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Abstract

Dirac showed that the existence of one magnetic pole in the universe could offer
an explanation of the discrete nature of the electric charge. Magnetic poles appear
naturally in most grand unified theories. Their discovery would be of greatest impor-
tance for particle physics and cosmology. The intense experimental search carried
thus far has not met with success. I proposed a universe with magnetic poles which
are not observed free because they hide in deeply bound monopole–anti-monopole
states named monopolium. I discuss the realization of this proposal and its consis-
tency with known cosmological features. I furthermore analyze its implications and
the experimental signatures that confirm the scenario.
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1 Introduction

The theoretical justification for the existence of classical magnetic poles, hereafter
called monopoles, is that they add symmetry to Maxwell’s equations and explain
charge quantization [1]. Dirac showed that the mere existence of a monopole in the
universe could offer an explanation of the discrete nature of the electric charge. His
analysis leads to the so called Dirac Quantization Condition (DQC),

eg

h̄c
=

N

2
, N = 1,2,... , (1)

where e is the electron charge and g the monopole charge [1]. Note that if quarks
were asymptotic states the minimum monopole charge would be three times larger.

The origin of monopoles, and therefore their properties, is diverse. In Dirac’s
formulation monopoles are assumed to exist as point-like particles and quantum
mechanical consistency conditions lead to Eq.(1), establishing the value of their
magnetic charge. However, their mass, m, is a parameter of the theory, limited
only by classical reasonings to be m > 2 GeV [2]. In non-Abelian gauge theories
monopoles arise as topologically stable solutions through spontaneous breaking via
the Kibble mechanism [3]. They are allowed by most Grand Unified Theory (GUT)
models, have finite size and come out extremely massive m > 1016 GeV. Further-
more, there are also models based on other mechanisms with masses between those
two extremes [2, 4, 5].

The discovery of monopoles would be of greatest importance not only for particle
physics but for cosmology as well. Therefore monopoles and their experimental de-
tection have been a subject of much study since many believe in Dirac’s statement[1]

”...one would be surprised if Nature had made no use of it [the monopole].”

At present, despite intense experimental search, there is no evidence of their
existence [2, 4, 6, 7, 8]. This state of affairs has led me to investigate a possible
mechanism by which monopoles could exist and still be undetectable by present
experiments.

Although monopoles symmetrize Maxwell’s equations in form there is a numerical
asymmetry arising from the DQC, namely that the basic magnetic charge is much
larger than the smallest electric charge. This led Dirac himself in his 1931 paper [1]
to state,

”... the attractive force between two one quantum poles of opposite sign is
(137

2
)2 ≈ 46921

4
time that between the electron and the proton. This very large

force may perhaps account for why the monopoles have never been separated.”

This statement by Dirac has motivated the present investigation. I propose a
scenario where monopoles exist but are hidden from our direct observation because
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today they appear forming deep monopole-anti-monopole bound states. I introduce
in the next paragraph my proposal which I elaborate in detail in the next sections
together with its experimental connotations.

At some early stage in the expansion of the Universe, monopoles and their an-
tiparticles were created. At a later time the dynamics was such that most of the
poles paired up to form monopole-anti-monopole bound states called monopolia.
This happened because it is easier for the monopoles to interact with each other
than with the charged particles in the hot plasma, thus as a consequence also no
significant friction force arises. Therefore, the lifetime of the primordial monop-
olium is solely governed by cascading to the lower bound states where the poles
finally annihilate. Moreover, the lifetime of monopolium is sufficiently long to allow
primordial monopolia to exist even today in measurable abundances. Thus today,
almost all of the existing monopoles, appear confined in deeply bound states [9].
However, the present investigation would be irrelevant if no proof of the existence
of monopolium could be found. I analyze signatures of their present existence and
of their formation period.

2 Hidden monopoles

I envisage a scenario, in which monopoles are not observable as free states at present,
which is realized by means of a few assumptions, that satisfies all phenomenological
restrictions and leads to new observations which can sustain it. If my scenario is
confirmed experimentally it will strongly restrict the way cosmological models deal
with monopoles.

