sidering just the inclusive photon distribution, without in-
clusion of any cut would necessarily have led us to wrong
conclusions. For higher beam energies, the LO FSR is nat-

urally suppressed and at
√

s = 10.52 GeV it is entirely
negligible (Fig. 2d).

The interference term is asymmetric under the ex-
change of π+ and π− or electron and positron:

dσINT(p+, p−) = −dσINT(p−, p+). (4)

This gives rise to a forward–backward asymmetry of the
inclusive pion distribution [11]. In kinematical regions where
FSR is relatively more pronounced, the interference term
is relatively large (Fig. 4c, Q2 between 0.84 and 0.85 GeV2)
and vice versa (Figs. 4a and 4b). Note that all these con-
siderations refer to the low energy analysis of KLOE. At
high energies, e.g. at B-factories, ISR and FSR are clearly
separate for the π+π−γ final state.

Similar tests were already performed by KLOE [23],
where it was demonstrated that inclusive photon asym-
metries are in excellent agreement with the EVA MC [11],
where FSR emission is modelled by point-like pions. Given
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Fig. 3. Angular distribution of photons with Eγ ∈ (314, 319)
MeV (a), Eγ ∈ (221, 226) MeV (b) and Eγ ∈ (93, 98) MeV (c),
separated according to ISR and FSR. The curves represent the
fits according to Eq. (3).

enough statistics, the charge-asymmetric piece of the cross
section can even be investigated for every point in the
Dalitz plane, e.g. as a function of Q2 and the angle be-
tween π+ and γ separately. Keeping these variables fixed
and varying the angle between photon and electron, the
relative amount of the ISR amplitude can be varied dras-
tically, while the FSR amplitude stays roughly constant.
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Fig. 4. Contributions of ISR, FSR and INT terms to pion
polar angle differential cross section for three different ranges
of Q2.

Alternatively, we could formulate the angular distri-
butions in terms of independent helicity amplitudes for
FSR, which depend on the two Dalitz variables only, and
deduce information on these amplitudes from their inter-
ference with the ISR amplitude. In the absence of any
model for FSR beyond scalar QED (sQED) and in view
of the fact that sQED will presumably provide a satisfac-
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tory description at DAΦNE energies we shall not dwell
further on this subject.

Let us summarise the main points of this ‘leading or-
der’ discussion:

1. The cross sections for photon emission from ISR and
FSR can be disentangled as a consequence of the marked
difference in angular distributions between the two pro-
cesses, Eq. (3). This observation is completely gen-
eral and does not rely on any model like sQED for
FSR. This allows us to measure the cross section for
σ(e+e− → γ∗ → π+π−γ) directly for fixed s as a func-
tion of Eγ , an important ingredient in the analysis of
hadronic contributions to aµ, as discussed in Section 3.
Alternatively we can employ suitable angular cuts to
separate the two components.

2. Various charge-asymmetric distributions can be used
for independent tests of the FSR model amplitude,
with the forward–backward asymmetry as simplest ex-
ample. Typically the charge asymmetry is large in the
region where ISR and FSR are comparable in size and
small when the separation is clean and simple from
general considerations. A typical case for this second
possibility is the radiative return at

√
s = 10.52 GeV,

at the B-meson factories, where the π+π−γ final state
is completely dominated by ISR.

3 Higher order contributions to the

anomalous magnetic moment of the muon

In leading order the invariant mass of the π+π−γ system
is restricted to the cms energy

√
s. If the relevant angu-

lar distributions, as predicted by sQED, coincide with the
experimental analysis, the validity of this model at lower
energies is highly plausible. Nevertheless, a measurement
of γ∗ → π+π−γ for variable

√
s is desirable for an inde-

pendent cross check. In Section 4 we will demonstrate that
this is indeed possible with the radiative return, if events
with two photons in the final state are investigated. This
is in fact one of the motivations for extending the event
generator PHOKHARA to events with simultaneous ISR
and FSR. However, before discussing this issue in detail,
an investigation of γ∗ → π+π−γ, the corresponding vir-
tual corrections and the relevance of these amplitudes to
the analysis of the muon anomalous magnetic moment aµ

is in order.
Let us concentrate on the one-particle irreducible ha-

dronic contributions

ahad,LO
µ =

α2

3π2

∫ ∞

4m2
π

ds

s
K(s) R(s) , (5)

with the familiar kernel K and the R ratio defined through

R(s) ∝ |〈0|Jµ|had, (γ)〉|2. (6)

R(s) can be obtained from the cross section for electron–
positron annihilation into hadrons, after correcting for ISR
and for the modifications of the photon propagator, which

are sometimes (not quite correctly in the time-like region)
summarized as ‘running’ of the fine structure constant.

