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Abstract

We develop a formalism to evaluate the Sivers function. The approach is well suited for calcula-

tions which use constituent quark models to describe the structure of the nucleon. A non-relativistic

reduction of the scheme is performed and applied to the Isgur-Karl model of hadron structure. The

results obtained are consistent with a sizable Sivers effect and the signs for the u and d flavor con-

tributions turn out to be opposite. This pattern is in agreement with the one found analyzing, in

the same model, the impact parameter dependent generalized parton distributions. The Burkardt

Sum Rule turns out to be fulfilled to a large extent. We estimate the QCD evolution of our results

from the momentum scale of the model to the experimental one and obtain reasonable agreement

with the available data.
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I. INTRODUCTION

The partonic structure of transversely polarized nucleons is one of their less known fea-

tures (for a review, see, e.g., Ref. [1]). Nevertheless, experiments for its determination are

progressing very fast and the relevant experimental effort has motivated a strong theoretical

activity (for recent developments, see Ref. [2]). The present work aims to contribute to this

effort by using a successful theoretical scenario for the calculation of the Sivers function.

Semi-inclusive deep inelastic scattering (SIDIS), i.e. the process A(e, e′h)X, with the

detection in the final state of a produced hadron h in coincidence with the scattered electron

e′, is one of the proposed processes to access the parton distributions (PDs) of transversely

polarized hadrons. For several years it has been known that SIDIS off a transversely polarized

target shows azimuthal asymmetries, the so called “single spin asymmetries” (SSAs) [3]. As

a matter of fact, it is predicted that the number of produced hadrons in a given direction

or in the opposite one, with respect to the reaction plane, depends on the orientation of the

transverse spin of a polarized target with respect to the direction of the unpolarized beam.

It can be shown that the SSA in SIDIS off transverse polarized targets is essentially due

to two different physical mechanisms, whose contributions can be technically distinguished

[4, 5, 6, 7]. One of them is the Collins mechanism, due to parton final state interactions in

the production of a hadron by a transversely polarized quark [3], and will not be discussed

here. The other is the Sivers mechanism [8], producing a term in the SSA which is given by

the product of the unpolarized fragmentation function with the Sivers PD, describing the

number density of unpolarized quarks in a transversely polarized target. The Sivers function

is a Transverse Momentum Dependent (TMD) PD; it is a time-reversal odd object [1] and

for this reason, for several years, it was believed to vanish due to time reversal invariance.

However, this argument was invalidated by a calculation in a spectator model [9], following

the observation of the existence of leading-twist Final State Interactions (FSI) [10]. The

current wisdom is that a non-vanishing Sivers function is generated by the gauge link in the

definition of TMD parton distributions [11, 12, 13], whose contribution does not vanish in

the light-cone gauge, as happens for the standard PD functions. For the same reason it is

difficult to relate the Sivers Function to the target helicity-flip, impact parameter dependent

(IPD), generalized parton distribution (GPD) E. Although simple relations between the two

quantities are found in models [14, 15], a clear model independent formal relation is still to
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be proven, as shown in Ref. [16].

Recently, the first data of SIDIS off transversely polarized targets have been published,

for the proton [17] and the deuteron [18]. It has been found that, while the Sivers effect

is sizable for the proton, it becomes negligible for the deuteron, so that apparently the

neutron contribution cancels the proton one, showing a strong flavor dependence of the

mechanism. Experiments on transversely polarized 3He target, aimed at extracting the

neutron information, addressed in [19], are being performed at JLab [20, 21]. A realistic

calculation of nuclear effects for a proper extraction of the neutron information has also been

performed [22]. Different parameterizations of the available SIDIS data have been published

[23, 24, 25], still with large uncertainties. Further analyses are in progress (see, i.e. [26]).

New data, which will reduce the uncertainties on the extracted Sivers function and will help

discriminate between different theoretical predictions, will be available soon.

This experimental scenario motivates the formulation of theoretical estimates. One would

like to perform a calculation from first principles in QCD, however this is not yet possible.

Lacking this possibility it becomes relevant to perform model calculations of the Sivers

function. Several estimates exist, in a quark-diquark model [9, 12, 27]; in the MIT bag

model, in its simplest version [28] and introducing an instanton contribution [29]; in a light-

cone model [30]; in a nuclear framework, relevant to establish the manifestation of the Sivers

function in proton-proton collisions [31].

To our knowledge, no calculations of the Sivers function have been performed in a Con-

stituent Quark Model (CQM), i.e. a model described in terms of constituent quarks and

whose properties have been fixed from hadronic observables. The CQMs have a long history

of successful predictions in studies of the hadronic spectrum and the low energy electroweak

structure of hadrons. Ascribing a scale to the model calculations [32, 33] and using QCD

evolution [34, 35] one can evolve the leading twist component of the observable calculated

in this low energy scale to the high momentum one where DIS experiments are carried

out. Such procedure has proven successful in describing the gross features of PDs (see, e.g.,

[36, 37, 38]) and GPDs (see, e.g. [39, 40]), by using different CQMs. Similar expectations

motivate the present study of the Sivers function.

In here we propose a formalism to calculate the valence quark contribution to the Sivers

function from any CQM. Thereafter, we choose the Isgur-Karl model [41] to perform a

detailed calculation in order to describe the performance of the approach. A difference
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in the calculation of TMDs, with respect to calculations of PDs and GPDs, is that the

leading twist contribution to the one-gluon-exchange (OGE) FSI has to be evaluated. This

is done through a non-relativistic (NR) reduction of the relevant operator, according to the

philosophy of constituent quark models [42].

