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THESIS OUTLINE  

In our lives, we are constantly exposed to different sources of stress, 

specifically psychological or social. Our reaction to stress is an adaptive response 

due to its role in facilitating survival. However, stress can also have immediate 

and delayed damaging consequences for health, and it is considered one of the 

most significant health problems of the 21st century, according to the World 

Health Organization (2001). 

The impact of stress extends to most of the physiological systems (i.e. 

cardiovascular, digestive, immune, neuroendocrine or nervous), resulting in 

numerous diseases. Cognitive problems stand out among the stress effects 

related to the nervous system. Given the large impact that these problems can 

have on society in general, and on individuals in particular, the need to 

understand more about this link is clear. This is one of the reasons for the 

growing interest in investigating the main mechanisms underlying the stress 

impact on different cognitive processes, such as memory, attention or executive 

functions. Several factors related to the characteristics of the stressor, the 

individual and the cognitive process assessed seem to play an important role in 

determining the direction of these stress effects. Thus, this thesis focuses on the 

way stress affects cognition, specifically memory performance, in healthy adults, 

analyzing the role of some of these factors. 

The first section of the first chapter discusses the evolution of the stress 

concept and explains what the stress response is. In the second part, the link 

between stress and memory is explained, detailing which brain structures are 

related to the control of the stress response and the cognitive processes. Then, a 

brief summary of the studies about the effect of acute stress on memory 

performance is presented. Moreover, the Hypothalamus-Pituitary-Adrenal axis 

(HPA-axis) in basal conditions (non-stress) is addressed, again summarizing the 

studies that have investigated the relationship between HPA-axis functioning and 

cognitive performance. Finally, the chapter ends with the main goals and 
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hypothesis of this thesis and a general description of the material and methods 

used in the empirical chapters. 

In the second chapter, the first study is presented. In this study, we 

examined the effects of stress-prior learning on two types of memory (i.e. non-

declarative and declarative memory) in young adults. Here, the material to be 

remembered is neutral, and the role of sex is considered. Next, in the third 

chapter of the thesis, following a similar design, the second study carries out a 

direct comparison of older and young adults. 

The fourth chapter describes the third study, which investigates the stress 

effects on memory retrieval. Now, the stressor is applied before the retrieval 

tasks, and the material to be remembered is neutral and emotional. Again, older 

and young adults of both sexes are compared.  

In the last study, the fifth chapter analyzes the relationships between the 

cortisol awakening response (CAR) and the diurnal cortisol slope (DCS), two 

different components of the diurnal cortisol cycle, and different memory tasks.  

The sixth chapter contains a general discussion and the main findings of 

the aforementioned studies; the strengths and limitations of this thesis and the 

direction of the next steps in the research on this topic are discussed here. 

Finally, the seventh chapter presents the main conclusions of the studies 

included in this thesis. 
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ABBREVIATIONS 

 

ACTH = Adrenocorticotropic Hormone 

ANS = Autonomic Nervous System 

AVP = Arginine Vasopressin 

BLA = Basolateral Amygdala 

BMI = Body Mass Index 

CAR = Cortisol Awakening Response 

CAs = Catecholamines 

CRH = Corticotropin Releasing Hormone 

DCS = Diurnal Cortisol Slope 

ENS = Enteric Nervous System 

GCs = Glucocorticoids 

GRs = Glucocorticoid Receptors 

HPA-axis = Hypothalamic-Pituitary-Adrenal axis 

MRs = Mineralcorticoid Receptors 

PFC = Prefrontal Cortex 

PNS = Parasympathetic Nervous System 

PVN = Paraventricular Nucleus 

sAA = Salivary Alpha-Amylase 

SES = Socioeconomic Status 

SCN = Suprachiasmatic Nucleus  

SNS = Sympathetic Nervous System 

TSST = Trier Social Stress Test 
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1.1. WHAT IS STRESS? 

1.1.1. Evolution of the stress concept 

The term “stress” was employed for the first time in the field of Physics as 

the force exerted on an object that was “distorted” (strain). But the most important 

use comes from Physiology. Thus, Walter Cannon introduced the homeostasis 

concept to refer to physiological coordinated processes that act to keep most 

organisms’ states constant (an organism’s internal regulatory balance). He 

highlighted the importance of Autonomic Nervous System (ANS) activation through 

its preparatory function to cope with the situation, emitting “fight or flight” 

behaviors (Cannon, 1932). 

Years later, the physiologist Hans Selye defined stress as a non-specific 

response to a stimulus that disturbs the homeostasis, and he extended Cannon’s 

theory, arguing that in the stress response, both ANS and Hypothalamic-Pituitary-

Adrenal axis (HPA-axis) activation occur. Selye described a general adaptation 

phenomenon in rats exposed to a wide variety of noxious stimuli; rats went into an 

adaptation phase (maladaptation) leading to death from a non-specific reaction 

(Selye, 1936). The entire response process was called the “General Adaptation 

Syndrome” (Selye, 1956), with three stages: (i) the Alarm Reaction: this is the initial 

response to the stressor, characterized by ANS activation, and the physiological 

changes are designed to obtain the maximum energy resources to deal with the 

stressor by fighting or fleeing. This stage cannot be maintained continuously in time; 

therefore, if the stressor continues and the organism is not dead, the next stage will 

take place. (ii) The Resistance Stage: this is characterized by HPA-axis activation, 

where the main goal is to ensure an efficient distribution of energy. The energy 

mobilization and inhibition of sexual and reproductive activities (both activities 

without an immediate purpose for survival) are the main physiological changes 

produced in this stage. (iii) The Exhaustion Stage: this is the final stage of the 
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syndrome, and at this point, the organism has lost the ability to adapt. 

Consequently, a number of diseases (diseases of adaptation) will occur, such as 

hypertension, gastrointestinal ulcers, nervous disorders, among others. 

However, later there was a change of focus in explaining stress. To date, 

studies have focused on the physical aspects of stress, but based on the idea that 

there are individual differences in the way the same situation produces different 

responses in different individuals, the psychological aspects of stress began to be 

considered. First, Mason (1968) described three main psychological characteristics 

that would cause a situation to be interpreted as stressful by the individual: novelty, 

unpredictability and lack of control. After that, Lazarus and Folkman (1984) 

proposed an integrative approach. In their stress model, these authors included two 

new concepts that may help to explain this variability: the appraisal (cognitive 

assessment made by the subject about the stressful situation) and coping (strategy 

adopted by the individual to deal with the stressful situation based on the 

appraisal). Then, they considered: first, the interaction between the stressors and 

the stress reaction of the subject; second, the appraisal about the situation and their 

own abilities to solve it or not; and, finally, the strategies adopted by the individual 

and the efficiency in obtaining the adaptation to the situation. 

Years later, based on the allostasis concept proposed by Sterling and Eyer 

(1988), which describes the organism’s ability to maintain the homeostasis or 

stability through changes, McEwen and Stellar (1993) introduced the allostatic load 

concept as the key to understanding the stress/disease binomial. Thus, the body has 

systems (i.e. the ANS, the HPA-axis, the metabolic and immune systems) that 

promote this allostasis in stressful situations. However, at the same time, these 

systems can also cause problems for the body if they are overactive or underactive. 

Therefore, the allostatic load is the price the organism pays for striving to maintain 

homeostasis.   
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1.1.2. Stress response 

The stress response is the set of physiological and psychological changes that 

occur in the individual when exposed to a stressful situation/stimulus or one 

considered stressful. These changes are produced in order to enable the individual 

to cope with the stressor and/or suffer the least possible damage. The integration of 

the information about the stimulus or stressful situation converges in the 

hypothalamus, more specifically, in the Paraventricular Nucleus (PVN), which 

activates the ANS and HPA-axis, the most important systems involved in the stress 

response. It is important to note that, in addition to the physiological changes 

described below, psychological changes also occur in a stressful situation (Lupien 

and Schramek, 2006). Although there are differences among individuals in how they 

perceive the stressor, it is usually a negative experience that increases anxiety and 

negative mood while reducing positive mood. 

 

1.1.2.1. Autonomic Nervous System (ANS) 

First, the ANS is activated by the stressor promoting the “fight or flight” 

response. This system is composed of three branches: (i) Sympathetic Nervous 

System (SNS), (ii) Parasympathetic Nervous System (PNS), and (iii) Enteric Nervous 

System (ENS). In a stressful situation, the SNS is activated and, consequently, large 

amounts of catecholamines (CAs, noradrenaline and adrenaline) are released. 

Specifically, noradrenaline is secreted at sympathetic nerve endings in tissues and 

glands throughout the body, while sympathetic preganglionic neurons activate the 

adrenal medulla, which releases adrenaline and, to a lesser extent, noradrenaline 

(Granger et al., 2007). The binding of CAs to the adrenergic receptors (i.e. α1, α2, β1 

and β2) leads to physiological changes, such as enhanced cardiovascular tone, 

respiratory rate, blood flow, elevated glucose in blood, dilation of pupils and 
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diminishing vegetative functions (Chrousos, 2009; Chrousos and Gold, 1992). These 

changes are designed to ensure the individual’s adaptation to the situation, as they 

provide greater blood flow and energy to the organs needed to overcome the 

stressful situation, to the detriment of other organs that are less relevant or not at 

all relevant in confronting stress. 

Recently, a growing body of research considers salivary alpha-amylase (sAA) 

as a target biomarker in the ANS reactivity to stress (for a review of this topic see: 

Granger et al., 2007; Nater and Rohleder, 2009; Rohleder and Nater, 2009). sAA is an 

oral enzyme secreted by the salivary glands (mainly parotid glands) as a result of the 

action of noradrenaline released from sympathetic nerve endings on β-adrenergic 

receptors located in the salivary glands. Its secretion takes place completely in the 

oral cavity, and the sAA levels in saliva do not represent a portion of sAA levels 

circulating because it is not actively transported or passively diffused into saliva 

from the bloodstream, in contrast to other analytes present in saliva. Some of its 

functions are: the digestion of carbohydrates (Baum, 1993) and maintaining oral 

health, preventing and eliminating bacteria from the mouth (Scannapieco et al., 

1993).  

The sAA has been proposed as a potential substitute for catecholamines in 

psychoneuroendocrinological studies because, on the one hand, it is easily 

accessible and obtained from human saliva in a non-invasive way and, on the other, 

it reflects the SNS activity. 

 

1.1.2.2. Hypothalamic-Pituitary-Adrenal axis (HPA-axis) 

Minutes after the onset of the stressor, the next stress system activated is 

the HPA-axis. Its functioning is established through communication among three 

structures, the hypothalamus, the pituitary gland and the adrenal gland. Thus, when 
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the individual is facing a physical or psychological stressor, the HPA-axis is activated, 

resulting in large amounts of corticotropin releasing hormone (CRH) and arginine-

vasopressin (AVP) from the PVN of the hypothalamus. These two hormones cause 

the release of adrenocorticotropic hormone (ACTH) in the bloodstream by the 

pituitary gland action. Then, the ACTH stimulates the adrenal glands, and as a result, 

glucocorticoids (GCs) are released into the bloodstream (Ulrich-Lai and Herman, 

2009). In humans, the most important glucocorticoid is cortisol. 

HPA-axis functioning under basal situations (non-stress) follows a circadian 

pattern, where the cortisol levels achieve a peak 30 minutes after awakening, in 

order to prepare the organism to cope with the daily demands, and they decrease 

throughout the day with lower levels at night. Moreover, the HPA-axis activity is 

controlled by a negative feedback system because the continued exposure to high 

levels of GCs can cause serious health problems for the individual. There are two 

ways to regulate this negative feedback system: hormonal and neural inhibition. The 

former occurs when large amounts of GCs are in the bloodstream and the release of 

CRH and AVP is inhibited by the PVN (Whitnall, 1993). The latter takes place through 

the inhibitory action of the hippocampus and prefrontal cortex on the PVN (Patel et 

al., 2000). Further explanation of the latter will be provided in point 2 of this 

introduction. 

Two important GC actions in the organism are worth noting: (i) modulating 

actions and (ii) preparative actions (for a review on this topic see: Sapolsky et al., 

2000). The modulating actions are those that affect the organism’s response to the 

stressor. Among this type of actions, the authors distinguish permissive, suppressive 

and stimulating actions. Permissive actions are carried out by the basal GCs present 

before the stress, and they strengthen the defense mechanisms through which the 

organism responds to the stressor. By contrast, suppressive actions are exerted by 

the stress-induced GC peak; therefore, they are delayed actions and take place 
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about one hour from the onset of the stressor. Their final aim is to stop the stress-

activated defense reactions, returning the organism to homeostasis, in order to 

protect it from the damage caused by an overshoot. Likewise, the stimulating 

actions are exerted by the stress-induced GC peak after about one hour from the 

onset of the stressor, but the difference between this type of actions and the 

previous actions is that the stimulating actions reinforce the first wave of hormonal 

response to the stressor, like the permissive actions. Finally, the preparative actions 

are those that do not affect the immediate response to a stressor, but instead 

modulate the organism’s response to a subsequent stressor through mediating or 

suppressive actions. 

The GCs’ actions can be grouped in two categories characterized by the time 

the GCs need to exert their effects: (i) non-genomic and (ii) genomic effects (for a 

review on this topic see: Stahn and Buttgereit, 2008). The non-genomic effects or 

non-classical mechanism is the faster route because the GCs exert their effects in a 

short period of time, from seconds to minutes, once there is an increase in GC levels. 

These fast effects include rapid negative feedback-inhibition of the HPA-axis. It is not 

clear whether these non-genomic effects occur through the membrane actions of 

the nuclear receptors (GRs and MRs) or through other unidentified membrane 

receptors (Ulrich-Lai and Herman, 2009). The genomic effects or classical 

mechanism is the slower route because the GCs exert their effects over a long 

period of time, from minutes to hours. These effects are determined by intracellular 

receptors found in the cytosol and bound to stabilizing proteins in their inactive 

state. The GCs penetrate the cellular membrane, thanks to their lipophilic nature, 

and they bind to intracellular receptors, forming a “hormone-receptor” complex. 

This union translocates to the inside of the nucleus, where it binds to specific DNA 

sites and regulates the gene transcription of different proteins (Herman and 

Spencer, 1998; Ulrich-Lai and Herman, 2009). 
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There are two types of receptors for GCs, the mineralcorticoid receptors 

(MRs), or Type I, and the glucocorticoid receptors (GRs), or Type II. They show two 

main differences: affinity, and their distribution in the brain. Regarding their affinity, 

the MRs have from 6 to 10 times more affinity to GCs than GRs (Reul and de Kloet, 

1985). Under basal situations, the MRs are occupied, so that this type of receptor is 

responsible for the effects of low cortisol levels. However, when cortisol levels are 

higher due to a stressful situation or circadian peak of cortisol (30 minutes after 

awakening), the MRs are saturated, and the rest of the cortisol has to bind to GRs. 

This type of receptor is involved in the stress-induced glucocorticoid effects and in 

the feedback inhibition of the HPA-axis (de Kloet et al., 2005). In addition, their 

distribution in the brain is different. While MRs are located especially in the 

hippocampus, the GRs are found mainly in the prefrontal cortex (Lupien et al., 

2007). 

 

1.2. THE LINK BETWEEN STRESS AND MEMORY 

There is a close interaction between stress and memory, probably due to its 

adaptive function throughout evolution. This fact could explain the high degree of 

overlap between the neurobiological systems that regulate both the stress response 

and the memory function. Thus, the brain areas related to the control of the stress 

response (i.e. hippocampus, prefrontal cortex and amygdala) are also involved in the 

memory function (Lupien and Lepage, 2001; Lupien et al., 2007; Roozendaal et al., 

2009). Therefore, it is not unusual to expect stress-related changes in these brain 

areas to be reflected in changes in memory performance. 
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2.1. How stress affects memory 

As mentioned above, in response to stress, the SNS and HPA-axis are 

activated, and consequently, large amounts of CAs and GCs are secreted. These 

stress biomarkers exert their effects in two different ways. While GCs exert their 

action by crossing the blood-brain barrier and binding to MRs and GRs located in the 

hippocampus, prefrontal cortex and amygdala, CAs activate the β-adrenergic 

receptors on vagal afferents projecting to the nucleus of the solitary tract in the 

brainstem (McGaugh, 2000), and these noradrenergic projections influence the 

neuronal activity of the amygdala (Packard et al., 1995).  

 

1.2.1.1. Hippocampus 

The hippocampus, located deep within the medial temporal lobe, is 

considered a main structure of the limbic system. This area presents the largest 

number of receptors for GCs, and its functions control the circadian rhythm of GCs 

(Fischette et al., 1980) and inhibit the HPA-axis activity in response to stress (Fendler 

et al., 1961). This inhibitory action occurs because the glutamatergic hippocampal 

projections activate the GABAergic neurons of the bed nucleus of the stria 

terminalis, the medial preoptic area, the dorsomedial hypothalamus, and other 

hypothalamic nuclei, which in turn, exert an inhibitory action on the PVN of the 

hypothalamus (Cullinan et al., 1993; Herman et al., 2003).  

As mentioned above, this structure is also involved in memory processes. 

This was supported by the well-known case of the patient H.M. This person suffered 

from epilepsy, and in order to avoid it, his medial temporal lobe (mainly the 

hippocampus, but also the amygdala and other temporal cortical structures) was 

removed. Consequently, H.M. developed anterograde amnesia, the inability to store 

new knowledge in long-term memory, although his short-term and long-term 
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memories from before the surgery and his ability to acquire new motor skills were 

intact. This finding illustrated the relevance of the hippocampus in declarative 

memory (Scoville and Milner, 1957).  

In animals, spatial memory has been studied as an analogous form of 

declarative memory, using the water maze designed by Morris. On this task, the 

animals have to learn, aided by contextual cues, where the platform is. Good 

performance on this task requires the integrity and functional activation of the 

hippocampus (Morris et al., 1982). It seems that the hippocampus underlies the 

processes of spatial learning and memory because it has “place cells” (i.e. type of 

cells that fire in response to the animal’s specific location in the environment) and 

virtually creates a “cognitive map” of the environment (O’Keefe and Nadel, 1978). 

Interestingly, in humans the hippocampus is activated during spatial memory tasks 

in taxi drivers (Maguire et al., 1998). 

 

1.2.1.2. Prefrontal cortex (PFC) 

The PFC is located in the most anterior part of the frontal lobes. The PFC is 

involved in integrating information from the stressful stimuli. Like the hippocampus, 

it has numerous GC receptors and exerts an inhibitory action on the HPA-axis 

through PVN inhibition resulting from the GABAergic neuron activation in the 

preoptic area of the hypothalamus, the nucleus of the solitary tract, and the bed 

nucleus of the stria terminalis, among others.  Given that the PFC connects to the 

hippocampus and the amygdala, it is considered one of the most important areas in 

the coordination and control of HPA-axis functioning in response to stress (Ulrich-Lai 

and Herman, 2009).  

Moreover, the PFC is also involved in several cognitive processes, such as 

affect, emotion, social behavior, language and intelligence. Some of its functions 
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include its role in executive function, the ability to temporally organize purposeful 

behavior, language and reasoning, and it includes attention, working memory, 

planning, temporal integration, decision-making, monitoring and inhibitory control 

(Fuster, 2008). Therefore, the PFC is crucial for working memory (Galloway et al., 

2008). 

 

1.2.1.3. Amygdala 

The amygdala is a bilateral structure located deep inside the medial temporal 

lobe; it forms part of the limbic system, like the hippocampus, and contains both 

GCs and adrenergic receptors. It has an excitatory effect on the HPA-axis, which is 

mediated by its GABAergic projections, which inhibit, in turn, the neurons of the bed 

nucleus of the stria terminalis, the preoptic area and other hypothalamic nuclei. 

Moreover, it coordinates behavioral, autonomic and endocrine response to a 

stressful situation (Sandi et al., 2001). 

This brain structure is involved in processing emotions (mainly fear and 

anger) and also in emotional memory. In our context, the main role of the amygdala 

is the strengthening of declarative memory that occurs when the material to be 

recalled is emotional (Cahill and McGaugh, 1998). Two types of neurobiological 

mechanisms would be involved in this strengthening: neural and hormonal. Thus, at 

the neural level it would occur through direct neural projections from the amygdala 

to other brain structures such as the hippocampus and the prefrontal cortex. And at 

the hormonal level, it would occur through the connection between the amygdala 

and the hypothalamus, which can modulate the HPA-axis activity and the ANS 

activity. At this point, it has been indicated that noradrenergic activation of the 

basolateral amygdala is necessary to observe the effects of stress hormones on 
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consolidation and retrieval processes (Roozendaal et al., 2009). In addition, it is a 

necessary structure for fear conditioning (Sandi et al., 2001). 

 

1.2.2. Stress effects on memory1 

It is well known that memory function is affected by stress in both animals 

and humans. However, to define these stress effects, it is necessary to deal with 

multiple factors related to both the stressor and memory functions because they 

can moderate this relationship. Some of the most important factors related to the 

stressor are its intensity, nature (exogenous vs. endogenous) and duration (acute vs. 

chronic) (Sandi, 2013). To investigate the acute stress effects on memory function, in 

recent years several tasks have been proposed in order to obtain a more realistic 

stress response and, consequently, greater ecological validity. Thus, the use of stress 

paradigms in the laboratory has meant an advantage over the pharmacological 

challenge studies because they trigger the SNS and HPA-axis activation. Among 

them, the Trier Social Stress Test (TSST; Kirschbaum et al., 1993), a combination of a 

public-speaking task and an arithmetic task, has been widely used. This task is able 

to induce a consistent stress response at different levels, endocrine, cardiovascular, 

immune and subjective (Kudielka et al., 2007), probably because it simulates an 

uncontrollable social evaluative situation (Dickerson and Kemeny, 2004).  

With regard to memory function, it is important to note that the type and 

phase of memory should also be considered in the memory consequences of stress. 

According to the level of consciousness, memory has been classified as explicit or 

declarative memory, which requires conscious recollection of previous experiences 

(Milner et al., 1998), or implicit or non-declarative memory, which represents the 

                                                           
1 This section is part of a review article that is currently being prepared: Hidalgo, V., 

Pulopulos, M.M., and Salvador, A. Acute stress and memory: the role of age and sex. 
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effect of unconscious prior experience on subsequent behavior (Graf et al., 1984). 

These two different memory systems operate in parallel, supporting behavior 

(Squire, 2009). In addition, memory is a dynamic process because the information is 

encoded, consolidated and retrieved. After encoding new information from outside, 

this information is maintained for a short time. Finally, this information that has 

been stored returns to the consciousness. Thus, the memory process consists of 

three phases: encoding, consolidation and retrieval. Stress can affect all these 

phases depending on when individuals are stressed: before encoding/learning, 

consolidation or retrieval. Whereas most of the work addressed to investigating the 

impact of stress on memory performance has focused on these phases, there is 

recent evidence that stress can also affect reconsolidation/or extinction processes if 

the stressor is applied after retrieval (for a review see: Schwabe et al., 2012). 

However, we must not forget the importance of individual differences in this 

stress-memory relationship. Factors like the age or the sex of the individuals can also 

moderate the stress effects on memory function. 

In the following sections, a brief summary of the main findings reported in 

the literature about the effects of acute stress on memory performance, considering 

these moderating factors, will be explained. We will focus mainly on the variables 

addressed in this thesis. In addition, a systematic review of the effects of acute 

stress on two types of memory (i.e. non-declarative and declarative memory) and on 

two phases of memory (i.e. learning and retrieval) is presented. 

 

1.2.2.1. Acute stress effects on non-declarative memory 

In human studies, one of the most widely-used tasks to assess non-

declarative memory performance has been a word-stem completion task. This task 

consists of word stems as cues to recover recently presented words and assess the 
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priming effect. Priming refers to an improvement in the ability to identify or process 

a stimulus as the result of a recent prior experience with the same stimulus or a 

related one (Tulving and Schacter, 1990). It seems to be an advantageous effect 

because it improves the speed and accuracy with which organisms interacts with a 

familiar environment (Squire, 2009). Regarding the brain areas related to priming, 

previous neuroimaging studies have shown that it is related to reduced activity in 

the neocortical regions involved in the task (Wiggs and Martin, 1998; Schacter et al., 

2007). 

Studies investigating the stress effects on priming are scarce and report 

mixed results. Thus, no effects of psychosocial stress were found in older men and 

women (Lupien et al., 1997) or in women from middle to older ages (Domes et al., 

2002). However, enhancing effects have also been shown in men and women from 

18 to 65 years old employing a physical stress (i.e. running a marathon) (Eich and 

Metcalfe, 2009). Unfortunately, they did not measure the cortisol and/or sAA 

response, and so it is impossible to know whether this enhancement was due to 

HPA-axis and/or SNS activation. The only study that checked the impact of cortisol 

administration on the priming effect failed to find effects of high cortisol 

concentrations in young men (Kirschbaum et al., 1996). Therefore, the purpose of 

the first study in this thesis will be to address whether the SNS and HPA-axis 

reactivity to stress affect the priming of non-declarative memory. 

 

1.2.2.2. Acute stress effects on declarative memory 

1.2.2.2.1. Acute stress prior-learning 

In contrast to non-declarative memory, the relationship between stress and 

declarative memory has been investigated more thoroughly, mainly in young 

people.  
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When young people were exposed to an acute stressor, prior learning of 

neutral material worsened (Jelicic et al., 2004; Kirschbaum et al., 1996; Payne et al., 

2006; 2007; Smeets et al., 2006), was enhanced (Nater et al., 2007; Schwabe et al., 

2008) and even showed no effect (Elzinga et al., 2005; Wolf et al., 2001b) on short-

term memory performance (for more details see Table I.1). However, in only a few 

studies, the impact of the HPA-axis reactivity to stress was related to memory 

performance. Thus, a stress-induced cortisol increase was negatively related to 

declarative memory performance (Kirschbaum et al., 1996; Wolf et al., 2001b). By 

contrast, those who had higher cortisol responses to stress performed better on the 

declarative memory task than those who had lower cortisol responses (Nater et al., 

2007). On the other hand, three studies investigated the SNS response to stress 

(Elzinga et al., 2005; Payne et al., 2007; Schwabe et al., 2008), but only Schwabe et 

al. (2008) showed that autonomic arousal facilitated memory recall of neutral 

words.  

Despite evidence indicating the moderating role of sex in the relationship 

between acute stress and declarative memory performance (Andreano et al., 2008; 

McEwen, 2002; Shors, 2006), many of the previous studies did not address this 

issue. For example, Nater et al. (2007) only studied men, while Elzinga et al. (2005) 

included only women. Others studied mixed-sex samples, but they did not control 

the menstrual cycle phase of the women (Kirschbaum et al., 1996; Jelicic et al., 2004; 

Payne et al., 2006; 2007; Smeets et al., 2006), although differences in the cortisol 

response have been reported depending on sex hormone levels (Kirschbaum et al., 

1999). Only two previous studies considered the sex hormone levels, reporting 

mixed results. While no sex differences were found between men and women oral 

contraceptive users (Schwabe et al., 2008), a negative correlation was found 

between cortisol response and memory performance only in men and not in women 

in the luteal phase of their menstrual cycle (Wolf et al., 2001b). 
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To summarize, the effects of prior acute stress on memory performance are 

unclear. Moreover, the impact of the HPA-axis and SNS reactivity to stress on 

memory performance, as well as the role of sex and the sex hormone levels in this 

relationship, has not been studied in depth. Therefore, these issues are going to be 

addressed in the first study of this thesis. 

Little attention has been paid to pre-learning effects on memory in older 

people. To our knowledge, only a few studies have focused on this topic. Two 

previous studies failed to find stress effects in women from 41 to 69 years of age 

(Bohnen et al., 1990) and from 32 to 68 years of age (Domes et al., 2002). Based on 

these studies, it is impossible to distinguish sex differences. Only one study 

investigated the role of sex in the stress effects on memory performance in older 

people. Thus, only among women, the stress-induced response had an acute 

differential impact on memory performance (Almela et al., 2011a). Previously, Wolf 

et al. (2001a) published an article with a direct comparison of older and young 

people. In their study, a hydrocortisone (a cortisol agonist) injection administered 

prior to learning did not influence the recall of a list of neutral words in young (19 to 

30 years old) and older (59 to 76 years old) men. However, there are important 

differences between the GC increases induced by pharmacological administration 

and those produced by exposure to stress (for more details see Table I.1). As 

mentioned above, in addition to the cortisol increase that occurs with drug 

administration, stress provokes other physiological (i.e. SNS activation) changes 

(Lupien and Schramek, 2006). Hence, the use of stress paradigms in the laboratory 

allows a more complete study of stress effects on memory performance. Therefore, 

the second study in this thesis aimed to compare the effects of acute stress on 

memory performance in older and young people, and find out whether there were 

sex differences in this comparison.  
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2.2.2.2. Acute stress prior-retrieval 

Pharmacologically-induced or stress-induced increases in cortisol levels 

usually enhance memory consolidation (Buchanan and Lovallo, 2001; Cahill et al., 

2003; Smeets et al., 2008). However, when this cortisol increase takes place before 

retrieval due to pharmacological administration (de Quervain et al. 2000; 2003; 

Kuhlmann and Wolf, 2005; Kuhlmann et al., 2005a) or stress exposure (Buchanan et 

al., 2006; Buchanan and Tranel, 2008; Domes et al., 2004; Kuhlmann et al., 2005b; 

Oei et al., 2006; Smeets, 2011; Smeets et al., 2008), it usually impairs memory 

retrieval (but see: Schoofs and Wolf, 2009; Beckner et al., 2006; Wolf et al., 2002 for 

non-effects) (for more details see Table I.2). According to Roozendaal (2002), these 

different effects (i.e. enhancement of consolidation and impairment of retrieval) 

occur because cortisol has a blocking effect on retrieval processes, in favor of 

consolidation processes, facilitating the consolidation of new important information 

that can be necessary in future situations. 

The cortisol response to stress was especially involved in these impairing 

effects of stress. Thus, a negative correlation between memory retrieval and the 

cortisol response to stress was reported (Domes et al., 2004; Oei et al., 2006; 

Smeets, 2011; Smeets et al., 2008). On the other hand, Buchanan and Tranel (2008) 

and Buchanan et al. (2006) found negative stress effects among those participants 

who showed both autonomic and cortisol responses. Interestingly, apart from these 

two studies, only two other studies investigated the SNS response to stress (Oei et 

al., 2006; Smeets et al., 2008), but only Smeets et al. (2008) found a negative 

relationship between sAA response and memory retrieval. 