At the present level of precision of hadronic contribu-
tions to aµ, roughly half to one per cent, photonic cor-
rections to final states with hadrons start to become rel-
evant. Qualitatively the order of magnitude of this effect
can be estimated either by using the quark model with
mu ≈ md ≈ ms ≈ 180 MeV (adopted to describe the
lowest order contribution [34]), or with mu ≈ md ≈ ms ≈
66 MeV (adopted to describe the lowest order contribution
to α(MZ)) or by using π+π− as dominant intermediate
hadronic state plus photons coupled according to sQED.
The three estimates (see also [7])

δaµ(quark, γ, mq = 180 MeV) = 1.880 × 10−10 ,

δaµ(quark, γ, mq = 66 MeV) = 8.577 × 10−10 ,

δaµ(π+π−, γ) = 4.309 × 10−10 , (7)

are comparable in magnitude and begin to be relevant
at the present level of precision. This order-of-magnitude
estimate suggests that a more careful analysis is desirable.

In view of the dominant role of π+π− for the evaluation
of ahad,LO

µ we will from now on concentrate on this specific
final state. In Section 5 we will argue that the measure-
ment of R(π+π−(γ)) is indeed possible with the technique
of the radiative return. Before entering this discussion, a
precise definition of the objects of interest is required. We
will rely on the smallness of the fine structure constant
and only consider NLO amplitudes and rates. In leading
order the contribution to R and ahad,LO

µ is given by the
square of the pion form factor. In most experiments the
issue of contributions from events with additional photon
emission from the hadronic system and the influence of
these photons on cuts has simply been ignored (for a first
step towards inclusion and control of these effects from
the experimental side, see [35]; for related theoretical dis-
cussions, see [7,33]). These effects indeed are only relevant
in next-to-leading order.

To proceed to O(α) for point-like particles such as
muons or electrons, we simply evaluate corrections to the
vertex function from virtual photon exchange, which must
be combined with real radiation to arrive at an infrared-
finite result. For pions we must follow a different strat-
egy. The evaluation of virtual corrections involves the full
hadronic dynamics and seems to be difficult, if not im-
possible, but is also unnecessary. Instead, we separate the
inclusive rate R(π+π−(γ)) into a part containing the vir-
tual plus real photonic corrections RV+R(π+π−(γ), Ecut),
with energies up to a cutoff Ecut chosen such that the
point-like pion model describes real emission, say up to
50 or even 100 MeV, and a remainder RH(π+π−γ, Ecut)
with hard photons only. The separation between the two
configurations will depend on the cutoff Ecut, which has
to be chosen small for this dependence to be given by the
familiar result for point-like pions.

The strategy for the exclusive measurement now pro-
ceeds as follows:

The contribution from RV+R(π+π−(γ), Ecut) as a func-
tion of Ecut can be measured by analysing final states
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where hard-photon radiation is suppressed by suitable cho-
sen cuts on energy and collinearity of the pions. The Ecut

dependence of RH(π+π−γ, Ecut) can be measured by col-
lecting π+π−γ final states (and correcting of course for
ISR) as discussed in Section 2. Alternatively we may cor-
rect for (unmeasured) hard photon events by employing a
model like sQED, which has to be checked experimentally
— at least for a few selected kinematic configurations.

Let us now estimate the contributions from hard pho-
ton radiation to aµ. In Fig. 5 we display the integrand

d

ds
ahad,γ

µ (Ecut) =
α2

3π2s
K(s) RH(s, Ecut) , (8)

for Ecut = 10, 100 and 200 MeV as a function of
√

s =
m(π+π−γ) between the threshold and 2 GeV. The result
is compared with the complete sQED contribution, as de-
rived from point-like pions, and the lowest order contri-
bution from π+π−. The integrated result is displayed in
Fig. 6.

