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Abstract
Surveillance systems are often focused on more than one disease within a predefined area. On
those occasions when outbreaks of disease are likely to be correlated, the use of multivariate
surveillance techniques integrating information from multiple diseases allows us to improve the
sensitivity and timeliness of outbreak detection. In this article, we present an extension of the
surveillance conditional predictive ordinate to monitor multivariate spatial disease data. The
proposed surveillance technique, which is defined for each small area and time period as the
conditional predictive distribution of those counts of disease higher than expected given the data
observed up to the previous time period, alerts us to both small areas of increased disease
incidence and the diseases causing the alarm within each area. We investigate its performance
within the framework of Bayesian hierarchical Poisson models using a simulation study. An
application to diseases of the respiratory system in South Carolina is finally presented.
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1 Introduction
Effective surveillance is essential to protect public health by rapidly detecting and
responding to disease outbreaks. Most work on surveillance methodology has evolved in
temporal applications, and so numerous methods including process control charts, temporal
scan statistics, time-series methodology, and log-linear and other parametric regression
models have been proposed to monitor univariate time series of counts of disease.1 Because
of the growing threat of bioterrorism and an increase in the emergence and re-emergence of
infectious diseases with pandemic potential, numerous studies have recently been conducted
to develop new and improved methods for health surveillance. New statistical methods
usually use information on both the time and location of events, and so they offer an
improved ability to detect localized events that occur in small regions relative to the
surveillance of the total count across a larger region. Testing methods are widely used to
detect outbreaks of disease in space and time.2,3 Recent developments in the analysis of
space-time disease surveillance data use a statistical model to describe the behavior of
disease over space and time during endemic periods, that is when the disease occurs at its
expected frequency of occurrence, and the emphasis is placed on detection of unusual
deviations from predictable patterns based on the estimated model.4–9 These model-based
approaches provide a flexible framework for the inclusion of spatial, temporal, space-time
interaction, and possible covariate effects.
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Multivariate space-time surveillance data also arise naturally in many public health
applications. For instance, disease incidence data are often available by age group, gender
and race. On some occasions, a range of different diseases are monitored simultaneously to
assess the general health status of a region. Some examples are the monitoring of smoking-
related cancers, respiratory diseases or gastrointestinal illnesses. In a syndromic surveillance
setting, different syndromes associated with disease are monitored simultaneously to detect
outbreaks of disease at the earliest possible time, possibly even before definitive disease
diagnoses are obtained. Common syndromes are school and work absenteeism, over-the-
counter medication sales, emergency department visits, physician telephone calls, etc. On
those occasions, the use of surveillance techniques integrating information from the different
data sets is important to achieve higher detection power for events that are present
simultaneously in more than one data set. One approach to sharing information is to jointly
examine the multiple disease incidences. Kulldorff et al.10 proposed an extension of the
space-time scan statistic to jointly monitor multiple data sets. The multivariate scan statistic
is based on a combined log likelihood which is defined as the sum of the individual log
likelihoods for those data sets with more counts than expected in the scanning window. A
signal is generated if a cluster is detected in either one or in a combination of data sets.
Further extensions, such as the Bayesian multivariate scan statistic,11 have been proposed.
Banks et al.12 presented a model-based approach to surveillance of spatial data on multiple
diseases. The proposed methodology, which is focused on syndromic surveillance, uses
univariate Bayesian hierarchical models to model counts of patients with specific symptoms
indicative of the same disease in the absence of an outbreak. Indicator variables modeled as
binary Markov random fields are then used to detect disease outbreaks. An increase in the
number of cases is assumed for all the symptoms when the disease is present.

In practice, however, the different data sets under study may be influenced by common
confounding factors, and so they are likely to be correlated. This suggests that we need to
consider multivariate disease models to describe the space-time behavior of diseases. The
multivariate conditional autoregressive (MCAR) model13 and the shared component
model14,15 are the two main approaches to model disease risk correlations across both
spatial units and diseases. The main advantage of the shared component model is that it
enables estimation of shared and disease-specific spatial patterns.

In this article, a shared component model is used to describe the behavior of diseases under
endemic periods. A novelty of the proposed model formulation is the use of indicator
variables, which allow for identification of shared and disease-specific latent spatial fields
describing the risk surface for each disease. We show then how the surveillance conditional
predictive ordinate (SCPO), which was introduced by Corberán-Vallet and Lawson16 in a
univariate model-based surveillance setting to detect areas of unusual disease aggregation,
can be straightforwardly extended to incorporate information from multiple diseases. In
particular, we define the multivariate surveillance conditional predictive ordinate (MSCPO)
for each small area and time period as the conditional predictive distribution of those counts
higher than expected given the data collected so far. A parallel surveillance approach across
the different areas under surveillance is then carried out, where in each area alarms are
sounded if the corresponding MSCPO value is below a specified critical value. This
surveillance technique alerts us to both spatial units of increased disease incidence in need
of further investigation and the diseases causing the alarm within each area, and
consequently it facilitates a timely and informed public health response.

This article is organized as follows. In Section 2, we present our modeling framework. In
Section 3, we review the surveillance conditional predictive ordinate and introduce its
multivariate extension to multiple disease surveillance. Section 4 shows the results obtained
in a simulation study. The surveillance technique is then applied to emergency room
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discharges for diseases of the respiratory system in South Carolina. Finally, we conclude
with a general discussion of the proposed technique and provide directions for future
research.