It is important to note that these studies have been carried out with young 

people, and so little is known about the role of age in these effects of stress on 

memory retrieval. To date, only two studies have investigated this matter in older 

people. Thus, Wolf et al., (2001a) observed that a higher cortisol increase after an 
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injection of hydrocortisone impairs memory retrieval for words in both young and 

older men. By contrast, Pulopulos et al. (2013) reported no effects of stress-induced 

cortisol and sAA increases on memory retrieval of pictures, words and stories in a 

mixed-sex sample. Hence, no study has compared the impact of the HPA-axis and 

SNS activation on memory retrieval in young and older people of both sexes. The 

third study in this thesis has been proposed to answer this question.   

Finally, previous studies have observed greater cortisol effects for 

emotionally arousing material than for neutral material (Domes et al., 2004; 

Kuhlmann et al., 2005b; Buchanan et al., 2006; Smeets et al., 2008) (for more details 

see Table I.2). This can be explained by a greater noradrenergic activation of the 

amygdala provoked by emotional material than neutral material. As has been 

reported, noradrenergic activation of the basolateral amygdala (BLA) and 

interactions between the amygdala and hippocampus are crucial to observe cortisol 

effects on memory performance related to hippocampus functioning (Roozendaal et 

al., 2009). However, whether there are age differences in the stress effects on 

memory retrieval of emotional and neutral material is an issue that remains 

unanswered. Therefore, in the third study of this thesis, positive, negative and 

neutral materials have been included in order to address this question. 
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1.2.3. Diurnal cortisol cycle and memory 

So far, our focus has been on the HPA-axis activity in stress situations and 

how this reactivity affects memory function. However, the diurnal HPA-axis 

functioning (under normal or non-stress situation) reflects the general 

neuroendocrine health status and, consequently, is related to physical, emotional 

and cognitive health (Adam and Kumari, 2009). Hence, cortisol is not only the end 

product of the HPA-axis activation in response to stress, but also an indicator of 

HPA-axis health (Hellhammer et al., 2007; Miller et al., 2007). In support of this, 

exposure to chronic stress has been associated with HPA-axis dysregulation (Miller 

et al., 2007). Therefore, HPA-axis functioning can also reflect the exposure to stress 

across the lifetime.  

The diurnal HPA-axis activity follows a circadian rhythm. Thus, in the 

morning, an acute and rapid increase in cortisol levels occurs, reaching a peak 

between approximately 30 and 45 minutes after awakening (Pruessner et al., 1997; 

Wüst et al., 2000). Afterwards, the cortisol levels gradually decrease to lower levels 

at the end of the day. Therefore, two components are distinguished in the diurnal 

cortisol cycle: (i) the cortisol awakening response (CAR), and (ii) the diurnal cortisol 

slope (DCS).  

A healthy HPA-axis function requires strong CAR and DCS slopes, while 

flattened CAR and DCS slopes reflect an unhealthy HPA-axis function. However, in 

spite of the importance of these two different HPA-axis components, most studies 

investigating HPA-axis functioning and cognitive function did not make an effort to 

collect the entire cortisol profile using urinary, blood or salivary samples 

(Karlamangla et al., 2005; MacLullich et al., 2005; Li et al., 2006; Kuningas et al., 

2007; Lee et al., 2007; Lee et al., 2008; Comijs et al., 2010; Seeman et al., 1997; 

Souza-Talarico et al., 2010; Schrijvers et al., 2011; Potvin et al., 2012; Pulopulos et 

al., 2014) (for more details see Table II.3). 
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The following sections briefly explain these two components of diurnal HPA-

axis functioning and their relationship with the memory performance of older 

adults.  

 

1.2.3.1. The cortisol awakening response and memory  

As its name suggests, the cortisol awakening response (CAR) is a response to 

morning awakening characterized by a sharp cortisol increase from about 50 to over 

100% (Clow et al., 2004) 30-45 minutes post-awakening (for a review about this 

topic see: Clow et al., 2010a; 2010b; Fries et al., 2009; Kudielka and Wüst, 2010). 

The CAR was first established by Pruessner et al. (1997) as a good index of 

adrenocortical activity. It is usually collected by saliva samples, providing ecological 

validity because the samples can be taken by the participants in their own homes. 

However, at the same time, problems with adherence to the protocol can appear 

(Thorn et al., 2006). Normally, participants are instructed to provide saliva at 

awakening, and 15, 30, 45 and, sometimes, 60 minutes post-awakening on more 

than one day, given the difficulty of capturing this dynamic index of cortisol 

secretion. The CAR is a discrete component superimposed on the circadian rhythm 

and distinct from the rest of the cortisol secreted during the day. 

As mentioned in the previous section, the HPA-axis is mainly regulated by the 

hippocampus, the PFC and the amygdala. Specifically, the hippocampus may exert 

its control on it differently. Thus, in addition to the inhibitory role that it usually 

plays in the control of HPA-axis activity during the rest of the day, the hippocampus 

would also have a permissive role in the regulation of the CAR (Fries et al., 2009). 

Accordingly, two studies reported that when the hippocampus is damaged, the CAR 

is absent (Buchanan et al., 2004; Wolf et al., 2005). Moreover, larger hippocampal 

volume was related to a greater CAR (Pruessner et al., 2007). In sum, these results 
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support the notion that the hippocampus plays a central role in the regulation of the 

CAR. However, although the PFC and the amygdala also regulate the HPA-axis 

activity, their specific role in the control of the CAR is still not known (Fries et al., 

2009). In addition, other mechanisms are involved in the regulation of the CAR. The 

suprachiasmatic nucleus (SCN), the light-sensitive endogenous biological clock, 

exerts its function through two pathways: (i) via input to the PVN and the HPA-axis 

cascade (CRH and ACTH) and (ii) via its direct sympathetic innervation to the adrenal 

gland by the splanchnic nerve (for a review see: Fries et al., 2009). 

Despite the numerous studies investigating the CAR, the exact function of 

this aspect of HPA-axis activity remains unclear. However, it has been proposed that 

it may be involved in the transition from sleep to awakening (full alertness) and in 

the body’s synchronization to the sleep-wake and light-dark cycle (Clow et al., 

2010a). Moreover, it may play a part in the immune system balance and voluntary 

motor function following nighttime sleep (Clow et al., 2010b), as well as in the 

preparation of the organism to meet the physical and mental demands of the 

coming day (Fries et al., 2009).    

Among the factors that can influence the CAR, age and sex have been two of 

the most studied (Fries et al., 2009). Regarding age, there is no consensus, as the 

few existing studies reported mixed results. While two studies failed to find age 

effects on the CAR (Pruessner et al., 1997; Wüst et al., 2000), another showed a 

negative relationship between age and CAR (Kudielka and Kirschbaum, 2003). On 

the other hand, although sex differences could be expected in the CAR due to sexual 

dimorphisms in brain structures modulating the HPA-axis, sex seems to have a low 

impact on the CAR (Fries et al., 2009). 

To our knowledge, few studies have investigated the possible relationship 

between the CAR and memory performance in healthy older people, and the results 

are far from conclusive. Thus, Evans et al. (2011) found a positive relationship 
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between the CAR and memory tests related to prefrontal cortex functioning (i.e. 

working memory and verbal fluency), but after controlling for age, this relationship 

disappeared. Franz et al. (2011), after controlling for several confounding factors, 

failed to find any relationship between the CAR and several memory domains (i.e. 

verbal, visual spatial, short-term and working memory). Finally, Almela et al. (2012) 

showed that the CAR was associated with poorer declarative memory (in men and 

women) and better working memory (only in men) (for more details see Table II.3). 

 

1.2.3.2. The diurnal cortisol slope and memory  

In contrast to the CAR, the cortisol secreted during the rest of day has been 

understudied. One diurnal cortisol measure frequently used is the diurnal cortisol 

slope (DCS). This index represents the degree of change (typically decline) in the 

daily cortisol levels from morning to late evening (Adam and Kumari, 2009). A 

steeper decline has been associated with better psychosocial and physical health. In 

support of this, a flattened DCS has been related to chronic and acute psychosocial 

stress (Adam et al., 2006), sub-clinical disease (Matthews et al., 2006) and increased 

mortality from breast cancer (Sephton et al., 2000).  

However, there is no consensus about different aspects of its collection: the 

number of samples, the exact time or the method used to calculate the typical 

slope. For this reason, it is not surprising that there are large methodological 

differences among the studies investigating the relationship between this 

component of the diurnal HPA-axis activity and cognition function.  

To our knowledge, only a few studies have investigated the relationship 

between the DCS and memory performance in older people, reporting mixed 

results. Thus, flatter DCS has been related to poorer declarative memory 

(Abercrombie et al., 2004; Evans et al., 2011; Gerritsen et al., 2011); accordingly, 
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higher total cortisol output across the day (AUCg; Franz et al., 2011) was related to 

poorer cognitive performance. However, a steeper DCS was also associated with 

poorer declarative memory (O’Hara et al., 2007). Moreover, no associations 

between the DCS and memory performance were reported (Beluche et al., 2010; 

Fiocco et al., 2006; Sing-Manoux et al., 2014) (for more details see Table II.3). 

Taken together, in light of the mixed and scarce results, the need to 

investigate the link between the CAR and the DCS and memory performance in older 

people seems clear. Therefore, the fourth study of this thesis has been proposed to 

investigate this issue. 
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1.3. OBJECTIVES AND HYPOTHESIS 

We performed four studies in order to shed light on these mixed results and 

provide evidence to fill the gaps in the literature on this issue. The objectives and 

hypotheses of this thesis are presented below: 

General objective 1. Determine the impact of the acute stress-prior learning 

on the memory performance of neutral material in healthy adults. 

� Specific objective 1.1: Study the stress effects on non-declarative and 

declarative memory performance in young adults. 

 

� Specific objective 1.2: Compare the stress effects on declarative memory 

performance in older and young adults. 

 

� Specific objective 1.3: Investigate the role of sex in the specific objectives 

mentioned above. 

Due to the few studies carried out on non-declarative memory and the mixed 

results in the literature about the stress effects on declarative memory, we have no 

specific hypotheses about the effects of stress-prior learning on these two types of 

memory in young adults. However, age differences are expected in the stress effects 

on declarative memory. Moreover, based on previous findings of our group (Almela 

et al., 2011a), we expect greater negative stress effects in older women. 

We will try to respond to the specific objective 1.1 in study 1, where we test 

the hypothesis that both stress biomarkers’ responses to TSST are related to non-

declarative and declarative memory performance. Moreover, in this study, the 

specific objective 1.3 is addressed too, as we studied men and women. Study 2 aims 

to respond to specific research objectives 1.2 and 1.3 because in this study we have 
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directly compared the stress effects on memory performance in two different age 

groups with a similar number of participants of both sexes. 

 

General objective 2. Determine the impact of the acute stress-prior retrieval 

on the memory performance of positive, negative and neutral material in healthy 

adults. 

� Specific Objective 2.1: Compare the stress effects on memory retrieval 

between older and young people. 

 

� Specific Objective 2.2: Investigate the role of sex in the specific objective 

above. 

The fact that no previous studies have directly investigated the effects of 

stress on memory retrieval comparing young and older people makes it very difficult 

to propose a hypothesis about this general objective. However, taking into account 

the findings of prior studies with similar designs that investigate these age groups 

separately, we expect a negative effect of the stressor only in the young group and 

not in the older group. Moreover, this effect will be stronger for emotionally 

arousing material than for neutral material (Wolf et al., 2004). Finally, sex 

differences will appear, given that the magnitude of the stress response depends on 

the levels of sexual hormones. 

The aims of study 3 focus on answering these objectives.  

 

General objective 3. Examine the relationship between the diurnal HPA-axis 

activity (non-stress) and memory performance in healthy older adults. 
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� Specific objective 3.1: Study the association between the CAR and 

memory performance in healthy older adults.  

 

� Specific objective 3.2: Explore the relationship between the DCS and 

memory performance in healthy older adults. 

 

� Specific objective 3.3: Investigate the role of sex in these general and 

specific objectives. 

We expect that the diurnal HPA-axis functioning will be related to memory 

performance in older people, but this relationship will be different depending on the 

component of the diurnal cortisol cycle studied. Moreover, although there have 

been no reported sex-related differences in the diurnal cortisol profiles, it is possible 

to find sex differences in the relationship between the diurnal cortisol cycle and 

memory performance, given the crucial role that this factor plays in the relationship 

between HPA-axis activity and cognitive performance in older people (Almela et al., 

2011a; Seeman et al, 1997). 

These objectives will be addressed in study 4. 

 

1.4. GENERAL MATERIAL AND METHODS 

To provide a global view of the methodology used in the following four 

studies, the section below presents a brief summary of the subjects who 

participated in the studies, the procedure used, and the variables studied. 
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1.4.1. Participants 

In order to ensure the homogeneity of the sample and the comparison of 

older and young people, the sample used in the current thesis was composed of 

healthy adults who were cognitively active. They were students enrolled in a study 

program at the University of Valencia for people over 50 year of age (NAU GRAN) 

(older group) or college students from different areas (young group). Depending on 

the aim of each study, we used only a young group (study 1) or an older group 

(study 4) or both age groups (studies 2 and 3). The age range was similar within each 

age group across the studies, although they differed slightly. In the older group, the 

general age range was from 54 to 76 years old (study 2: 54-72, study 3: 56-76, and 

study 4: 57-76), while in the young group, the general age range was from 18 to 35 

years old (studies 1 and 2: 18-35, and study 3: 18-27). 

Moreover, in all studies the sex factor was taken into consideration. Thus, 

the samples were composed of a similar number of men and women in each age 

group, except in study 1, whose aim was to investigate, in addition to sex, the use of 

contraceptives. 

 

1.4.2. Procedure 

The procedure carried out in this thesis was different depending on the aim 

of each study. There are three different procedures. 

Studies 1 and 2 used a within-subject design with two randomized and 

counterbalanced conditions (stress or control) in two separate (less than 10 days) 

sessions. The sessions consisted of the same phases with equal durations, they 

started at the same hour, and the saliva samples were taken at the same time point. 

The two conditions differed only in the task (stress or control task). While in the 
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stress condition, participants were asked to perform a stressful task (TSST, this task 

will be explained in more detail in the following section), in the control condition, 

they had to perform a control task (a task with a similar mental workload and global 

physical activity, but without the evaluative threat and uncontrollability). Moreover, 

in both conditions, after the stress or control task, participants performed the 

memory tasks under study (study 1: non-declarative and declarative memory tasks 

and study 2: declarative memory task). Therefore, the stress was prior-learning. 

The procedure in study 3 consisted of two consecutive separate sessions. In 

the first session (acquisition session), participants were presented the material to be 

remembered (pictures). This session was equal for all participants. In the second 

session (retrieval session), participants were randomly assigned to the stress or the 

control condition. The tasks in these two conditions were similar to the stress and 

control tasks described above. It is worth noting that an important difference 

between this design and the design employed for studies 1 and 2 is that here the 

stress was prior-retrieval.  

Finally, the procedure used in study 4 was quite different because our aim 

was to delve into the relationship between diurnal HPA-axis functioning and 

memory performance in older people. Thus, participants provided 7 saliva samples 

on two consecutive weekdays to measure the diurnal cortisol cycle, and from this, 

the CAR and DCS components. In addition, they underwent a neuropsychological 

assessment with different memory tests to assess cognitive performance.  

 

 

 

 



General Introduction 

53 
 

1.4.3. Variables 

1.4.3.1. Stress Task 

To induce stress, we used an acute psychosocial stressor in the laboratory, 

the Trier Social Stress Test (TSST; Kirschbaum et al., 1993). It is a widely-used tool by 

researchers in the field of psychoneuroendocrinology, as it is indeed able to provoke 

a stress response similar to those that occur in a real situation. After an introduction 

phase, where participants are given the instructions to the TSST, and a preparation 

phase, with time to prepare a free speech, they performed two tasks: (i) free 

speech: participants have to perform a free speech in order to convince a committee 

that they are the best candidate for a position previously characterized as 

interesting for them, and (ii) an arithmetic task: participants have to perform a 

mental arithmetic task (subtraction). Both tasks have a duration of 5 minutes, and 

they are performed in front of a committee of supposed experts. According to 

Dickerson and Kemeny (2004), the effectiveness of the TSST is explained by its 

characteristics of uncontrollability and social-evaluative threat. 

 

1.4.3.2. Demographic, anthropometric and psychological variables 

To ensure the homogeneity of the samples and comparisons among them, 

avoiding possible confounding factors that could interfere with both the stress 

response and memory performance, in all the studies we measured the same 

demographic and anthropometric variables, as follows: 

� Body Mass Index (BMI). Once participants arrived at the laboratory, we 

measured their height and weight in order to then calculate the BMI 

(Kg/m2). This index has been associated with HPA-axis functioning 

(Dettenborn et al., 2012) and cognitive performance (Cournot et al., 2006).    
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� Subjective Socioeconomic Status (SES).  SES was assessed using the 

MacArthur Scale of Subjective Social Status (Adler et al., 2000). Participants 

had to rate their subjective socioeconomic status in comparison to other 

Spanish people. The scale ranging from 1 (people who have low 

socioeconomic status because they have less money, education and a less 

respected job or even no job) to 10 points (people who have a high 

socioeconomic status because they have the most money, education and 

respected job). This variable has been related to HPA-axis activity (Cohen et 

al., 2006). 

 

� Educational level. The educational level was determined by asking 

participants what educational level they had completed. Participants had to 

choose one option among some possibilities: 0= no studies, 1= primary 

school, 2= secondary education, 3=university and higher education, and 4= 

postgraduate studies (master, PhD). 

In the third study, a psychological variable was included to assess the stress 

response at the psychological level. 

� The situational appraisal. We measured how participants perceived the 

stress (TSST) or the control tasks by using 5 questions about particular 

aspects of the tasks. Specifically, the questions were related to the degree of 

stress, difficulty, frustration, effort and motivation that the task provoked in 

the participants. These questions were previously elaborated in our group 

(Gonzalez-Bono, 2002) from the existing evidence about this topic (Baggett 

et al., 1996). 
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1.4.3.3. Enzymatic and hormonal variables 

To study the SNS and HPA-axis functioning, we analyzed the sAA and salivary 

cortisol levels. However, depending on the aim we wanted to address, they were 

analyzed in different situations: in response to stress and/or in a basal situation. It is 

important to note that the biomarkers were obtained from saliva because is a non-

invasive and readily accessible tool. Moreover, measuring cortisol levels in saliva 

allows us to determine only the free hormone fraction, which is biologically active 

(Foley and Kirschbaum, 2010).   

� Salivary alpha-amylase (sAA). We measured the SNS activity through the sAA 

levels. To do this, participants provided several saliva samples at different 

time points, according to each study procedure, using salivettes (Sarstedt, 

Nümbrecht, Germany). For 1 minute, participants had to keep the cotton 

swab in their mouths, moving it in a circular pattern to collect saliva from all 

the salivary glands (Rohleder and Nater, 2009). After the samples were 

frozen, sAA levels were obtained by an enzyme kinetic method. Specifically, 

sAA was studied in response to stress (TSST) or the control condition in 

studies 1, 2 and 3. 

 

� Salivary cortisol. The HPA-axis activity was measured through the salivary 

cortisol levels. According to the aim of each study, the saliva samples were 

provided by participants using salivettes and/or by depositing 5 ml of saliva 

in plastic vials for no more than 5 minutes.  The concentrations of cortisol 

were analyzed by a competitive solid-phase radioimmunoassay. This 

biomarker was studied in different situations: in response to the stressor 

(TSST) in studies 1, 2 and 3 and in the basal situation in study 4, given that in 

this latter study we collected saliva samples at different time points on two 

consecutive weekdays to obtain the diurnal pattern of cortisol, including the 
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CAR. Moreover, in the same study, we obtained the pre- and post- 

neuropsychological assessment salivary cortisol levels. 

 

 

1.4.3.4. Cognitive variables 

The cognitive process investigated in the present thesis was the memory 

performance, and more specifically, the declarative memory performance. However, 

other types of memory have also been considered. 

� Non-declarative memory. This type of memory includes classical 

conditioning, non-associative learning, motor, perceptual, and cognitive skill 

acquisition and priming effects (Daum and Ackerman, 1997). In this thesis, 

we studied this type of memory through the latter (study 1). Priming refers 

to a change in the speed, bias, or accuracy of the processing of a stimulus 

after prior experience with the same or a related stimulus (Henson, 2003). To 

assess it, we used a word-stem completion task. 

 

� Declarative memory. In this thesis, this memory has been addressed in all 

four studies. To assess it, we used a word list (studies 1 and 2), pictures 

(study 3), and paragraphs, a word pairs list, and pictures (study 4). 

 

� Working Memory. This type of memory allows us to store and manipulate a 

limited amount of information in the short-term. In our research, it has been 

tackled in study 4 using three different types of tasks: a digit task, a letters 

and digits task, and a spatial task. 
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1.4.3.5. Moderating variables 

As I summarized above, the direction of the stress effects on memory 

depends on several factors, some related to characteristics of the individual (i.e. sex 

and gender) and others associated with aspects of the memory task (i.e. arousal and 

valence of the material to be remembered). Therefore, we considered these factors 

in our research. 

� Sex. This factor has been considered in all four studies. Thus, we 

systematically compared men and women. Given that the moderator role of 

sex could be explained by the different sex hormone levels, in study 1 the 

menstrual cycle phase and the intake of contraceptives were taken into 

account. Moreover, all the older women were post-menopausal, and none of 

them were receiving estrogen replacement therapy (studies 2, 3 and 4). 

 

� Age. With regard to this factor, we compared men and women, as well as the 

stress effects on memory between young and older people (studies 2 and 3). 

Only young and only older people were included in the samples of studies 1 

and 4, respectively. The age range in the young people was from 18 to 35 

years old, and in older people from 54 to 76 years old. 

 

� Type of material to be remembered. We addressed this factor by 

investigating only neutral material in studies 1, 2 and 4. In study 3, 

participants had to learn neutral and emotional material (i.e. positive and 

negative). 
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STUDY 1 

The effects of stress prior-learning on memory 
performance in young people1 

 

 

 

 

 

 

 

                                                           
1 The main results of this study have been published in: Hidalgo, V., Villada, C., Almela, M., Espin, 

L., Gomez-Amor, J., and Salvador, A. (2012). Enhancing effects of acute psychosocial stress on 
priming of non-declarative memory in healthy young adults. Stress: The International Journal on 
the Biology of Stress. 15(3): 329-338. 
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2.1. INTRODUCTION 

Exposure to stress can have impairing or enhancing effects on memory, 

attention and executive functions (for reviews see: Shors, 2006; Lupien et al., 

2007; Schwabe et al., 2010). The influence of stress on these cognitive processes 

has been related to the stress-induced activation of both the hypothalamus-

pituitary-adrenal axis (HPA-axis) and the sympathetic nervous system (SNS). In 

fact, it has been demonstrated that the release of cortisol, the end-product of 

HPA-axis activity, and several SNS biomarkers (e.g.: cathecolamines) can 

influence cognitive processes (for review see: Roozendaal, 2002). Among the SNS 

biomarkers, salivary alpha-amylase (sAA), an oral cavity enzyme, has increasingly 

been used as an indicator of SNS activation because is easier to measure than 

cathecolamines (for reviews see: Nater and Rohleder, 2009; Rohleder and Nater, 

2009). The current study investigated whether HPA-axis and SNS activation in 

response to acute psychosocial stress affects different memory systems (implicit 

and explicit systems). 

It is well known that the impact of stress on implicit memory has been 

understudied. Implicit memory represents the effect of unconscious prior 

experience on subsequent behavior (Graf et al., 1984). This type of memory 

includes priming effects, classical conditioning and non-associative learning, as 

well as motor, perceptual and cognitive skill acquisition (Daum and Ackerman, 

1997). According to Henson, priming refers to a change in the speed, bias or 

accuracy of the processing of a stimulus, following prior experience with the 

same, or a related, stimulus (Henson, 2003). Only a few studies have investigated 

the impact of acute stress on priming, and results from these studies are 

inconclusive. No effects of acute stress on priming have been reported among 

people from middle- to older ages (Lupien et al 1997; Domes et al., 2002), but 

more recently Eich and Metcalfe (2009) found in a younger sample that a 

physical stressor (running a marathon) was associated with an enhancement of 

priming effects. However, Eich and Metcalfe did not include physiological 

measures in their study; therefore, we cannot know if this enhancing effect was 
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related to HPA and/or SNS activation. To our knowledge, only one study, in 

young men, has directly investigated the impact of cortisol administration on 

priming, finding that high cortisol concentrations did not have any effect on this 

kind of implicit memory (Kirschbaum et al., 1996). The current study further 

investigated whether the stress-induced change in the activity of the HPA-axis 

(i.e. cortisol) and SNS (i.e. sAA) affects implicit memory measured by priming.  

Although the effects of stress on non-declarative memory have not been 

studied in detail, the relationship between stress and declarative memory has 

been investigated more thoroughly. It has been shown that cortisol exerts a 

modulatory effect on declarative memory performance through its action on 

brain areas that are also important for memory functioning. These brain areas 

are mainly the hippocampus and the prefrontal cortex, which have a large 

number of receptors for cortisol (de Kloet et al., 1999; Roozendaal, 2000; Lupien 

et al., 2009). Cortisol can have either enhancing or impairing effects on 

declarative memory performance, depending on several factors such as the 

memory phase under investigation (i.e. acquisition, consolidation or retrieval), or 

the emotional valence of the material to be remembered (i.e. emotional or 

neutral). Cortisol has been shown to enhance memory consolidation but impair 

memory retrieval (Roozendaal, 2002); moreover, due to the moderating role of 

the amygdale, the impact of cortisol on memory performance is stronger for 

emotionally arousing material than for neutral material (McEwen, 2002; 

Roozendaal, 2002; Lupien et al., 2005, 2007; Sandi and Pinelo-Nava, 2007).  

Our study investigated the impact of psychosocial stress on priming and 

declarative memory performance when stress was applied prior to learning, 

using neutral content. Previous studies with a similar design have found mixed 

results. Some studies show an impaired short-term declarative memory recall 

after exposure to stress (from 20 to 60 min after learning) compared to a control 

group (Jelicic et al., 2004; Payne et al., 2006, 2007; Smeets et al., 2006), while 

others found no effect (Wolf et al., 2001b; Elzinga et al., 2005), or even an 
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enhancing effect of stress on declarative memory performance (Schwabe et al., 

2008). The majority of the studies showing that stress induction affected 

declarative memory performance failed to find that the release of cortisol during 

stress was proportionally related to declarative memory performance, either 

because these studies did not investigate this or because the results were non-

significant (Jelicic et al., 2004; Payne et al., 2006, 2007; Smeets et al., 2006; 

Schwabe et al., 2008). In fact, only two studies have shown that the stress-

induced cortisol increase was indeed negatively related to declarative memory 

performance when stress was applied prior to learning (Kirschbaum et al., 1996; 

Wolf et al., 2001b). In contrast, Nater et al. (2007) found the opposite result that 

the high cortisol responders to stress performed better on the declarative 

memory task than the low cortisol responders.  

Only a few studies have investigated whether the stress-induced sAA 

release had an effect on declarative memory performance. These studies found 

enhancing effects of sAA release on memory performance (Segal and Cahill, 

2009; Smeets et al., 2009) and no effects (Preuβ and Wolf, 2009).  

The current study investigated, among young people, the hypothesis that 

cortisol and sAA responses to acute psychosocial stress would be associated with 

priming and declarative memory performance. It has been suggested that the 

relationship between acute stress and memory processes could be moderated by 

sex (Andreano et al., 2008). However, previous studies either only included one 

sex (Nater et al., 2007) or they included both sexes but without registering the 

menstrual cycle phase of the women, which should be taken into account when 

studying the impact of cortisol reactivity on acute stress (Kirschbaum et al., 1996; 

Jelicic et al., 2004; Elzinga et al., 2005; Payne et al., 2006, 2007; Smeets et al., 

2006). Therefore, in this study we included women in their early follicular phase 

and women using hormonal contraception, both groups usually showing 

responses to stress that differ more than those of women in their luteal phase of 

the menstrual cycle when compared to men’s responses. In a crossover design, 
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participants were exposed to both psychosocial stress (TSST) and a control 

condition. Based on previous studies in young people, we expect a higher cortisol 

response to stress in men than in women (Kirschbaum et al., 1999) and no sex 

difference in the sAA response to stress (Rohleder and Nater, 2009). Due to the 

mixed results of acute stress on priming and declarative memory, we explored 

whether acute stress affected these memory processes, taking in account the sex 

and hormonal state of the participants. Finally, we investigated whether the 

cortisol and sAA reactivity to stress had an effect on priming and declarative 

memory performance, and whether this effect was different for men and 

women. 

 

2.2. METHOD 

2.2.1. Participants 

The final sample was composed of 52 subjects: 18 men, 17 women in the 

early follicular phase (2-5 days), and 17 women using oral contraceptives 

(monocyclic formulas) for at least 6 months. The age of participants was 

between 18 and 35 years (Total sample: M = 21.56; SEM = 0.55).  

The subjective socioeconomic status (Subjective SES Scale, Adler et al., 

2000) was medium-high, and there were no significant differences between 

groups (Total sample: M = 6.33; SEM = 0.13). The groups did not differ with 

respect to age or body mass index (BMI). Most of them (94%) were college 

students from different areas. One hundred fifty-nine volunteers were 

interviewed and completed a standardized questionnaire to check whether they 

met the study prerequisites. The criteria for exclusion were: smoking more than 

five cigarettes a day, alcohol or other drug abuse, visual or hearing problems, 

presence of a cardiovascular, endocrine, neurological or psychiatric disease, 

having been under general anesthesia once or more than once in the past year, 

the presence of a stressful life event during the last year, or using any medication 
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directly related to cardiac, emotional or cognitive function, or one that was able 

to influence hormonal levels, such as glucocorticoids or β-blockers. One hundred 

and seven volunteers were dropped from the sample for two reasons: thirty-four 

of them did not meet the exclusion criteria mentioned above; and the rest, 

seventy-three, because their schedules were incompatible with the experiment’s 

features (two days, four hours, and only in the afternoon). 