Using sQED as a model, one finds that contributions
from hard photon radiation, with a cut at 100 MeV, are
still small with respect to the present uncertainty δahad,LO

µ =

7 × 10−10 [8,9]. Let us emphasize that cuts on the pho-
ton energy around 50 MeV or below might well lead to
important shifts in aµ. Of course we have assumed that
hard radiation is not grossly underestimated by sQED, an
assumption to be tested by experiment. As we will demon-
strate in the next section, such tests are indeed feasible in
experiments based on the radiative return.

4 FSR at next-to-leading order and the event

generator PHOKHARA

As discussed in Section 2, the radiative return allows us
to exploit the enormous luminosity of Φ- and B-meson
factories for the measurement of the hadronic cross section
over a wide range of energies. On the basis of the leading
order treatment, we have demonstrated that the analysis
of final states with one photon allows us to determine the
pion form factor for arbitrary Q2 and the cross section for
π+π− plus a hard photon from FSR at

√
s.

Intuitively it should also be possible to exploit the ra-
diative return for the extraction of FSR for arbitrary in-
variant mass

√
s′ of the π+π−γ system through the reac-

tion

e+e− → γγ∗(→ π+π−γ) . (9)

The implementation of this two-step process into PHO-
KHARA and the question of how to separate the corre-
sponding amplitude from double photon emission from the
initial or final state are the main topics of this section.

Let us first describe the main physics ingredients and
assumptions of the new version of PHOKHARA (PHO-
KHARA 3.0). The complete set of diagrams relevant to
the reaction

e+e− → π+π−γγ , (10)

is displayed in Fig. 7. We require at least one photon (with
four momentum k1) to be hard, i.e. with energy E1 >
Emin

γ , where Emin
γ is typically around 5 to 10 MeV for

DAΦNE energies and significantly larger (several GeV) for
B-meson factories. We only display typical diagrams and
omit permutations. However, we explicitly distinguish the
two cases, where the hard photon is emitted either from
the electron–positron line or from the hadronic system.
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Fig. 7. Typical amplitudes contributing to the reaction
e+e− → π+π−γγ. For two photons emitted either from the
electron/positron or the hadronic system. Only one represen-
tative is displayed.
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Fig. 8. Typical amplitudes describing virtual corrections to
the reaction e+e− → π+π−γ. Permutations are omitted.

Diagrams relevant to virtual corrections to the reaction
with one photon,

e+e− → π+π−γ , (11)

are shown in Fig. 8; they contribute through their inter-
ference with the Born amplitude (Fig. 1). At this point no
assumption about the form of the γ∗ → π+π−γ coupling
or the structure of the virtual corrections at the hadronic
vertex is imposed.

Just as in leading order, charge-symmetric and asym-
metric terms are present in the differential distribution.
The latter are particularly sensitive to the FSR ampli-
tude and may serve for tests of the FSR model or even for

1e+e� �+��
2+ 1 �(A)

1
1 2+ 1 �(B)

1

1 2+ 1 �(C)
1

1 2+ 1 �(D)
1

1 � 1 +(E)
1 � 1

1 � 1 +(F)
1� 1

Fig. 9. Charge-even infrared-finite combinations of ampli-
tudes. The photon labelled ‘1’ is hard. Diagrams written in
reverse order are to be understood as complex conjugate.

an independent determination of this amplitude for arbi-
trary s′. In the present upgraded version of the program,
only charge symmetric terms will be included, which are
sufficient for the present purpose.