At some early stage in the expansion of the universe monopoles and their an-
tiparticles were created by a mechanism which is free from the standard monopole
problem [10]. No precise mechanism for their creation is advocated, therefore the
mass is not fixed and is left as a parameter to be fitted by consistency requirements.
Moreover, monopoles and anti-monopoles existed in the universe, at that time, at
the level of abundance compatible with known phenomenological and experimental
upper bounds [11, 12, 13]. These are the same starting assumptions of all similar
treatments [14, 15, 16]. I next depart from them by assuming that during nucle-
osynthesis, most of the monopoles and anti-monopoles bind in pairs, due to the
strong magnetic forces, to form monopolium. This scheme is realized physically by
imposing that: i) the capture radius of the poles, rcapture, and the mean free path
for charge particle collision in the hot plasma, λ, satisfy,

rcapture << λ; (2)

ii) a consistent monopolium formation scenario. Let me discuss in this section the
first assumption which leads to the determination of some of the monopole and
monopolium properties and leave for the next section the discussion on monopolium
formation.
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The capture radius, rcapture, is given by [2, 9],

rcapture ∼
g2

kT
. (3)

The mean free path λ is given by

λ ∼
1

σρch
, (4)

where σ is the cross section for the scattering of the monopole with charged particles
[2, 9]

σ ∼ 2
mc2

kT
nanobarns , (5)

ρch is the density of charged particles and m is the mass of the monopole.
I describe the monopoles from the monopolium formation era up to the present

days by point like Dirac monopoles. It is reasonable to do so since the discussion is
largely independent of the detailed structure of the monopoles because it depends
only on global properties, i.e., magnetic charge, mass and cosmological abundances.

In the rest of the paper I proceed to show that my assumptions lead to a picture
which is consistent with present data.

I describe monopolium as a Bohr atom, with reduced mass m/2 and a strong
magnetic, instead of a weak electric, coupling. Its binding energy is

E ∼

(

1

8α

)2 mc2

n2
, (6)

where α = 1
137

is the fine structure constant of QED and n the principal quantum
number. This equation and those that follow are to be considered only for large
principal quantum number (n > 50). For low values of n the annihilation mechanism
becomes dominant.

The approximate size of the system is given by

r ∼ < r >n,0 ∼
12h̄

mc
α n2 . (7)

To calculate the mean life I distinguish two processes, i) the cascading process,
dominated by dipole radiation [14], which I apply as

τdipole ∼
2m2ca3

n

h̄2 ∼ 2 (12)3 h̄

mc2
α5 n6

i , (8)

where ni is the principal quantum number associated with the initial bound state
which will be very large ni ∼ 109; ii) the annihilation process, which due to the
magnitude of g is highly non perturbative and which I next estimate. Looking at
the two photon decay process I see [17, 18]
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τannihilation << τ2γ ∼ 2 (4)5 h̄

mc2
α5 n3

f , (9)

where nf is the largest principal quantum number associated with a state at which
annihilation is still efficient. Since the monopole and anti-monopole only annihilate
efficiently when there is a considerable probability of being on top of each other and
this only happens for n < 50, nf << ni. Thus the annihilation mean life is small
compared with the cascading time and can be disregarded in the time scale analysis.

The previous equations can be summarized in terms of the binding energy of the
initial bound state and the mean life as,

Eb(eV ) rb(Å) ∼ 5. 104eV Å (10)

ni ∼ 9. 104[Eb(eV )1/4τ(sec)1/4] (11)

mc2(eV ) ∼ 3. 107[Eb(eV )3/2τ(sec)1/2] eV . (12)

Here Eb and rb are respectively the binding energy and the radius of the initial
bound state.

Using Eqs. (2) through (12) my scenario can be constructed. I assume that cap-
ture takes place for a binding energy slightly higher, to avoid thermal dissociation,
than kT = 1 MeV,

Eb > 1 MeV . (13)

This temperature is not related to the scale for production of monopoles but to that
at which monopolium, the bound state, is formed from already existing monopoles
[14].
These equations and the temperature scale of the proposed scenario show that mo-
nopolium is a very tightly bound system

rb < 0.05Å < rcapture ∼ 0.07Å . (14)

Let me now proceed to the calculation of the mean free path,

λ ∼
1

σρch

.

The cross section at kT = 1 MeV is given by

σ ∼ 2. 10−23 mc2(eV)

eV
Å

2
.