Participants meeting the criteria were contacted by telephone and asked 

to attend two sessions that took place in a laboratory at the Faculty of 

Psychology. No economic payment was made for participation, although they 

received a pen drive (approximately 15 €). Before each session, participants were 

asked to maintain their general habits, sleep as long as usual, refrain from heavy 

activity the day before the session, and not consume alcohol since the night 

before the session. Additionally, they were instructed to only drink water and 

not eat, smoke or take any stimulants, such as coffee, cola, caffeine, tea or 

chocolate, two hours prior to the session. The study was conducted in 

accordance with the Declaration of Helsinki, and the protocol and conduct were 

approved by the University of Valencia Ethics Research Committee. All the 

participants received verbal and written information about the study and signed 

an informed consent form. 

 

2.2.2. Procedure 

The procedure was similar to the one employed previously in a sample 

with old people (Almela et al., 2011a).  It was a within-subject design with two 

completely randomized and counterbalanced conditions in two separate 

sessions: a stress condition and a control condition, with less than two weeks 

between sessions, except for the women in the follicular phase with four days. 

The test-retest interval was different in this group in order to ensure the same 

phase of the menstrual cycle in both conditions.  The sessions consisted of 

several phases of equal duration for both conditions. Sessions took 1 hour and 50 



Study 1 

67 
 

minutes to complete, and they were always held between 16.00 and 20.00 

hours. Each participant started his or her two sessions at the same hour (see 

Figure II.1). Upon arrival at the laboratory, the weight and height of the 

participants were measured, and the experimenter checked to see whether they 

had followed the instructions given previously. 

 

Figure II.1. Timeline of the TSST (S) and control (C) conditions. Salivary cortisol samples = 
1ºCo, 2ºCo, 3ºCo, 4ºCo. Salivary alpha-amylase samples = 1ºα, 2ºα, 3ºα, 4ºα, 5ºα. RAVLT 
= Rey auditory verbal learning test. 

 

Stress Condition. To produce stress, we subjected the participants to the 

Trier Social Stress Test (TSST, Kirschbaum et al., 1993). The stress task consisted 

of 5 min of free speech (job interview) and a 5 min arithmetic task, and it was 

performed in front of a committee composed of a man and a woman. The 

participants remained standing at a distance of 1.5 meters from the committee. 

Additionally, a video camera and a microphone were clearly visible. Both the 

speech and arithmetic tasks were filmed.  

The protocol started with a habituation phase of 15 min to allow the 

participants to adapt to the laboratory setting. During this phase, the 

participants remained seated. Five minutes after the start of this phase, subjects 

provided the first cortisol saliva sample (-20 minutes pre-stress). After the 
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habituation phase, the introduction phase started (duration 5 min). In this phase 

the participants were informed about the procedure for the stress task. They 

received the instructions in front of the committee in the same room where the 

task took place. After this, subjects provided the first sAA sample (-10 minutes 

pre-stress). Next, the participants had 10 minutes to prepare for the task at 

hand. At that moment, they provided the second cortisol saliva sample (-5 

minutes pre-stress), and the second sAA sample was provided when this phase 

ended (0 minute). 

 Following the preparation phase, the stress task was carried out. During 

the stress task, participants provided the third (after speech, +5 minutes) and 

fourth sAA sample (after the arithmetic task, +10 minutes). Then, subjects had 20 

minutes to recover after the stress task, and they provided the fifth sAA sample 

(+14 minutes post-stress) and the third cortisol saliva sample (+15 minutes post-

stress) during this recovery period. Each participant then performed two 

memory tests. Participants first did a priming task, more concretely, a word-stem 

completion task, to assess non-declarative memory, and then they performed a 

standardized memory test consisting of 8 trials (Rey Auditory Verbal Learning 

Test, RAVLT), in order to measure declarative memory. The participants 

completed the first six trials between 30 to 40 minutes after the TSST. After trial 

6, they waited 30 minutes (delay period) before they continued with the memory 

test. During the delay period, the participants provided the fourth saliva sample 

(+40 minutes post-stress). After the delay period, they finished the memory test 

with trials 7 and 8 and, finally, were debriefed. 

Control Condition. The control condition was similar to the experimental 

condition, except that the stressful task was replaced by a control task. This task 

was designed to be similar to the stress task in mental workload and global 

physical activity, but without the main components capable of provoking stress, 

such as evaluative threat and uncontrollability (Dickerson and Kemeny, 2004). 

The control task was composed of 5 minutes of reading aloud and 5 minutes of 
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counting. In the preparation phase, the participants did not prepare for their 

task, but instead they read a book with neutral content. The timing of the saliva 

samples and the phase durations were the same for the two conditions. 

 

2.2.3. Memory 

Priming. We used a word-stem completion task to assess priming. Two 

parallel word lists were used to avoid a learning effect (List A and List B). The 

order of the two versions was randomized and counterbalanced. First, the 

experimenter presented a list of 26 neutral words. The participants had to read 

each word aloud and rate its degree of familiarity on a Likert scale ranging from 1 

(unfamiliar) to 7 (extremely familiar). After this step, subjects performed a 

distracting task that lasted two minutes. The distracting task consisted of writing 

words beginning with the letters “b” and “l” (List A) or “d” and “p” (List B). 

Finally, the word-stem completion task was performed. The participants had to 

complete a list containing 78 stems of words (first three letters). Among these 

words were the 26 words read previously. No restriction was imposed as to the 

category of word that could be given as a completion. The participants were 

instructed to complete the list of stems as fast as possible and with the first word 

that came to mind. This instruction, which provokes the priming effect through 

the implicit recall of the words presented previously, differs from the “word-

stem cued-recall”, which explicitly instructs participants to complete the stems 

using words that have been presented previously (Henson, 2003).  

We obtained three scores: (i) number of frequent words, (ii) number of 

non-frequent words and (iii) number of total words (sum of frequent and non-

frequent words) recalled from the target list. To control the effect of chance, 

another group of 31 young subjects did the word-stem completion task, but 

without the target lists being presented previously. This group was called the 

‘priming baseline group’. The number of words from the two lists that could be 
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correctly completed by chance was subtracted from the scores of the 

experimental subjects (Lupien et al. 1994, 1997). 

Declarative memory. To measure declarative memory, the Spanish 

version of Rey´s Auditory –Verbal Learning Test (RAVLT) was used (Miranda and 

Valencia, 1997). This test has several versions, and for each participant a 

different version of the RAVLT was used in the second session to avoid learning 

effects. The order of the two versions was randomized and counterbalanced. The 

RAVLT is composed of different trials. In the first five trials the experimenter read 

aloud a target list of 15 neutral words, and each participant had to repeat as 

many words as possible in each of the five trials. The performance on these first 

five trials reflects the rate of learning (Trials 1 to 5: Learning curve). After trial 5, 

the experimenter read aloud an interference list of 15 words and tested the 

retention of these new words. Following this step, participants were requested 

to recall the words from the target list (Trial 6: Recall after interference); after a 

delay of 30 minutes they had to recall them a second time (Trial 7: Delayed 

recall). In trial 8 (Recognition), participants had to recognize the memorized 

words from a list presented verbally containing 15 new and 15 previously 

learned words. Trial 8 was divided into two different scores: Hits, the number of 

words correctly recognized as being on the target list; and False alarms, the 

number of words incorrectly recognized as being on the target list.  

 

2.2.4. Biochemical Analyses 

Cortisol. Participants provided four saliva samples by depositing 5 ml of 

saliva in plastic vials. They took approximately 5 minutes to fill the vial. The 

samples were frozen at -80ºC until the analyses were performed. The samples 

were analyzed by a competitive solid phase radioimmunoassay (tube coated), 

using the commercial kit Coat-A-Count C (DPC, Siemens Medical Solutions 

Diagnostics). Assay sensitivity was 0.5 ng/ml. For each subject, all the samples 
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were analyzed in the same trial. The within- and inter- assay variation 

coefficients were all below 8%. 

 

Alpha-amylase (sAA).  Saliva was collected using salivettes (Sarstedt, 

Nümbrecht, Germany). Participants were instructed to introduce the cotton 

swab into their mouths for exactly 1 min, not chew the cotton, and move the 

swab around in a circular pattern to collect saliva from all the salivary glands 

(Rohleder and Nater, 2009).  The samples were frozen at -20º C after the 

completion of the session until the analyses took place. The samples were 

shipped to Dresden and analyzed at the Kirschbaum lab, Technical University of 

Dresden. Concentration of alpha-amylase in saliva was measured by an enzyme 

kinetic method according to the protocol specified in Rohleder et al. (2006). The 

lowest detectable concentration in our assay was 1.56 U/ml. Inter- and intra-

assay variation was below 10%. Analyses of sAA failed to detect the sAA 

concentrations in the samples of one man and one OC user. 

 

2.2.5. Statistical Analyses 

Data were checked for normal distribution and homogeneity of variance 

using Kolmogorov-Smirnov and Levene’s tests before statistical procedures were 

applied. Since neither the cortisol nor the sAA data had a normal distribution, 

they were square root transformed. 

One-way ANOVAs were used to investigate group demographic and 

anthropometric differences. Cortisol and sAA responses were assessed using 

ANOVAs for repeated measures with a between-subject factor (Group: men, M; 

women in follicular phase, F; and women oral contraceptive users, OC) and two 

within-subject factors, Condition (stress vs. control) and Time (Cortisol: -20, -5, 

+15, +40; sAA -10, 0, +5, +10, +14).  
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Student’s t-tests were used to investigate the priming effect between 

groups, the experimental groups and the priming baseline group. We used an 

ANOVA for repeated measures to analyze non-declarative memory, employing 

Condition as a within-subject factor and Group (M, F and OC) as a between-

subject factor. 

The declarative memory test used (RAVLT) provides one score for each 

trial performed, consisting of the number of correct words recalled in each trial. 

In trials 1 to 7, the words from the same target list have to be recalled; for this 

reason, we performed an ANOVA for repeated measures. We used Condition 

(stress vs. control) and Trials (trials 1 to 7) as within-subject factors and Group as 

a between-subject factor. To analyze the effects on recognition (trial 8), we used 

d-prime (d´), which is the difference between the standardized proportion of 

correct hits and the standardized proportion of false alarms.  

Due to the great variability among subjects in their cortisol reactivity to 

psychosocial stress, we divided the sample into responders and non-responders, 

according to Schommer et al. (2003). Responders were those individuals who 

had an increase of at least 2.5 nmol/L in cortisol levels from the baseline levels (-

20 min) to the third cortisol sample (+15 min), the sample immediately after the 

stress test. In addition, stress-induced sAA reactivity was calculated by 

subtracting sAA levels in the sample immediately after the TSST (+10) and 

baseline levels (-10). Pearson’s correlations were calculated in order to assess 

whether cortisol reactivity and sAA reactivity to the stress task were related to 

priming and explicit memory performance.  

We used Greenhouse-Geisser when the requirement of sphericity in the 

ANOVA for repeated measures was violated. Post hoc planned comparisons were 

performed using Bonferroni adjustments for the p-values. All p-values reported 

are two-tailed, and the level of significance was marked at <0.05. When not 

otherwise specified, results shown are means ± standard error of means (SEM). 

We used SPSS 15.0 to perform the statistical analyses. For an easy interpretation 
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of the figures, the values in the figures represent raw values and not square root 

transformed values. 

 

2.3. RESULTS 

2.3.1. Stress Response  

Cortisol. The repeated measures ANOVA with cortisol levels as the 

dependent variable showed main effects for Condition (F (1, 45) = 14.362, p < 

0.001), Time (F (1.64, 74.1) = 10.052, p < 0.001), and their interaction: 

Condition×Time, F (1.54, 69.49) = 50.132, p < 0.001. There were no baseline 

differences between conditions (p > 0.2). In the stress condition, cortisol levels 

increased immediately after the stress task (p < 0.001), and they decreased, 

recovering baseline levels, in the last saliva sample (p > 0.7).In the control 

condition, cortisol levels decreased over time according to the normal cortisol 

circadian rhythm (for all p ≤ 0.001).  

The Group (M, F and OC) factor was significant, (F (2, 45) = 4.608, p = 

0.015) as was the interaction between Condition, Time and Group (F (3.09, 

69.49) = 3.699, p = 0.015). Baseline cortisol did not differ between groups (all p > 

0.1).However, five minutes before the TSST, men had higher cortisol levels than 

the F group (p = 0.028), but not the OC users (p = 0.2). After the exposure to the 

stressor, men had higher cortisol levels than both groups of women in the +15 

sample (for all p ≤ 0.006), and in the +40 sample (for all p ≤ 0.024) (see Figure 

II.2A). Both groups of women had a lower cortisol response to stress than men, 

but their cortisol levels increased in response to stress, as they were higher in 

the stress condition than in the control condition in samples +15 (for both p ≤ 

0.045) and +40 (for both p ≤ 0.018). In the two groups of women, the cortisol 

response to stress was not different (p > 0.9). In the control condition, there 

were no differences between groups for any cortisol sample (p > 0.3) (see Figure 

II.2B).  
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Figure II.2. Salivary cortisol concentrations in the stress, TSST (A) and control (B) 
conditions for men (N = 16), follicular women, F (N = 15), and oral contraceptive women, 
OC (N = 17). In the stress condition (A), the repeated measures ANOVA showed that 
men had higher cortisol levels than F women in the -5 sample (*p = 0.028) and that men 
had higher cortisol levels than F and OC women in the +15 sample (**for both p ≤ 0.006) 
and in the +40 sample (***for both p ≤ 0.024). In the control condition (B) there were no 
significant group differences in cortisol levels (for all p > 0.3). Depicted values are means 
and error bars represent the standard error mean. 

 

Salivary Alpha-amylase (sAA). The repeated measures ANOVA with sAA 

levels as the dependent variable showed main effects for Condition (F (1, 45) = 

27.764, p < 0.001), Time (F (4, 18) = 25.795, p < 0.001), and their interaction: 

Condition×Time (F (3.19, 143.42) = 6.833, p < 0.001). The Group factor and its 

interactions with the other factors were not significant, (for all p > 0.3).  
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Baseline sAA levels were similar between conditions (p > 0.5). In the 

stress condition, one minute before the TSST there was an anticipatory increase 

in sAA levels (p = 0.006). The sAA levels continued increasing, reaching their peak 

at the end of the speech (p = 0.002), and remaining constant at the end of the 

arithmetic task (p > 0.99). Participants had recovered baseline in the last saliva 

sample (p > 0.1). In the control condition, the response profile was similar to that 

of the stress condition, except that there was no anticipatory response (p > 0.5). 

However, all the sAA levels, except baseline, were lower in the control condition 

than in the stress condition (for all p < 0.001) (see Figure II.3). 

 

 

Figure II.3. Salivary alpha-amylase (sAA) concentrations in the stress (TSST) and control 
conditions for total sample (N = 48). The repeated measures ANOVA showed significant 
differences in sAA levels between conditions. Participants had higher sAA levels in the 
stress condition than in the control condition in the -1, +5, +10, and +15 saliva samples 
(*for all p < 0.001). There was no difference in baseline sAA levels between conditions (p 
> 0.5). Depicted values are means and error bars represent the standard error mean. 

 

2.3.2. Memory 

Priming. Participants correctly completed 6 (±0.41) words from List A, and 

6.12 (±0.28) words from List B. The priming baseline group completed 2.94 
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(±0.36) words from List A and 3.86 (±0.60) words from List B. Therefore, there 

was a significant priming effect for the participants compared with the priming 

baseline group (List A: t (55.70) = 5.602, p < 0.001; List B: t (64) = 3.672, p < 

0.001).  

The repeated measures ANOVA with priming as a dependent variable 

revealed the main effect of Condition, F (1, 45) = 5.732, p = 0.021. The Group 

factor and its interaction with Condition were non-significant (for all p > 0.7) (see 

Figure II.4). The participants recalled more words from the target list in the stress 

condition than in the control condition. The frequency of the words did not 

affect their priming (for all p > 0.1). 

 

 

Figure II.4. The effect of condition (stress, TSST and control) on priming represented for 
the total sample (N = 48), for men (N = 16), follicular women, F (N = 15), and oral 
contraceptive women, OC (N = 17). The repeated measures ANOVA revealed significant 
differences in priming between conditions only for the total sample (p = 0.021). 
Depicted values are means and error bars represent the standard error mean. 

 

Declarative Memory. The repeated measures ANOVA with declarative 

memory as the dependent variable only revealed a main effect of Trial, (F (3.747, 

161.113) = 196.223, p < 0.001), but not Condition, Group, or the interactions 

between these factors (for all p > 0.4).  Across both the stress and control 
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conditions, there was a positive learning curve from trial 1 to trial 4 (for all p < 

0.001). No more words were learned from trial 4 to trial 5 (p > 0.2). Participants 

recalled fewer words in the trial immediately after the interference list (trial 6) 

than in the trial before it (trial 5) (p < 0.001). Finally, they recalled a similar 

number of words after the 30-minute delay (trial 7) and before this delay (trial 6) 

(p > 0.9). The repeated measures ANOVA with recognition as dependent variable 

did not show any main effect for Condition or Group, nor was there an 

interaction between these factors (for all p > 0.4) (see Figure II.5). 

Figure II.5. Number of words recalled in the stress (TSST) and control condition 
represented for the total sample (N = 46) in each trial of the RAVLT (Rey Auditory Verbal 
Learning Test). Depicted values are means and error bars represent the standard error 
mean. 

 

 

2.3.3. Stress Reactivity and Memory 

Priming. Cortisol reactivity to the stress induction was not correlated with 

the number of words correctly completed in the priming test (p > 0.6). There 

were no differences between the cortisol responders and non-responders to the 

stress induction in priming (p > 0.2). However, sAA reactivity was positively 
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correlated with priming test performance (r = 0.339, p = 0.018). Thus, those who 

increased their sAA levels more in response to the stress induction completed 

more words from the target list on the priming test (see Figure II.6).  

 

Figure II.6. The relationship between salivary alpha-amylase (sAA) reactivity and priming 
in the stress condition for the total sample (N = 48; r = 0.339, p = 0.018). 

 

Declarative Memory. Cortisol reactivity did not correlate with declarative 

memory performance (for all p > 0.3). Declarative memory performance did not 

differ between cortisol responders and non-responders to the stress induction 

(for all p > 0.1). The stress-induced sAA increase did not correlate with 

declarative memory performance (for all p > 0.5).  

 

2.4. DISCUSSION 

The aim of our study was to analyze the effects of acute psychosocial 

stress on non-declarative memory, measured by priming, and on declarative 

memory performance in young men and women. The main results of our study 
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were that acute stress was associated with an enhancement of priming effects, 

and that this improvement in performance was positively related to the stress-

induced sAA increase.   

To provoke stress we employed the TSST, which is a standardized 

psychosocial stressor that has been shown to produce a consistent stress 

response (Dickerson and Kemeny, 2004). The TSST was indeed able to induce 

stress, since it stimulates an increase in the participant’s cortisol levels and a 

higher sAA release compared to the control condition. Sex had a modulator 

effect on the stress-induced cortisol response, as has been shown in other 

studies (Kirschbaum et al., 1992, 1999; Preuβ and Wolf, 2009; Childs et al., 2010). 

Women in the follicular phase of their menstrual cycle or using oral 

contraceptives did not differ in their cortisol levels in any sample of the stress 

condition or the control condition. However, men increased their cortisol levels 

more in response to the TSST than both groups of women. Moreover, although 

with a blunted response, women did respond to the stress induction with an 

increase in their cortisol levels, because they had higher cortisol levels in the 

salivary samples taken after the TSST than in the salivary samples taken after the 

control task. Conversely, there were no sex differences in the stress-induced sAA 

release, which is consistent with previous findings (Rohleder and Nater, 2009; 

Almela et al., 2011b).  

The stress response was associated with an enhancement of the number 

of words correctly completed on the priming test. Additionally, this improvement 

effect was not different between men and women, suggesting that neither sex 

nor oral contraceptive intake had an influence on this effect. Previously, Eich and 

Metcalfe (2009) found a similar result when measuring priming also with a word-

stem completion task after exposure to a physical stressor (running a marathon). 

Others have reported enhancing effects of acute stress when measuring implicit 

memory through other kinds of strategies. For example, Luethi et al. (2009) 

found that the exposure to the TSST improved classical conditioning only for 
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negative stimuli, and others have found that acute psychosocial stress enhances 

fear conditioning (Jackson et al., 2006; Zorawski et al., 2006). Furthermore, 

Schwabe et al. (2007) reported that the exposure to the TSST increased the 

classical-conditioning learning strategy for neutral material over spatial learning 

strategies, which require more conscious processing.  

Taken together, these findings support the hypothesis that acute stress 

induces a shift between memory systems. Thus, learning strategies that require 

less conscious processing, and therefore are faster and less demanding, are 

favored under acute stress over strategies that require awareness and more 

complex processes (Schwabe et al., 2007). Additionally, in our study, the 

enhancing effect of stress on priming was higher among those who responded to 

stress with a larger sAA increase. Nevertheless, the cortisol response to stress 

apparently was not related to the outcome of the priming test. To our 

knowledge, this positive relationship between sAA reactivity to stress and an 

enhancement of priming has not been reported previously. This finding suggests 

that SNS activation is crucial for the enhancing effect of stress on implicit 

memory. In fact, using a 3D spatial task, Schwabe and colleagues found that the 

participants used more implicit learning strategies to solve the task after being 

exposed to the TSST, which induces the activation of both the HPA-axis and SNS 

(Schwabe et al., 2007), but they employed more explicit learning strategies to 

solve the task after the infusion of glucocorticoids (Schwabe et al., 2009). 

Similarly, Kirschbaum et al. (1996) found that the administration of 

glucocorticoids did not have any effect on a short-term priming test. In our 

opinion, an involvement of HPA-axis activity on the modulation of implicit 

memory by stress cannot be completely discarded because animal research has 

shown that cortiscosterone enhances long-term memory consolidation of 

implicit memory through its action on the dorsal striatum (Quirarte et al., 2009). 

In our study, we only measured short-term implicit memory; therefore, we could 

not know about long-lasting effects of HPA-axis activation on implicit memory. 

Further research is needed to disentangle these relationships.  
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In the current study, we did not find any effect of acute stress on 

declarative memory. In fact, throughout the five trials of the learning curve, the 

participants learned, recalled (immediate and delayed recall) and recognized a 

similar number of words in both the stress and control conditions. This result 

contrasts with the results of other studies that found an impairing effect of acute 

stress on declarative memory for neutral material when stress was applied prior 

to learning. In our opinion, a main reason for this divergent result could be 

related to the magnitude of the stress-induced cortisol reactivity, since cortisol 

reactivity to stress has been identified as a main factor involved in short-term 

declarative memory impairment (Kirschbaum et al., 1996; Wolf et al., 2001b). 

The other studies were performed only in men (Nater et al., 2007), in men and 

women without controlling their menstrual cycle or oral contraceptives intake 

(Kirschbaum et al., 1996; Jelicic et al., 2004; Payne et al., 2006, 2007; Smeets et 

al., 2006), or in men and women in their luteal phase (Wolf et al., 2001b). It has 

been shown that men react to stress with larger cortisol increases than women 

in their follicular phase or women taking oral contraceptives. Moreover, women 

in their luteal phase have a cortisol reactivity to stress that is comparable to 

men’s (Kirschbaum et al., 1999). Therefore, it is likely that the null effects found 

in our study were due to the fact that the magnitude of the cortisol response in 

the majority of the sample (i.e. more women in their follicular phase or taking 

contraceptives than men) was low.  Even when we divided the sample into 

responders and non-responders, we failed to find effects of cortisol response to 

stress on declarative memory. This could be explained by the fact that due to our 

design, learning and retrieval processes occurred under the same stressful 

conditions, leading to a compensatory process. With Roozendaal’s model in 

mind, which indicates that cortisol enhances the consolidation memory and 

impairs the retrieval memory (Roozendaal, 2002), this compensatory process 

would be explained because the enhancing effects of stress on consolidation 

might be canceled by impairing effects on retrieval. 
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Some limitations have to be considered in order to interpret our results. 

We aimed to test one group of women in their early follicular phase and this 

meant that this group of women had a different test-retest interval compared to 

the other two groups, which could have affected our results. Additionally, related 

to the null effects found of stress on declarative memory, it would be advisable 

in future studies to also include a group of women in the luteal phase, in order to 

ensure the comparability of the cortisol response between men and women. 

Finally, similarly to other studies (Kirschbaum et al., 1996; Lupien et al., 1997), 

the order of the priming test and the declarative test were not counterbalanced, 

which made it impossible to know whether the effect found is specific to the 

priming task or whether it is specific to the point in time when the priming task 

took place. 

In conclusion, we have confirmed that acute stress may not only affect 

declarative memory but also implicit memory, and that this enhancing effect is 

related mainly to the activity of the sympathetic nervous system.  
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3 The main results of this study have been published in: Hidalgo, V., Almela, M., Villada, C., and 

Salvador, A. (2014). Acute stress impairs recall after interference in older people, but not in 
young people. Hormones and Behavior. 65(3): 264-252. 
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3.1. INTRODUCTION 

Stress has been suggested as a main factor related to negative changes 

observed during the aging process. However, little is known about the role of age 

in acute stress effects on memory performance. Given that there are data 

suggesting age differences in the reactivity to stress, the need to obtain evidence 

to fill this gap in the literature seems clear.  

Stress, particularly, provokes the activation of two systems: (i) the 

sympathetic nervous system (SNS) and (ii) the hypothalamus-pituitary-adrenal 

axis (HPA-axis). The fast SNS response includes the release of the catecholamines 

(adrenaline and noradrenaline), which are responsible for different physiological 

changes preparing the organism for a “fight-or-flight” response. Minutes after 

the onset of the stressor, HPA-axis activation occurs and, consequently, large 

amounts of glucocorticoids are secreted in the adrenal cortex. There are 

numerous glucocorticoid receptors in the brain areas involved in the memory 

process, such as the hippocampus, the frontal lobe and the amygdala 

(Roozendaal, 2000; Lupien and Lepage, 2001; Lupien et al., 2009;), which also 

play an important role in the regulation of the HPA-axis (Lupien and Lepage, 

2001; Herman et al., 2005). Thus, cortisol, the main glucocorticoid hormone in 

humans, would have important effects on memory, although the direction of 

these effects remains unclear. They can differ depending on several factors, 

some related to the task (such as the type of memory or the nature of the 

material, neutral or emotional) and others associated with characteristics of the 

individual (including age and sex). In addition, it has been well established that 

SNS activation can also affect memory performance through the influence of 

cathecolamines on the limbic brain structures. According to Roozendaal et al. 

(2009), the noradrenergic activation of the amygdala and the interactions 

between the amygdala and hippocampus are crucial to finding cortisol effects on 

hippocampus-dependent memory performance.  
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The majority of studies about the relationship between the exposure to 

an acute stressor and memory have been performed on declarative memory in 

young people, reporting mixed results. When subjects have to learn neutral 

material after stress induction, worsening effects (Kirschbaum et al., 1996; Jelicic 

et al., 2004; Payne et al., 2006, 2007; Smeets et al., 2006), enhancing effects 

(Schwabe et al., 2008; Espin et al., 2013), and even a lack of effects (Wolf et al., 

2001b; Hidalgo et al., 2012) have been described in mixed-sex samples. When 

studying only one sex, enhancing effects were found in young men (Nater et al., 

2007), but non-effects were detected in women when they were grouped 

without taking age into account (32-68 years) (Domes et al., 2002). Bohnen et al. 

(1990) compared two groups of women (41-49 vs. 61-69 years) exposed to a 4-

hour mental task, finding no significant differences. 

To our knowledge, only Wolf et al. (2001a) have investigated the pre-

learning cortisol effects on short-term memory considering the role of age by 

directly comparing young and older people, specifically men. These authors 

reported that cortisol did not influence the recall of a list of neutral words 

learned after they injected a cortisol agonist (hydrocortisone). However, there 

are important differences between the glucocorticoid increases induced by 

pharmacological administration and those produced by exposure to stress. As 

mentioned above, in addition to the cortisol increase that occurs with drug 

administration, stress provokes other physiological (i.e. SNS activation) changes 

(Lupien and Schramek, 2006). Hence, the use of stress paradigms in the 

laboratory allows a more complete study of stress effects on memory 

performance. In recent years, SNS activation has been measured by means of the 

salivary alpha-amylase (sAA), an oral enzyme secreted by the salivary glands 

(mainly parotid glands) due to parasympathetic and sympathetic nerve 

stimulation innervating the salivary glands. sAA is involved in converting starch 

into glucose and maltose in the oral cavity (Baum, 1993), eliminating bacteria 

from the mouth, and preventing bacterial attachment to oral surfaces 

(Scannapieco et al., 1993). A growing body of literature considers sAA to be a 
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sensitive biomarker for stress-related changes in the body reflecting sympathetic 

nervous system activation (Granger et al., 2007; Nater and Rohleder, 2009; 

Rohleder and Nater, 2009). Moreover, as it is readily accessible and easily 

obtained, sAA is a good surrogate for catecholamines in 

psychoneuroendocrinological research. 

Reactivity to stress changes throughout the lifespan; while the role of age 

in the cortisol response has been investigated more extensively, with most 

studies reporting that older people have a higher cortisol response than young 

people (For a review see: Kudielka et al., 2009), for the sAA response, results are 

fewer and mixed (Strahler et al., 2010; Almela et al., 2011b). Thus, the HPA-axis 

and the SNS activity could influence memory performance differently as a 

function of age. Furthermore, since both the HPA-axis and the SNS work in 

alliance to generate the stress response, in addition to the action of each system 

separately, it seems logical to study the two systems concurrently. According to 

Bauer et al. (2002), to obtain an optimal adaptation to stress, a coordinated 

response of the two stress systems is necessary. Thus, an uncoordinated 

response could mean a maladaptive response related to health or behavior 

problems. Studies examining this relationship in children and adolescents have 

suggested its value in predicting individual differences in behavioral adjustments 

to stress (Gordis et al., 2006, 2008; El-Sheikh et al., 2008; Vigil et al., 2010; 

Allwood et al., 2011). Recently, a few studies have focused on the effects of 

stress on cognitive functioning and even academic achievement (Berry et al., 

2012; Keller et al., 2012); however, as mentioned above, these interactions, and 

specifically their potential effects on cognitive performance, have not been 

studied in young and older people. 