In Fig. 9 those combinations of (gauge-invariant sets
of) amplitudes involving real and virtual radiation are dis-
played, which lead to infrared-finite charge-even combina-
tions. The first (A) corresponds to the radiative correc-
tions to the leptonic tensor, and has been derived in [14,
17]. It is the crucial element of PHOKHARA (versions
1.0 and 2.0) and can be used for the simulation of arbi-
trary hadronic final states. The second combination (B)
corresponds to the two-step process described in Eq. (9)
above and is implemented in the present, newest version
of PHOKHARA (version 3.0). Before discussing the ac-
tual implementation, let us discuss the remaining terms.
The next combinations, denoted by (C) and (D), describe
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radiative corrections to pure FSR, with the leading pro-
cess depicted in Fig. 1b. The hard photon originates from
the hadronic system, and the radiative corrections (vir-
tual, soft, and hard radiation) are either attached to the
hadronic (C) or the leptonic (D) system. As discussed in
Section 2, the leading order process can be controlled at
DAΦNE through suitable cuts and FSR can be reduced to
a level of less than 1%. At the energy of 10.52 GeV, i.e. at
B-meson factories, it is entirely irrelevant. Therefore we
do not include these radiative corrections to an already
small contribution in the program.

A similar argument applies to the remaining terms, de-
noted by (E) and (F). These describe radiative corrections
(real and virtual photons) to the interference between hard
ISR and hard FSR. They will be neglected on the basis of
the same arguments as before.

In the following, we denote by ISRNLO the contribu-
tions to the cross section coming from ISR only calculated
at NLO, i.e. those from Figs. 1a and 9A. IFSLO includes
also the contribution from LO FSR (diagrams in Figs. 1a,
1b and 9A). Finally, IFSNLO includes on top of that ini-
tial plus final state emission at NLO (diagrams in Figs. 1a,
1b, 9A and 9B). Let us emphasize that these are gauge-
invariant subsets throughout.

Let us now describe the implementation of the two-
step process Eq. (9), denoted IFSNLO, in detail. Since
we are only interested in final states with masses of the
π+π−γ system below ≈ 1 GeV, we expect sQED to pro-
vide a good description of the γ∗ → π+π−γ amplitude.
The virtual corrections are similarly modelled by sQED.
They are combined with soft radiation, with E2 < Ecut

2 ,
to arrive at an infrared-finite result. The effective form
factor is, therefore, introduced through the substitution

|F 0(Q2)|2 → |F (Q2, Ecut
2 )|2 =

|F 0(Q2)|2
(

1 +
α

π
ηV+S(Q2, Ecut

2 )
)

, (12)

with ηV+S(Q2, Ecut
2 ) given below. For the generation of

real radiation the cutoff energy obviously refers to the
π+π−γ centre-of-mass frame.

It should be emphasized that only the combination
|F (Q2, Ecut

2 )|2 is physically observable and relevant to the
analysis of aµ and α(mZ ), of course after adding real ra-
diation, which can either be measured, or for photon en-
ergies up to O(100 MeV), modelled by sQED through the
reaction

e+(p1, λe+) + e−(p2, λe−) →
π+(q1) + π−(q2) + γ(k1, λ1) + γ(k2, λ2) .

(13)

The helicity amplitudes responsible for real radiation
(Fig. 7b and c) are given by the sum of 12 Feynman am-

plitudes. Adopting a notation similar to [16], they read

MH
IFSNLO(λe+ , λe− , λ1, λ2) = − (4πα)2

Q̂2

{

v†I(p1, λe+) A uI(p2, λe−) + v†II(p1, λe+) B uII(p2, λe−)

}

+
(

k1 ↔ k2

)

, (14)

where the index H indicates that both photons are hard,
and

A =

(

ε∗(k1, λ1)
−k+

1 − 2ε∗(k1, λ1) · p1

)

J−

2k1 · p1

+
J−

(

2ε∗(k1, λ1) · p2 − k+
1 ε∗(k1, λ1)

−
)

2k1 · p2
, (15)

B =

(

ε∗(k1, λ1)
+k−

1 − 2ε∗(k1, λ1) · p1

)

J+

2k1 · p1

+
J+

(

2ε∗(k1, λ1) · p2 − k−
1 ε∗(k1, λ1)

+
)

2k1 · p2
, (16)

with

Q̂ = p1 + p2 − k1 = q1 + q2 + k2 , s′ = Q̂2 , (17)

and Jµ being the current describing the π+π−γ final state

Jµ = iF2π(s′) Dµ , (18)

where

Dµ = (q1 + k2 − q2)
µ q1 · ε∗(k2, λ2)

q1 · k2

+ (q2 + k2 − q1)
µ q2 · ε∗(k2, λ2)

q2 · k2
− 2ε∗µ(k2, λ2) , (19)

and k±, J± are 2×2 matrices, which can be found in [16].
We do not include contributions from the radiative decay
φ → π+π−γ. Their effect is small, can be well controlled
and was discussed in [36].