2 Modeling of endemic periods
2.1 The convolution model

Let yit and eit denote, respectively, the observed and expected count of disease in area i and
time period t, for i = 1, 2, …, m and t = 1, 2, …, T. We assume here that the observed counts
are Poisson distributed

where θit, which is often termed the relative risk, represents the excess risk within area i at
time t. This component is usually the focus of interest, and so a wide range of
spatiotemporal models have been developed to estimate the true relative risk of a disease of
interest across a geographic study region. The most common approach to relative risk
modeling is to assume a logarithm link to a linear predictor which is a function of fixed
observed covariates and spatial, temporal and space-time interaction random effects.17,18

In a surveillance context, however, the emphasis is placed on detection of changes. To this
end, Lawson19 emphasized the need for a relatively simple model capturing the normal
historical variation in disease incidence without absorbing changes in the model fit. In a
recent study, Corberán-Vallet and Lawson16 have demonstrated that the use of a spatial-only
model where the relative risks are assumed to be constant over time may improve outbreak
detection capability. Temporal effects would be included in the model only if an overall time
trend or seasonal effects were present in the time series data and the emphasis was on
detection of unusual outbreaks of disease. Here, we are interested in detecting the start of an
outbreak, and so we assume that under endemic conditions θit = θi for all t. Unusual
departures from predictable patterns based on the overall spatial risk surface are then
attributable to disease outbreaks. To capture spatial correlation in disease maps, we use the
convolution model originally proposed by Besag et al.20 This model, denoted here by BYM
model, assumes that the logarithm of the relative risk is decomposed as

(1)

where ρ is the overall level of the relative risk in the study region, and ui and vi represent,
respectively, spatially correlated and uncorrelated random effects. As a prior distribution for

the intercept we assume a conventional zero-mean Gaussian distribution with variance .
We use an improper conditional autoregressive (CAR) model20 as a prior distribution for the
correlated heterogeneity, that is

where u(i) = (u1, u2, …, ui−1, ui+1, …, um)′, ni is the set of spatial neighbors of the ith region,

mi is the cardinality of ni, and  is the correlated spatial component variance. Here the
neighborhood is assumed to consist of spatially adjacent areas, but more general definitions
(using, for instance, intercentroidal distances) are also possible. The prior distribution for the

uncorrelated heterogeneity is the zero-mean Gaussian distribution with variance .
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2.2 The shared component model
In public health it is often appropriate to consider the analysis of spatially aggregated data
on multiple diseases. On those occasions, the use of multivariate models accounting for
correlations across both diseases and locations may provide a better description of the data
and enhance comprehension of disease dynamics. Knorr-Held and Best14 introduced a
shared component model for the joint spatial analysis of two related diseases where the
underlying risk surface for each disease is separated into a shared and a disease-specific
component. These components can be interpreted as surrogates for spatially structured
unobserved covariates that are either shared by both diseases or specific to one of the
diseases. For the joint analysis of more than two diseases, Held et al.15 proposed a
generalized shared component model where latent spatial fields may be shared by some of
the diseases or may enter only in one of the diseases. Assume that there are K diseases and a
fixed study region common to all the diseases. Let yik and eik be the observed and expected
count of disease during a fixed temporal period and θik the relative risk, where i = 1, 2, …,
m represents the areal unit and k = 1, 2, …, K the disease. The extended shared component
model is defined as

(2)

where wj = (wj,1, wj,2, …, wj,m)′ denotes the jth spatial random effect, and the scaling
parameter δj,k determines the relative contribution of the spatial random effect to disease k.
For each spatial field wj, it is assumed that the terms log(δj,1), log(δj,2), …, log(δj,nwj

)

follow a multivariate Gaussian distribution with mean zero and marginal variance , but
under the restriction that

(3)

nwj being the number of relevant diseases for wj. Consequently, this model formulation
requires the prespecification of the number of spatial random effects and the diseases
relevant for each one of them. In practice, however, this will not always be known in
advance. The number of possible shared and disease-specific components increases rapidly
with the number of diseases under study, and so numerous model formulations become
possible. MacNab21 emphasized the need for a careful and realistic formulation of common
risk factors. Because dependencies between disease risks are given a priori in Model (2), an
inappropriate formulation of shared and disease-specific components can lead to
misspecification of the latent spatial fields, lack of model identifiability and possibly failure
of MCMC convergence.

Different variants of the above shared component model have been used to model
correlations both between and within areal units. For instance, Ma and Carlin22 replace (2)
with

(4)

where the term ρk is not included in the model because the expected counts are age-adjusted
internally. Similar to the generalized common spatial factor model introduced by Wang and
Wall,23 a single spatial random effect is used to model the correlation between diseases and
locations. The scaling parameters δk allow different risk gradients for different diseases. To
avoid identifiability problems, δK is set equal to 1, while the remaining scaling parameters
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are assumed to be unconstrained. The disease-specific components ψik are originally

assumed to be independent across both areas and diseases, that is , although
they can be generalized to independent CAR models.