With all this in mind, the purpose of the present study is to investigate 

age-related differences in memory performance in response to acute 

psychosocial stress, taking into account the sex and the relationship between the 

two stress systems, the HPA-axis and the SNS. No previous studies have been 
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published on the influence of an acute laboratory social stressor on declarative 

memory in young and older people of both sexes. Previously, we reported stress 

effects on declarative memory in older people, especially in post-menopausal 

women (Almela et al., 2011a), but not in young people (Hidalgo et al., 2012). 

Based on these results, in the present study we have directly compared two 

different age samples employing the same protocol, a statistically different 

approach, and both stress markers (cortisol and sAA), in order to examine the 

different effects of stress on declarative memory depending on age or sex. The 

present study compares sixty-seven healthy participants divided into two age 

groups, 35 young adults and 32 older adults, with a similar number of men and 

women in each group. All the older women were postmenopausal, and all the 

young women were in the early follicular phase of their menstrual cycle, that is, 

the period with lower sex hormone levels. In a crossover design, the participants 

were exposed to both psychosocial stress (Trier Social Stress Test, TSST; 

Kirschbaum et al., 1993) and a control condition. In each condition, declarative 

memory performance was measured after the task. Previous studies employing a 

limited age range (41-49 vs. 61-69 years) and a 4-hour mental stressor in women 

(Bohnen et al., 1990) or cortisol administration in men (Wolf et al., 2001a) did 

not find age-related differences in stress/cortisol effects on declarative memory. 

However, we think that with a broader age range and a psychosocial stress task 

as the stressor, age differences would appear in the stress effects on declarative 

memory. To test this, we directly compared two age groups (18-35 years vs. 54-

78 years) containing men and women, and we employed the TSST, which 

provokes both HPA-axis and SNS activation. In addition, we investigated stress 

reactivity by combining the two main stress physiological systems, considering 

that the imbalance between the two systems (an uncoordinated response) could 

prejudice memory performance. Finally, since sex differences have been 

reported in the effects of stress on memory in older people, greater negative 

stress effects were expected in older women. 
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3.2. METHOD 

3.2.1. Participants 

This study is part of extensive research on the moderating role of age and 

sex in the effects of acute stress on memory. Partial results from the older 

(Almela et al., 2011a) and young (Hidalgo et al., 2012; Espin et al., 2013) 

participants have been previously published. Here, we employed a subsample to 

directly compare the stress effects on declarative memory, taking into account 

the age and sex factors. 

The final sample employed was composed of sixty-seven participants 

divided into two age groups (older adults: N = 32; 16 men and 16 women; young 

adults N = 35; 18 men and 17 women). There were no differences between the 

two age groups with regard to sex, in subjective socioeconomic status (SES) or 

educational level, but there were differences in body mass index (BMI), with 

young men showing a higher BMI than young women (p = 0.047) (see Table III.1). 

SES was measured using the MacArthur Scale of Subjective Social Status (Adler et 

al., 2000). Subjects were asked to rate themselves according to their subjective 

socioeconomic status and compared to other people in Spain, on a scale ranging 

from 1 (people with the lowest education, income and worst jobs) to 10 points 

(people with the best education, income and jobs). 

  Young   Older   
Total Men Women Total Men Women 

Age  
BMI  
SES* 

E. Level** 

21.1 (0.7) 
23.0 (0.5) 
 6.3 (0.1) 
 2.3 (0.1) 

  22.1 (1.2) 
  23.9 (0.7) 
    6.4 (0.2) 
    2.5 (0.2) 

20.0 (0.7) 
21.9 (0.7) 
  6.1 (0.2) 
  2.2 (0.1) 

62.1 (0.8) 
26.5 (0.5) 
  6.0 (0.2) 
  2.8 (0.2) 

60.5 (1.2) 
27.0 (0.5) 
  6.1 (0.3) 
  2.7 (0.3) 

63.7 (1.1) 
26.0 (1.0) 
  5.9 (0.3) 
  2.9 (0.2) 

 

Table III.1. Descriptive statistics (mean ± SEM of younger (N = 30) and older groups (N = 
30). *SES: Subjective Socio-Economic Status Scale, ranging from 1 (lowest SES) to 10 
(highest SES) (Adler et al., 2000). **Range: 0 = no studies, 1 = primary school, 2 = 
secondary education, 3 = university and higher education, 4 = postgraduate (Master, 
PhD). 
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The older participants belonged to a study program at the University of 

Valencia for people over 50 years of age (NAU GRAN). We chose this University 

Program to increase the homogeneity of the sample and the likelihood of getting 

healthy volunteers to compare with young people. Most of the young people 

were college students from different areas. The sample was recruited using 

informative talks and posters at the faculties of the University campus. Two 

hundred and seventy-two volunteers (113 older and 159 young subjects) were 

interviewed by phone and completed a general questionnaire to check whether 

they met the study prerequisites. The criteria for exclusion were: smoking more 

than 5 cigarettes a day, alcohol or other drug abuse, dental, visual or hearing 

problems, presence of cardiovascular, endocrine, neurological or psychiatric 

disease, and the presence of a stressful life event during the past year. 

Participants were excluded if they were using any medication directly related to 

emotional or cognitive function, or one that was able to influence hormonal and 

sAA levels, such as glucocorticoids, β-blockers, antidepressants, benzodiazepines, 

asthma medication, thyroid therapies, psychotropic substances or 

contraceptives. Two hundred and five volunteers (81 older and 124 young 

volunteers) were eliminated for two reasons: (i) meeting the exclusion criteria, 

and/or (ii) incompatibility with the experiment’s schedules.  

All the older women were postmenopausal, having had their last 

menstrual period at least four years before, and none of them were receiving 

estrogen replacement therapy. All the young women were regular free-cycling 

and in the early follicular phase (2-5 days) of their menstrual cycle. The 

menstrual cycle phase was determined using a questionnaire (included in the 

general questionnaire) about the regularity and length of the menstrual cycle as 

well as the bleeding during the last year. Then, taking the day of onset of the last 

menstruation and the average length of the cycles as the reference, we 

estimated the day of onset of the next menstruation, and this was also verified 

by phone. Thus, we established the day of the appointment at the laboratory as 

the second to the fifth day after the onset of the new menstrual cycle.  
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The participants meeting the criteria were contacted by telephone and 

asked to attend two sessions that took place in a laboratory at the Faculty of 

Psychology. Before each session, participants were asked to maintain their 

general habits, sleep as long as usual, refrain from heavy physical activity the day 

before the session, and not consume alcohol since the night before the session. 

Additionally, they were instructed to drink only water, refrain from eating, 

smoking or taking any stimulants, such as coffee, cola, caffeine, tea or chocolate, 

two hours prior to the session, and not brush their teeth at least one hour prior 

to the session. The study was conducted in accordance with the Declaration of 

Helsinki, and the protocol and conduct were approved by the Ethics Research 

Committee of the University of Valencia. All the participants received verbal and 

written information about the study and signed an informed consent form. 

 

3.2.2. Procedure 

This study used a within-subject design with two completely randomized 

and counterbalanced conditions, a stress condition and a control condition, in 

two separate sessions with less than 10 days between them. The sessions 

consisted of several phases of equal durations in both conditions. Sessions took 1 

hour and 50 minutes to complete, and they were always held between 16.00 and 

20.00 hours. Each participant started his or her two sessions at the same hour. 

Upon arrival at the laboratory, the weight and height of the participants were 

measured (first session), and the experimenter checked to see whether they had 

followed the instructions given previously (both sessions). 

 Stress Condition.  To produce stress, we subjected the participants to the 

TSST. The stress tasks consisted of 5 min of free speech (job interview) and a 5 

min arithmetic task, performed in front of a committee composed of a man and 

a woman. The participants remained standing at a distance of 1.5 meters from 

the committee. Additionally, a video camera and a microphone were clearly 

visible. Both the speech and arithmetic tasks were filmed. 
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The protocol started with a habituation phase of 15 min to allow the 

participants to adapt to the laboratory setting. During this phase, the 

participants remained seated. After the habituation phase, the introduction 

phase started (duration 5 min). In this phase, the participants were informed 

about the procedure for the stress task. They received the instructions in front of 

the committee in the same room where the task took place. Next, the 

participants had 10 min to prepare for the task at hand. Following the 

preparation phase, the stress task was carried out. Then, subjects had 20 min to 

recover after the stress task. Each participant performed a standardized memory 

test consisting of 8 trials (Rey Auditory Verbal Learning Test, RAVLT), in order to 

measure declarative memory. The participants completed the first six trials 

between 30 to 40 min after the beginning of the TSST. After trial 6, they waited 

30 min (delay period) before continuing with the memory test. After the delay 

period, they finished the memory test with trials 7 and 8 and, finally, were 

debriefed.  

Taking into account the different time courses of the cortisol and sAA 

responses to stress induction, we collected the saliva samples for each of them 

at different moments. To measure cortisol, we collected four saliva samples, two 

before the stress task and two after the stress task. Specifically, the first saliva 

sample to measure cortisol was taken during the habituation phase, 10 minutes 

after the participant’s arrival at the laboratory (-20 min pre-stress), and the 

second cortisol sample was taken during the preparation phase (-5 min pre-

stress). The third and fourth cortisol samples were collected 15 (+15 min post-

stress) and 40 (+40 min post-stress) minutes, respectively, after the onset of the 

stress task. To measure sAA, we collected five saliva samples, two before the task 

and three after it. Thus, the first saliva sample was collected 10 minutes before 

the onset of the stress task (-10 min pre-stress), and the second one was taken 

immediately before the onset of the speech (0 min). The third, fourth and fifth 

saliva samples were collected 5, 10 and 14 minutes after the onset of the stress 
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task (after speech, +5 min; after arithmetic task, +10 min; +14 min post-stress, 

respectively). 

Control Condition. The control condition was similar to the experimental 

condition, except that the stressful task was replaced by a control task. This task 

was designed to be similar to the stress task in mental workload and global 

physical activity (Het et al., 2009), but without the main components capable of 

provoking stress, such as evaluative threat and uncontrollability (Dickerson and 

Kemeny, 2004). The control task was composed of 5 min of reading aloud and 5 

min of counting. In the preparation phase, the participants read a book with 

neutral content. The timing of the saliva samples and the phase durations were 

the same for the two conditions.  

 

3.2.3. Memory 

Declarative memory. To measure declarative memory, the Spanish 

version of Rey’s Auditory-Verbal Learning Test (RAVLT) was used (Miranda and 

Valencia, 1997). This test has several versions, and for each participant a 

different version of the RAVLT was used in the second session to avoid learning 

effects. The order of the two versions was randomized and counter-balanced. 

The RAVLT is composed of different trials. In the first five trials the experimenter 

read aloud a target list of 15 neutral words, and each participant had to repeat as 

many words as possible in each of the five trials.  The performance on these first 

five trials reflects the rate of learning (Trials 1 to 5: Learning curve). After trial 5, 

the experimenter read aloud an interference list of 15 words and tested the 

retention of these new words. Following this step, participants were asked to 

recall the words from the target list (Trial 6: Recall after interference); after a 

delay of 30 min, they had to recall them a second time (Trial 7: Delayed recall). In 

trial 8 (Recognition), participants had to recognize the memorized words from a 

verbally-presented list containing 15 new and 15 previously learned words. Trial 

8 was divided into two different scores: Hits, the number of words correctly 
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recognized as being on the target list; and False alarms, the number of words 

incorrectly recognized as being on the target list. To analyze the effects on 

recognition (trial 8), we used d-prime (d´), which is the difference between the 

standardized proportion of correct hits and the standardized proportion of false 

alarms. One older woman (due to problems in the application of the memory 

test) and one young man (an outlier for memory outcomes) were removed from 

the statistical analyses for memory. 

 

3.2.4. Biochemical Analyses 

Cortisol. Participants provided four saliva samples by depositing 5 ml of 

saliva in plastic vials. They took no more than 5 minutes to fill each vial. The 

samples were frozen at -80ºC until the analyses were performed. The samples 

were analyzed by a competitive solid phase radioimmunoassay (tube coated), 

using the commercial kit Coat-A-Count C (DPC, Siemens Medical Solutions 

Diagnostics). Assay sensitivity was 0.5 ng/ml. For each subject, all the samples 

were analyzed in the same trial. The within and inter assay variation coefficients 

were all below 8%. Five people (one older man, two young men and two young 

women) were excluded from the statistical analyses for cortisol because they 

were multivariate outliers on the basis of the p < 0.001 criteria for the 

Mahalanobis distance in cortisol samples. 

Alpha-amylase (sAA). Saliva was collected using salivettes (Sarstedt, 

Nümbrecht, Germany). Participants were instructed to introduce the cotton 

swab into their mouths for exactly 1 min, not chew the cotton, and move the 

swab around in a circular pattern to collect saliva from all the salivary glands 

(Rohleder and Nater, 2009). The samples were frozen at -20º C after the 

completion of the session, until the analyses took place. The samples were 

shipped to Dresden and analyzed at the Kirschbaum lab, Technical University of 

Dresden. Concentration of alpha-amylase in saliva was measured by an enzyme 

kinetic method, according to the protocol specified in Rohleder et al. (2006). The 
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lowest detectable concentration in our assay was 1.56 U/ml. Inter- and intra-

assay variation was below 10%. Analyses of sAA failed to detect the sAA 

concentrations in the samples of two men, one young and one older, and one 

older woman; therefore, these subjects were eliminated from the sAA statistical 

analyses. 

 

3.2.5. Statistical Analyses 

Data were checked for normal distribution and homogeneity of variance 

using Kolmogorov-Smirnov and Levene’s tests before the statistical procedures 

were applied. Since neither the cortisol nor the sAA data had a normal 

distribution, they were square root transformed. Student’s t-tests were used to 

investigate age and sex differences in the demographic variables. 

We used linear mixed modeling to assess the salivary cortisol and sAA 

responses in both the stress and control conditions. As an estimation method, 

we used the restricted maximum likelihood procedure, since this procedure 

deals with outliers better (Diggle, 1998). As the dependent variable, we included 

either sAA or cortisol levels. To allow for differences in patterns between and 

within participants, we included random components for moment (cortisol: 4 

saliva samples, sAA: 5 saliva samples) and for each subject. To analyze salivary 

cortisol and sAA levels, we added the following factors: (i) Time (for cortisol: -20 

min, -5 min, +15 min, +40, and for sAA: -10 min, 0 min, +5 min, +10 min, +14 

min), (ii) Condition (control, stress), (iii) Sex (man, woman), and (iv) Age (old, 

young). 

We also used linear mixed modeling to assess memory performance. We 

performed separate analyses for the following indices: (i) learning curve, (ii) total 

learning, (iii) recall after interference or retroactive interference, (iv) delayed 

recall performance, and (v) recognition. As the dependent variable, we included 

the number of words remembered. We included random components for trial 
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(trial 1-5) and for each subject. Furthermore, we included the following factors: 

(i) Trial (learning curve: trial 1 to trial 5, total learning: ∑trial 1 to trial 5, recall 

after interference: trial 6, delayed recall performance: trial 7, and recognition: 

trial 8), (ii) Condition (control; stress), (iii) Sex (man, woman), and (iv) Age (old, 

young).  

For all linear mixed models, we started with the most complex model 

containing all possible interactions, and then progressively removed non-

significant effects, starting with the most complex effects. After removing a 

factor, we investigated whether the model’s fit improved according to Akaike’s 

Information Criterion (AIC) and Schwarz’s Bayesian Information Criterion (BIC). 

To calculate AIC and BIC, the maximum likelihood procedure in SPSS was used 

because it gives more reliable estimates than the restricted maximum likelihood 

procedure. A lower value of at least 2 on one or both criteria was considered a 

better model (Burnham and Anderson, 2004). 

In order to find out the possible order effects of session (whether the 

stress or control condition was first), we included this variable in each linear 

mixed model described above. Results did not show order effects in any model 

(all p > 0.113). 

We calculated the cortisol reactivity and sAA reactivity to stress by 

subtracting the baseline levels from the sample taken immediately after stress, 

and then we obtained the ratio variable of cortisol over sAA by dividing the 

cortisol reactivity to stress by the sAA reactivity to stress (RCA). Furthermore, the 

ratio of sAA over cortisol was calculated by dividing the sAA reactivity to stress 

by the cortisol reactivity to stress (RAC). Pearson’s correlations were performed 

to assess the relationships between cortisol reactivity and sAA reactivity and the 

two ratios (RCA and RAC) with memory performance (Trial 6 outcome). In 

addition, Fisher’s Z tests were used to test significant differences between 

correlation coefficients. 
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For post hoc planned comparisons, we employed the Bonferroni 

correction. All p-values reported are two-tailed, and the level of significance was 

marked at <0.05. When not otherwise specified, results shown are means ± 

standard error of means (SEM). We used SPSS 17.0 to perform the statistical 

analyses. For an easy interpretation of the figures, the values in the figures 

represent raw values and not square root transformed values.  

 

3.3. RESULTS 

3.3.1. Stress Response  

Salivary cortisol. The model predicting cortisol levels showed main effects 

for Condition (F1, 174.490= 87.842, p < 0.001), Time (F3, 132.927= 8.225, p < 0.001) and 

their interaction Condition×Time (F3, 132.890= 36.480, p < 0.001). There were no 

baseline differences in cortisol levels between conditions (p = 0.856). In the 

stress condition, cortisol levels increased, reaching their peak immediately after 

the stress task (p < 0.001), and then starting to decrease but without recovering 

baseline levels in the last saliva sample (p = 0.001). In the control condition, 

cortisol levels decreased across time, but the differences were only significant 

between the -5 min and +15 min samples and the -20 min and +40 min samples 

(both p ≤ 0.001). Cortisol levels were higher in the stress condition than in the 

control condition in both samples provided after the task (both p < 0.001). 

The main effect of Age was not significant (p = 0.486), but the 

Condition×Age (F1, 216.607= 9.404, p = 0.002) interaction was significant. Both age 

groups had higher cortisol levels in the stress condition than in the control 

condition (both p ≤ 0.001). In addition, in the stress condition both age groups 

had similar cortisol levels (p = 0.680), but, as a trend, the older group had lower 

cortisol levels than the younger group in the control condition (p = 0.057). The 

interaction between Time and Age was also significant (F3, 111.853= 13.868, p < 
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0.001), with older participants showing lower baseline cortisol levels than young 

participants (p = 0.018). 

Finally, the factor Sex (F1, 67.246= 9.056, p = 0.004) and the interactions 

Condition×Sex (F1, 216.607= 13.894, p < 0.001) and Time×Age×Sex (F3, 111.853= 2.856, 

p = 0.040) were also significant. Men showed higher cortisol levels than women 

in the experimental condition (p < 0.001), but not in the control condition (p = 

0.110). With respect to Time, we observed that in older people, men only 

showed higher pre-task levels of cortisol than women in the -5 min sample (p < 

0.015). However, in young people, men presented significantly higher cortisol 

levels than women in the +15 min and +40 min samples (both p < 0.020), and as 

a trend, in the -5 min sample (p = 0.053).  There were no age differences 

between men and women in any of the four samples (all p > 0.080) (see Figure 

III.1). Model fit did not improve when adding other main effects or interaction 

effects (see Table III.2). 
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Figure III.1. Means of salivary cortisol concentrations (± SEM) in the TSST (up) and the 
control (down) conditions in both age groups (young: N = 31, older: N = 31). In the stress 
condition, all participants increased their cortisol levels immediately after the stress task 
(p < 0.001), with men having higher cortisol levels than women (p < 0.001). In the 
control condition, all participants decreased their cortisol levels across time, according 
to the normal cortisol circadian rhythm. 
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Model Removed variable AIC BIC 
Complete model None 589.301 761.770 
Removal of ns.4-way 

interactions 
All 583.611 743.461 

Removal of ns. 3-way 
interactions 

ConditionxTimexAge 578.229 712.840 

 Condition×TimexSex   
Removal of ns. 2-way 

interactions 
None - - 

Removal of ns. main effects None - - 

Table III.2. Fit of the various models predicting cortisol levels. 

 

Salivary Alpha-amylase (sAA). The model predicting sAA levels showed 

main effects of Condition (F1, 453.476= 64.348, p < 0.001), Time (F4, 206.281= 35.838, p 

< 0.001), and their interaction, Condition×Time (F4, , 206.034= 4.940, p = 0.001). 

There were no baseline differences between conditions (p = 0.942); however, the 

sAA concentrations were higher in the stress condition than in the control 

condition in the rest of the samples (all p ≤ 0.001). In the stress condition, sAA 

levels were similar to baseline in the 0 min sample (p = 0.123), higher in the + 5 

min and +10 min samples (both p ≤ 0.001), and decreased until reaching baseline 

levels in the last sAA sample (+14 min) (p = 0.423). In the control condition, a 

similar sAA profile was found. 

The factor Age (F1, 61.431= 3.239, p = 0.077) and the interaction 

Condition×Age (F1, 458.180= 3.503, p = 0.062) were marginally significant, whereas 

the interaction Time×Age (F4, 173.901= 3.164, p = 0.015) was significant. Older 

adults had higher sAA concentrations than younger adults, with this difference 

being significant in the control condition (p = 0.035), but not in the stress 

condition (p = 0.172). Both age groups had higher sAA concentrations in the 

stress condition than in the control condition (both p ≤ 0.001). Comparing the 

two age-groups, the older participants showed higher sAA levels than the 

younger participants in the +5 min (p = 0.036) and +10 min (p = 0.008) samples, 

but not in the rest of the samples (all p > 0.190). Finally, the factor Sex and its 
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interactions were not significant (all p > 0.116) (see Figure III.2). Model fit did not 

improve when adding other main effects or interaction effects (see Table III.3). 

 

 

Figure III.2. Means of salivary alpha-amylase (sAA) concentrations (± SEM) in the TSST 
(up) and control (down) conditions in both age groups (young: N = 34, older: N = 30). 
Except on baseline sAA concentrations (p = 0.942), all participants had higher sAA 
concentrations in the stress condition than in the control condition (all p < 0.001). In 
addition, the older group had higher sAA concentrations than the young adults, although 
this difference was only significant in the control condition (p = 0.035).  
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Model Removed variable AIC BIC 
Complete model None 2905.681 3133.215 
Removal of ns. 4-way 

interaction 
All 2899.627 3109.316 

Removal of ns. 3-way 
interactions 

All 2879.794 3031.484 

Removal of ns. 2-way 
interactions 

Age×Sex 2873.824 2998.745 

 Time×Sex   
 Condition×Sex   
Removal of ns. main effects None - - 

Table III.3. Fit of the various models predicting sAA concentrations. 

 

3.3.2. Memory performance 

Learning curve (Trials 1 to 5). The model predicting the learning curve 

showed that there was a main effect of Trial (F4, , 211.477=336.876, p < 0.001) and 

Age (F1, 62.296=31.178, p < 0.001). All the participants showed a positive learning 

curve across the first five trials. In every consecutive trial, more words were 

remembered (all p < 0.002). Moreover, older participants had lower 

performance across the learning curve than young participants (see Figure 3). 

Model fit did not improve when adding other main effects or interaction effects 

(see Table III.4). 

 

Model Removed variable AIC BIC 
Complete model None 2577.870 2806.196 
Removal of ns. 4-way 

interaction 
All 2572.740 2783.158 

Removal of ns. 3-way 
interactions 

All 2559.030 2711.247 

Removal of ns. 2-way 
interactions 

All 2541.284 2626.347 

Removal of ns. main effects Condition 2538.214 2614.323 
 Sex   

Table III.4. Fit of the various models predicting Learning Curve (Trials 1 to 5). 
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Total Learning (∑Trial 1 to Trial 5). The model predicting total learning 

showed that there was only a main effect of Age (F1, 63=31.775, p < 0.001); older 

people had worse total learning performance than young people. Model fit did 

not improve when adding other main effects or interaction effects (see Table 

III.5). 

 

Model Removed variable AIC BIC 
Complete model None 906.110 937.653 
Removal of ns. 3-way 

interactions 
All 905.217 933.892 

Removal of ns. 2-way 
interactions 

All 899.924 919.997 

Removal of ns. main effects Condition 896.596 910.933 
 Sex   

Table III.5. Fit of the various models predicting Total Learning (ƩT1 to T5) performance. 

 

Recall after interference (Trial 6). The model predicting immediate recall 

performance showed that there was a main effect of Age (F1, 61.995= 21.103, p < 

0.001). Older participants recalled fewer words than young participants. 

Although the main effect of Condition was not significant (p = 0.319), the 

Condition×Age (F1, 63= 4.935, p = 0.030, Cohen’s d = 0.32) interaction was 

significant. Older participants recalled fewer words after the stress condition 

than in the control condition (p = 0.029); therefore, the stressor only impaired 

older participants’ performance. However, young participants had a similar 

performance in both conditions (p = 0.382), and their performance was better 

than that of the older participants in both conditions (both p <0.002) (see Figure 

III.3). Model fit did not improve when adding other main effects or interaction 

effects (see Table III.6). 

 

 



Study 2 

105 
 

 

 

Figure III.3. Number of words recalled in each trial of the RAVLT by (left) young (N = 34) 
and (right) older (N = 31) groups, divided into men and women in the TSST and control 
conditions. Among the young participants, no stress effects were found on memory; 
however, we found an interaction between Condition and Age in the trial 6 outcome. 
Older people have poorer performance on this trial in the stress condition than in the 
control condition. Depicted values are means, and error bars represent the SEM. 



Chapter III 

106 
 

Model Removed variable AIC BIC 
Complete model None 602.724 634.266 
Removal of ns. 3-way 

interactions 
All 600.807 629.482 

Removal of ns. 2-way 
interactions 

All except 600.077 623.017 

 Condition×Age   
Removal of ns. main effects Sex 598.516 618.589 

Table III.6. Fit of the various models predicting Recall after Interference (Trial 6) 
performance. 

 

Delayed recall (Trial 7). The model predicting short-term delayed recall 

performance showed that there was only a main effect of Age (F1, 126.314=37.284, 

p < 0.001). Thus, older participants recalled fewer words than young participants 

(see Figure 3). Model fit did not improve when adding other main effects or 

interaction effects (see Table III.7). 

 

Model Removed variable AIC BIC 
Complete model None 658.546 687.222 
Removal of ns. 3-way 

interactions 
All 656.753 682.560 

Removal of ns. 2-way 
interactions 

All 651.247 668.452 

Removal of ns. main effects Condition 648.306 659.776 
 Sex   

Table III.7. Fit of the various models predicting Delayed Recall (Trial 7) performance. 

 

Recognition (Trial 8). The model predicting recognition performance did 

not show main effects for condition, age or sex, nor were there interactions 

among these factors (all p > 0.377). 
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3.3.3. The relationship between the stress response and memory performance 

The correlations among biomarker indexes and memory performance 

were analyzed only for trial 6, due to the significant effect found in the older 

group. In this group, no significant correlations were found between recall after 

interference and cortisol reactivity, sAA reactivity or RCA (ratio of cortisol over 

sAA) (all p > 0.167). However, a negative relationship was observed between 

recall after interference and the RAC (ratio of sAA over cortisol) (r= -0.507, p = 

0.006). Therefore, the older people who had a predominance of sAA response 

over cortisol response had poorer memory performance.  

In the young group, no significant correlations were found between the 

trial 6 outcome and cortisol reactivity, sAA reactivity, RCA or RAC (all p > 0.337). 

Significance testing using Fisher’s Z tests revealed marginal differences between 

the older and young groups in the correlation between RAC and trial 6 outcome 

(z = 1.6, p = 0.054). 

 

3.4. DISCUSSION 

The purpose of this study was to examine the role of age and sex in the 

relationship between stress and memory performance. To do so, we compared 

the effect of acute stress on memory in young and older, healthy and non-

stressed adults. In a crossover design in which each subject participated in a 

stress condition and a control condition, we induced stress in the participants by 

exposing them to an acute psychological stressor (TSST). After both the stress 

and control tasks, we evaluated their declarative memory performance. Our 

results confirm that the experimental procedure induced stress, since the TSST 

provoked an increase in cortisol and sAA responses in the total sample. Although 

we failed to find stress-induced changes in learning, delayed recall or 

recognition, the exposure to the TSST impaired immediate recall after 

interference, but only in older people. In addition, among older people, this 
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effect was negatively related to the ratio of sAA over cortisol. No sex differences 

were found in the stress effects on memory performance. 

The experimental procedure was indeed able to induce stress, since both 

stress systems (i.e. HPA-axis and SNS) were activated, as reflected in the cortisol 

and sAA responses (see Figures III.1 and III.2, respectively). However, when we 

studied the role of age and sex in the stress response, we observed that they 

each had a different role in the response of each stress biomarker. Thus, we 

found sex differences in the cortisol response, but not in the sAA response. Men 

had a higher cortisol response to the TSST than women, regardless of the age. 

This result coincides with previous studies in young (Kirschbaum et al., 1999; 

Childs et al., 2010) and older people (Kudielka et al., 1998, 2004). In contrast, we 

failed to find age differences in the cortisol response, but we found that older 

adults had higher sAA concentrations than younger adults, and these differences 

were significant in the control condition, but not in the stress condition. This 

result confirms the idea that there is increased basal sympathoneural activity 

among older people (Seals and Dinenno, 2004). 

To our knowledge, this is the first study to compare acute stress effects 

on the memory performance of young and older men and women. The results 

show that, in general, older people had poorer declarative memory performance 

than young people, as they recalled fewer words than young participants on all 

trials of the RAVLT, except the recognition task (see Figure III.3). This result 

agrees with a previous review on this topic (Park et al., 2003). According to these 

authors, there is an age-related decline in some types of memory, including 

declarative and working memory; however, non-declarative and recognition 

memory performance were maintained, or even improved, across the lifespan.  

It is worth noting that the exposition to an acute stressful event tends to 

enhance learning of new information in adult male animals (for a review on this 

topic see: Shors, 2006). It is important to note that the direction of stress effects 

on memory depends on several factors, such as the memory phase assessed (i.e. 
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acquisition, consolidation or retrieval), the type of memory studied, the 

magnitude of the stress-induced cortisol reactivity, and the sex of the subjects.  

We found a very specific, negative effect of the stressor on memory. 

Specifically, the stressor impaired immediate recall (trial 6) only in older people. 