In the present version of the program, one of the pho-
tons is assumed to be visible, at least in principle, and
only the photon emitted from final states is allowed to
be soft (Fig. 9B). For photon energies w

√
s < E1γ < Ev

c

(or w
√

s < E2γ < Ev
c ) the amplitude used consists of 6

diagrams only. Ev
c is the threshold above which we can

‘observe’ the photon — typically 10 MeV for DAΦNE
and 100 MeV for B-factories. If both photons are hard,
E1γ , E2γ > Ev

c the sum of 12 diagrams is used.
The corresponding virtual plus soft photon corrections

can be written as

dσV+S
IFSNLO =

α

π
ηV+S(s′, Ecut

2 ) dσ
(0)
ISR(s′) , (20)

where dσ
(0)
ISR is the leading order e+e− → π+π−γ cross

section, with the photon emitted off the initial leptons
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only, and

ηV+S(s′, Ecut
2 ) = −2

[

1 + β2

2β
log(t) + 1

]

log(2w)

− 2 + β2

β
log(t) − 2 + log

(

1 − β2

4

)

− 1 + β2

2β

{

− log(t) log

(

β(1 + β)

2

)

+ log

(

1 + β

2β

)

log

(

1 − β

2β

)

+ 2Li2

(

2β

1 + β

)

+ 2Li2

(

−1 − β

2β

)

− 2

3
π2

}

,

(21)

where w = Ecut
2 /

√
s′, and

β =
√

1 − 4m2
π/s′ , t =

1 − β

1 + β
. (22)

The function ηV+S(s′, Ecut
2 ) is of course the familiar

correction factor derived in [37] for the reaction e+e− →
π+π−γ in the framework of sQED (see also [38]). For the
present case, s′ corresponds to the squared mass of the
π+π−γ system, and for virtual and soft photon emission,
s′ ≃ Q2, the soft photon cutoff is defined in the π+π−γ
rest frame.

Correspondingly the cross section for the reaction

e+e− → γ(k1)γ
∗(→ π+π−γ(k2)) , (23)

after integration over the angles and energy (from Ecut
2 to

the kinematical limit) of γ(k2) , is given by

dσH
IFSNLO =

α

π
ηH(s′, Ecut

2 ) dσ
(0)
ISR(s′) , (24)

with

ηH(s′, Ecut
2 ) = −1 + β2

β

[

Li2

(

1 − tm
t

)

− Li2(tmt)

+ ζ(2) +
log2(t)

2

]

− log(tm − t)

[

1 + β2

β
log

(

tm
t

)

− 2

]

− (1 − β2)βm

2β3(1 − β2
m)

[

2(1 − β2)

1 − β2
m

− 7β2 − 5

]

+
log(tm)

β

{

−2 +
1 − β2

4

[

1 +
8

1 − β2
m

+
3

β2

]

+ (1 + β2)

[

log

(

4(β2 − β2
m)

(1 + β)2(1 − β2
m)

)

+
log(tm)

2

]}

− 2 log(1 − tmt) , (25)

where t and β are defined in Eq. (22), and

βm ≡
√

1 − 4m2
π

Q2
m

, tm =
1 − βm

1 + βm

.

Here Q2
m is the maximum value of Q2

Q2
m = s′ − 2Ecut

2

√
s′ ,

and Ecut
2 is again defined in the γ∗ rest frame. This for-

mula will be useful for tests of the Monte Carlo event gen-
erator discussed below, and Ecut

2 is still arbitrary at this
point. The same formula can also be used to test FSR at
LO with s′ → s and Ecut

2 set now in the e+e− cms frame.

For Ecut
2 small, w = Ecut

2 /
√

s′ ≪ 1, the function ηH

reduces to

ηH(s′, Ecut
2 ) ≃ log(2w)

[

2 +
1 + β2

β
log(t)

]

(26)

− (1 + β2)

β

[

log(t2) log(1 − t) + Li2(1 − t2)

]

+
(1 − β2)(3 + β2)

4β3
log(t) + 2 log

(

1 − β2

4β2

)

+
3

2β2
+

7

2
.