In our surveillance setting, disease maps which have an associated temporal dimension are
analyzed prospectively with the objective of detecting changes in the risk pattern of
diseases. Hence, for each area i and time period t there is a vector of K counts of disease. As
in the univariate case, we assume constant relative risks during endemic periods, and so at
the first level of the hierarchy counts of disease have a Poisson distribution with mean
eitkθik. At the second level of the hierarchy the log relative risks are modeled as

(5)

where ρk is the disease-specific overall risk; L represents the number of spatial fields wl =
(wl,1, wl,2, …, wl,m)′ needed to describe the correlation in the relative risks across both areas
and diseases; ϕl,k is a binary indicator variable that takes the value one if the spatial random
effect wl has an influence on disease k and the value zero otherwise; δl,k is the scaling
parameter that measures the contribution of wl to disease k, and ψik is the uncorrelated term,

which is assumed to be zero-mean Gaussian distributed, .

In general, the number of components (L) is not known, and so it must be estimated. There
are several different procedures to the estimation of L. A simple approach, which has been
successfully implemented in related studies, is to assume a large number of L components a
priori. The presence of each latent component is then determined based on the posterior
mean of the associated indicator variables.24,25 It is important to emphasize here that a small
number of components usually suffices to model the spatial variation in the risk of two or
more related diseases. However, larger numbers of components, possibly even larger than K,
are also possible. As a prior distribution for ϕl,k, we consider the Bernoulli distribution with
probability pl, which can be assumed to be constant or can have a hyperprior distribution.
The Beta distribution is then the conventional choice. We assume here that pl ~ Be(a, l), a
being a positive constant that controls the rate at which the mean of the distribution tends to
zero. This choice is a compromise between allowing for disaggregation of the underlying
risk surface for each disease into different latent spatial fields and searching for a
parsimonious model. The latent spatial fields are assumed to be independent, with each
following a CAR prior distribution, that is

In order to avoid identifiability problems, we set , for l = 1, 2, …, L, so that the
variance of δl,k wl,i is determined by δl,k.26 As a prior distribution for the scaling parameters
δl,k, which can then be assumed to be unconstrained, we use a non-informative zero-mean
Gaussian distribution. Note that this prior distribution differs from the original one (equation
(3)).

Similar to the model proposed by Held et al.,15 the proposed shared component model
assumes that there may be more than one latent spatial field which can be shared by some of
the diseases or may be relevant only to one of them. However, by using indicator variables
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in the model formulation, it is not necessary to specify the structure of the multivariate
model in advance.

3 Detection of outbreaks: The multivariate surveillance conditional
predictive ordinate

The conditional predictive ordinate (CPO) was first defined by Geisser and Eddy27 as the
posterior predictive distribution of the observation yi when the model is fitted to all data
except yi. That is

where y(i) = (y1, y2, …, yi−1, yi+1, …, yn) is the data vector with yi deleted and f(.|φ)
represents the model describing the data. Small CPO values, which indicate a poor fit by the
model, can be used to detect observations discrepant from the model. The CPO has been
widely used in the statistical literature as a Bayesian model assessment tool in different
contexts.28 Recently, Corberán-Vallet and Lawson16 adapted the CPO in a surveillance
context to detect small areas of unusual disease incidence. Let yt = (y1t, y2t, …, ymt)′ be the

vector of disease counts observed at time period t,  the vector of all
the data observed up to time t − 1, and θ = (θ1, θ2, …, θm)′ the relative risk vector under
endemic conditions. The surveillance CPO (SCPO) is defined for each small area i and time
period t as

(6)

where  is a set of relative risks sampled from the posterior distribution that
corresponds to the previous time period. The main difference with respect to the CPO is that
the SCPO is calculated using only data from previous time points. This is fundamental in a
surveillance context, since the inclusion of observations from the new time period may lead
to a different model for the relative risk pattern. Hence, if no change in risk takes place at
time t, the relative risk in area i and time t, θit, is equal to θi and the observation yit is
representative of the data expected under the previously fitted model. Otherwise, SCPO
values close to zero are obtained.

In order to detect as early as possible emerging outbreaks of disease, SCPO values are
calculated each time new observations become available. An alarm is then generated for the
ith small area at time t if the corresponding SCPO value is below a specified critical value α
and yit > eitθ̂i, θ̂i being the posterior mean of the relative risk at the previous time period.
Since the value of the SCPO depends on the mean of the Poisson distribution, it is necessary
to scale the SCPO to use the same critical value for all the areas. A scaled SCPO can be
defined as16

so that it takes values close to one if the observation at time t is close to the data expected
under the previously fitted model, and values close to zero otherwise.
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In the multivariate surveillance setting, spatial data on multiple diseases are observed at each
time period, and a decision concerning whether a disease incidence has increased has to be
made sequentially based on the data collected so far. We believe that a global increase in the
incidence of a disease in all the areas occurring at the same time point is unlikely. Similarly,
disease outbreaks need not necessarily occur at the same time for all the diseases under
surveillance or affect the same spatial units. So, for each area i and time t, let yit = (yit1, yit2,
…, yitK) be the vector of observed counts of disease, eit = (eit1, eit2, …, eitK) the vector of
expected counts, θ̂i = (θ̂i1, θ̂i2, …, θ̂iK) the vector of posterior relative risk estimates at the

previous time point, and  the vector of observed counts higher than
expected, that is yitk > eitkθ̂ik. A multivariate extension of the SCPO incorporating
information from multiple diseases can be defined as

(7)

if  it is not null, and MSCPOit equal to one otherwise. Values of the MSCPO close to zero

indicate then unusually high disease counts. Note that when , the MSCPOit
corresponds to the SCPOit for disease k1. When n ≥ 2, counts of disease higher than
expected are looked at in conjunction to improve the outbreak detection capability.