Why did the stressor selectively affect the memory performance of older 

people? One explanation could be that, although the RAVLT assesses declarative 

memory, the effect obtained on trial 6 may fall under the domain of working 

memory. On this trial the participants had to recall, after an interference list, as 

many words as possible from the target list, but without its previous 

presentation as occurred in the first five trials. This new word list interferes with 

the recall of the previously-learned target list, resulting in retroactive 

interference (Dewar et al., 2007). According to Hedden and Park (2001), older 

people show greater retroactive interference effects compared to young adults, 

so that they seem to be more vulnerable to this interference than young people. 

Difficulties in deleting irrelevant information from the working memory could 

hinder their performance. Moreover, both working memory (Galloway et al., 

2008) and retroactive interference (Dewar et al., 2007) may be related to 

prefrontal cortex functioning. In addition to the hippocampus, this brain area 

seems to be sensitive to glucocorticoid effects during human aging. Several 

studies suggest that stress exacerbates the aging process (Lupien et al., 2007; 

Piazza et al., 2010) and, consequently, age-related changes such as memory 

impairment. 

Previous studies by our group and others have suggested that older 

people may be less sensitive to the effects of acute stress on long-term memory 

retrieval (Pulopulos et al., 2013) and to the effects of pharmacologically-induced 

acute cortisol increases on working memory tasks involving the maintenance and 

manipulation of information (i.e. Digit Span and Letter-Number Sequencing 

tasks) (Wolf et al., 2001a; Yehuda et al., 2007). An age-related dysregulation of 

the HPA-axis activity (Mizoguchi et al 2009) and functional changes in the 
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amygdala and hippocampus (Mather, 2006; St. Jacques et al., 2009; Murty et al., 

2010) have been proposed as possible explanations for the lack of cortisol effects 

on the performance of these kinds of tasks. Together with our results, these 

studies indicate that older people may be sensitive to the effect of stress on 

retroactive interference, a cognitive ability that involves the activation of the 

prefrontal cortex to control irrelevant information and that has shown a greater 

age-related decline (Hedden and Park 2001), but not on other kinds of memory 

abilities, such as long-term memory retrieval or working memory tasks, which 

involve maintenance and manipulation of information. However, it should be 

noted that previous studies investigating the effects of cortisol on working 

memory in older people have used a pharmacological approach (Wolf et al., 

2001a; Yehuda et al., 2007); therefore, the lack of SNS activation in these studies 

may also account for the absence of cortisol effects observed. Thus, more 

research is needed to investigate the effects of acute stress on other kind of 

tasks that specifically measure working memory. Moreover, we found a negative 

relationship between the ratio of sAA over cortisol and recall after interference 

only in older people. It should be pointed out that even after considering the 

Bonferroni correction for multiple analyses, the critical α level would be 0.00625 

(0.05/8); therefore, this correlation would remain significant. As we outlined 

above, the immediate recall of wordlists not only reflects declarative memory 

processes, but also working memory functions (Lezak et al., 2004; Tops et al., 

2004). On the one hand, it has been well established that declarative memory 

depends on hippocampal functioning (Scoville and Milner, 2000), and working 

memory depends on prefrontal cortex functioning (Galloway et al., 2008). On the 

other hand, these two brain structures are affected by the glucocorticoid action 

and noradrenergic activation in response to stress, respectively (Patel et al., 

2000; Schoofs et al., 2008). Therefore, this trial will be affected by the activation 

of both stress systems related to each type of memory. Taking this into account, 

we considered it appropriate to examine whether the impairing effects found in 

the recall after interference were related not only to the HPA-axis or SNS action 
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separately, but also to the relationship between them, expressed as the ratio of 

one biomarker over the other and vice versa. The hormonal ratio method has 

been widely implemented in research as a reliable index for a variety of health 

and behavioral outcomes (Ostroff et al., 1982, 1985; Adlercreutz et al., 1986; 

Terburg et al., 2009). Recently, the sAA over cortisol ratio has been suggested as 

a good marker of stress system dysregulation, positively related to subjective 

indexes of stress and depression (Ali and Pruessner, 2012). We tried to extend 

this relationship into the cognitive domain, as has been initiated in other stages 

of the life span (Berry et al., 2012). 

Sex differences have previously been reported among older people 

(Almela et al., 2011a), showing impaired declarative memory, but only related to 

higher cortisol response to stressors in older women. However, we failed to find 

sex differences in the relationship between acute stress and memory 

performance. The small sample size may be the underlying explanation for this 

lack of significant effects. Further studies are needed to investigate whether the 

sex affects the relationship between acute stress and retroactive interference, 

specifically in older people.  

Some other limitations have to be considered in the current study. We 

collected a homogeneous and cognitively and physically healthy sample, using 

exclusion criteria that have contributed to obtaining a very restricted sample. 

This fact may limit the ability to detect effects and generalize the results. Further 

studies are needed to extend this research to a more general population, 

including older people with age-related diseases and medication use, young 

women in other phases of the menstrual cycle, and oral contraceptive users. In 

this study, several outcomes were examined (e.g. different dependent variables 

from the same memory task), which can lead to an increase in the type I error. 

However, we found a correlation between the trial 6 outcome and the RAC in 

older people and, although as a trend, differences between the correlations in 

older and young people, in line with the results shown with linear mixed 
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modeling. Taken together, these consistent results do not seem to be due to 

chance, but they must be considered tentative and confirmed in further studies 

with other and more extensive samples.  

In conclusion, we have studied the role of age in the effects of acute psychosocial 

stress on declarative memory, considering sex. Our results show a very specific 

effect associated with the worse consequence of the interference derived from 

very similar and neutral stimuli in healthy, non-stressed older people. They 

confirm that age moderates this specific stress-induced effect on memory, 

providing new knowledge about the importance of studying both physiological 

systems involved in the stress response together. 
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STUDY 3 

The impact of stress prior retrieval on memory 
performance: the role of age and sex4 

 

 

 

 

 

 

 

                                                           
4 The main results of this study are under review in Behavioural Brain 
  Research: Hidalgo, V., Pulopulos, M.M., Puig-Perez, S., Espin, L., Gomez-Amor, 

J., and Salvador, A. Acute stress affects free recall and recognition of pictures 
differently depending on age and sex. 
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4.1. INTRODUCTION  

A large body of research in animals and humans shows that stress affects 

memory. Stress involves the release of glucocorticoids (corticosterone in 

rodents, cortisol in humans) and catecholamines due to the activation of the 

hypothalamus-pituitary-adrenal axis (HPA-axis) and the sympathetic nervous 

system (SNS), respectively. While glucocorticoids can cross the blood-brain 

barrier and bind to receptors (i.e. mineralcorticoid and glucocorticoid receptors) 

located in the hippocampus, prefrontal cortex and amygdala, brain areas related 

to memory processes (Lupien and Lepage, 2001; Lupien et al., 2007; Roozendaal 

et al., 2009), the catecholamines do not have this property. Thus, the latter exert 

their action on memory by activating the β-adrenergic receptors on vagal 

afferents projecting to the nucleus of the solitary tract in the brainstem 

(McGaugh, 2000), and these noradrenergic projections influence the neuronal 

activity of the amygdala (Packard et al., 1995). Nevertheless, memory can be 

enhanced, impaired or even unaffected by stress, since factors such as the 

memory phase tested (i.e. learning, consolidation or retrieval), the emotional 

valence of the material to be remembered (i.e. emotional or neutral), or the age 

and sex of the individuals can modulate this relationship.   

In line with animal studies, a pharmacologically-induced (de Quervain et 

al., 2000; 2003; Kuhlmann and Wolf, 2005; Kuhlmann et al., 2005a) or stress-

induced (Domes et al., 2004; Kuhlmann et al., 2005b; Buchanan et al., 2006; Oei 

et al., 2006; Buchanan and Tranel, 2008; Smeets et al., 2008; Smeets, 2011) 

cortisol increase impairs retrieval performance in young people. The effect of 

stress on long-term memory (24h at least) retrieval seems to be rather 

consistent, since impairing effects have been observed when stress triggers high 

(Kuhlmann et al., 2005b; Oei et al., 2006; Buchanan and Tranel, 2008) and 

moderate (Buchanan et al., 2006; Smeets et al., 2008; Smeets, 2011) cortisol 

responses. In these studies different types of memory tasks with different levels 

of difficulty have been employed, such as lists of words (with 30 in Kuhlmann et 

al. (2005b) and Smeets (2011), 80 words in Buchanan et al. (2006) and 100 words 
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in Smeets et al. (2008)), pictures (20 in Buchanan and Tranel, 2008) and 

paragraphs (Oei et al., 2006). A few studies have shown a lack of a stress effect 

on long-term memory retrieval in young women in the luteal phase of the 

menstrual cycle (Schoofs and Wolf, 2009) and when the memory retrieval was 

performed two or more days after learning (Wolf et al., 2002; Beckner et al., 

2006). 

One modulatory factor in the relationship between cortisol and memory 

seems to be the emotional valence of the material to be remembered (i.e. 

emotional or neutral). Emotional material induces a greater noradrenergic 

activation of the amygdala than neutral material, and, as has been described, the 

interactions between the amygdala and hippocampus are crucial in finding 

cortisol effects on hippocampus-dependent memory performance (Roozendaal 

et al., 2009). Thus, the majority of studies carried out in young people showed a 

stronger impact of cortisol or stress on memory for emotionally arousing 

material than for neutral material (for a review see: Wolf et al., 2004).  

Most of the studies on the effects of cortisol administration or stress-

induced cortisol increases on memory have been conducted in young people. 

However, some age-related changes may affect the relationship between stress-

induced cortisol response and memory performance in the older population. 

Previous studies have suggested that older people show (in comparison with 

young people) changes in the functional connectivity between the amygdala and 

hippocampus and decreases in amygdala activation for negative stimulus 

(Mather and Carstensen, 2005; Mather, 2006; Murty et al., 2009; St Jacques et 

al., 2009). Thus, given that interactions between the amygdala and hippocampus 

seem to be essential to observe cortisol effects on hippocampus-dependent 

memory performance (Roozendaal et al., 2009), it is possible that this age-

related change may affect the effects of stress and cortisol on long-term memory 

retrieval in older people. Another change that can be observed in the aging brain 

is a reduction in the number of mineralcorticoid and glucocorticoid receptors 
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located in the hippocampus, prefrontal cortex and amygdala (Giordano et al., 

2005; Perlman et al., 2007; Mizoguchi et al., 2009), which could make older 

people’s memory less sensitive to being affected by cortisol increases 

(Newcomer et al., 1995; Heffelfinger and Newcomer, 2001). 

In spite of evidence suggesting an age-related change in stress and cortisol 

effects on memory performance, only a few studies have been reported in older 

people. Previous studies that have investigated the effects of stress on memory 

in older people have mainly shown that cortisol increases before learning (i.e. 

without differentiating stress effects on the learning, consolidation or retrieval 

phases) impair memory performance (Lupien et al., 1997; Wolf et al., 2001a; but 

see Domes et al., 2002; Almela et al., 2011a; Hidalgo et al., 2014), an effect that 

seems to be due to the detrimental effect of cortisol on retroactive interference 

in older people, but not in young adults (Hidalgo et al., 2014). By contrast, 

studies in animals and humans have shown a lack of stress and cortisol effects on 

working memory, spatial memory and declarative and non-declarative memory 

(Wolf et al., 2001a; Porter et al., 2002; Yehuda et al., 2007; Beuchel et al., 2014; 

Pulopulos et al., in press). To our knowledge, only one study investigated the 

effects of acute stress on long-term memory retrieval in a sample of older 

people, finding no effects of stress (Pulopulos et al., 2013). However, although 

some previous studies have used both older and young samples to investigate 

the effects of cortisol increases on learning (Hidalgo et al., 2014), and a short-

time after learning (Wolf et al., 2001a), there are no studies that have directly 

compared the effect of a stress-induced cortisol increase on long-term memory 

retrieval in young and older people.  

In the present study we have compared, for the first time, the effects of a 

stress-induced cortisol increase on long-term memory retrieval of pictures in 

older and young people. To this end, two age groups of participants (older and 

young) were exposed to the Trier Social Stress Test (TSST) or a control task. After 

the stress or control task, free recall and recognition of pictures learned one day 
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before were assessed. Moreover, in order to investigate whether the emotional 

arousal of the memory material plays a crucial role in the acute stress effects on 

memory retrieval, we used positive, negative and neutral pictures. Finally, we 

also tested whether the participants’ sex influenced the stress effects on 

retrieval, due to the existence of sex differences in the stress response and their 

effects on this type of memory. Based on the literature, we expected stress to 

impair long-term memory retrieval in young people, but not in older people (e.g. 

Kuhlmann et al., 2005b; Buchanan et al., 2006; Oei et al., 2006; Buchanan and 

Tranel, 2008; Smeets et al., 2008; Smeets, 2011; Pulopulos et al., 2013), and sex-

related differences in young people (e.g. Wolf et al., 2001b; Andreano and Cahill, 

2006; Espin et al., 2013). Thus, we hypothesized that there would be a stronger 

impairing effect in young men, due to their expected higher cortisol response to 

the stressor (Kirschbaum et al., 1999; Kudielka and Kirschbaum, 2005; Kudielka 

et al., 2009) and the protective effects of estrogen in women (Wolf et al., 2006). 

 

4.2. METHOD 

4.2.1. Participants  

The current study is part of an extensive on-going project (Mneme 

Project) aimed to investigate the effects of psychosocial stress on memory 

performance, taking into account different moderating factors (including age and 

sex) through separate and consecutive studies in healthy people. Here, we 

studied a sample composed of 102 subjects divided into a group of older people 

(from 56 to 76 years of age) and a group of young people (from 18 to 27 years of 

age). Participants were submitted to one of two different conditions (stress or 

control). The older group (N = 52) was composed of 27 men (stress = 12, control 

= 15) and 25 women (stress = 13, control = 12). The young group (N = 50) 

consisted of 26 men (stress = 14, control = 12) and 24 women (stress = 12, 

control = 12), all undergraduate students. The older group belonged to a study 

program at the University for people over 55 years of age, and they had an 
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educational level beyond high school. There were no significant differences 

between the two (stress vs control) conditions on age, educational level or body 

mass index (BMI) (p > 0.286). Partial results from the older subsample have been 

previously reported. In the current study we added a group of young participants 

to our previous sample (Pulopulos et al., 2013) in order to test whether the same 

experimental design may show stress effects on long-term memory retrieval of 

pictures in young adults. 

All the participants completed a general questionnaire to check whether 

they met the study prerequisites. In order to obtain an optimal comparison of 

the two age cohorts and eliminate a number of possible confounding factors that 

could interfere with the aim of the study, we applied very restrictive criteria. The 

exclusion criteria were: smoking more than 10 cigarettes a day; alcohol or other 

drug abuse; dental, visual or hearing problems; presence of cardiovascular, 

endocrine, neurological, or psychiatric disease; having been under general 

anesthesia once or more than once in the past year; and the presence of a 

stressful life event during the past year (volunteers were asked whether they had 

experienced any situation that would affect them negatively). The presence of a 

stressful life event was considered as an exclusion criterion because of its effects 

on both cognitive performance and HPA-axis functioning (Sapolsky and Plotsky, 

1990; Sauro et al., 2003; Lupien et al., 2007; Peavy et al., 2009). The participants 

were excluded if they were using any medication directly related to emotional or 

cognitive function, or one that was able to influence hormonal and salivary 

alpha-amylase (sAA) levels, such as glucocorticoids, β-blockers, antidepressants, 

benzodiazepines, asthma medication, thyroid therapies or psychotropic 

substances. All the older women were postmenopausal, having had their last 

menstrual period more than 3 years before the testing time, and none of them 

were receiving estrogen replacement therapy. All the young women were 

regular, free-cycling and nulliparous, and none of them had taken oral 

contraceptives. All the participants in the older group scored more than twenty-

eight on the MEC (Spanish version of the Mini-Mental Status Examination; Lobo 
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et al., 1999), indicating the absence of cognitive impairment, and none of them 

met the criteria for dementia, as defined by the NINCDS-ADRDA criteria for 

Alzheimer’s disease, or the criteria for Mild Cognitive Impairment, as defined by 

the European Consortium on Alzheimer's Disease (Portet et al., 2006). 

The participants who met the criteria were contacted by telephone and 

asked to attend two sessions that took place in a laboratory at the University. 

Previously, participants were asked to maintain their general habits, sleep as 

long as usual, refrain from heavy physical activity the day before the session, and 

not consume alcohol since the night before the session. Additionally, they were 

instructed to drink only water, not eat, smoke or take any stimulants such as 

coffee, cola, caffeine, tea or chocolate two hours prior to the session, and not 

brush their teeth at least one hour prior to the session. The study was conducted 

in accordance with the Declaration of Helsinki, and the protocol was approved by 

the Ethics Research Committee of the University of Valencia. All the participants 

received verbal and written information about the study and signed an informed 

consent form. 

 

4.2.2. Procedure 

This study consisted of two individual sessions: acquisition and retrieval. 

In the first session (acquisition session), which was similar for all subjects, after 

the participants’ arrival, the experimenter checked whether they had followed 

the instructions given previously, and he/she noted their weight and height. 

After a period of habituation to the laboratory, participants were shown 30 color 

pictures consisting of 10 unpleasant (e.g. mutilated bodies), 10 pleasant (e.g. 

baby smiling) and 10 neutral (e.g. glass of water on a table) pictures extracted 

from the Spanish version (Vila et al., 2001) of the International Affective Picture 

System (IAPS; Lang et al., 2005). Pictures were presented individually for 5 s on a 

screen, followed by a black screen for 15 s, during which participants rated the 

pictures using the Self-Assessment Manikin (SAM) scales (Lang, 1980). No 
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mention of a memory test was made in order to ensure incidental encoding of 

stimuli. Participants were asked to return the next day, and they were not 

informed about the procedure. The second session (retrieval session) was carried 

out the next day. In it, half the participants were randomly assigned to the stress 

condition, and the other half were assigned to the control condition. 

Stress condition.  To produce stress we used the Trier Social Stress Test 

(TSST, Kirschbaum et al., 1993). The stress task consisted of 5 min of free speech 

(job interview) and a 5 min arithmetic task, performed in front of a committee 

composed of a man and a woman. The participants remained standing and were 

filmed throughout both tasks. Immediately after the TSST, subjects filled out a 

questionnaire about some aspects of the task: stress, difficulty, frustration and 

effort (Situational Appraisal). These questions were created based on previous 

studies on this topic (Bagget et al., 1996; Gonzalez-Bono et al., 2002). 

Participants responded to each question on a 5-point Likert scale ranging from 1 

(not at all) to 5 (extremely). Finally, 15 min after the end of the TSST, participants 

performed the free recall and recognition memory tasks with the pictures they 

had seen the previous day. We collected four saliva samples to measure sAA and 

cortisol. Specifically, 15 min before the TSST (habituation phase), the first saliva 

sample was taken (-15 min pre-stress). The second saliva sample was collected 

immediately after the TSST (+10 min post-stress) at the onset of the recovery 

phase. Before the free recall, participants contributed the third saliva sample 

(+25 min post-stress). Finally, the last saliva sample was taken after the 

recognition memory test (+45 min post-stress). 

Control condition. Both the stress and control conditions had the same 

schedules, but participants in this condition performed the control task instead 

of the stressful task. This control task consisted of 5 min of presenting non-

emotional information and 5 min of counting, as in previous studies (Almela et 

al., 2011b; Espin et al., 2013). In order to avoid evaluative threat and 

uncontrollability, the main components capable of provoking stress (Dickerson 
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and Kemeny, 2004), during the control task participants were left alone in the 

room, and there was no video or committee present. The two conditions were 

identical (same timing of the saliva samples, phase durations and questionnaires 

applied), and only the task differed (TSST vs. Control).  

 

4.2.3. Memory  

 

Free recall task. To assess the free recall, in the second session (retrieval 

session) participants were instructed to recall as many pictures as possible from 

the set they had seen in the first session (acquisition session). To do so, 

participants wrote a brief description of the pictures for 10 min. Free recall was 

scored by two independent judges who were blind to the group to which each 

participant belonged, and who determined which picture (if any) was being 

described. Agreement between judges was 91.5%, and discrepancies were 

discussed until a consensus was reached.  

Recognition task. Participants viewed 60 pictures (30 new and 30 

previously-viewed pictures) individually on a screen for 5 min. Each of the two 

sets of pictures was composed of 10 negative, 10 positive and 10 neutral 

pictures. Participants had to recognize the pictures they had seen before (in 

session 1). Thus, they verbally responded “yes” or “no” after seeing each picture 

on the recognition test. Recognition received two different scores: Hits, the 

number of pictures correctly recognized as being in the target presentation; and 

False alarms, the number of pictures incorrectly recognized as being in the target 

presentation. The difference between the percentage of hits and the percentage 

of false alarms was calculated to analyze the effects on recognition (Cornelisse et 

al., 2011). 
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4.2.4. Biochemical analyses 

Saliva samples were collected using salivettes (Sarstedt, Nümbrecht, 

Germany) for cortisol and sAA. Participants were instructed to keep the cotton 

swab in their mouth for exactly 2 min, not chew the cotton, and move the swab 

around in a circular pattern to collect saliva from all salivary glands. The samples 

were centrifuged at 3000 rpm for 15 min, resulting in a clear supernatant with 

low viscosity that was stored at -80ºC until the analyses were performed in the 

Central Research Unit (Unidad Central de Investigación) of the Faculty of 

Medicine, University of Valencia (Spain). Salivary cortisol and sAA levels were 

measured in duplicate, and each participant’s sample was analyzed in the same 

trial. 

Cortisol. The samples were analyzed by a competitive solid phase 

radioimmunoassay (tube coated), using the commercial kit Spectria Cortisol RIA 

from Orion Diagnostica (Espoo, Finland). Assay sensitivity was 0.8 nmol/L, and 

the within- and inter-assay variation coefficients were all below 8%. 

Alpha-amylase (sAA). The concentration of sAA was measured by using an 

enzyme kinetic method with the commercial salivary α-amylase assay kit from 

Salimetrics (USA). Assay sensitivity was 0.4 U/mL. Inter- and intra-assay variation 

coefficients were all below 10%. Analyses of sAA failed to detect the sAA 

concentrations in the samples of three participants in the stress condition (one 

young man and two young women) and one in the control condition (one young 

woman). Therefore, these participants were removed from the statistical 

analyses for sAA. 

 

4.2.5. Statistical analyses 

Cortisol and sAA values were logarithmic transformed because they did 

not have a normal distribution after Kolmogorov-Smirnov and Levene’s tests 

were applied. 
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Student’s t-tests were conducted to evaluate differences in the 

demographic variables by condition (stress vs. control). Three-way ANOVAs were 

used to study condition, age (older vs. young) and sex (men vs. women) 

differences in situational appraisal. ANOVAs for repeated measures were 

performed to investigate the physiological response, ratings of picture material 

and memory performance. Finally, bivariate Pearson’s correlations were 

conducted between the free recall or recognition outcomes and cortisol or sAA 

responses to stress, calculated as the percentage increase from baseline to peak 

(Cornelisse et al., 2011). 

One outlier in the cortisol data (one older woman in the control 

condition) and two outliers in the sAA data (one older man and one young man 

in the stress condition) were removed from the analyses because their 

concentrations differed by more than 3 S.D. from the total sample mean. Four 

outliers in the recognition data (one older woman and one young woman in the 

stress condition, and one older man and one older women in the control 

condition) were removed from the recognition analysis because their scores 

differed by more than 3 S.D. 

We used Greenhouse-Geisser when the requirement of sphericity in the 

ANOVA for repeated measures was violated. Post-hoc planned comparisons were 

performed using Bonferroni adjustments for the p values. The level of 

significance was taken as < 0.05. When not otherwise specified, the results 

shown are means ± SEM. We used SPSS 19.0 to perform the statistical analyses. 

In order to provide an easy interpretation of the figures, the values in the figures 

represent raw values and not logarithmic-transformed values.  
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4.3. RESULTS 

4.3.1. Situational appraisal 

Participants in the stress condition perceived the stress task as more 

stressful (F1, 93) = 43.399, p < 0.001), difficult (F (1, 93) = 42.577, p < 0.001), 

frustrating (F (1, 93) = 25.882, p < 0.001) and requiring more effort (F (1, 93) = 

40.430, p < 0.001) than participants in the control condition. Older participants 

(2.181 ± 0.168) perceived the stress task as less frustrating than young 

participants (2.729 ± 0.169); however, no age differences were found for stress, 

difficulty or effort (for all p > 0.226). No sex differences were found on any of the 

variables evaluated (for all p > 0.392). 

 

4.3.2. Physiological response 

Salivary cortisol. The repeated-measures ANOVA with Time (-15, +10, +25, 

+45 min) as a within-subject factor and Condition, Age and Sex as between-

subject factors showed main effects for Condition (F (1, 93) = 32.960, p < 0.001), 

Time (F (1.942, 180.652) = 21.580, p < 0.001) and the Condition×Time interaction 

(F (1.942, 180.652) = 50.381, p < 0.001). Baseline cortisol concentrations were 

similar between conditions (p = 0.773). In the stress condition, cortisol levels 

increased immediately after the TSST (p < 0.001), reaching their peak 25 min 

after the onset of the stress task (p < 0.001). Although cortisol concentrations 

decreased in the last saliva sample, participants did not recover their baseline 

levels (p < 0.001). In the control condition, there were no differences in the 

cortisol concentrations between the -15, +10 and +25 min saliva samples (both p 

> 0.99), reflecting a lack of cortisol response to the control task. In addition, in 

the last saliva sample (+45 min), the cortisol concentrations decreased (p < 

0.001), reaching lower levels than in the first sample (-15 min) (p < 0.001), in 

accordance with the cortisol circadian rhythm.  
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The Age factor was significant (F (1, 93) = 18.487, p < 0.001), as was the 

Condition×Time×Age interaction (F (1.942, 180.652) = 8.214, p < 0.001). In both 

age groups, baseline cortisol did not differ between conditions (both p > 0.126). 

Higher cortisol concentrations were found in the stress condition than in the 

control condition in the rest of the salivary samples in both age groups (all p < 

0.008). In the stress condition, older participants had significantly lower cortisol 

concentrations than young participants in the +10, +25 and +45 min saliva 

samples (all p < 0.007) and, as a trend, in their baseline levels (p = 0.068). 

However, in the control condition, older participants had lower baseline cortisol 

levels (p < 0.001) and, as a trend, in the +10 min saliva sample (p = 0.058), with 

similar levels found in the rest of the samples (both p = 0.128) (see Figure IV.1). 

Finally, the Sex factor was significant (F (1, 93) = 8.790, p = 0.004), with 

men showing higher cortisol concentrations than women. None of the 

interactions between Sex and the other factors were significant (all p > 0.187). 

 

 

Figure IV.1. Means (±SEM) of salivary cortisol concentrations in the TSST (left) and 
control (right) conditions for older men (N = 26), young men   (N = 25), older women (N 
= 24) and young women (N = 24). 
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Salivary alpha-amylase (sAA). The repeated-measures ANOVA with Time as 

a within-subject factor and Condition, Age and Sex as between-subject factors 

indicated that the factor Condition was not significant (F (1, 87) = 0.011, p = 

0.918), but the factor Time (F (2.653, 230.827) = 14.649, p < 0.001) and the 

Time×Condition interaction (F (2.653, 230.827) = 4.375, p = 0.007) were 

significant. There were no baseline sAA concentration differences between the 

stress and control conditions (p = 0.328). In the stress condition, the sAA 

concentrations increased immediately after the TSST (p = 0.015), decreasing 25 

min after the onset of the stress task (p = 0.002), and recovering baseline 

concentrations in the last saliva sample (p > 0.99). In the control condition, the 

sAA concentrations were similar to baseline after the control task (p > 0.99), and 

they decreased over time (all p < 0.033). There were no differences between 

conditions in sAA concentrations in any sample (all p > 0.111). 

The Age factor was significant (F (1, 87) = 7.160, p = 0.009), as the older 

participants had higher sAA concentrations. However, the Sex factor was not 

significant (F (1, 87) = 1.339, p = 0.250), nor were its interactions with other 

factors (all p > 0.99) (see Figure IV.2). 

 

Figure IV.2. Means (±SEM) of salivary alpha-amylase concentrations in the TSST (left) 
and control (right) conditions for older (N = 50) and young (N = 45) participants. 
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4.3.3. Ratings of picture material 

A repeated-measures ANOVA with Valence (positive, negative, neutral) as 

a within-subject factor and Condition, Age and Sex as between-subject factors 

was used to analyze the classification of the valence and arousal of the pictures 

to-be-remembered.   

Valence. Results confirmed the a priori classification, so that the negative 

pictures (M = 1.709, SEM = 0.089) were rated lower than the neutral (M = 5.117, 

SEM = 0.081) and positive pictures (M = 7.045, SEM = 0.082) (for all p < 0.001). 

Neutral pictures were rated lower than positive pictures (p < 0.001). There were 

no significant differences based on condition, age or sex (all p < 0.217).  

Arousal. Results revealed that the neutral pictures (M = 3.711, SEM = 

0.122) were significantly scored as less arousing than the negative pictures (M = 

7.605, SEM = 0.104) (p < 0.001) and, as a trend, less than the positive pictures (M 

= 4.007, SEM = 0.147) (p = 0.064). Older participants (M = 5.5833, SEM = 0.136) 

scored all the pictures as more arousing than the younger participants (M = 

4.633, SEM = 0.137) (p < 0.001). There were no significant differences based on 

condition or sex (both p > 0.203).  

 

4.3.4. Memory Performance5 

Free Recall. A repeated-measures ANOVA with Valence as a within-

subject factor and Condition, Age and Sex as between-subject factors was used 

to measure the effect of stress on free recall of pictures. The results showed the 

main effects for Valence (F (2, 174) = 62.032, p < 0.001), Age (F (1, 87) = 99.698, p 

                                                           
5 Because older participants rated all pictures as more arousing than young participants, 

the effect of the arousal rating on the relationship between stress and memory 
performance was assessed. However, the inclusion of the arousal rating as a covariate 
in the ANOVAs analyses does not substantially change the statistical conclusion of the 
memory performance analyses, except the recognition analysis, in which the Valence 
factor loses its significance, Valence (F (1.724, 141.382) = 0.875, p = 0.405). 
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< 0.001), and the Valence×Age interaction (F (2, 174) = 4.762, p < 0.010). Post hoc 

analyses revealed that in all participants the negative pictures were recalled 

more than the positive and neutral pictures (both p < 0.001), and positive 

pictures were recalled more than neutral pictures (both p < 0.001). With respect 

to Age, older participants recalled fewer positive, negative and neutral pictures 

than young participants (all p < 0.001).  In addition, in both age groups, negative 

pictures were recalled more than positive (both p < 0.007) and neutral pictures 

(both p < 0.001), and positive pictures were recalled significantly more than 

neutral pictures in older (p < 0.001) and, as a trend, young participants (p = 

0.063). 