Adding virtual, soft (Eq. (21)) and hard (Eq. (26)) cor-
rections, the familiar correction factor [37,39,7]

η(s′) =
1 + β2

β

{

4Li2

(

1 − β

1 + β

)

+ 2Li2

(

−1 − β

1 + β

)

− 3 log

(

2

1 + β

)

log

(

1 + β

1 − β

)

− 2 log(β) log

(

1 + β

1 − β

)}

+
1

β3

[

5

4
(1 + β2)2 − 2

]

log

(

1 + β

1 − β

)

+ 3 log

(

1 − β2

4

)

− 4 log(β) +
3 (1 + β2)

2β2
, (27)

is recovered.
Using Eqs. (21) and (25) the implementation of FSR

in combination with ISR is straightforward. To match
hard, soft and virtual radiation smoothly, the energy cut-
off (Ecut

2 ) has to be transformed from the rest frame of
the π+π−γ (emitted from the final state) system to the
laboratory frame (e+e− cms frame) (Emin

γ ). In fact it is
necessary to recalculate the soft photon contribution, as
the cut on Q2 depends in the latter case on the angle
between the two emitted photons and now

ηV+S(s, s′, Emin
γ ) = −2

[

1 + β2

2β
log(t) + 1

]

×
[

log(2w) + 1 +
s′

s′ − s
log

(

s

s′

)]

− 2 + β2

β
log(t) − 2 + log

(

1 − β2

4

)

− 1 + β2

2β

{

− log(t) log

(

β(1 + β)

2

)

+ log

(

1 + β

2β

)

log

(

1 − β

2β

)

+ 2Li2

(

2β

1 + β

)

+ 2Li2

(

−1 − β

2β

)

− 2

3
π2

}

, (28)

where β is defined in Eq. (22) and w = Emin
γ /

√
s .

A number of tests were performed to ensure the tech-
nical precision of the new version of PHOKHARA. The
square of the matrix element summed over polarizations
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Table 1. Total cross section (nb) for the process e+e− →
π+π−γ(γ) for different values of the soft photon cutoff. One of
the photons is required to have an energy larger than 10 MeV
(100 MeV) for

√
s = 1.02 GeV (10.52 GeV). No further cuts

applied in columns 2 and 3. In column 4, the pion angles are
restricted to 40◦ < θπ± < 140◦ and the photon(s) angles to
θγ < 15◦ or θγ > 165◦.

w
√

s =1.02 GeV 10.52 GeV 1.02 GeV

10−3 40.992 (5) 0.1606 (1) 20.988 (1)
10−4 41.013 (6) 0.1607 (2) 20.993 (1)
10−5 41.018 (7) 0.1607 (2) 20.995 (2)

of the final particles and averaged over polarizations of
the initial particles was calculated with FORM [40] us-
ing the standard trace method. External gauge invariance
was checked analytically when using the trace method and
numerically for the amplitude calculated with the helic-
ity amplitude method. The two results for the square of
the matrix element summed over polarizations, were com-
pared numerically. The code based on the result from the
trace method was written in quadrupole precision to re-
duce cancellations. The code based on the result obtained
with the helicity amplitude method, uses double-precision
for real and complex numbers and is now incorporated in
the code of PHOKHARA 3.0. Agreement of 13 significant
digits (or better) was found between both codes. The sen-
sitivity of the integrated cross section — with and without
angular cuts — to the choice of the cutoff w can be de-
duced from Table 1 and Fig. 10. For simplicity the same
separation parameter w was chosen for ISR and FSR cor-
rections. Choosing w = 10−4 or less, the result becomes
independent of w. The tests prove that the analytical for-
mula describing soft photon emission as well as the Monte
Carlo integration in the soft photon region are well im-
plemented in the program. Having analytical expressions
for ηH(s, Emin

γ ) (Eq. (25)) we can test also the implemen-
tation of hard photon emission from the final state. The
results of the tests are collected in Figs. 11 and 12, where
FSR at LO obtained from PHOKHARA is compared with
the analytical result for the corresponding cross section:

σFSR(s) =
α

π
ηH(s, Emin

γ ) σ0(s)