From Eq.(12) I have

mc2(eV)

eV
= 1.5 1025 η

1

2 ,
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where η = τ/τU , τ being the lifetime of the monopolium and τU the age of the
universe, which we have taken approximately to be τU = 1/H0 ∼ 3. 1017 sec.

Thus the cross section becomes

σ ∼ 3. 102 η
1

2 Å
2

(15)

I now calculate the density of charged particles. The density of photons is given
by [10]

ργ =
2ζ(3)(kT )3

π2(h̄c)3
,

while the ratio of the densities of nucleons to photons is given in nucleosynthesis
by ρN/ργ ∼ 4. − 7. 10−10. At kT = 1 MeV , we have mostly nucleons and since
ρn/ρp ∼ exp (−1.293/kT ), we obtain

ρp

ργ

∼ 1. − 3. 10−10

Due to neutrality for each proton there is an electron, thus

ρch ∼ 2.5 1022 particles/cm3. (16)

Thus putting together Eq.(15) and Eq.(16) I obtain

λ ∼ 0.1η
1

2 Å . (17)

In Fig. 1 I show the ratio of λ over rcapture as a function of the life of monopolium
in units of the age of the universe. I also plot the ratio of the average distance
between charges to rcapture. The plot shows that for lifetimes above 0.1 τU the mean
free path is smaller than the mean distance between charges and the capture radius
becomes of the order of magnitude of the mean free path. Thus for monopolium
lifetimes of the order of the age of the universe the conventional scenarios would take
place [14, 15, 16]. However, for τ/τU < 0.1 the condition Eq.(2) will be satisfied and
a completely different scenario occurs whose existence has been a matter of debate
since the idea was first proposed [19].

In order to clarify the issue let me recall once more the work of Blanco-Pillado
and Olum [16]. They pointed out that in the standard scenario the drag force felt
by the monopole in the plasma reduces dramatically the mean life of the state [16]
and therefore relic monopolia do not influence present day observations. This is so
if we are to the left of τ/τU > 0.1. However, their phenomenon is not active in the
scenario presented here, i.e., when τ/τU < 0.1 for obvious reasons. As shown in
ref.[21] the drag force depends on the two limits of an impact parameter integral,

Fdrag ∼ coefficient
∫ bmax

bmin

db/b ,
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Figure 1: The ratio λ/rcapture is presented as a function of monopolium lifetime τ in units
of age of the universe τU at kT = 1 MeV. Also the ratio of the average distance between
charge particles < dch > /rcapture at the same temperature is shown.

where naturally the force only arises if bmin < bmax. The small limit has to do with
the monopole interaction with the plasma, in our case bmin ∼ λ. The large limit
depends on the interaction of the monopoles inside the monopolium with the charge
particles and can not extend beyond rcapture, bmax ∼ rcapture. Due to our assumption
Eq.(2), as seen in Fig. 1, rcapture < λ in the region of interest and therefore in
our scenario there is no drag force. It is interesting to note that the solution that
Blanco-Pillado and Olum find to solve the impasse, i.e. monopoles attached by
strings [16], reproduce with a complex dynamics the same scenario for monopolium
I obtain, i.e. non-relativistic monopoles very closely tight together so that the light
charges do not interact with them and they only loose energy by radiation.

3 Monopolium formation

In the previous section I have shown that the proposed scenario might be realized
if η << 1 since under these conditions primordial monopolium might be observed
today. I here study the other ingredient of the scheme, a plausible scenario for the
formation rate of monopolium which gives consistency to the scheme. The scheme is
based on three time (temperature) scales. The first time scale is the formation scale
of monopoles, ti, whose corresponding temperature is Ti. This temperature is very
high, consistent with the large mass of the monopoles determined in the previous
section. The second time scale ends at the beginning of the monopolium bound
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state stability period, i.e. when the temperature is lower then the minimum binding
energy, i.e. Tf ∼ 1 MeV . Finally the third time scale is today, i.e. Ttoday ∼ 2.7 0K.

In this section I will study the formation rate of monopolium from the early
universe to the beginning of the stability period, i.e. from Ti to Tf . In the next
section I will study the decay process to find present day monopolium abundance,
i.e. from Tf to Ttoday.