The factors Condition (F (1, 87) = 0.154, p = 0.696) and Sex (F (1, 87) = 

0.122, p = 0.727) were not significant, but the Condition×Sex×Age interaction (F 

(1, 87) = 6.219, p = 0.015) was significant. Older participants showed significantly 

worse free recall performance than young participants in both conditions and 

both sex groups (all p < 0.005). Among older people, there were no condition 

differences in men or women (both p > 0.476). By contrast, among young people, 

condition differences were found, so that the young men in the stress condition 

recalled fewer pictures than the young men in the control condition (p = 0.025). 

This result was not found in young women (p = 0.185). Moreover, in the stress 

condition young men recalled fewer pictures than young women (p = 0.012). This 

significant difference was not observed in young people in the control condition 

(p = 0.316), or in older people in either of the two conditions (both p > 0.260) 

(see Figure IV.3). 
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Figure IV.3. Means (±SEM) of total pictures recalled for older and young participants in 
both conditions (TSST vs. Control). Stress had impairing effects on memory retrieval only 
in young men. Young men in the TSST condition showed lower recall than young men in 
the control condition (*p = 0.025). Moreover, in the stress condition, young men 
recalled fewer pictures than young women (*p = 0.012). 

 

Recognition. Repeated-measures ANOVA with Valence as a within-subject 

factor and Condition, Age and Sex as between-subject factors was used to 

measure the effect of stress on the recognition task. Results revealed a main 

effect for Valence (F (1.719, 142.711) = 7.008, p = 0.002), but not for Condition (F 

(1, 83) = 1.591, p = 0.211). The Valence×Condition interaction was significant (F 

(1.719, 142.711) = 4.807, p = 0.013), but not the ValencexAge interaction (F 

(1.719, 142.711) = 0.025, p = 0.962. Post hoc analyses revealed that the positive 

pictures were recognized less in the stress condition than in the control condition 

(p = 0.004). No condition differences were found in negative and neutral picture 

recognition (both p > 0.435). Age and Sex were not significant (both p > 0.455), 

nor were their interactions with other factors (all p > 0.1) (see Figure IV.4). 
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Figure IV.4. Means (±SEM) of recognition performance in % Hits - % False Alarms for 
older and young participants in both conditions (TSST vs. Control). The positive pictures 
were recognized less in the stress condition than in the control condition (*p = 0.004). 

 

4.3.5. The relationship between the stress response and retrieval performance 

To minimize Type I error rates, the correlations between the physiological 

response to the TSST and memory performance were analyzed only in young 

men in the stress condition for free recall data, and in participants in the stress 

condition for recognition of positive pictures data, based on the significant 

effects found. 

Free Recall. Results showed that cortisol was negatively related to free 

recall performance (p > 0.158), although it only reached statistical significance in 

relation to the negative pictures, showing that young men who reacted to the 

stressor with large cortisol responses recalled fewer negative pictures (r = -0.584, 

p = 0.046). However, this relationship was not significant for positive or neutral 

pictures (both p > 0.367). Moreover, sAA response did not show any significant 

correlations (all p > 0.360). 
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Recognition. Neither cortisol nor the sAA responses to stress were 

associated with recognition performance on positive pictures when correlations 

were performed with young and older participants together (both p < 0.410).  

 

4.4. DISCUSSION 

The present study intended to parse the effects of an acute psychosocial 

stressor on long-term memory retrieval in different age groups in order to better 

understand the importance of age-related changes. No significant stress effects 

were found on memory retrieval for positive, negative and neutral pictures in the 

older group. Conversely, in young people the stressor diminished memory 

retrieval, but only in men. Additionally, this impairment was negatively 

associated with the cortisol response to stress in young men and, although in a 

very tentative way, especially in negative pictures. Regardless of age and sex, 

stress impaired recognition memory for positive pictures, but this effect was not 

correlated with the cortisol or sAA response. 

The task used as the stressor, the TSST, was able to induce stress at both 

psychological and physiological levels. At the psychological level, the stress task 

was perceived as more stressful, difficult, frustrating and requiring more effort 

than the control task. At the physiological level, the stress task provoked greater 

cortisol and sAA responses than the control task. Age had a modulating effect on 

the stress-induced cortisol response; thus, older participants had a lower cortisol 

response to the stressor than young participants. Several studies reported no age 

differences (Nicolson et al., 1997; Kudielka et al., 1999, 2000; Hidalgo et al., 

2014), although others described different cortisol responses in young and older 

people (Kudielka et al., 2009; Foley and Kirschbaum, 2010). However, no age 

differences were found in the sAA response to stress, but the sAA global output 

was higher in older people than in young people in both conditions, supporting 

the hypothesis established by Seals and Dinenno (2004) about increased basal 

sympathoneural activity due to aging. Regarding the role of sex, our results agree 
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with previous findings showing a higher cortisol response in men than in women 

(for a review see: Kudielka et al., 2009), but no sex differences were found in the 

sAA response to the TSST, which agrees with previous studies (Kivlighan and 

Granger, 2006; Takai et al., 2007; Almela et al., 2011b). 

As expected, older people performed worse on free recall than young 

people. When we compared the stress effects on the retrieval performance of 

older and young participants, stress effects were observed only in young men. 

Thus, young men in the stress condition had lower free recall performance when 

they were compared with: (i) young men in the control condition and (ii) young 

women in the stress condition. Our results coincide with previous studies that 

have shown a detrimental effect of stress on memory retrieval in young men 

(Wolf et al., 2001a; Kuhlmann et al., 2005b; Oei et al., 2006). Therefore, our 

suggestions about the role of age in explaining the results obtained (Pulopulos et 

al., 2013) are now confirmed, since the same experimental design impairs 

memory retrieval in young men, but not in older people. These results support 

the idea that, as shown for working memory, spatial memory, declarative and 

non-declarative memory in older animals and humans (Wolf et al., 2001a; Porter 

et al., 2002; Yehuda et al., 2007; Beuchel et al., 2014; Pulopulos et al., in press), 

older people may be less sensitive to stress effects on long-term memory 

retrieval than young people.  

One explanation for this lack of stress effects on memory performance in 

older people could be an age-related reduction in the sensitivity and density of 

the glucocorticoid receptors (GRs or Type II) in the hippocampus (Bhatnagar et 

al., 1997; Mizoguchi et al., 2009), which might decrease cortisol’s direct effect on 

the hippocampus. Furthermore, although we did not observe a positive effect on 

memory performance in our participants, a decrease in the functional 

interconnectivity between the amygdala and hippocampus has been observed 

(Mather, 2006; Murty et al., 2009; St Jacques et al., 2009). This age-related 

change might also reduce the effect of the noradrenergic activation of the 



Study 3 

 135 

amygdala, which has been shown to be necessary to observe stress effects on 

memory (Roozendaal et al., 2009; Schwabe et al., 2009). Taken together, these 

facts may contribute to reducing stress effects on memory retrieval in older 

people. It is conceivable that the lack of stress effects on free recall reported in 

the older group might also be due to an attenuated cortisol response, as the 

older people in our study showed a lower stress-induced cortisol response. 

However, previous studies carried out with young individuals have shown 

impairing stress effects on memory retrieval performance with similar cortisol 

response magnitudes to those of our older group (e.g. Smeets et al., 2008; 

Smeets, 2011).  

Interestingly, while the present study found that a stress-induced cortisol 

increase affects memory retrieval in young men, but not in older people, 

previous studies directly comparing older and young individuals have shown a 

different pattern of results. In a previous study, we showed that stress impaired 

a very specific aspect of declarative memory, immediate recall after interference 

(i. e. retroactive interference) in older but not young individuals (Hidalgo et al., 

2014). Similarly, Wolf et al. (2001a) showed impairing effects of a hydrocortisone 

injection on memory retrieval of a word list learned 75 min before cortisol 

administration in both young and older men. In this study, the word-list recall 

was measured after other memory tasks were performed, and so it is possible 

that the effect observed was also due to the effect of cortisol on retroactive 

interference. One explanation for these contradictory effects could be that the 

pattern of sensitivity to the effects of acute stress on memory in older people 

differs depending on the type of memory, with retroactive interference being 

more affected by stress and cortisol than other memory processes (e.g., working 

memory, declarative and non-declarative memory, long-term memory retrieval). 

This may be due to age-related changes in the sensitivity to cortisol’s effects on 

memory performance. Roozendaal (2002) proposed that stress blocks long-term 

memory retrieval to facilitate consolidation of new information in young people. 

It has been suggested that this mechanism would diminish retroactive 
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interference, allowing the brain to learn important new information to be used in 

the future (Roozendaal, 2002; Joëls et al., 2006). Thus, the increase in retroactive 

interference after stress observed in previous studies may be due to the fact that 

stress and cortisol do not block the memory retrieval of previously learned 

material in older people, as observed in our results. 

Sex differences were only found among young people. In fact, the 

stressor only impaired young men’s retrieval performance, while this effect was 

not found in young women. This result found in men coincides with previous 

studies performed solely in men after both pharmacological treatment (de 

Quervain et al., 2003) and acute stress (Kuhlmann et al., 2005b; Oei et al., 2006). 

At the same time, the lack of a stressor effect in women agrees with findings 

reported in a study conducted to investigate the effects of stress in luteal women 

(Schoofs and Wolf, 2009). It is important to note that most of the studies with 

both sexes did not report sex-related differences, and they did not control the 

phase of the menstrual cycle of the women (de Quervain et al., 2000; Beckner et 

al., 2006; Buchanan et al., 2006; Buchanan and Tranel, 2008; Smeets et al., 

2008). In our opinion, an explanation for this discrepancy with previous literature 

might be that, as we did not register the menstrual cycle phase of the young 

women, it is impossible to know whether the null effect of the stressor on free 

recall performance in young women is related to the sex factor or, on the 

contrary, to sex hormone levels. Taking into account the results found by Schoofs 

and Wolf (2009), it is possible that most of the young women in our sample were 

in the luteal phase of their menstrual cycle, which would explain the lack of 

effects on them. However, other studies have reported no differences between 

men and women in the luteal or follicular phases (Smeets, 2011), or between 

men and women in the luteal phase of their menstrual cycle (Wolf et al., 2002). 

Therefore, further research is needed to examine the role of sex and sex 

hormone levels, as well as the use of oral contraceptives, in the relationship 

between acute stress and memory retrieval in young people.  
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Unlike on the free recall task, we found similar recognition performance 

in older and young individuals. Regardless of age and sex, stress impaired 

recognition memory of positive pictures. This result is in line with Domes et al. 

(2004), who found an impairing stress effect on the recognition of positive 

words, but only in young men. An explanation for this result could be that the 

positive pictures were rated as moderately arousing in comparison to the 

negative (highly arousing) and neutral pictures (less arousing).  Both negative 

and neutral pictures would be less sensitive to stress effects because the former 

would have strong traces (Buchanan et al., 2006), and the latter would have no 

traces. However, the traces of positive pictures were weaker and more 

vulnerable to stress. 

Interestingly, stress selectively impaired free recall in young men, but it 

impaired recognition in the entire sample (i.e. older and young men and 

women). Numerous studies have shown that recognition memory consists of two 

components, recollection (i.e. remembering details about previously learned 

material) and familiarity (i.e. knowing whether the material has been previously 

presented or not) (Mandler, 1980; Squire et al., 2007), which seem to be 

dependent on the hippocampus and the adjacent perirhinal cortex, respectively 

(Brown and Aggleton, 2001; but see Squire et al., 2007). Along these lines, we 

can only speculate that the effect observed in recognition may be related to the 

adjacent perirhinal cortex, since subjects were asked to answer whether they 

had seen the pictures before by saying “yes” or “no”, and the task could be a 

recognition task with a stronger familiarity component. Given that recognition is 

a cognitive function that does not seem to suffer an age-related decline (Park et 

al., 2003), it is possible that both young and older people are sensitive to the 

detrimental effect of stress on this type of memory task. However, it should be 

noted that correlation analyses did not show a significant relationship between 

the stress-induced cortisol or sAA response and memory recognition, suggesting 

that cortisol and sAA are not the main contributors to this effect. Thus, it is 

possible that other factors not addressed in this study might account for the 



Chapter IV 

 138 

results observed; therefore, further research is clearly needed to investigate this 

hypothesis. 

A limitation of the current study is that in order to avoid introducing 

confounding factors and obtain the best comparison of old and young people, 

we made an effort to get a very healthy sample by applying restrictive exclusion 

criteria. This strategy allowed us to obtain two cognitively and physically 

homogeneous age groups. However, at the same time, it makes it difficult to 

generalize our results to the older population with age-related diseases (e.g. 

diabetes or hypertension). Future studies with a more general population should 

be carried out. Another limitation of our study is the sample size. Despite having 

a large number of participants (i.e. 102 participants), dividing the sample 

according to the condition, age and sex factors caused the sample size of each 

subgroup to be reduced. Finally, our study coincides with previous studies that 

have observed stress effects on long-term memory retrieval when testing 10 or 

fewer items for each emotional category in young people (Kuhlmann et al., 

2005b; Buchanan and tranel, 2008; Schwabe et al., 2009). However, future 

studies could explore whether stress effects are observed in older people when 

more items to-be-recalled and/or more difficult memory tasks are used. 

In conclusion, our study is unique in examining, for the first time, age 

differences in acute stress effects on memory retrieval in men and women, 

although further research should consider more age ranges in order to better 

understand the role of age in stress effects on memory retrieval across the 

lifespan. Moreover, this study adds evidence to the issue of sex differences in 

stress effects on memory retrieval among young people. 
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STUDY 4 

The diurnal cortisol cycle and memory performance in 
older people6

                                                           
6 The main results of this study are being prepared for submission: Hidalgo, V., 

Almela, M., Pulopulos, M.M., Salvador, A. Memory performance is related to 
the cortisol awakening response in older people, but not to the diurnal cortisol 
slope. 
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5.1. INTRODUCTION 

Cognitive decline stands out among the main negative changes associated 

with aging. However, there is great variability in the way people experience 

these age-related changes in cognition. While there are some people who 

maintain their cognitive abilities intact or show few changes, others experience 

important cognitive problems that can even lead to dementia (Christensen et al., 

1999). It has been suggested that hypothalamus-pituitary-adrenal axis (HPA-axis) 

functioning can explain these differences, at least in part. Along these lines, an 

HPA-axis dysregulation has been related to poorer cognitive performance 

(Lupien et al., 2007, 2009). The HPA-axis would exert its effects on cognitive 

performance through the action of cortisol, the main glucocorticoid in humans, 

which binds to receptors (i.e., mineralocorticoid and glucocorticoid receptors) 

especially distributed in the hippocampus, prefrontal cortex and amygdala. In 

this vein, memory is one of the main cognitive processes that have been related 

to HPA-axis functioning because these brain structures are key brain areas for 

learning and memory processes (for review see: Lupien et al., 2007). However, 

most studies that relate the diurnal cortisol cycle and memory have included 

limited sets of memory tests. Thus, more research is clearly needed to elucidate 

the relationship between diurnal HPA-functioning and different kinds of memory 

processes.  

The dynamic nature of the cortisol cycle makes the study of HPA-axis 

functioning difficult. In basal conditions (i.e. non-stress), the secretion of cortisol 

follows a circadian pattern characterized by higher cortisol levels in the morning 

and lower cortisol levels in the last hours of the day. Thus, two components are 

clearly distinguished in the diurnal cortisol cycle: (i) the cortisol awakening 

response (CAR; a sharp rise in cortisol that occurs between 30 to 45 minutes 

after awakening), and (ii) a steeper decrease in cortisol levels secreted 

throughout the rest of the day. It seems that the regulatory mechanism 

underlying the CAR is independent from the rest of the diurnal cycle (Edwards et 

al., 2001). Given that these are considered two independent components of 
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HPA-axis activity, it has been indicated that they deserve to be analyzed 

independently (Fries at al., 2009; Clow et al., 2010a,2010b). Importantly, most of 

the cross-sectional studies investigating the relationship between HPA-axis 

functioning and cognitive performance in healthy older people that have 

included memory tasks have not considered these different discrete components 

of diurnal HPA-axis activity (Seeman et al., 1997; MacLullich et al., 2005; Li et al., 

2006; Kuningas et al., 2007; Lee et al., 2007, 2008; Comijs et al., 2010; Souza-

Talarico et al., 2010; Pulopulos et al., 2014). To our knowledge, only a few studies 

have investigated the specific contribution of these two components of the 

diurnal cortisol cycle to memory performance in older people. Among them, two 

only studied the CAR (Almela et al., 2012; Evans et al., 2012), others only studied 

the cortisol secreted during the rest of the day (Abercrombie et al., 2004; Fiocco 

et al., 2006; O’Hara et al., 2007; Beluche et al., 2010; Gerritsen et al., 2011), and 

a few investigated these two components in the same sample (Evans et al., 2011; 

Franz et al., 2011; Stawski et al., 2011; Singh-Manoux et al., 2014).  

Regarding the CAR, most of the studies failed to find an association with 

memory performance (Evans et al., 2011; 2012; Stawski et al., 2011; Singh-

Manoux et al., 2014). Specifically, Evans et al. (2011) showed that, in 50 older 

participants (60-91 years old) of both sexes, the CAR was positively related to 

overall cognitive performance, and more specifically to executive function and 

verbal fluency tasks, but not to memory performance. In a second analysis of the 

same sample, the authors showed a positive association between CAR and 

executive function (Evans et al., 2012), but again no relationship with memory 

performance was observed. Accordingly, Stawski et al. (2011) found that, in 

middle and older adults (33-84 years old), the CAR was not related to cognitive 

function, assessed, among other cognitive domains, by episodic verbal and 

working memory. Similarly, Franz et al. (2011) found that, in older men (51-60 

years old), the CAR was negatively related to visual spatial memory and working 

memory. However, when they controlled for several covariates, these 

associations disappeared. Finally, Singh-Manoux et al. (2014) did not report any 
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associations between CAR and short-term verbal memory, inductive reasoning or 

verbal fluency performance in older men and women (mean age 61 years). By 

contrast, in a more recent study carried out by our group, a different relationship 

between the CAR and memory performance depending on the type of memory 

was reported. Thus, while higher CAR was negatively related to verbal memory, 

only among men, it was positively related to spatial working memory (Almela et 

al., 2012). 

For the cortisol secreted during the rest of the day, a flatter diurnal 

cortisol slope (DCS, cortisol index, which reflects the decline in cortisol levels 

during the day) has been associated with poorer memory performance 

(Abercrombie et al., 2004; Evans et al., 2011; Gerritsen et al., 2011), although 

steeper DCS has also been associated with poorer declarative memory (O’Hara et 

al., 2007), and other studies did not report any relationship with memory 

performance (Fiocco et al., 2006; Beluche et al., 2010; Singh-Manoux, 2014). On 

the other hand, when other indices were calculated, mixed results were also 

reported. For example, the diurnal cortisol decline was positively related to 

overall cognitive performance, executive function and verbal fluency tasks (Evans 

et al., 2011), while the cortisol AUCg (i.e. considered an index of total hormonal 

output throughout the day) was negatively related to visual spatial memory, 

executive function, and processing speed (Franz et al., 2011). Therefore, in light 

of the inconclusive results, the need to obtain more evidence about this issue 

seems clear.  

It is worth noting that, among the studies that have investigated the 

specific contribution of the CAR and the cortisol secreted during the rest of the 

day to differences in cognitive performance in healthy older people, most of 

them only assessed one type of memory: visual (Beluche et al., 2010) or verbal 

memory (Abercrombie et al., 2004; O’Hara et al., 2007; Evans et al., 2011, 2012; 

Gerritsen et al., 2011; Singh-Manoux et al., 2014), while others only assessed two 

types of memory: working and declarative memory (Fiocco et al., 2006; Stawski 
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et al., 2011;  Almela et al., 2012). To our knowledge, only Franz et al. (2011) used 

several working memory tasks (two tests for verbal working memory and one 

test for spatial working memory) and short and delayed recall (two tests for 

verbal memory and one test for visual memory). However, this study focused on 

a younger sample (mean age of 55.9; range from 51 to 61 years old), which could 

explain the lack of association between cortisol and most of the memory tasks 

used in this study. Thus, more research is needed to investigate whether the two 

components of HPA-axis activity may be related to different types of memory 

tasks in healthy older people. 

With this in mind, the aim of the present study was to investigate 

whether the two different components of the cortisol diurnal cycle (i.e. the CAR 

and the diurnal cortisol slope) were related to different types of memory 

performance (i.e. declarative and working memory) assessed with several tasks 

in older men and women. To do so, we tested cognitive performance on 

different memory tests in 64 older people. Moreover, the participants provided 

fourteen saliva samples on two consecutive weekdays in order to obtain the CAR 

and the diurnal cortisol slope. Based on previous studies, we expected the CAR 

to be associated with poorer performance on memory tasks that are dependent 

on hippocampal functioning (Almela et al., 2012) and, at the same time, with 

better performance on memory tasks that are dependent on prefrontal cortex 

functioning (Almela, et al., 2012; Evans et al., 2012). Moreover, higher diurnal 

cortisol levels or flatter DCS would be associated with poorer memory 

performance (Abercrombie et al., 2004; Evans et al., 2011; Franz et al., 2011; 

Gerritsen et al., 2011). Finally, as in older people the sex factor has been shown 

to play a modulatory role in the relationship between stress-induced cortisol and 

memory performance (Seeman et al., 1997; Wolf et al., 1998; Almela et al., 

2011a), and in the relationship between CAR and working memory (Almela et al., 

2012), the current study included men and women in order to investigate 

possible sex differences in the relationship between the diurnal cortisol cycle and 

memory performance. 
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5.2. METHOD 

5.2.1. Participants  

The sample was composed of 64 participants (32 men and 32 women) 

from 57 to 76 years old (Men: M = 64.47, SD = 4.295; Women: M = 64.84, SD = 

3.886). There were no sex differences in age or educational level (both p > 

0.586), but men had a higher body mass index (Men: M = 28.35, SD = 3.79; 

Women: M = 25.73, SD = 4.18, p = 0.011) and reported slightly higher subjective 

socioeconomic status (SES; Adler et al., 2000) than women (Men: M = 6.63, SD = 

1.24; Women: M = 5.97, SD = 1.09, p = 0.028). All women were postmenopausal, 

having had their last menstrual period more than two years before the testing 

time, and none of them were receiving estrogen replacement therapy. 

Participants belonged to a study program at the University of Valencia for 

people over 55 years of age. They completed a general questionnaire to check 

whether they met the study prerequisites. The criteria for exclusion were as 

follows: smoking more than 5 cigarettes a day; alcohol or other drug abuse; 

dental, visual or hearing problems; presence of cardiovascular, endocrine, 

neurological, or psychiatric disease. Participants who were using any medication 

directly related to emotional or cognitive functioning or able to influence cortisol 

levels (e.g. glucocorticoids, anti-diabetic medication, antidepressants, 

benzodiazepines, and psychotropic substances) were excluded from 

participation. None of the participants met the criteria for dementia, as defined 

by the NINCDS-ADRDA criteria for Alzheimer’s disease. Vitamins and sporadic use 

of painkillers were allowed.     

 

5.2.2. Procedure and neuropsychological assessment 

Participants meeting the criteria were contacted by telephone and asked 

to attend a neuropsychological assessment, which took place in a laboratory at 

the Faculty of Psychology (University of Valencia). They were asked to maintain 
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their general habits, sleep as long as usual, refrain from heavy physical activity 

the day before the session, and not consume alcohol since the night before the 

session. Additionally, they were instructed to drink only water, and not to eat, 

smoke or take any stimulants (e.g. coffee, cola caffeine, tea or chocolate) two 

hours prior to the session, or brush their teeth at least one hour prior to the 

session. All the participants received verbal and written information about the 

study and signed an informed consent form. The study was conducted in 

accordance with the Declaration of Helsinki, and the protocol and conduct were 

approved by the Ethics Research Committee of the University of Valencia.  

The neuropsychological assessment was conducted between 10.00 h and 

12.00 h and lasted no more than 1.5 h. Participants performed a total of 6 tests 

that assessed different memory domains: verbal memory, visual memory and 

working memory. All the tests were extracted from the Spanish version of the 

Wechsler Memory Scale III (Pereña et al., 2004).  

Verbal memory was assessed with the Logical Memory and the Verbal 

Paired Associates tests. For Logical Memory, participants had to recall as many 

memory units or “ideas” as possible from two brief narratives, immediately after 

the experimenter had read them. After a 30 min delay, participants were again 

asked to recall as many “ideas” as possible from the two narratives. Participants’ 

answers were audio recorded and later corrected by an expert who followed the 

instructions provided in the test manual. From this test, two outcomes were 

used in the analyses: (i) Immediate Recall: total “ideas” recalled from the two 

narratives immediately after having heard them, and (ii) Delayed Recall: total 

“ideas” recalled from the two narratives after a 30 min delay. For the Verbal 

Paired Associates, the experimenter read aloud eight word pairs (e.g. horse-

glass) across four trials. The word pairs list was the same across the different 

trials, but it was presented in a different order in each trial. In each trial, after 

reading the eight word pairs, the experimenter read the first word in the pair 

(e.g. horse), and participants had to recall the other word in the pair (e.g. glass). 
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After a 30 min delay, the experimenter again read the first word in each pair and 

participants had to recall the second word. We calculated two outcomes from 

this test: (i) Immediate Recall: total number of words recalled on the first four 

trials and (ii) Delayed Recall: total number of words recalled after a 30 min delay.  

Visual memory was assessed with the Family Pictures test. Participants 

were shown 4 pictures presented consecutively and for 10 seconds each, and 

then they were asked to recall as much information as possible about them. Each 

picture represented a different familiar scene with different family members 

appearing on it. Once the pictures were presented, participants were asked (i) 

which family member appeared in each picture, (ii) where they were situated in 

the picture and (iii) what they were doing. After a delay of 30 min, participants 

had to answer the same questions again. Participants’ answers were audio 

recorded and later corrected by an expert who followed the instructions 

provided in the test manual. The outcomes used in the analyses were: (i) 

Immediate Recall: total number of correct answers from the 4 pictures 

immediately after having seen them, and (ii) Delayed Recall: total number of 

correct answers from the 4 pictures after the 30 min delay. 

Working memory was evaluated with two verbal tests: Letter-Number 

Sequencing (LNS) and Digit Span (DS) and a spatial test: Spatial Span (SS). For the 

LNS, participants listened to a sequence of alternating digits (from 0 to 9) and 

letters (from A to Z) of increasing length. Immediately after that, they first had to 

repeat the digits in numerical order and then the letters in alphabetical order. 

The length of the sequences increased from two to eight items, and for each set 

length, three attempts were given to solve it. One point was assigned for each 

correctly recalled attempt, and the task ended only when the participant had 

failed the three attempts for the same set length. As an outcome measure, we 

used the total correctly recalled attempts. On the DS, which had two parts, the 

Digit Span Forward (DS Forward) and the Digit Span Backward (DS Backward), 

participants were read a series of numbers (from 0 to 9) with increasing length 
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(from two to nine digits). Participants had to repeat the numbers in the same (DS 

Forward) or the reverse (DS Backward) order as their presentation. For each set 

length, two attempts were given to solve it, and the task ended only when the 

participant had failed the two attempts of the same set length. Two outcomes 

were obtained: (i) DS Forward: total correctly recalled attempts in the same 

order, and (ii) DS Backward: total correctly recalled attempts in the reverse 

order. Finally, for the SS, which had two parts, the Spatial Span Forward (SS 

Forward) and the Spatial Span Backward (SS Backward), participants were 

presented with a set of 10 cubes on a board. The experimenter touched the 

cubes in a specific order and the participants had to repeat the sequence in the 

same (SS Forward) or reverse (SS Backward) order. The length of the sequences 

increased from two to nine cubes, and for each sequence length two attempts 

were given to solve it. One point was assigned for each correctly recalled 

attempt, and the task ended only when the participant had failed the two 

attempts of the same sequence length. Two outcomes were obtained: (i) SS 

Forward: total correctly recalled attempts in the same order, and (ii) SS 

Backward: total correctly recalled attempts in the reverse order.  

 

5.2.3. Salivary cortisol  

To measure the diurnal cortisol cycle, participants provided 7 saliva 

samples per day for 2 consecutive weekdays using salivettes (Sarstedt, 

Nümbrecht, Germany) at their home. To check for adherence to the sampling 

times, we stored the salivettes in MEMS TrackCap containers (MEMS 6 TrackCap 

Monitor, Aardex Ltd. Switzerland), which recorded the exact time the 

participants provided each sample. Additionally, the participants wrote down the 

exact sampling times in a diary. After a demonstration given by the experimenter 

in the lab about how to provide the saliva sample, participants received written 

instructions and were advised to drink only water, and not to eat, smoke or 

brush their teeth at least 1 h prior to each saliva sample. The saliva samples were 
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provided immediately after awakening, 30 and 45 min post-awakening, and at 

12.00 h, 16.00 h, and 20.00 h and immediately before bedtime. Participants were 

instructed to store their samples in their fridge and bring them to the University 

as soon as possible, never exceeding more than three days after completion. In 

order to control the cortisol concentrations in the neuropsychological 

assessment, participants provided two additional saliva samples (at the 

beginning and at the end of the neuropsychological session). 

In the lab, the samples were centrifuged at 4000 rpm for 15 min. Cortisol 

concentrations were determined by radioimmunoassay using the commercial kit 

Spectria Cortisol RIA from Orion Diagnostica (Espoo, Finland). Assay sensitivity 

was 0.8 nmol/L., and the within- and inter-assay variation coefficients were all 

below 8 %. Each subject’s samples were analyzed in the same trial.  