=
α

π
ηH(s, Emin

γ )
π

3

α2β3(s)

s
| F2π(s) |2 , (29)

for a fixed value of the photon energy cutoff and differ-
ent values of the e+e− cms energy (Fig. 11) or fixed value
of the e+e− cms energy and various values of the photon
energy cutoff (Fig. 12). As one can see the technical pre-
cision of that part of PHOKHARA is much better than 1
per mille. The IFSNLO part was also tested against the
analytical result

η(s′) =
dσV+S+H

IFSNLO(s, s′)/ds′

α
π

dσ
(0)
ISR(s′)/ds′

. (30)

The results of the tests are shown in Fig. 13. The agree-
ment of η calculated by PHOKHARA and the analytical

1� d�(w=10�5)
dQ2 =d�(w=10�4)

dQ2
a

0Æ < ��� < 180Æ0Æ < � < 180Æ
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1� d�(w=10�5)
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0:002
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0:001
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c1� d�(w=10�5)
dQ2 =d�(w=10�4)

dQ2

0Æ < ��� < 180Æ0Æ < � < 180Æ
p

s = 10.52 GeV

e+e� ! �+��()

Q2(GeV2)
1:41:210:80:60:40:20

0:01

0:005

0�0:005�0:01

Fig. 10. Comparison of the Q2 distribution for two values of
the soft photon cutoff (w = 10−4 vs. 10−5) for

√
s = 1.02 GeV

(a,b) and
√

s = 10.52 GeV (c). One of the photons was required
to have energy > 10 MeV (for

√
s = 1.02 GeV) and > 100 MeV

(for
√

s = 10.52 GeV). Angular cuts were applied only on plot
(b), where pion polar angles are restricted to 40◦ < θπ± < 140◦

and photon polar angles to θγ < 15◦ and θγ > 165◦.

result (Eq. (27)) is at the level of a few per mille. However,
since the contribution to the cross section of that part is
multiplied by α/π ≃ 1/400, the actual technical precision
of the IFSNLO PHOKHARA cross section is at the level
of 10−5.
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1� �(PHOKHARA)�(anal)

FSR at LO
w = 10�4

e+e� ! �+��

p
s (GeV)

100101

0:001

0:0005

0�0:0005�0:001

Fig. 11. Comparison between the LO FSR cross section calcu-
lated analytically (Eq. (29)) and calculated by PHOKHARA
for fixed value of w = Emin

γ /
√

s.

5 FSR contribution to the hadronic cross

section and its measurement via the radiative

return method

We shall study now the impact of the new corrections
on various distributions. Before entering the discussion,
let us recall the meaning of various abbreviations, which
will be used in the following. ISRNLO corresponds to the
ISR cross section calculated at NLO without any FSR.
IFSLO includes in addition FSR at LO. Finally, IFSNLO
stands for ISR and FSR at NLO as implemented in the
new version of PHOKHARA (version 3.0).

Let us start the discussion for a cms energy of 1.02
GeV, relevant for the KLOE experiment. The IFSNLO
correction to the cross section from graphs in Fig. 9B is
relatively big at low Q2, if no cuts are applied (Fig. 14a).
Below the ρ resonance, they grow from zero at the res-
onance to 10% of the IFSLO cross section near the pro-
duction threshold, while they remain small above the ρ
resonance. This is due to the fact that the ISR leading
to the ρ meson is strongly enhanced. Subsequently the ρ
decays into π+π−γ, with a large contribution from the re-
gion where Q2, the invariant mass of the π+π−, is low.
Of course this is smeared by the width of the ρ, but the
above discussion remains valid and the contribution from
the newly implemented diagrams, through the reaction
e+e− → γρ(→ γπ+π−), is sizeable.