The multiple integral in (7) does not have a closed form solution, and so simulation is
required. A Monte-Carlo approximation to the MSCPOit can be obtained from a posterior
sampling algorithm as

(8)

where  is a set of relative risks sampled from the posterior distribution
at time t − 1.

As in the univariate surveillance setting, effective measures based on the MSCPO values
have to be constructed to assess if there is any outbreak of disease occurring at time period t.
To make MSCPO values comparable across areas and time periods, we propose to consider
the scaled MSCPO given by

(9)

and to perform a parallel surveillance approach across the different areas under surveillance,
where an alarm is sounded for the ith small area at time t if the corresponding sMSCPOit is
below a specified critical level α. It is important to emphasize here that the proposed
surveillance technique alerts us to both small areas of increased disease incidence in need of
further investigation and the diseases causing the alarm within each area.

The surveillance technique described herein can be run until the first outbreak is detected
and medical intervention takes place. However, it may be of interest to continue the
monitoring process to detect either further changes in disease incidences or the end of an
outbreak. The first goal can be achieved by sequentially estimating the model describing the
normal behavior of diseases using only the last observations. This procedure allows the
spatial effects to adapt quickly to changes in the relative risk patterns of diseases, and so it
facilitates detection of additional changes in disease risks.16 In order to detect the end of an
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outbreak, the model describing the behavior of diseases in space and time has to be
estimated using only counts of disease corresponding to endemic periods. MSCPO values
close to one after consecutive values close to zero are then indicative of the end of the
outbreak. Assuming that an outbreak has really occurred when an alarm has been sounded,
this goal can be achieved by assuming that observations detected as unusual are missing
when they become part of the history.

4 Simulation study
In this section, we present a simulation study to assess the performance of the proposed
surveillance technique for outbreak detection. The development of a realistic simulation
study is important. Here we used the US state of California, which consists of m = 58
counties, as the base map to generate counts of diseases at county level for T = 20 time
periods and K = 3 diseases. Disease 1 corresponds to viral meningitis, which is a relatively
common but rarely serious infection of the fluid in the spinal cord and the fluid that
surrounds the brain. There is no specific treatment for viral meningitis, which is usually mild
and clears up in about a week. It often remains undiagnosed because its symptoms can be
similar to those of the common flu. The total number of viral meningitis cases in California
in 2010, which is available from the California department of public health (http://
www.cdph.ca.gov), was used to calculate monthly expected counts for the study region.
Particularly, the expected counts were calculated as

(10)

where popi is the population in county i and r1 = 0.5656 is the monthly viral meningitis rate
per 100,000 population. Note that constant expected counts over time were assumed.
Monthly disease rates for the other two diseases were simulated as r2 = r1 + Ga(3, 1) and r3
= r1 + Ga(1, 1), and the corresponding expected counts were calculated as those in (10).

Two different relative risk models were used to simulate the true background relative risks.
In Scenario 1 we assumed that the three diseases shared a common spatial field, while
independent diseases were assumed in Scenario 2. Outbreaks of disease of different
intensities were then generated using the expected counts of disease and the simulated
relative risks as detailed below.

Scenario 1:

(11)

where i = 1, 2, …, 58 denotes the county, t = 1, 2, …, 20 the time, and k = 1, 2, 3 the

disease;  is the disease-specific overall risk; The components w = (w1, w2, …,
wm)′ and wk = (wk,1, wk,2, …, wk,m)′ represent spatially correlated random effects, each

one of them following a CAR model with variance  and , respectively; (ψ1k, ψ2k, …,
ψmk)′ is assumed to be a realization of a multivariate Gaussian distribution with zero mean

vector and covariance matrix , and each ηik = (ηi1k, ηi2k, …, ηiTk)′ is assumed to
follow a random walk independently of all other counties and diseases, that is

. The values of the standard deviances were (σρ1, σρ2, σρ3) = (0.01, 0.02,
0.01), (σw, σw1, σw2, σw3) = (0.1, 0.02, 0.05, 0.05), (σψ1, σψ2, σψ3) = (0.2, 0.1, 0.15), and
(ση1, ση2, ση3) = (0.01, 0.02, 0.025). Note that the simulated endemic disease risks were
allowed to vary slightly over time.
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At time t0 = 15, an outbreak was assumed to start in Los Angeles county (i0 = 19) for the
three diseases. Initial expected increases in disease counts due to the outbreak were
simulated as Ii0t0k = ck ei0t0k θi0t0k, where c1 = 0.3, c2 = 0.1, and c3 = 0.5; that is, at time t0
= 15, a percentage increase in the mean of the Poisson distribution equal to 0.3 was
simulated for Disease 1 and so on. At time t1 = 17 the outbreak was assumed to spread to
seven neighboring counties (R1, see Figure 1). Increases in disease counts at time t1 for the
affected counties were also generated as Iit1k = ck eit1k θit1k, i ∈ R1. Expected increases at
subsequent time periods were assumed to be proportional to those observed at the previous
time point, that is Iitk = βikIi,t−1,k, for t = 18, 19, 20. For simplicity, we assumed here βi1 =
1.2, βi2 = 1.1, and βi3 = 1.2 for all i ∈ {19, R1}.