Following Blanco-Pillado and Olum [16] one can write the evolution equation as

dΓ

dT
= −Aγ2(T )

(

1

T

)(9/10)

. (18)

In this equation Γ represents the comoving monopolium density, i.e. NMM̄/s, where
NMM̄ is the monopolium density and s the entropy density; γ is the monopole
comoving density, i.e. nM/s, where nM is the monopole density; T is the temperature
and A an softly temperature dependent quantity.

Let γ depend on temperature as

γ = BT δ, (19)

where B is a constant, a possibility contemplated in ref. [20]. The above equation
can be easily solved leading to

Γ(Ti) − Γ(Tf ) = −
A

2δ + 0.1

(

γ2(Ti) T 0.1
i − γ2(Tf) T 0.1

f

)

(20)

My fundamental hypothesis implies,

Γ(Ti) << Γ(Tf ),

γ(Ti) >> γ(Tf ).

Therefore,

Γ(Tf) ≈
A

2δ + 0.1
γ2(Ti) T 0.1

i . (21)

Dividing by γ(Tf ) I arrive at,

NMM̄(Tf )

nM(Tf )
≈

A B

2δ + 0.1
T 0.1

i

(

T 2
i

Tf

)δ

. (22)

Thus if δ > 0, since Ti >> Tf , the wishful scenario is realized. Note that this
behavior corresponds to p > 1 in ref. [20].
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4 Monopolium abundance

I proceed in here to investigate phenomenological consistencies of the proposed pic-
ture. Let us calculate the present abundance of monopolium taking as input the
abundance during the formation period. By doing so my aim is to find consistency
between the proposed scenario and the observation.

The equation governing the density of monopolia ρ taking into account the ex-
pansion of the universe is given by

ρ̇(t) = −
1

τ
ρ(t) − 3

Ṙ

R
ρ(t) , (23)

where R is the scale factor of the universe and Ȧ denotes dA/dt. If the expansion is
adiabatic (RT ∼ constant) and the universe is radiation dominated, the expansion
rate is given by

Ṙ

R
= −

Ṫ

T
=

T 2

Λ
. (24)

Here, T is the temperature of the universe and Λ a quantity related to the Planck
mass and the effective degrees of freedom [20]. The temperature equation in Eq.(24)
can be integrated to give

t =
Λ

2T 2
(25)

establishing the relation between evolution time and temperature. Using Eqs.(23),
(24) and (25) one obtains,

ρ̇(t) = −

(

1

τ
+

3

2

1

t

)

ρ(t) (26)

which can be easily integrated giving

ρ(t) = ρ(t0)
(

t0
t

)3/2

exp
(

−
t − t0

τ

)

. (27)

I now take this equation, which is the conventional equation for the decay of un
unstable system in an expanding universe [10], and adapt it to my interests, namely
I want to study the evolution of the number of monopolia between Tf and Ttoday.
Using that, in this case, t = ttoday = τU >> t0 = t(Tf ) ∼ 1 sec, and the relation
between time and temperature, Eq. (25), one can write

ρ(Ttoday) = ρ(Tf )

(

Ttoday

Tf

)3/2

exp
(

−
τU

τ

)

. (28)

In the present situation this equation reduces to

ρ(2.70K) = 1.25 10−29 ρ(kT = 1MeV) exp (−
1

η
) , (29)
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Figure 2: The density in a cm3 (log10) of monopolia (solid curve) and the number (log10)
of monopolia decays in a pc3 (dashed) today presented as a function of monopolium lifetime
τ in units of age of the Universe τU . The values by Hill [14] (dot) and Blanco-Pillado
and Olum [16](short dot) for the density of monopolia are used to extract the number of
decays.

where η = τ/τU .
The standard scenario for helium synthesis requires that the mass of the monopole

does not dominate the universe when kT = 1 MeV, this implies [20],

ρmonopole(kT = 1MeV) ≤ 1.3 1014

(

mc2 (eV)

eV

)−1

Å−3 .