The effect of several ‘standard cuts’ at
√

s = 1.02 GeV
is shown in Figs. 14b and 14c. The sensitivity of the newly
implemented contributions to these cuts can be exploited
to test, control or experimentally eliminate FSR at NLO.
It is relatively easy to find cuts that lower the correction
to a level of 2%–3%. In fact all the cuts which were used to
eliminate FSR at LO are also effective here. The standard
KLOE cut on the track mass [29] reduces FSR further, to
less than 1% for most of the Q2 range, apart of the high

1� �(PHOKHARA)�(anal)

FSR at LO

p
s = 1.02 GeV

e+e� ! �+��

Emin (GeV)
10:10:010:0010:00011e � 051e� 06

0:001

0:0005

0�0:0005�0:001
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p
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e+e� ! �+��
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0:50:450:40:350:30:250:20:150:1

0:0006

0:0004

0:0002

0�0:0002�0:0004�0:0006

Fig. 12. Comparison between the LO FSR cross section calcu-
lated analytically (Eq. (29)) and calculated by PHOKHARA
for a fixed value of

√
s = 1.02 GeV.

values of Q2, where the corrections remain at the level of
2%-3% (Fig. 14c, lower curve).

The behaviour of the additional contribution at 10.52
GeV is qualitatively similar. Without cuts the relative en-
hancement amounts to approximately 4% (Fig. 15a), and
this remains unchanged after cuts on pion and photon
angles, which correspond to the detector acceptance, are
introduced (Fig. 15b). As stated before, a large fraction
of the excess is due to the feed-down from the ρ-meson in
the two step process e+e− → γρ(→ π+π−γ). Assuming,
that hard photons, say above 100 MeV, can be identi-
fied, we try to identify these events by assigning photons
with small angles relative to π+ or π− (say 15◦) to the

hadronic system when Mρ − Γρ <
√

(p+ + p− + pγ)2 <
Mρ + Γρ, thus moving these events from Q2 = (p+ + p−)2

to Q2 = (p+ + p− + pγ)2. For a sample generated with
PHOKHARA 3.0 without FSR at NLO the distribution
remains practically the same (Fig. 15c), while including
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Fig. 13. Comparison between the function η obtained from Eq.(27) and from PHOKHARA.

FSR at NLO the excess in the low Q2 region is signifi-
cantly reduced (Fig. 15d). In fact, part of the remaining
enhancement (about 1 to 2% for Q2 between 0.2 and 0.1
GeV2 ) just corresponds to the effect of multiplication
with the factor α

π
η(s′).

The FSR corrections originating from the ‘two–step’
process and their effect on cuts necessarily introduce some
model dependence into the extraction of the pion form
factor. The detection and analysis of the complete final
state — charged pions as well as photons — is of course
optimal for the study of this phenomena. However, the
present KLOE analysis is based on the measurement of
the π+ and π− momenta only. Even this partial informa-
tion allows to construct distributions, which are sensitive
to final states with π+ π− and two photons. As an alter-
native to the straightforward study of the Q2 distribution
and its Monte Carlo simulation it is thus even possible to
test the model governing the production of π+π− in con-
junction with two photons and constrain or even measure
the process γ∗ → π+π−(γ), an important ingredient for
the precise prediction of ahad,LO

µ .

The response of dσIFSNLO/dQ2 to different cuts on
M2, the invariant mass of the recoiling photonic system
(Fig. 16) will be an important observable. Contributions
with double emission from the initial state and from mixed
ISR–FSR will be affected by this cut. However, the cut de-
pendence is markedly different for dσIFSNLO/dQ2 (which
includes both contributions) and dσISRNLO/dQ2 (which
includes configurations from ISR only) as shown in Fig. 17.
The confirmation of the M2 dependence as predicted by
PHOKHARA, as well as the verification of charge asym-
metric distributions (see Section 2) would provide addi-
tional support for the ansatz of emission from point-like
pions or allow to test alternative models.

6 Conclusions

Measurements of the pion form factor through the radia-
tive return offer the unique possibility for improved pre-
dictions for the muon magnetic moment and the electro-
magnetic coupling α(MZ). Contributions to the dispersion
integral from intermediate states with π+π− and a pho-
ton start to become relevant at the present level of pre-
cision and can be measured in reactions leading to π+π−

in conjunction with two photons. An upgraded version of
PHOKHARA (version 3.0), which includes simultaneous
emission of photons from the initial and the final state,
has been presented. The two step process e+e− → γρ(→
π+π−γ) leads to a notable enhancement of events with
low mass of the π+π− system. Various cuts are described,
which allow to control this effect, to identify these events,
correct the distribution and test the model for final state
radiation.
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