Scenario 2:

(12)

where parameters ρk, ψik and ηitk were defined as those in (11). Spatial correlation in model
(12) was introduced by three disjoint sets of neighboring counties of higher risk: A1 = {8,
11, 12, 23, 45, 47, 52, 53}, A2 = {10, 16, 20} and A3 = {2, 3, 5, 9}.

At time t0 = 15, an outbreak was generated for eight counties (R2, see Figure 1) and
Diseases 1 and 3. Expected increases in disease counts were simulated as Iit0k = ck eit0k θit0k
and Iitk = βik Ii,t−1,k, for t = 16, 17, …, 20. We assumed (c1, c3) = (0.2, 0.5) and (βi1, βi3) =
(1.2, 1.3). At time t1 = 17, an outbreak of Disease 2 was simulated in 5 different counties
(R3). A percentage increase in the mean of the Poisson distribution of 0.3 was assumed
initially. Subsequent increases were defined as Iit2 = 1.25Ii,t−1,2, for i ∈ R3 and t = 18, 19,
20.

Once the values for the expected counts, relative risks, and expected increases in disease
counts due to outbreaks were specified, we generated the observed counts in the study
region as yitk ~ Po(eitk θitk + Iitk), where Iitk = 0 if no outbreak of disease occurs in county i
and time period t. To allow for sampling variability, we simulated 300 data sets for each
scenario.

The first step in the analysis of the data is to select the model describing the endemic
behavior of diseases. Simulated data for the first 10 time periods were fitted to Model (5)
with L = 6 latent spatial fields. Here we accept a latent component in the model if there is at
least one associated indicator variable larger than 0.5. Posterior sampling was carried out
using MCMC with an initial burn-in period of 50,000 iterations to assess the convergence of
MCMC chains. One posterior sample in five iterations was kept after the burn-in period until
a set of 5000 iterations was obtained. A range of different hyperprior specifications of
parameter pl were experimented with. We found that priors penalizing larger values of the
number of latent spatial fields, such as the Be(a, l) distribution for parameter pl or the Exp(a
l) distribution for parameter pl/(1 − pl), a being a positive constant, provide more satisfactory
results in general. The results presented here correspond to the case where a Be(1, l) prior is
used for parameter pl. Hence, E(p1) = 0.5 and, as l increases, the distribution of pl gets more
concentrated around its mean, which in turn tends to zero. Following (Ma and Carlin,22 N(0,
100) priors were assumed for the scaling parameters. As a prior distribution for the unknown
precision parameters, we used the Ga(2, 0.5), which provides reasonable non-
informativeness. Similar results were obtained with alternative non-informative hyperprior
distributions, such as the Ga(0.01, 0.01) distribution or the uniform distribution for standard
deviation parameters.
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In Scenario 1 a large part of the variation in the data comes from disease-specific
components, specifically from the uncorrelated terms. This complicates the detection and
proper estimation of the shared latent component. Nevertheless, the selected model generally
includes four spatial components, one that is shared by the diseases and three disease-
specific CAR components. Table 1 shows the mean square error (MSE) of the relative risks
estimates obtained, for each disease, with the shared component model and the overall DIC,
averaged over the 300 data sets. For comparative purposes, we also include those results
obtained when the diseases are modeled separately by using the convolution model. As can
be seen, when the diseases of interest share common risk factors, the use of the shared
component model provides more accurate risk estimates and a better fit. In Scenario 2, three
disease-specific spatial components were selected.

We next show the results obtained in the prospective analyses of the data with the proposed
surveillance technique. Based on the previous results, we used the shared component model
with four spatial components to describe the endemic behavior of diseases in Scenario 1. In
Scenario 2 separate convolution models were sequentially fitted to model disease
incidences. The relative risk estimates obtained at each time point with the corresponding
model were used to calculate the MSCPO values for the new data. Because we are interested
in detecting all the areas of increased disease incidence at each time period, we consider the
sensitivity, specificity and median time to outbreak detection (MTD) as measures of
performance. The sensitivity is defined as the proportion of all the areas undergoing a
change in risk that signal an alarm at any time during the outbreak period. The specificity is
given by the proportion of in-control areas that are correctly identified as such, that is

where TA, FA, TNA and FNA represent, respectively, true alarms, false alarms, true no
alarms, and false no alarms during the outbreak period. Finally, for each small area
undergoing an outbreak, let us define the time to outbreak detection as the number of time
periods from the beginning of the outbreak until the first alarm is sounded. An infinite time
to detection is assigned if no alarm is sounded. The MTD is then defined as the median of
the times to detection of those areas of increased disease incidence. It is worthy to
emphasize here that a MTD equal to infinity does not mean that no alarm has been sounded,
but that the surveillance technique has not detected at least half of the areas of increased
disease incidence. The decision rule used in this simulation study was to signal an alarm for
the ith county at time t if the sMSCPOit < 0.5 × 10−nit, nit being the number of disease
counts higher than expected in area i and time t. So, if there is only one count of disease
higher than expected in area i and time t the critical value is equal to 0.05; when two counts
of disease are higher than expected the critical value is 0.005, and so on. These values were
chosen to assure a specificity around 95% for all the diseases and scenarios. Tables 2 and 3
show the sensitivity and MTD of the proposed surveillance technique. Note that one
measure value is obtained for each data set. The results presented here are averaged over the
300 data sets simulated for each scenario. For comparative purposes, we also include the
results obtained when the diseases were monitored separately by using the SCPO. In this
case, an alarm was sounded for county i at time t if the sSCPOit < 0.05.