I assume that the density of monopoles is equal to the density of anti-monopoles
and since most of them are bound equal to the density of monopolia, thus one gets
from Eq.(29) for the density of monopolia today,

ρ(2.70K) ∼ 1.6 10−15

(

mc2 (eV)

eV

)−1

Å−3 ,

which using Eq. (12) leads to

ρ(2.70K) ∼ 10−16
exp (−1

η
)

η3/2
cm−3 . (30)

This equation establishes a relation between the parameter characterizing the various
scenarios η and the observation.

Let me calculate the number of decays per year in a given volume of the universe
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Figure 3: The density in a cm3 (log10) of monopolia (solid curve) and the number in a
pc3 (log10) of monopolia decays (dashed) today presented as a function of the monopolium
lifetime τ in units of age of the Universe τU . The limits of the values for the density of
monopolia from the values of Bhattarchee and Sigl [15], 1 < ΩMh2 < 108 are plotted and
the corresponding number of decays shown.

ν = N
(

1 − exp
(

−
1

τ

))

∼
N

τ(years)
, (31)

where I have used the approximation that τ(years) >> 1 year. Note also that
the temperature factor in Eq.(23) drops out because it is very close to 1. N is the
number of monopolia in the given volume. Let me choose to calculate the observation
a volume of 1 (pc)3, then I get for the number of events in one year

ν ∼ 2.7 1029
exp (−1

η
)

η3/2
. (32)

Monopolium has been associated with Ultra High Energy Cosmic Rays (UHECR)[22,
23] in various schemes [14, 15, 16]. This association leads to a phenomenological de-
termination of its abundance. I look for consistency between the phenomenological
determined abundances and the monopolium mean life obtained in the calculation.

In Fig. (2) we show the results of our calculation as a function of τ in units of
τU and I introduce two numerical values for the density as obtained by

i) Hill [14]: ρ(2.70K) ∼ 10−39cm−3

ii) Blanco-Pillado and Olum [16] : ρ(2.70K) ∼ 10−32cm−3
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In Fig.(3) I compare my results to bands, characterized by 1 < ΩMh2 < 108,
obtained from the density equation of Bhattacharjee and Sigl [15].

The above study shows that proposed values for the density of monopolia are
consistent with η ∼ 0.02 and therefore with

λ ∼ 10 rcapture

If we look at monopolia decays we realize that their number is

106 < ν < 1018 decays/pc3

which is large compared with those obtained in other models.
Please note that all the estimates are based on the assumption that all UHECRs

are due to monopolia. If they are additional mechanisms for UHECRs formation
or if the number of observations [22, 23] diminish, the density of monopolia today
would decrease and the proposed scenario would become more natural. However,
this would also imply that it would be harder to confirm experimentally.

I conclude from the above analysis that at present most monopoles in the inter-
galactic vacuum are bound in deep bound states n ∼ 50 close to the annihilation
levels and therefore their binding energy is at the level of

Eb ∼ 1014 GeV , (33)

supporting Dirac’s conjecture for the non observability of monopoles.
Moreover, by looking back at Eq.(12) one sees that

mc2
∼ 2. 1015 GeV, (34)

which is very large and comparable to the values arising from GUT models.

5 Monopolium detection

Ideally we would like to be able to produce the monopolium in our laboratory. Its
mass M c2 ∼ 1015 GeV makes laboratory production impossible. Could we capture
a monopolium in our laboratory and measure its properties? It soon will become
clear this is an impossible task. Monopolium is a sterile particle under laboratory
conditions.

The present day background monopolium density is small.

ρ(2.70K) < 10−32 cm−3.

At present monopolia are mostly thermal and therefore their velocity is of the order

v ∼ 10−6 m/sec.
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Thus the average number of particles in our detector would be

NM ∼ ρ v t A < 10−19 (t/years) (A/Km2),

where A is the area of the detector and t the time of exposure. Thus the chances of
having one localized event are insignificant.