 

5.2.4. Statistical analyses and data management 

As salivary cortisol values did not have a normal distribution, they were 

square root transformed. Student’s t-tests were used to investigate sex 

differences in the demographic variables. An ANCOVA for repeated measures 

with Time (Awakening, 30’, 45’, 12 h., 16 h., 20 h., Bed) as within-subject factors, 

and Sex (men, women) as between-subject factor was performed to investigate 

differences across days and between men and women in cortisol levels at home. 

Because sex differences were observed in SES and BMI, these variables were 

included as covariates in this analysis. We used Greenhouse-Geisser because the 

requirement of sphericity in the ANOVA for repeated measures was violated. 

Post-hoc planned comparisons were performed using Bonferroni adjustments for 

the p values. According to Franz et al. (2011), DS Backward and LNS were 

adjusted for DS Forward, and SS Backward was adjusted for SS Forward. To 

calculate these adjusted indexes, we save the standardized residual scores from 

regression analyses using the forward condition as a predictor (i.e., DS Forward 
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or SS Forward) and the backward condition (i.e., DS Backward or SS Backward) or 

LNS as dependent variable. 

For the cortisol levels during the neuropsychological assessment, the 

mean of the two saliva samples collected (pre and post) was calculated. The 

equivalent cortisol samples measuring the diurnal cortisol cycle were averaged 

across days because the concentrations were correlated (r between 0.3 and 0.5, 

for all p ≤ 0.019), and no significant differences between salivary cortisol levels 

across days were observed (p = 0.377). Two cortisol indices were used from the 

cortisol samples taken at home: (i) the CAR, to reflect the post-awakening 

measure of cortisol secretion (Clow et al., 2010) and calculated by the cortisol 

area under the curve with respect to the increase (AUCi; see Pruessner et al., 

2003) from the 0, +30 and +45 min cortisol samples, and (ii) the diurnal cortisol 

slope (DCS): to reflect the decline in cortisol levels during the day, and calculated 

by regressing cortisol values (except +30 min and +45 min samples to avoid 

biasing the slope by CAR) on each sample collection time individually for each 

participant (Sephton et al., 2009; Smeets et al., 2007; Singh-Manoux et al., 2014).  

A larger β value was interpreted as a flatter slope, reflecting a slower cortisol 

decline, while a smaller β value was interpreted as a steeper slope, reflecting a 

rapid diurnal decline. 

Regression analyses were performed to investigate the relationship 

between CAR, DCS and memory performance. In addition, moderator regression 

analyses were conducted to investigate whether sex was a moderator in these 

relationships, according to Aiken and West (1991). Scatterplots were checked to 

investigate linear or curvilinear relationships. 

Two participants were excluded from the analyses, one woman because 

her cortisol concentrations differed by more than 3 SD from the CAR mean and 

DCS mean samples, and one woman who had three missing values for the DCS 

samples from day 1. All p values reported here are two-tailed. When not 

otherwise specified, the results shown are means ± standard error of mean 
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(SEM). We used SPSS 22.0 to perform the statistical analyses. In order to provide 

an easy interpretation of figures, the values represented are raw values and not 

square root transformed values. 

 

5.3. RESULTS 

5.3.1. Preliminary analyses: adherence to the salivary sampling protocol 

It has been indicated that if the first saliva sample is not collected 

immediately after awakening, the reliability of the measurement of the CAR is 

compromised. Thus, based on Thorn et al. (2006), and in line with previous data 

from our group (Almela et al., 2012), we explored the cortisol profile of the 

participants to identify any participants who might be suspected of non-

adherence to protocol. In order to control this issue, participants were divided 

into two groups, according to the method suggested by Thorn et al. (2006): (i) 

those who had a positive CAR on both days (2 Day-CAR group), and (ii) those who 

had a positive CAR on only one day or none, (1 or 0 Day-CAR group). Of the total 

sample, 57.8% of the participants showed a positive CAR on both days (15 men 

and 22 women), 35.9% of the participants showed a positive CAR on only one 

day (13 men and 10 women), and the other 6.3% of the participants did not 

show a positive CAR on either of the two days (4 men). No differences in age, 

educational level, SES or BMI were found between the 2 Day-CAR and the 1 or 0 

Day-CAR subgroups (all p > 0.699). 

Figure V.1 represents the differences in the CAR profiles between the 2 

Day-CAR and the 1 or 0 Day-CAR subgroups (TimexCAR groups: F (2, 116) = 

51.411, p < 0.001). While the 2 Day-CAR subgroup showed a steeper rise from 

awakening to 30 min later (p < 0.001), the 1 or 0 Day-CAR subgroup showed a 

flatter rise, given that cortisol levels were higher in the awakening sample 

(Awakening: 2 Day-CAR vs. 1 or 0 Day-CAR, p = 0.004). Forty-five min later, 

cortisol concentrations started to decrease; however, only in the 1 or 0 Day-CAR 



Study 4 

153 
 

subgroup, they were similar to awakening levels (Awakening vs. +45 min: p = 

0.999). The Sex factor was not significant (p = 0.520), nor were its interactions 

with other factors (all p > 0.114). 

As proposed by Thorn et al. (2006), and as performed in our previous 

study (Almela et al., 2012), we repeated all the analyses, excluding those 

participants who were suspected of being non-adherent to the protocol (0 or 1 

Day-CAR). 

 

 

Figure V.1. CAR profiles for the 2 Day-CAR and for 1 or 0 Day-CAR subgroups. In the first 
saliva sample (awakening), participants suspected of non-adherence (1 or 0 Day-CAR 
group) had higher cortisol concentrations than participants suspected of being adherent 
(2 Day-CAR)(*p = 0.004). Depicted values are means, and error bars represent the SEM.  
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5.3.2. Sex differences in the diurnal cortisol cycle 

The repeated-measures ANCOVA showed the main effect of Time (F 

(3.462, 200.812) = 4.202, p = 0.004). As expected, participants presented the CAR 

because their cortisol levels increased from awakening to 30 min later (p < 

0.001), and then decreased over time, reaching the lowest levels in the last two 

saliva samples (20 h. vs Bed, p > 0.999). None of the interactions were significant, 

but the interaction between Time and Sex was marginally significant (F (3.462, 

202.812) = 2.383, p = 0.062). Post-hoc analyses showed that men had slightly 

higher cortisol levels in the awakening sample (p = 0.070) and in the 16 h. sample 

(p = 0.086).  

When the same analyses were performed only with the 2 Day-CAR group, 

the same results were observed for Time (F (3.265, 107.758) = 6.552, p < 0.001), 

but not for the TimexSex interaction, which was not significant (F (3.265, 

107.758) = 0.545, p = 0.667) (see Figure V.2). 

 

Figure V.2. Diurnal cortisol cycle for complete sample and for 2 Day-CAR group. 
Depicted values are means, and error bars represent the SEM.  
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5.3.3. Relationship between diurnal cortisol cycle and memory performance 

Hierarchical regression analyses were performed to investigate the 

relationship between the two components of the diurnal cortisol cycle (CAR and 

DCS) and memory performance. Separate analyses were conducted for each 

memory outcome. To control for possible confounder effects, the following 

covariates were included in the analyses: we included Age and BMI because they 

affect cognitive and HPA-axis functioning (Cournout et al., 2006; Dettenborn et 

al., 2012; Silver et al., 2012; Stalder and Kirschbaum, 2012). SES was included due 

to its relationship with HPA-axis activity (Wright and Steptoe, 2005; Cohen et al., 

2006) and health status (Adler et al., 2000; Singh-Manoux et al., 2005; 

Demakakos et al., 2008). Finally, the mean of the cortisol levels during the 

neuropsychological assessment was included as a covariate to control the 

stressfulness of the testing situation (Sindi et al., 2013). To do so, in step 1, we 

included these control variables and sex (0 = women, 1 = men). In step 2, we 

included the CAR or DCS. In step 3, we included the square of the CAR or DCS. 

The significant curvilinear relationships were interpreted as a concave upward 

relationship (U-shaped form), where the value of β is positive, and a concave 

downward relationship (inverted U-shaped form), where the value of β is 

negative. In order to reduce multicollinearity, all predictors included in the 

regression analyses were previously standardized. Results of the analyses 

performed are shown in Table V.1 (verbal and visual memory) and Table V.2 

(Working Memory). Because none of the associations were moderated by Sex (p 

> 0.1), only the linear and curvilinear associations for men and women together 

are shown in the tables.  

CAR and memory performance. Results for the complete sample showed 

that higher CAR was associated with worse performance on the immediate recall 

trial of Verbal Paired Associates (i.e., negative linear relationship) 

(p=0.042)(Table 1). Additionally, there were significant curvilinear relationships 

(i.e., inverted U-shaped) between the CAR and performance on the Logical 
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Memory test: immediate (p = 0.040) and delayed recall (marginally, p = 

0.054)(Table V.1), the Family Pictures test:  immediate (p = 0.014) and delayed 

recall trials (p = 0.010)(Table V.1), and Digit Span Backward Adjusted (p = 0.037) 

(Table V.2). These curvilinear associations indicated that a larger and lower CAR 

was related to worse performance on these tests, while a moderate CAR was 

related to better performance. None of the others associations were significant 

(all p > 0.181).  

If the analyses are performed only with the 2 Day-CAR group, results 

show a significant negative linear relationship between the CAR and 

performance on the Logical Memory test: immediate (p = 0.033) and delayed 

recall (p = 0.005) (Table V.1), the Verbal Paired Associates test: immediate recall 

(marginally, p = 0.079) (Table V.1), and the Family Pictures test: immediate 

(marginally, p = 0.063) and delayed recall (p = 0.040) (Table V.1). None of the 

others associations were significant (all p > 0.142). Table V.3 summarizes the 

main results of the regression analyses for the complete sample and only for the 

2 Day-CAR group. 

Table V.1. Regression analyses with CAR as predictor and verbal and visual memory 
outcomes as dependent variables 
 
Total 
sample 

 Logical Memory Verbal Paired Associates Family Pictures 
Immediate
recall 

Delayed 
recall 

Immediate 
recall 

Delayed 
recall 

Immediate 
recall 

Delayed 
recall 

Linear 
associations 

AdjcR2 -0.044 -0.064   0.140  0.086   0.086   0.084 
β 
p 

-0.007 -0.035  -0.268 -0.163   0.037   0.046 
 0.962  0.810   0.042  0.226   0.780   0.733 

Curvilinear 
associations 

AdjcR2  0.017 -0.011   0.139  0.090   0.168   0.175 
β -1.362 -1.292 -0.589 -0.682 -1.508 -1.576 
p  0.040  0.054   0.335  0.278   0.014   0.010 

2 Day-CAR 
group 

 Logical Memory Verbal Paired Associates Family Pictures 
Immediate
recall 

Delayed 
recall 

Immediate 
recall 

Delayed 
recall 

Immediate 
recall 

Delayed 
recall 

Linear 
associations 

AdjcR2  0.096  0.178   0.107  0.069   0.085   0.073 
β -0.393 -0.317  -0.317 -0.269  -0.342  -0.381 
p  0.033  0.005   0.079  0.142   0.063   0.040 

Curvilinear 
associations 

AdjcR2  0.075  0.162   0.078  0.104   0.068   0.065 
β -0.925 -1.011 -0.280 -2.376 -1.128 -1.428 
p  0.576  0.521   0.865  0.150   0.497   0.392 
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Table V.2. Regression analyses with CAR as predictor and working memory outcomes as 
dependent variables 
 
Total sample  Letter-Number 

Sequency 
Digit Span Spatial Span 

NAdj Adjusted DSForward DSAdjusted SSForward SSAdjusted 
Linear 
associations 

AdjcR2 0.096  0.075 -0.055 -0.030 -0.026 -0.020 
β 0.015 -0.017  0.091  0.117  0.137 -0.152 
p 0.913  0.898  0.526  0.409  0.336  0.282 

Curvilinear 
associations 

AdjcR2 0.081  0.062 -0.071  0.032 -0.024 -0.005 
β -0.214 -0.337  0.307 -1.372 -0.687 -0.887 
p 0.734  0.596  0.651  0.037  0.303  0.181 

2 Day-CAR 
group 

 Letter-Number 
Sequency 

Digit Span Spatial Span 

NAdj Adjusted DSForward DSAdjusted SSForward SSAdjusted 
Linear 
associations 

AdjcR2 0.290  0.283 -0.103 -0.012  0.006  0.009 
β -0.169 -0.061  0.074 -0.253 -0.083 -0.217 
p 0.867  0.701  0.707  0.183  0.657  0.248 

Curvilinear 
associations 

AdjcR2 0.272  0.278 -0.126 -0.046  0.035 -0.022 
β -0.729 -1.309  1.153  0.013  2.307  0.548 
p 0.619  0.372  0.527  0.994  0.177  0.752 

NAdj: Non adjusted 

 
 
 
 

Table V.3. Summary of the regression analyses between memory test outcomes and CAR  
for complete sample and only for the 2 Day-CAR group 

 
Memory Domain and 

Tests 
Outcome Total sample 2 Day-Car group 

Verbal Memory    
  Logical Memory Immediate Recall Inverted U-shaped Negative linear 

Delayed Recall Inverted U-shaped* Negative linear 
  Verbal Paired   

  Associated 
Immediate Recall Negative linear Negative linear** 

Delayed Recall - - 
Visual Memory    

Family Pictures Immediate Recall Inverted U-shaped Negative linear*** 
Delayed Recall Inverted U-shaped Negative linear 

Working Memory    
LN Sequencing LNS non-adjusted - - 

 LNS Adjusted - - 
  Digit Span   DS Forward - - 
 DS Adjusted Inverted U-shaped - 
  Spatial Span   SS Forward    -   - 
 SS Adjusted - - 
*p = 0.054; **p = 0.079; ***p = 0.053 
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DCS and memory performance. None of the associations between the 

diurnal cortisol slope and memory performance were significant (p > 0.085). Sex 

did not moderate any of these relationships (p > 0.1) (See Table V.4). 

 
Table V.4. Regression analyses with DCS as predictor and verbal, visual and working 
memory outcomes as dependent variables 

 
 
 

 Logical Memory Verbal Paired Associates Family Pictures 
Immediate 
recall 

Delayed 
recall 

Immediate 
recall 

Delayed 
recall 

Immediate 
recall 

Delayed 
recall 

Linear 
associations 

AdjcR2  -0.037   -0.047  0.075  0.073   0.090   0.089 
β 
p 

  0.087    0.137 0.053 -0.110   0.076   0.086 
  0.538    0.336 0.694  0.412   0.566   0.516 

Curvilinear 
associations 

AdjcR2   -0.034   -0.038 0.063  0.058   0.097   0.081 
β -10.963 -12.499 5.276  3.742 11.225   6.906 
p    0.287    0.226 0.589  0.702   0.244   0.475 

  Letter-Number 
Sequency 

Digit Span Spatial Span 

NAdj Adjusted DSForward DSAdjusted SSForward SSAdjusted 
Linear 
associations 

AdjcR2 0.105  0.087 -0.063 -0.043 -0.035 0.014 
β 0.102  0.115 -0.017  0.016  0.095 0.241 
p 0.439  0.390  0.903  0.912  0.503 0.085 

Curvilinear 
associations 

AdjcR2 0.100  0.079 -0.080 -0.062 -0.054 -0.002 
β 7.763  6.895  3.747 -1.923 -0.194 -4.166 
p 0.418  0.477  0.720   0.853  0.985  0.679 

NAdj: Non adjusted 

 

 

5.4. DISCUSSION 

The present study investigated whether the CAR and the DCS were 

related to different memory domains in older men and women. For the complete 

sample, the CAR was negatively associated with tasks that are dependent on 

hippocampal functioning (in a linear form: Verbal Paired Associates test; in a 

curvilinear form: Logical Memory and Family Pictures tests) and with only one 

outcome that is dependent on prefrontal cortex functioning (i.e. DS Backward 

Adjusted). When the same analyses were performed with only those participants 

who showed CAR on both days (2 Day-CAR group), the CAR was only related to 
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tasks that are dependent on hippocampal functioning in a negative linear form 

(Logical Memory, Verbal Paired Associates and Family Pictures), but not to tasks 

that are dependent on prefrontal cortex functioning (i.e. Letter and Number 

Sequencing, Digit Span and Spatial Span). With regard to the DCS, no relationship 

was found with memory performance on any task used in the complete sample 

or the 2 Day-CAR group. Finally, the sex factor did not moderate the relationships 

found between the CAR and memory performance in the complete sample or the 

2 Day-CAR group. 

In the present study, we assessed cognitive performance through six 

different memory tasks measuring verbal, visual and working memory (verbal 

and spatial). Memory performance is one of the main cognitive domains related 

to HPA-axis functioning in response to acute stress (for a review see: Schwabe et 

al., 2013). However, few studies have investigated the specific association 

between the CAR and DCS and memory performance assessed by several 

memory tasks. As expected, the CAR was negatively related to memory 

performance on verbal and visual memory tasks only in those participants who 

showed CAR on both days (2 Day-CAR group). Specifically, higher CAR was 

associated with worse performance on immediate and delayed recall on the 

Logical Memory test and marginally with immediate recall on the Verbal Paired 

Associates test (p = 0.079). Moreover, higher CAR was also associated with worse 

performance on delayed recall on the Family Pictures test and marginally with 

immediate recall on this same task (p = 0.063). It is important to note that for the 

complete sample, the relationships with the Logical Memory and Family Pictures 

tests were quadratic (inverted U-shaped form). As previously discussed, the fact 

that some people in the total sample had a shifted CAR measurement, and the 

possibility that these people were on the left side of the inverted U curve, could 

explain these different results (Almela et al., 2012). In the same study, we 

showed, as in the present findings, that a greater CAR was related to poorer 

verbal memory performance assessed with paragraph recall (Almela et al., 2012). 

The present study confirms this previous result and extends these findings to 
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memory performance on other verbal (i.e. association task) and visual tasks. The 

performance on these tasks is especially related to hippocampal functioning; 

thus, we consider that there is a consistent negative relationship between the 

CAR and performance on memory tasks related to hippocampal functioning.  

However, other studies report no relationship (Evans et al., 2011; 2012; Franz et 

al., 2011; Sigh-Manoux et al., 2014). Methodological differences could explain 

the contradictory results. It is possible that this absence of the link reported by 

Franz et al. (2011) and Singh-Manoux et al. (2014) is due to the fact that to 

calculate the CAR, these authors used only two saliva samples, the first at 

awakening and the second 30 minutes after awakening. Thus, despite the fact 

that the CAR has been calculated as the change, as has been suggested (Clow et 

al., 2010b), there are individual differences in the exact moment of the 

maximum peak, which can take place between 30 and 45 min post awakening 

(Pruessner et al., 1997; Wilhelm et al., 2007). Therefore, it is not strange that the 

maximum peak for the complete sample was not collected, leading to a weak 

CAR measurement. By contrast, in our previous (Almela et al., 2012) and present 

studies, we included a third saliva sample 45 min after awakening. This has 

allowed us to calculate the CAR as the AUCi, a more confident measurement. 

Another explanation could be the type of memory task used. Specifically, Evans 

et al. assessed verbal memory performance using a word list learning test (Evans 

et al., 2011; 2012); however, we found the CAR-verbal memory link on paragraph 

recall and word associated tests. Supporting this argument, Almela et al. (2012) 

found that the CAR was negatively related to a paragraph recall test, but not to a 

word list learning test. These results suggest that this test may be less sensitive 

than others to associations with the CAR.  

To measure the working memory domain, three different tests were 

used: Letter-Number Sequencing, Spatial Span and Digit Span. When we 

performed the analysis for the total sample, we found a negative curvilinear 

relationship between the CAR and Digit Span Backward. However, when we 

replicated the analysis for the 2 Day-CAR subgroup, this result did not remain 
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significant. Therefore, as observed in Franz et al. (2011), we cannot conclude that 

there is a relationship between CAR and working memory. By contrast, two 

previous studies reported an association between CAR and working memory 

performance. Thus, Almela et al. (2012) showed that a greater CAR was related 

to better spatial working memory only in men, but this result was observed only 

when the analyses were performed with the sample suspected of being adherent 

to the protocol on both days of CAR sampling. Moriarty et al. (2014), in 19 young 

men, showed a U-shaped relationship between the CAR and spatial working 

memory performance. Although it is still not well understood, it has been 

indicated that the frontal cortex may play a part in the dynamics and magnitude 

of the CAR (for a review see: Evans et al., 2010). Then, a possible relationship 

between working memory and CAR could be expected. However, for the time 

being, the results observed in our studies and others do not offer a clear 

explanation of what the direction is, or even if there is a relationship between 

them. Further studies are needed to investigate this association more in-depth, 

using other kinds of working memory tasks that might be more sensitive to 

changes in CAR and diurnal cortisol levels. 

Regarding the association between the DCS and cognitive performance, 

our results showed that this index of the diurnal cortisol cycle was not related to 

any of the six memory tasks. This lack of association agrees with previous studies 

in older people that failed to find a relationship between the DCS and declarative 

memory in a small sample (N=42, Fiocco et al., 2006), verbal and visual memory 

in a medium sample (N=197, Beluche et al., 2010), and short-term memory in a 

large sample (N=3229, Singh-Manoux, 2014). By contrast, most of the studies 

that investigated the link between this cortisol index and memory reported a 

negative association. Thus, both a flatter DCS (Abercrombie et al., 2004; Evans et 

al., 2011; Gerritsen et al., 2011) and a steeper DCS were associated with poorer 

declarative memory (O’Hara et al., 2007). Methodological differences, such as 

the number of participants studied, the cognitive domains assessed, the method 

used to calculate the DCS, or a combination of them, can explain these 
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inconsistent findings. Taken together, a systematic examination of the 

implications of these factors in the relationship between this component of the 

diurnal cortisol cycle and memory performance will help to better understand 

this link. 

Some limitations should be considered. Since participants were selected 

based on having good physical and psychological health, our results may not be 

representative of the general older population. In this stage of life, the presence 

of several diseases and, consequently, the use of several medications are very 

common. For this reason, replication studies that include participants with age-

related diseases (i.e. diabetic or hypertensive older people) are clearly 

warranted. Moreover, it is important to note the correlational nature of our 

results, which means that we cannot endorse causal relationships. Despite this 

limitation, our results are consistent across different memory tasks. Finally, 

although we used devices to check for adherence to the sampling times, we still 

do not know the exact time at which the participants awoke and, therefore, if 

the first saliva sample (i.e. awakening) was correctly collected. To control this, we 

performed the same statistical analysis, first for the complete sample and then 

for the 2 Day-CAR subgroup. Thus, for the complete sample, most of the 

associations followed an inverted U-pattern, while for the 2 Day-CAR subgroup, 

these associations changed to a negative linear form. These results highlight the 

importance of paying attention to protocol adherence in order to avoid 

confounding conclusions. 

On the whole, the present study confirms, in healthy older people, the 

negative relationship between the CAR and memory performance dependent on 

hippocampal functioning. In addition, it provides further evidence about the 

relationship between memory performance and the DCS, another component of 

the diurnal cortisol cycle. 
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The previous chapters have described the main results of several studies 

on the effects of acute stress on memory performance in healthy adults, 

considering some factors related to memory (i.e. phase and type of memory 

assessed and type of material to be remembered) and others related to 

individuals (i.e. age and sex). Moreover, the link between the HPA-axis 

functioning in basal situations (non-stress) and different memory domains in 

older people has also been investigated. As these studies showed, under stress, 

both the SNS and, especially, the HPA-axis activity are related to memory 

performance. However, depending on the factors mentioned above, the 

direction of these relationships will be different. Under non-stressful situations, 

the HPA-axis activity is also related to memory performance, depending on the 

type of memory assessed. In this final chapter, a summary of the main findings of 

these studies and the conclusions of this thesis are presented. 

 

6.1. MAIN FINDINGS 

6.1.1. Study 1 

The aim of this study was to determine the direction of the impact of an 

acute psychosocial stress on memory performance in healthy young adults. To 

do so, the two stress systems’ (i.e. SNS and HPA-axis) reactivity to the stressor 

was measured. After the stress and control tasks, the non-declarative memory 

was assessed with a priming test and declarative memory was assessed with the 

RAVLT. Thus, we investigated the effects of an acute psychological stressor on 

these two types of memory when the stressor was applied before learning. 

Moreover, we studied the moderating role of sex and the level of sexual 

hormones in this relationship. Then, 18 men and 34 women (17 women in the 

early follicular phase and 17 women using oral contraceptives) were exposed to 

the TSST and a control condition in a crossover design. The task used as the 

stressor provoked larger sAA and cortisol responses than the control condition in 

all participants.  
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Sex differences were found in the cortisol response, but not in the sAA 

response. Men had higher cortisol response to the TSST than both groups of 

women. Moreover, regardless of sex, the acute stressor was associated with an 

enhancement of non-declarative memory performance, and this enhancement 

was greater in participants who had a larger sAA response to the TSST. By 

contrast, the stressor did not affect declarative memory performance. Taken 

together, our results confirm an effect of acute stress only on non-declarative 

memory performance (i.e. priming), and they suggest a different relationship 

between the two stress biomarkers and the different types of memory in healthy 

young adults. 

 

6.1.2. Study 2 

The aim of this study was to explore the role of age in the impact of the 

magnitude of the stress-induced sAA and cortisol responses on memory 

performance, considering the sex of the participants. To this end, in a crossover 

design, 32 older (16 men and 16 women) and 35 young adults (18 men and 17 

women) were exposed to both the stress and control conditions. Afterwards, 

declarative memory performance was assessed using the RAVLT test. The TSST 

was shown to induce stress because an increase in sAA and cortisol responses 

was observed for the total sample. Sex differences were found in the cortisol 

response, but not in the sAA response. Regardless of age, men had a higher 

cortisol response to the stressor than women. However, no age differences were 

found in the cortisol response, but in the sAA response older participants had 

higher sAA concentrations than younger ones. In addition, as expected, older 

people had poorer declarative memory performance than young people. 

However, although no stress-induced changes in learning, delayed recall or 

recognition were reported, only in older people, stress impaired immediate 

recall after interference (i.e. retroactive interference). Moreover, this effect was 

negatively related to the ratio of sAA over cortisol. In conclusion, these findings 
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confirm a moderating role of age in the effects of stress-prior learning on 

retroactive interference, a very important sub-process of declarative memory 

associated with aging. At the same time, they highlight the importance of 

considering the response of the two stress systems together. 

 

6.1.3. Study 3 

In line with study 2, the aim of this third study was to investigate the role 

of age in the effects of stress on memory performance, considering the sex of the 

participants. Unlike in studies 1 and 2, here the stressor was applied before the 

retrieval phase, and the material to be remembered consisted of positive, 

negative and neutral pictures. After learning (day 1), 52 older (27 men and 25 

women) and 50 young (26 men and 24 women) adults were randomly assigned 

to the stress or control condition in a counterbalanced way, following a between-

subjects design. After the stress or control tasks, the retrieval of previously-

presented pictures was measured. As in previous studies, there was a significant 

response to the stressor used. As expected, older people performed worse on 

free recall than young people, but no age-related differences were found on the 

recognition task. With regard to free recall, stress only impaired memory 

retrieval in young men, which was negatively related to the cortisol response to 

the stressor, especially for negative pictures. Regarding recognition, regardless of 

age and sex, a poorer performance was found for positive pictures. However, 

this impairment was not related to the sAA or cortisol response. To our 

knowledge, this is the first study to investigate age differences in acute stress 

effects on memory retrieval in both sexes, and it adds evidence about the role of 

sex in the stress-memory link in young people. 
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6.1.4. Study 4 

In the final study, we investigated whether the HPA-axis activity in basal 

conditions (non-stress) was also related to memory performance in healthy older 

people. Specifically, two different components of the diurnal cortisol cycle were 

measured: the CAR and the DCS. To study so, we tested three cognitive domains 

in 64 (32 men and 32 women) healthy older people using a neuropsychological 

assessment. Two of the domains were related to declarative memory (verbal 

memory: logical memory and verbal paired associates tests, and visual memory: 

pictures tests) and the other to working memory (verbal memory: letter-number 

sequencing and digit span tests, and spatial memory: spatial span test). 

Moreover, participants had to provide 14 saliva samples on two consecutive 

weekdays to obtain the diurnal cortisol cycle collected in their homes. Results 

showed a negative linear association between the CAR and performance on 

memory tasks related to hippocampal functioning. The sex factor did not 

moderate these associations. By contrast, we failed to find a link between the 

CAR and working memory performance. No relationship was found between the 

DCS and the three memory domains evaluated.  

 

6.2. LIMITATIONS AND STRENGTHS  

In the previous empirical chapters, the specific limitations of each study 

have already been mentioned. Thus, this section presents some general 

comments to consider when interpreting the main findings of this thesis. Among 

them, the most important is the fact that both older and young participants were 

mainly selected because they were cognitively and physically healthy, which 

makes it difficult to generalize these results to people in these age ranges in the 

general population. It is important to note that, in older people, it is typical to 

find several age-related diseases and the subsequent medication use. Therefore, 

future research on this topic should consider replicating these studies in other 

clinical populations (i.e. diabetic or hypertensive older people). Moreover, all the 
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participants in these studies were cognitively active people because they were 

university students, and so bias related to socio-economic status and education 

could have been introduced. Hence, it might be of interest to explore the aims of 

this thesis in other populations with different educational levels or without 

active aging. 

Another weak point of this thesis could be the low number of different 

age groups considered. Here, we only studied two age ranges, young (from 18 to 

35 years old) and older (from 54 to 76 years old) people. However, there are 

other stages across the lifespan. Thus, in order to provide a more complete 

picture of the role of age in stress effects on memory performance, the study of 

other age groups is clearly warranted. 

Finally, this thesis did not compare the effects of the stressor on priming 

or the consolidation phase of memory in older and young people, or the 

CAR/DCS-memory performance association. Studies designed to answer these 

questions will help to obtain a broader vision of the reality and fill existing gaps 

in the literature.  

Despite these limitations, this thesis also has a number of strengths that 

allow us to be confident about our results. The strongest point in all the studies 

collected here is the rigor in the sample selection. We applied numerous and 

very restrictive exclusion criteria. This fact, apart from being an impediment to 

obtaining a larger sample size, can also be interpreted as an effort to collect a 

very homogeneous sample. Thus, we have avoided the introduction of several 

confounding factors, which was especially important when we compared the two 

different age groups, due to the large differences between them. We were also 

strict about the collection of the saliva samples. In order to obtain mainly 

unbiased cortisol and sAA concentrations in the four studies, participants were 

asked to follow a set of recommendations prior to the experimental sessions. 