As expected, the SCPO achieves timely detection when changes in disease risks are
substantial enough. For Disease 3, an initial percentage increase in the mean of the Poisson
distribution equal to 0.5 was simulated in both scenarios. In this case, the outbreak detection
capability of both the SCPO and MSCPO is similar. Both surveillance techniques provide
also similar results when an outbreak is present in only one disease. This is the case of
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Disease 2 in Scenario 2. However, by integrating information from multiple diseases, the
MSCPO improves considerably the sensitivity and timeliness of event detection when
outbreaks of disease occur simultaneously in more than one disease and the proportional
increase in disease counts during the outbreak relative to the endemic level is small. For
instance, a percentage increase in the mean of the Poisson distribution equal to 0.1 was
simulated for Disease 2 in Scenario 1. Counts of disease before and at the onset of the
outbreak were then simulated, respectively, from the Po(eit2 θit2) and Po(eit2 θit2 (1 + 0.1))
distributions, which are not different enough to cause an alert when the disease is monitored
separately. Hence, only 28% of the areas undergoing an outbreak are detected based on the
SCPO. However, the MSCPO signals an alarm for 60% of those areas of increased disease
incidence and reduces the MTD to 2.5 units.

5 Case study
This section applies the MSCPO technique to emergency room discharges (ERD) for
diseases of the respiratory system in South Carolina and compares its performance with that
of the multivariate space-time scan statistic10 as implemented in the free SaTScan™
software.29 Scan statistics are widely used in the public health arena to detect disease
clusters. The multivariate scan statistic incorporates information from multiple data sets to
facilitate detection of outbreaks in more than one data set. Specifically, we monitor weekly
ERD for acute upper respiratory infections (AURI), influenza, acute bronchitis, asthma and
pneumonia in 2009. The data were obtained by county for the 46 counties of South Carolina
from the South Carolina Office of Research and Statistics. Total weekly ERD in South
Carolina are displayed in Figure 2. The right Y axis corresponds to ERD for AURI, which
are considerably larger throughout the year. In the United States, AURI are the most
common acute diseases in the general population and one of the most common conditions
for visiting a clinician.

AURI, influenza, acute bronchitis and pneumonia are closely related acute diseases.
Although these diseases can happen at any time, they are most common during the fall and
winter months. In the United States, peak flu season months are December, January and
February. The unusual behavior shown in Figure 2 is due to the novel H1N1 influenza virus,
which arrived in South Carolina in April 2009. Asthma, on the contrary, is a chronic lung
disease that inflames and narrows the airways. However, it is known that people with
asthma may experience more frequent and severe asthma attacks when they have an upper
respiratory infection.

Because we are interested in detecting outbreak onsets, we confine our analysis to data
collected from week beginning 28 June (where all the diseases can be assumed to be in an
endemic state) to week beginning 27 December (weeks 26–52 in Figure 2). There are 46
counties, 27 time periods (weeks), and five diseases. Expected counts, which are assumed to
be constant during the surveillance exercise to properly identify emerging outbreaks, were
calculated for each disease and county by internal standardization using the data from the
first three weeks. These data were also used to initially estimate the multivariate model
describing the endemic behavior of diseases. Model (5) was fitted with L = 10 latent
components. The results displayed are computed from 10,000 iterations after a burn-in of
50,000 iterations. Similar to the simulation study, the following prior distributions were
assumed: pl ~ Be(1, l), δl,k ~ N(0, 100), and Ga(2, 0.5) for the precision parameters. In this
example, five spatial fields are selected. The first one is common to AURI, acute bronchitis,
asthma and pneumonia, while the other four spatial fields are only relevant to one disease.
Namely, they are relevant to AURI, influenza, asthma and pneumonia, respectively. So,
influenza does not share a common spatial field with the other diseases. Figure 3 displays
the estimated latent spatial fields.
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Table 4 shows the DIC values (together with the pD) for the estimated shared component
model. For comparative purposes, we also include the DIC values for the shared component
model used by Ma and Carlin22 (Equation (4)) and those obtained when the diseases are
modeled separately by using the convolution model. To select the model that best explains
the correlation across both locations and diseases, the upper half of the table shows the
results obtained with these models when only spatially structured random effects are
incorporated into the model. The lower half of the table shows the results when both
spatially correlated random effects and disease-specific spatially uncorrelated terms are
included in the model. As can be seen, the joint spatial analysis of the data with the proposed
shared component model leads to an improved goodness of fit as judged by a lower overall
DIC value. The model used by Ma and Carlin22 and our model provide a similar goodness
of fit when uncorrelated terms are included in the model. However, by comparing the DIC
values in the upper half of the table, we can conclude that a single spatial field cannot
explain properly the correlation across both locations and diseases present in the data. This
can be further corroborated by examining the uncorrelated components ψik in equation (4).
The estimated components (not shown) present a spatial correlation, which violates the
independence assumption.