Let me assume that a monopolium enters by chance a detector, what could we
observe? Due to the dual behavior of the Maxwell equations in the presence of
monopoles [24], monopolium has an electric dipole moment

~p ∼
g

2 m c
~L

and a magnetic dipole moment

~µ ∼ 2gc < ~r >l 6=0

In the presence of an electric or magnetic field they tend to orient against the field
and become effectively

p ∼
g

2 m c
ml

and

µ ∼ 2
h̄2 c

m g
(3n2

− l (l + 1)),

where n, l, ml are respectively the principal, the orbital and the magnetic quantum
numbers. Substituting the values of the couplings and masses I get

p ∼ 10−29ml (e-charge) meter

and
µ ∼ 10−22 (3n2

− l (l + 1)) eV/Tesla

Note that, the maximum achievable electric and magnetic field gradients today , 50
MV/meter2 and 5 Tesla/meter, produce in background monopolia, with n ∼ l ∼

ml ∼ 100, insignificantly small energies and forces. It is easy to calculate, that
to stop them, moving at thermal velocities, we would need distances and times of
universe scales.

Thus I conclude, that from the point of view of traditional laboratory experi-
ments, monopolia are sterile and we have to center our attention in astrophysical
observations.

Let me now turn to astrophysical observations. Let me distinguish two periods:
the formation period and the immediate past.

During the formation period n ∼ 109. Cascading for large values of n leads to
Larmor type emission

12



λ ∼ 16α2 h

mc
n3

n ∼ 32
eV

mc2
n3 Å , (35)

thus the wave length during the nucleosynthesis period will be

λ ∼ milimeter.

Therefore, there should be an isotropic background radio frequencies as a remnant
of that period.

In the immediate past even until today, most monopolia are close to the annihi-
lating stage, i.e., n < 100. The Larmor formula is still approximately applicable,
thus

λ < 10−15 Å,

which implies that the emitted photons will have a huge energy.

hν ∼ 1010 GeV

This energetic photons will occur at the level of 1015 − 1020 per pc3 and therefore
should be seen. However, their distribution will not be isotropic. The core of galax-
ies, and of clusters of galaxies, provide an environment of high electric and magnetic
field gradients, thus the small electric and magnetic dipoles of monopolium will
change their distribution in these environments and create geographic anisotropies.

Moreover, these regions also provide an environment with high energy and high
density where monopolia might be excited to the point of break up. Thus, also
the low frequency spectrum will acquire geographical distributions which become
anisotropies in the spectrum over the isotropic spectrum remnant of the formation
era. Note that very few monopolia can be formed after electron-positron annihilation
due to the lack of remnant monopoles and the absence of monopole pair formation
due to their huge masses, except in these very energetic environments, and this
phenomenon will not affect greatly the calculated density of monopolia [16].

Finally, monopolium can annihilate into UHECRs, at the level of millions per year
and per cubic parsec, under present experimental expectations [22, 23] provided it is
the only mechanism, depositing a huge amount of energy, E > 1015 GeV, in a small
region of space-time leading to what Hill [14] calls a cataclysmic scenario, whose
details depend on the microscopic theory of monopole formation.

6 Conclusions

The possibility of having monopoles in nature is appealing. I have presented a
scenario for the universe in which relic monopoles still exist today however, not as
free particles, but deeply bound in monopolium states. The crucial ingredients of my
proposal are: i) that, in the early universe, the mean free path of monopoles is much
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larger than their capture radius, and therefore they bind so tightly in monopolium
that they barely interact with the surrounding plasma, surviving in this way the
effect of the drag force and only emitting energy by radiation until their annihilation;
ii) the evolution of the monopole density is governed by a strongly temperature
dependent function leading to a large production of monopolia. Few monopolia are
formed in the second period since almost no free monopoles exist, because they are
to produce at these low temperatures due to their large mass and strong binding
within monopolia, to drive the formation rate. The initial density of monopolia and
their lifetime might explain UHECRs by construction.

Three distinctive quantities determine the consistency of the various requirements
in the scheme: the monopole evolution parameter δ; the temperature of monopo-
lium formation (kT ∼ 1 MeV); and the mean life of the state (τ ∼ 108 years).
The outcome is monopolium, a neutral particle protected from the interaction with
the medium in a strongly bound state, which radiates copiously until ultimately
annihilates in a cataclysmic scenario being a possible source UHECRs.

The detection of monopolia, and therefore the existence of monopoles, presents
interesting signatures associated with the monopolium spectrum, i.e., a diffuse
isotropic radio frequency background remnant of its formation period with geo-
graphical anisotropies produced by more recent activities, and a high frequency mo-
nopolium spectrum associated with the last period of its lifetime, which manifests
itself by anisotropically distributed high energy gamma rays.
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