Moreover, and in contrast to most of the previous studies about this 

topic, we made a concerted effort to study the role of sex. To do so, a similar 
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number of participants was included in each sex group. It is well known that the 

sexual hormone levels interfere in the relationship between stress and memory, 

which means it is easier to only include men in the samples. Therefore, 

addressing this factor in this relationship extends previous findings in men. 

Finally, to our knowledge, most previous studies addressing this issue 

have been carried out with young people. However, few have studied older 

people, and none have included both age groups. Hence, for the first time, we 

provide findings from a direct comparison of older and young populations about 

stress effects on memory performance (studies 2 and 3), which contributes to 

better understanding the mechanisms underlying the stress-memory link.  

 

6.3. FUTURE 

In addition to trying to design studies that address the limitations 

mentioned in each study in particular, and in the thesis in general, there are still 

many unresolved issues. In this thesis we have only focused on the study of 

memory function; however, there are other cognitive processes that are 

susceptible to being affected by stress. Future studies should investigate these 

other cognitive operations, from attention to executive function, in order to have 

more comprehensive knowledge about the link between stress and cognition.  

On the other hand, we have not considered factors related to the stressor 

that can also mediate in the stress effects on cognitive function, in addition to 

those related to memory function and individual differences already mentioned. 

Among them, the magnitude, the origin (endogenous vs. exogenous) and/or the 

duration of the stressor (acute vs. chronic) stand out. However, we have only 

explored the effects of an acute stressor. Therefore, investigating the effects of 

other types of stress will be of interest, above all chronic stressors, due to their 

direct relationship with the decline associated with aging. Therefore, longitudinal 

studies are clearly needed.  
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Finally, drawing on the findings found in the fourth study, we strongly 

recommend a more comprehensive study of the CAR. We think it is important to 

focus on aspects that can determine the magnitude of the CAR, such as 

adherence to the protocol and health-related quality of life. 
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Taken together, the results found in the empirical studies point out that 

in an acute stress situation, SNS and HPA-axis activation affect memory 

performance. This is a complex relationship, given that several factors can 

modulate the direction of these effects. Moreover, the diurnal cortisol cycle, is 

also associated with memory performance in healthy older people. A more 

specific and detailed discussion of the results has been presented in the different 

empirical chapters. In this section, the most important conclusions stemming 

from the objectives of this thesis are described below: 

� An acute psychosocial stressor applied before learning a neutral word list 

enhances non-declarative memory performance in healthy young people, 

while it does not affect declarative memory performance. These findings 

are consistent with the hypothesis that acute stress leads to a shift 

between memory systems, favoring less cognitively demanding learning 

strategies over those that require awareness (Schawabe et al., 2007). 

Moreover, this enhancement is positively related to the SNS activity. This 

finding, not reported previously, reflects the importance of this system 

activation in the positive effects of stress on non-declarative memory. 

 

� A direct comparison of people of different ages but other similar 

characteristics has shown that older age is associated with poorer 

declarative memory performance, while the recognition performance 

remains invariable. However, there are no age-related differences in the 

stress effects on declarative memory, except in one aspect of this type of 

memory. Thus, the stressor applied before learning impairs the 

immediate recall after interference, a memory aspect involved in 

retroactive interference. This result coincides with the fact that older 

people seem to be more vulnerable to this interference than young 

people (Hedden and Park, 2001). In addition, this negative effect of the 

stressor on memory seems to be mediated by the response of both 

physiological systems involved in the stress response.  
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� Despite sex-related differences found in the cortisol response to the 

stressor, the sex of the individuals does not seem to be crucial in the 

effects of stress-prior learning on non-declarative memory (young 

people) and declarative memory (older and young people).  

 

� Acute psychosocial stress applied before retrieval memory impairs free 

recall and recognition of emotional and neutral pictures differently, 

depending on age and sex. Specifically, stress impairs free recall of 

positive, negative and neutral pictures, only among young men, and 

recognition memory of positive pictures in older and young people of 

both sexes. Only the cortisol response is negatively related to the effect 

found on free recall.  

 

� Overall, successful aging can cushion the effects of acute psychosocial 

stress on memory performance in older people, given that only 

retroactive interference was affected by stress.  

 

� There is a different relationship between stress biomarkers and the 

different memory systems depending on age. Thus, among young adults, 

only the sAA response is related to the enhancing stress effects on 

priming, and only the cortisol response is related to the impairing stress 

effects on free recall performance. However, among older people, the 

ratio of sAA over cortisol is related to impairing stress effects on 

retroactive interference.  

 

� The diurnal HPA-axis functioning is also related to memory performance 

in healthy older people. In both sexes, the cortisol awakening response 

(CAR) is negatively related to declarative memory performance, which is 

more dependent on hippocampal functioning, but not to working 

memory performance, which is more dependent on the prefrontal cortex. 
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However, the magnitude of the diurnal cortisol slope (DCS) is not related 

to the declarative and working memory performance of healthy older 

people. 

 

� The reliability of the measurement of the CAR is an issue that should be 

considered. The association between the CAR and memory performance 

is different depending on the adherence to the salivary sampling 

protocol. For a complete sample, this relationship is mainly curvilinear 

(i.e. inverted U-shaped), but only for those people suspected of being 

adherent, the association is linear and negative.  

 



 



 

 

 

 

 

 

 

 

 

 

 

CHAPTER VIII 

GENERAL SUMMARY IN SPANISH 
           

 

 

 

 

 



 



General summary in Spanish 

181 
 

En nuestra vida diaria estamos constantemente expuestos a diferentes 

fuentes de estrés, principalmente, de tipo psicológico y/o social. Nuestra 

reacción al mismo es considerada una respuesta adaptativa debido a su papel en 

la facilitación de la supervivencia de los individuos. Sin embargo, el estrés puede 

tener también consecuencias perjudiciales a corto y largo plazo en la salud, tanto 

es así que es considerado uno de los problemas de salud más significativos del 

siglo XXI, según la Organización Mundial de la Salud (2001). 

Su impacto se extiende a la mayoría de los sistemas fisiológicos 

(cardiovascular, digestivo, inmune, neuroendocrino o nervioso) dando como 

resultado numerosas enfermedades. Entre los efectos del estrés relacionados 

con el sistema nervioso destacan los problemas cognitivos. Dado el gran impacto 

que estos problemas pueden tener sobre la sociedad en general y, sobre el 

individuo y sus familias en particular, parece clara la necesidad de entender más 

esta relación. Esta es una de las razones del creciente interés en investigar los 

principales mecanismos que subyacen al impacto del estrés en diferentes 

procesos cognitivos, tales como la memoria, la atención y las funciones 

ejecutivas. Sin embargo, diferentes factores relacionados con las características 

del estresor, del individuo y del proceso cognitivo estudiado puede jugar un 

papel importante en determinar la dirección de estos efectos del estrés. Por 

tanto, esta tesis se centra en cómo el estrés afecta a la cognición, concretamente 

al rendimiento en memoria, en adultos sanos, considerando el papel de algunos 

de estos factores implicados. 

 

8.1. OBJETIVOS E HIPÓTESIS 

Realizamos cuatro estudios con el fin de aclarar aquellos resultados 

contradictorios, además de proporcionar evidencia en aquellos aspectos sobre 

los que no hay trabajos previos. Los objetivos e hipótesis de esta tesis se 

presentan a continuación: 
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Objetivo general 1. Determinar el impacto del estrés agudo aplicado antes del 

aprendizaje sobre el rendimiento en memoria de material neutro en adultos 

sanos. 

� Objetivo específico 1.1: Estudiar los efectos del estrés sobre el 

rendimiento en la memoria no declarativa y declarativa en adultos 

jóvenes. 

 

� Objetivo específico 1.2: Comparar los efectos del estrés sobre el 

rendimiento en la memoria declarativa entre adultos mayores y jóvenes 

sanos. 

 

� Objetivo específico 1.3: Investigar el papel del sexo en los objetivos 

específicos anteriormente mencionados. 

 

Debido a los pocos estudios llevados a cabo en memoria no declarativa y 

a los resultados contradictorios en la literatura sobre los efectos que tiene el 

estrés agudo en la memoria declarativa, no tenemos hipótesis específicas sobre 

los efectos del estrés antes del aprendizaje en estos dos tipos de memoria en 

adultos jóvenes. Sin embargo, se esperan diferencias de edad en los efectos del 

estrés sobre la memoria declarativa. Además, basándonos en hallazgos previos 

de nuestro grupo (Almela et al., 2011a), esperamos mayores efectos negativos 

del estrés en mujeres mayores. 

Intentaremos responder al objetivo específico 1.1. en el estudio 1 donde 

ponemos a prueba la hipótesis de que las respuestas de ambos biomarcadores 

del estrés al TSST están relacionadas con el rendimiento de la memoria no 

declarativa y declarativa. Además, en este mismo estudio, se aborda también el 

objetivo específico 1.3. El estudio 2 tiene como objetivos responder a los 

objetivos específicos 1.2 y 1.3 ya que en este trabajo comparamos directamente 
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los efectos del estrés sobre el rendimiento de memoria en dos grupos diferentes 

de edad con similar número de participantes de ambos sexos 

 

Objetivo general 2. Determinar el impacto del estrés agudo aplicado antes del 

recuerdo sobre el rendimiento en la memoria de material positivo, negativo y 

neutro en adultos jóvenes. 

� Objetivo específico 2.1: Comparar los efectos del estrés sobre el recuerdo 

entre adultos mayores y jóvenes. 

 

� Objetivo específico 2.2: Investigar el papel del sexo en el objetivo 

específico anterior. 

 

El hecho de que no existan estudios previos que hayan investigado 

directamente los efectos del estrés sobre el recuerdo comparando adultos 

mayores y jóvenes nos hace muy difícil proponer una hipótesis sobre este 

objetivo general. Sin embargo, teniendo en cuenta los hallazgos de estudios 

previos con un diseño similar que investigan estos grupos de edad por separado, 

nosotros esperamos un efecto negativo sólo en el grupo de jóvenes y no en el 

grupo de mayores. Además, este efecto será más fuerte para el material 

emocional que para el neutro (Wolf et al., 2004). Finalmente, aparecerán 

diferencias de sexo dado que la magnitud de la respuesta de estrés depende del 

nivel de hormonas sexuales. 

El propósito del estudio 3 es contestar estos objetivos. 

 

Objetivo general 3. Examinar la relación entre la actividad diurna del eje 

hipotálamo-hipofiso-adrenal (eje HHA) (situación basal, no estrés) y el 

rendimiento en memoria en adultos mayores sanos. 
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� Objetivo específico 3.1: Estudiar la asociación entre el CAR y el 

rendimiento en memoria en adultos mayores sanos. 

 

� Objetivo específico 3.2: Explorar la relación entre el DCS y el rendimiento 

en memoria en adultos mayores sanos. 

 

� Objetivo específico 3.3: Investigar el papel que juega el sexo en estos 

objetivos. 

 

Esperamos que el funcionamiento diurno del eje HHA estará relacionado 

con el rendimiento en memoria de personas mayores, pero esta relación será 

diferente dependiendo del componente del ciclo diurno de cortisol estudiado. 

Además, aunque no han sido reportadas diferencias de sexo en los perfiles de 

cortisol diurno, es posible encontrar diferencias de sexo en la relación entre el 

ciclo diurno de cortisol y el rendimiento en memoria dado el papel crucial que 

este factor juega en la relación entre la actividad del eje HHA y la función 

cognitiva en personas mayores (Seeman et al., 1997; Almela et al., 2011a). 

Estos objetivos serán abordados en el estudio 4. 

 

 

8.2. METODOLOGÍA 

Para proporcionar una visión global de la metodología utilizada en los 

cuatro estudios empíricos presentados, en esta sección se realiza un breve 

resumen sobre los sujetos que participaron, el procedimiento utilizado así como 

las variables estudiadas. 
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8.2.1. Participantes 

Con el fin de asegurar la homogeneidad de la muestra y la comparación 

entre los participantes mayores y jóvenes, la muestra utilizada en la presente 

tesis está compuesta por adultos sanos que son cognitivamente activos. Los 

participantes eran estudiantes de un programa de estudio de la Universitat de 

València para personas mayores de 50 años (NAU GRAN) en el caso de los 

participantes mayores o estudiantes universitarios de diferentes áreas de 

conocimientos en el caso de los participantes mayores. Dependiendo del 

objetivo de cada estudio, nosotros estudiamos sólo al grupo joven (estudio 1) o 

al grupo mayor (estudio 4) o ambos grupos de edad (estudios 2 y 3). El rango de 

edad fue similar dentro de cada grupo de edad en todos los estudios aunque 

diferían ligeramente. En el grupo de mayores el rango general de edad fue desde 

54 hasta 76 años (estudio 2: 54-72, estudio 3: 56-76 y estudio 4: 57-76). En el 

grupo de jóvenes el rango general de edad fue desde 18 hasta 35 años (estudios 

1 y 2: 18-35, estudio 3: 18-27). 

Además, en todos los estudios el factor sexo se tuvo en cuenta. Así, las 

muestras estuvieron compuestas por un número similar de hombres y mujeres 

de cada grupo de edad, excepto en el estudio 1 que el objetivo fue investigar, 

además del sexo, el uso de anticonceptivos. 

 

8.2.2. Procedimiento 

El procedimiento llevado a cabo en esta tesis fue diferente dependiendo 

del objetivo de cada estudio. Hay tres procedimientos diferentes. 

En los estudios 1 y 2 se utilizó un diseño intra-sujetos con dos condiciones  

(estrés y control) aleatorias y contrabalanceadas en dos sesiones separadas 

(menos de 10 días). Las sesiones consistieron en las mismas fases con igual 

tiempo de duración, empezaron a la misma hora y las muestras de saliva fueron 
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tomadas en los mismos tiempos dentro de la fase experimental. Ambas 

condiciones difirieron sólo en la tarea a realizar (tarea estrés o control). Mientras 

que en la condición de estrés a los participantes se les pidió realizar una tarea 

estresante (TSST, esta tarea será explicada con más detalle en la sección 

siguiente), en la condición control los participantes tuvieron que realizar una 

tarea control (tarea con similar carga de trabajo mental y actividad física global 

pero sin las amenaza de evaluación e incontrolabilidad). Además, en ambas 

condiciones, después de las tareas estrés o control, los participantes realizaron 

las pruebas de memoria objeto de estudio (estudio 1: tareas de memoria no 

declarativa y declarativa, estudio 2: tarea de memoria declarativa). Por lo tanto, 

el estresor fue aplicado antes del aprendizaje. 

El procedimiento del estudio 3 consistió en dos sesiones consecutivas 

diferentes. En la primera sesión (sesión de adquisición), a los participantes se les 

presentó el material a recordar (imágenes). Esta sesión fue igual para todos los 

participantes. En la segunda sesión (sesión recuerdo), los participantes fueron 

asignados de forma aleatoria a la condición estrés o control. Las tareas de estas 

dos condiciones fueron similares a las tareas de estrés o control explicadas 

anteriormente. Cabe destacar una diferencia importante entre este diseño y el 

diseño utilizado en los estudios 1 y 2, esta es que aquí, en el estudio 3, el 

estresor fue aplicado antes del recuerdo. 

Finalmente, el procedimiento utilizado en el estudio 4 fue muy diferente 

a los anteriores ya que nuestro objetivo fue investigar la relación entre el 

funcionamiento en condiciones basales (no estrés) del eje HHA y el rendimiento 

en memoria en personas mayores sanas. Para ello, analizamos dos componentes 

del ciclo diurno de cortisol: la respuesta de cortisol matutina y la pendiente 

diurna del cortisol. Así, los participantes proporcionaron siete muestras de saliva 

de dos días entre semana consecutivos recogidas en su casa. Además, realizaron 

en el laboratorio una sesión neuropsicológica con diferentes pruebas de 

memoria para evaluar el rendimiento cognitivo.  



General summary in Spanish 

187 
 

8.2.3. Variables estudiadas 

A continuación, se presentan las diferentes variables estudiadas en los 

estudios empíricos. 

 

8.2.3.1. Tarea de estrés 

Para provocar estrés, utilizamos un estresor psicosocial agudo de 

laboratorio, el Trier Social Stress Test (TSST; Kirschbaum et al., 1993). Es una 

herramienta ampliamente utilizada por los investigadores en el campo de la 

psiconeuroendocrinología ya que es capaz de provocar una respuesta de estrés 

similar a aquella que ocurre en una situación real. Después de una fase de 

introducción, donde a los participantes se les dio las instrucciones del TSST y una 

fase de preparación, donde tuvieron tiempo para preparar la tarea (discurso 

libre, se explica a continuación), los sujetos realizaron dos tareas: (i) discurso 

libre: los participantes tuvieron que realizar un discurso libre con el fin de 

convencer a un comité de que ellos eran el mejor candidato para una posición 

interesante para ellos,  y (ii) tarea aritmética: los participantes tuvieron que 

realizar una tarea mental aritmética (restar). Ambas tareas tuvieron una 

duración de 5 minutos y fueron realizadas frente a un comité de supuestos 

experto. De acuerdo con Dickerson y Kemeny (2009), la efectividad del TSST está 

explicada por sus características de tarea que escapa al control de la situación 

por parte del sujeto y la evaluación social. 

 

8.2.3.2.Variables antropométricas, demográficas y psicológica  

Para asegurar la homogeneidad de las muestras estudiadas y las 

comparaciones entre ellas, y evitar todos los posibles factores confundentes que 

podrían interferir tanto con la respuesta de estrés como con el rendimiento en 
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memoria, medimos en todos los estudios de esta tesis las mismas variables 

demográficas y antropométricas, a continuación: 

� Índice de masa corporal (IMC). Una vez que los participantes llegaban al 

laboratorio fueron pesados y medidos para luego, poder calcular el IMC 

(Kg/m2). Este índice ha sido asociado con el funcionamiento del eje HHA 

(Dettenborn et al., 2012) y el rendimiento cognitivo (Cournout et al., 

2006). 

 

� Estatus socioeconómico subjetivo (ESS). El ESS fue evaluado usando la 

escala de MacArthur de Estatus Social Subjetivo (Adler et al., 2000). Los 

participantes tuvieron que valorar su ESS en comparación con otros 

españoles. La escala va desde 1 (personas que tienen un bajo ESS ya que 

tienen menos dinero, educación y trabajo respetable o incluso no tienen 

trabajo) hasta 10 (personas que tienen un alto ESS ya que tienen mayor 

cantidad de dinero, educación y trabajo respetable). Esta variable ha sido 

relacionada con la actividad del eje HHA (Cohen et al., 2006). 

 

� Nivel educativo (NE). El NE fue determinado preguntando a los 

participantes qué nivel educativo tenían completado. Éstos tuvieron que 

contestar una de las diferentes opciones: 0=no estudios, 1=primaria, 

2=educación secundaria, 3= universidad y educación superior y, 

4=estudios postgraduado (máster o doctorado). 

En el estudio 3 también incluimos una variable psicológica para evaluar la 

respuesta de estrés a nivel psicológico. 

� Evaluación de la situación. Medimos cómo los participantes percibieron 

las tareas estrés (TSST) o control utilizando 5 preguntas sobre aspectos 

concretos de la tarea. Concretamente, las preguntas estuvieron 

relacionadas con el grado de estrés, dificultad, frustración, esfuerzo y 
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motivación que la tarea había supuesto a los participantes. Estas 

preguntas fueron previamente creadas por nuestro grupo (Gonzalez-

Bono, 2002) a partir de la evidencia previa sobre este tema (Baggett et 

al., 1996). 

 

8.2.3.3.Variables enzimática y hormonal 

Para estudiar el funcionamiento del Sistema Nervioso Simpático (SNS) y 

del eje HHA, analizamos los niveles salivares de alfa-amilasa y cortisol, pero, 

dependiendo del objetivo que queríamos abordar, éstos fueron analizados en 

situaciones diferentes: en respuesta al estresor/control y/o en situación basal. Es 

importante destacar que estos biomarcadores fueron obtenidos a partir de 

muestras de saliva, ya que es una técnica no invasiva de obtención y acceso fácil. 

Además, medir los niveles de cortisol en saliva nos permite determinar sólo la 

fracción libre de la hormona que está biológicamente activa (Foley y Kirschbaum, 

2010). 

 

� Alfa-amilasa salivar (AAs). Medimos la actividad del SNS a través de los 

niveles de AAs. Para ello, los participantes proporcionaron (en salivettes, 

Sarstedt, Nümbrecht, Alemania) varias muestras de saliva en diferentes 

momentos, de acuerdo con el procedimiento de cada estudio. Durante un 

minuto, los participantes tuvieron que mantener el algodón en su boca, 

moviéndolo de forma circular para recoger saliva de todas las glándulas 

salivares (Rohleder y Nater, 2009). Después de que las muestras fueron 

congeladas, los niveles de AAs se obtuvieron mediante un método 

cinético enzimático. Concretamente, el AAs fue estudiado en respuesta a 

la tarea de estrés o control en los estudios 1, 2 y 3. 

 

� Cortisol salivar. La actividad del eje HHA fue medida a través de los 

niveles de cortisol en saliva. De acuerdo con el objetivo de cada estudio, 

las muestras de saliva fueron proporcionadas por los participantes 
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usando salivettes o depositando 5 ml de saliva en viales de plástico 

durante no más de 5 minutos. Las concentraciones de cortisol fueron 

analizadas por radioinmunoensayo (RIA). Este biomarcador fue estudiado 

en diferentes situaciones: en respuesta al estrés o control en los estudios 

1, 2 y 3 y en situación basal en el estudio 4. En este estudio se recogieron 

diferentes muestras de cortisol a lo largo de 2 días consecutivos. De esta 

forma, recogimos el ciclo diurno de cortisol de los participantes. También, 

en este mismo estudio, los niveles de cortisol antes y después de la 

evaluación neuropsicológica fueron recogidos. 

 

8.2.3.4.Variables cognitivas 

El proceso cognitivo investigado en esta tesis ha sido el rendimiento en 

memoria, y, en más profundidad, el rendimiento en memoria declarativa. Sin 

embargo, otros tipos de memoria también han sido considerados. 

� Memoria no declarativa. La memoria implícita o no declarativa 

representa el efecto de la experiencia previa inconsciente en el posterior 

comportamiento (Graf et al., 1984) e incluye al condicionamiento clásico, 

el aprendizaje no asociativo, la adquisición de habilidades motoras, 

perceptivas y cognitivas así como el efecto priming (Daum y Ackerman, 

1997). En la presente tesis, estudiamos este tipo de memoria a través del 

estudio 1. El efecto priming se refiere al cambio en la velocidad, sesgo o 

precisión del procesamiento del estímulo, seguido de la experiencia 

previa con el mismo estímulo u otro relacionado (Henson, 2003). Para 

evaluarlo, usamos una tarea de completar raíces de palabras. 

 

� Memoria declarativa. De forma diferente a la memoria no declarativa, la 

memoria explícita o declarativa requiere el recuerdo consciente de 

experiencias previas (Milner et al., 1998) e incluye la memoria semántica 
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y episódica. En este tipo de memoria podemos distinguir tres fases: 

adquisición, consolidación y recuerdo. En esta tesis, este tipo de memoria 

ha sido tratada en los 4 estudios. Para evaluarla, hemos utilizado listas de 

palabras (estudios 1 y 2), imágenes (estudio 3), y textos, listas de parejas 

de palabras, imágenes y caras (estudio 4). 

 

� Memoria de trabajo. Tipo de memoria que nos permite almacenar y 

manipular una cantidad limitada de información a corto plazo. En nuestra 

investigación, se ha abordado en el estudio 4 a través de tres tipos 

diferentes de tareas: tarea de letras y dígitos, tarea sólo de dígitos y tarea 

espacial. 

 

8.2.3.5.Variables moderadoras 

Como hemos resumido en este capítulo de introducción, la dirección de 

los efectos del estrés sobre el rendimiento en memoria depende de varios 

factores, unos relacionados con las características del individuo (edad y sexo) y 

otros relacionados con aspectos de la tarea de memoria (el arousal y la valencia 

del material a recordar), entre otros. De este modo, consideramos estos factores 

en nuestra investigación. 

� Sexo. Este factor ha sido considerado en los 4 estudios. Así, comparamos 

sistemáticamente hombres y mujeres. Dado que el papel moderador del 

sexo podría estar explicado por los diferentes niveles de hormonas 

sexuales, en el estudio 1, la fase del ciclo menstrual y la toma de 

anticonceptivos fueron tenidos en cuenta. Además, todas las mujeres 

mayores eran post-menopáusicas y ninguna de ellas estaba recibiendo 

terapia hormonal sustitutiva (estudios 2, 3 y 4). 

 

� Edad.  Con respecto a este factor, comparamos si además de hombres y 

mujeres, los efectos del estrés sobre el rendimiento en memoria entre 
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mayores y jóvenes (estudios 2 y 3). Sólo adultos jóvenes o mayores 

fueron incluidos en los estudios 1 y 4, respectivamente. El rango de edad 

fue en mayores (54-76 años) y en jóvenes (18-35 años). 

 

� Tipo de material a recordar. Atendimos a este factor, investigando sólo 

material neutro en los estudios 1, 2 y 4. En el estudio 3, los participantes 

tuvieron que aprender material neutro y emocional (positivo y negativo). 

 

 

8.3. CONCLUSIONES 

Los resultados encontrados en los estudios empíricos señalan que en una 

situación de estrés agudo, la activación del SNS y el eje HHA afecta al 

rendimiento de la memoria. Ésta es una relación compleja dado que existen 

diferentes factores que pueden modular la dirección de estos efectos. Además, 

el ciclo diurno del cortisol está también asociado al rendimiento en memoria de 

las personas mayores sanas. Una discusión más específica y detallada de los 

resultados ha sido presentada en los diferentes capítulos empíricos. En este 

apartado, las conclusiones más importantes a partir de los objetivos de esta tesis 

son descritos a continuación: 

� Un estresor psicosocial agudo aplicado antes del aprendizaje de una lista 

de palabras neutras mejora el rendimiento de la memoria no declarativa 

en jóvenes sanos, mientras que no afecta al rendimiento de la memoria 

declarativa. Estos hallazgos son consistentes con la hipótesis de que el 

estrés lleva a un cambio entre los sistemas de memoria, favoreciendo las 

estrategias de aprendizaje menos demandantes cognitivamente sobre 

aquellas que requieren conciencia (Schwabe et al., 2007). Además, esta 

mejora está relacionada de forma positiva con la actividad del SNS. Este 

resultado, no reportado previamente, refleja la importancia de la 

activación de este sistema en los efectos positivos del estrés sobre la 

memoria no declarativa.  
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� Una comparación directa de personas de diferente edad pero con otras 

características similares ha mostrado que el envejecimiento está asociado 

con peor rendimiento en memoria declarativa mientras que el 

reconocimiento permanece invariable. Sin embargo, no hay diferencias 

relacionadas con la edad en los efectos del estrés sobre la memoria 

declarativa, excepto en un aspecto de este tipo de memoria. El estresor 

aplicado antes del aprendizaje deteriora le recuerdo inmediato, aspecto 

de memoria implicado en la interferencia retroactiva. Este resultado está 

en línea con el hecho de que las personas mayores parecen ser más 

vulnerables a esta interferencia que los más jóvenes (Hedden y Park, 

2001). Además, este efecto negativo del estresor sobre la memoria 

parece estar mediado por la respuesta de ambos sistemas fisiológicos 

implicados en la respuesta de estrés.  

 

� A pesar de las diferencias relacionadas con el sexo encontradas en la 

respuesta de cortisol al estresor, el sexo de los participantes no parece 

ser crucial en los efectos del estrés aplicado antes del aprendizaje sobre 

la memoria no declarativa (jóvenes) y la memoria declarativa (mayores y 

jóvenes). 

 

� Un estresor psicosocial agudo aplicado antes de la fase de recuerdo 

deteriora el recuerdo libre y el reconocimiento de imágenes emocionales 

y neutras de forma diferente dependiendo de la edad y el sexo. Así, el 

estrés deteriora tanto el recuerdo libre de imágenes positivas, negativas y 

neutras, sólo en los hombres jóvenes, así como el reconocimiento de 

imágenes positivas en personas mayores y jóvenes de ambos sexos. Sólo 

la respuesta de cortisol está relacionada negativamente con el efecto 

encontrado en el recuerdo libre. 
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� En general, el envejecimiento con éxito puede amortiguar los efectos de 

un estresor psicosocial agudo sobre el rendimiento en memoria en 

personas mayores, dado que sólo la interferencia retroactiva se vio 

afectada por el estrés. 

 

� Existe una relación diferente entre los biomarcadores del estrés y los 

diferentes sistemas de memoria dependiendo de la edad. Así, entre los 

adultos jóvenes, sólo la respuesta de AAs está relacionada con los efectos 

de mejora del estrés sobre el priming y sólo la respuesta de cortisol está 

relacionada con los efectos perjudiciales del estrés sobre el recuerdo 

libre. Sin embargo, entre los adultos mayores, la ratio Aas/cortisol está 

relacionada con los efectos perjudiciales del estrés sobre la interferencia 

retroactiva. 

 

� El funcionamiento diario del eje HHA está también relacionado con el 

rendimiento en memoria en personas mayores sanas. En ambos sexos, el 

CAR está negativamente relacionado con el rendimiento en la memoria 

declarativa, la cual es más dependiente del funcionamiento del 

hipocampo, pero no con la memoria de trabajo, la cual es más 

dependiente del funcionamiento de la corteza prefrontal. Sin embargo, la 

magnitud del DCS no está relacionada ni con el rendimiento en memoria 

declarativa y memoria de trabajo de personas mayores sanas. 

 

� La fiabilidad de la medida del CAR es un tema que debe ser considerado. 

La asociación entre el CAR y el rendimiento en memoria es diferente 

dependiendo de la adherencia al protocolo de las muestras de saliva. 

Para la muestra completa, esta relación es, principalmente, curvilínea 

(patrón de U-invertida), pero sólo para aquellos participantes 

sospechosos de ser adherentes al protocolo, la asociación es lineal y 

negativa. 
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