In what follows, we show the results obtained in the prospective analysis of the data using
our surveillance technique. At each time point t = 4, 5, …, 27, the shared component model
with five spatial fields is estimated using the data observed up to time t − 1, and the MSCPO
values associated with the new observations are analyzed to detect emerging outbreaks of
diseases. An alarm for the ith county is sounded at time t if the sMSCPOit is below 0.5 ×
10−nit, nit being the number of counts higher than expected in county i and time t. In order to
detect not only the onset but also the end of an outbreak, counts of disease detected as
unusual at time t are assumed to be missing when they become part of the history. This way,
the shared component model is sequentially estimated using only data observed during
endemic periods. Table 5 shows, for a selection of 28 counties in South Carolina, the time
point at which an outbreak is detected for each one of the diseases. Most of these outbreaks
of disease are also detected when the diseases are monitored separately by using the
univariate SCPO. As an example, Figures 4 and 5 show the temporal profiles for the
Charleston and Greenville counties, where highlighted points represent time points
corresponding to outbreak periods. As can be seen, when observed counts of disease are
unusually high in comparison with the expected counts the univariate and multivariate
surveillance techniques signal an alarm at the same time. However, by borrowing
information from different diseases, the MSCPO alerts us to unusual counts of disease
which are not significant enough to cause an alert on their own. This is the case, for
instance, of the AURI, asthma and pneumonia outbreaks in Greenville at the moment of
their onsets or the pneumonia outbreak in Charleston, where only some extremely high
observations are detected in the separate analysis of the disease.

Finally, we present the results obtained with the multivariate scan statistic, which is a
multivariate extension of the space-time scan statistic3. Similar to the MSCPO, this cluster
detection test has the ability to detect outbreaks in either one or in a combination of data
sets. A major difference between the two approaches is that, while the MSCPO focuses on
detection of individual small areas of increased disease incidence, the multivariate scan
statistic uses cylindrical windows with a circular geographic base and with height
representing time to detect clusters of cases. Here, the Poisson-based prospective space-time
scan statistic is used. We set the maximum spatial cluster size at 50% of the population at
risk, which is the default setting, and the maximum temporal window size at 90% of the
study period. The non-parametric spatial adjustment provided by the software is used to
adjust for purely spatial clusters. In this example, the first alarm is sounded at time period 7.
In addition to the most likely cluster, which includes seven counties in the northwest of
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South Carolina, a statistically significant secondary cluster is detected. The criterion for
reporting secondary clusters used here is that no cluster centers are included in other
clusters. Table 6 shows a summary of the results provided by the software at this time
period.

Most of the counties included in these two clusters are also detected with the MSCPO,
which signals the first alarm at time 5 (Table 5). However, there are some differences
between the results provided by each procedure that are worthy to emphasize. The
multivariate space-time scan statistic pinpoints the general time and location of the most
likely cluster (and possible significant secondary clusters), and so its exact boundaries
remain uncertain. As a consequence, counties with no increase in the number of reported
cases can be included in the cluster if their neighbors present an increased disease incidence.
This is the case, for instance, of the Union county, where the observed counts of disease at
time 7 are similar to those observed at previous time periods. It is also possible that the
counties included in the cluster do not undergo an outbreak of disease for all the diseases
reported in the cluster. For instance, only the number of ERD for influenza presents an
increase in the Greenville county at time 7 (Figure 5). Finally, because the scan statistic
focuses on detection of the most likely cluster (secondary clusters), small outbreaks of
disease may be missed or reported at later time periods. These conclusions apply to all the
time periods during the surveillance exercise. As an example, Figure 6 compares the
counties where an outbreak is declared based on the MSCPO and the multivariate scan
statistic at six time periods. As can be seen, several large clusters covering practically all the
study region are reported by the multivariate scan statistic at each time point. These clusters
usually include the five diseases. Our surveillance technique searches, at each time point, for
counties of increased disease incidence and the diseases within each county with more
counts than expected. As a consequence, it enables a timelier and more accurate outbreak
detection. The MSCPO also allows us to report the end of an outbreak, which can be
valuable for the planning and reduction of public health interventions.

6 Discussion
The SCPO was introduced in a univariate surveillance setting to monitor spatially
aggregated disease incidence data. The surveillance technique generates an alarm for the ith
small area at time period t if the conditional predictive distribution of the new count of
disease given the data collected so far is below a critical level α, which controls the trade-off
between false alarms and detection delay or detection probability. To assure a low
probability of false alarm, a small value of α should be considered. Consequently, small
increases in disease incidence may be missed. The results from a simulation study and the
subsequent application to ERD for five diseases of the respiratory system demonstrate that,
by integrating information from multiple diseases, the proposed multivariate surveillance
technique achieves substantial improvements in both detection time and recovery of the true
outbreak behavior when changes in disease incidence happen simultaneously for two or
more diseases. In the case study, the MSCPO also provides more precise results than the
multivariate scan statistic. The MSCPO identifies more accurately the areas affected by
disease outbreaks at each time period, reducing so the number of false alarms and enabling a
more informed response.

Since the MSCPO does not depend on the model describing the behavior of diseases under
endemic periods, it can be applied in any surveillance context where a statistical model is
used to describe spatial data on multiple diseases. We have focused here on Bayesian
hierarchical Poisson models. In particular, we have proposed a new shared component
model formulation that uses binary indicator variables to identify shared and disease-specific
spatially correlated latent fields. Joint modeling improves relative risk estimation and
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goodness of fit when the diseases under study are influenced by common confounding
factors. In practice, however, this is not always the case, and so the model includes only
disease-specific spatial fields when the diseases of interest are independent. This is
equivalent to fitting separate convolution models. A well-known problem with latent
structure models is identifiability of the latent components. Empirical evidence of
identification is apparent in both the simulated data and the case study. However, additional
restrictions such as orthogonality of the latent components may be necessary on some
occasions.

As mentioned before, our interest in this article has been to propose a multivariate
surveillance technique to jointly monitor multiple diseases in an effort to detect outbreaks at
the very moment of their onset. Here the diseases are assumed to be equally important.
However, it may be the case that some of the diseases under study have a special relevance.
For instance, in the case study, outbreaks of more serious diseases of the respiratory system,
such as bronchitis and pneumonia, may be particularly important. As we have shown, these
outbreaks are usually preceded by outbreaks of milder diseases such as AURI or influenza.
It would be valuable to investigate how this information can be used to predict changes in
the relative risk pattern of the diseases of interest. This line of research is particularly useful
in a syndromic surveillance setting, where information regarding syndrome-based outbreaks
can be used to predict increases in the incidence of the disease of interest.
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Figure 1.
Simulation study. Regions where outbreaks of diseases were simulated.
Left: Scenario 1. Right: Scenario 2.
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Figure 2.
Weekly emergency room discharges for influenza, acute bronchitis, asthma, pneumonia and
acute upper respiratory infections (AURI, right Y axis) in South Carolina in 2009.
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Figure 3.
Case study. Estimated latent spatial fields from the shared component model. The
component w1 is shared by acute upper respiratory infections (AURI), acute bronchitis,
asthma and pneumonia. w2, w3, w4 and w5 are only relevant to one disease: AURI,
influenza, asthma and pneumonia, respectively.
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Figure 4.
Temporal profile for the Charleston county. Time points corresponding to outbreak periods
as detected by the multivariate surveillance conditional predictive ordinate are represented
by solid points. Unusual observations based on the univariate surveillance technique are
represented by crosses.
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Figure 5.
Temporal profile for the Greenville county. Time points corresponding to outbreak periods
as detected by the multivariate surveillance conditional predictive ordinate are represented
by solid points. Unusual observations based on the univariate surveillance technique are
represented by crosses.
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Figure 6.
Case study. Counties where an outbreak is declared. Left: Areas signaling an alarm based on
the multivariate surveillance conditional predictive ordinate. Darker shading indicates a
higher number of diseases causing the alarm. Right: Most likely cluster (MLC) and
secondary clusters (SC) using the multivariate Poisson-based prospective space-time scan
statistic.
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Table 1

Simulation study. Mean square error of the relative risk estimates obtained, for each disease, with both the
shared component model and the convolution model and the overall DIC. The results are averaged over the
300 data sets simulated under Scenario 1.

Disease 1 Disease 2 Disease 3 DIC

Shared component model 0.035 0.013 0.029 6068.29

Convolution model 0.042 0.018 0.034 6084.30
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Table 2

Simulation study, Scenario 1. Sensitivity and median time to outbreak detection (both posterior average
estimates and 95% credible intervals) of the surveillance conditional predictive ordinate (SCPO) and the
multivariate surveillance conditional predictive ordinate (MSCPO).

SCPO MSCPO

Sens MTD Sens MTD

Disease 1 0.46 Inf 0.68 2

[0.13,0.75] [1,Inf) [0.38,0.94] [0,Inf)

Disease 2 0.28 Inf 0.60 2.5

[0.13,0.5] (Inf,Inf) [0.25,0.88] [0,Inf)

Disease 3 0.78 1 0.82 1

[0.5,1] [0,Inf) [0.5,1] [0,Inf)
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Table 3

Simulation study, Scenario 2. Sensitivity and median time to outbreak detection (both posterior average
estimates and 95% credible intervals) of the surveillance conditional predictive ordinate (SCPO) and the
multivariate surveillance conditional predictive ordinate (MSCPO).

SCPO MSCPO

Sens MTD Sens MTD

Disease 1 0.42 Inf 0.87 2.5

[0.13,0.63] [3,Inf) [0.63,1] [1,4]

Disease 2 0.67 2 0.67 2

[0.4,1] [0,Inf) [0.4,1] [0,Inf)

Disease 3 0.96 1 0.97 1

[0.81,1] [0,2] [0.88,1] [0,2]
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Table 6

Case study. Clusters detected by the multivariate space-time scan statistic at time period 7.

1. Most likely cluster: Spartanburg, Greenville, Cherokee, Union, Laurens, Pickens, Anderson

   Time frame: 9 Aug 09 to 15 Aug 09 (week 7 in the analysis)

   p-value: 0.0001

Cases Expected Relative risk

AURI 354 327.25 1.09

Influenza 16 9.50 1.72

Bronchitis 136 96.00 1.47

Asthma 100 85.50 1.18

Pneumonia 121 98.25 1.25

2. Secondary cluster: Clarendon, Sumter, Williamsburg, Calhoun, Lee, Orangeburg, Florence, Berkeley, Dorchester, Darlington,
Kershaw, Richland, Georgetown, Bamberg, Marion, Colleton, Lexington, Charleston, Chesterfield, Dillon, Fairfield, Barnwell,
Marlboro

   Time frame: 2 Aug 09 to 15 Aug 09 (weeks 6–7 in the analysis)

   p-value: 0.04

Cases Expected Relative risk

Influenza 143 108.50 1.54

Bronchitis 236 220.50 1.09
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