The paper is structured as follows. In the second section, the main quantities of interest

are introduced. In the following section, the formalism for the calculation of the Sivers

function in a CQM is developed. The Isgur–Karl model is presented in the fourth section,

together with the numerical results of the calculation and their discussion. The following

section is devoted to the QCD evolution of the model results and to the comparison with

the available data. In the last section we draw conclusions from our study.

II. THE THEORETICAL FRAMEWORK

The Sivers function, f⊥Q
1T (x, kT ), the quantity of interest here, is formally defined, ac-

cording to the Trento convention [43, 44], for the quark of flavor Q, through the following

expression1:

ΦQ(x,~kT , S) = fQ
1 (x, kT ) − ǫijT kT iSTj

M
f⊥Q

1T (x, kT )

=
1

2

∫

dξ−d2~ξT
(2π)3

e−i(xξ−P+−~ξT ·~kT )〈P, S|ÔQ|P, S〉 , (1)

where ~ST is the transverse spin of the target hadron, the normalization of the covariant spin

vector is S2 = −1, M is the target mass and fQ
1 (x, kT ) is the kT−dependent unpolarized

PD. The operator ÔQ is defined as follows [12, 13]:

ÔQ = ψ̄Q(0, ξ−, ~ξT )L†
~ξT

(∞, ξ−)γ+L0(∞, 0)ψQ(0, 0, 0) , (2)

where ψQ(ξ) is the quark field and the gauge link is:

L~ξT
(∞, ξ−) = P exp

(

−ig
∫ ∞

ξ−
A+(η−, ~ξT )dη−

)

, (3)

where g is the strong coupling constant. One should notice that this definition for the gauge

link holds in covariant (non singular) gauges, and in SIDIS processes, since the definition

of the Sivers function is process dependent. As observed in Ref. [9] for the first time, and

1 Here and in the following, a± = (a0 ± a3)/
√

2 and kT = |~kT |.
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later confirmed using factorization theorems in [45, 46], the gauge link, which represents

the exchange of gluons, provides a scaling contribution which makes the Sivers function non

vanishing in the Bjorken limit.

Taking the proton polarized along the y axis one has therefore:

f⊥Q
1T (x, kT ) = − M

4kx

∫

dξ−d2~ξT
(2π)3

e−i(xξ−P+−~ξT ·~kT )〈ÔQ〉 , (4)

where the following matrix element has been defined:

〈ÔQ〉 = { 〈PSy = 1|ÔQ|PSy = 1〉 − 〈PSy = −1|ÔQ|PSy = −1〉 } . (5)

Considering a helicity basis for the target, the Sivers function Eq. (4) can be written:

f⊥Q
1T (x, kT ) = ℑ







M

2kx

∫

dξ−d2~ξT
(2π)3

e−i(xξ−P+−~ξT ·~kT )〈PSz = 1|ÔQ|PSz = −1〉






. (6)

This equation, finite in the limit of kx → 0, will be used to evaluate the Sivers function,

using a CQM to describe the proton. We will now proceed to expand the gauge link, Eq.

(3), in the coupling constant, g :

P exp
(

−ig
∫ ∞

ξ−
A+(η−, ~ξT )dη−

)

= 1 − ig
∫ ∞

ξ−
A+(η−, ~ξT )dη− + ... (7)

If the gauge link were not taken into account, it is clear from Eqs. (2)-(6) that the matrix

element Eq. (5) would be zero and the Sivers function would vanish. For this reason, the

first term on the right-hand side of Eq. (7) does not contribute to the Sivers function.

A few theoretical predictions have been formulated for the Sivers function. Let us recall

two of them.

The first one, based on rather general principles, is the so called Burkardt Sum Rule [47],

stating that the total average transverse momentum of the partons in a hadron, 〈~kT 〉, which

can be defined in terms of the sum of the first moments of the Sivers function for all the

partons in the target, has to vanish.

The second one is the conjecture according to which the Sivers function could be related to

the formalism of the IPD GPDs [48], although, as it has been discussed in the Introduction,

simple relations between the two quantities are found only in models [14, 15] and a clear

model independent formal relation is still to be proven [16]. The IPD GPDs are the Fourier

transform of the GPDs with respect to the transverse momentum transfer ~∆T , at vanishing
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skewness ξ. In the case of the helicity independent GPD, HQ(x, ξ,∆2), one has:

HQ(x, ξ = 0, b2) =
∫

d2~∆T

(2π)2
e−i~b·~∆THQ(x, ξ = 0,∆2) , (8)

and analogous definitions hold for the helicity independent, target spin-flip GPD EQ(x, ξ,∆2)

and for the other GPDs. It has been shown that these quantities have a probabilistic

interpretation, describing the location of the quarks of flavor Q in the transverse plane

and providing us with a three dimensional picture of the proton [48]. In Ref. [49, 50]

(see also Ref. [51] for a recent review on this subject), it has also been shown that, in a

transversely polarized proton, for example along the y direction, the quantity describing the

distribution of the quarks of flavor Q, with longitudinal momentum x, in the transverse

plane, independently of their helicity, is

ρ̃Q(x, ξ = 0,~b) =
1

2
HQ(x, 0, b2) − bxSy

2M

d

db2
EQ(x, 0, b2) , (9)

i.e., the transverse polarization of the proton produces a shift in the transverse location of

the quarks. As explained before, this effect in the partonic structure of transversely polarized

protons has been related, in peculiar models, in a qualitative way, to a nonvanishing Sivers

effect [49, 50].

III. THE SIVERS FUNCTION IN CONSTITUENT QUARK MODELS

The constituent quark, one of the most fruitful concepts in 20th century physics, was

proposed to explain the structure of the large number of baryons being discovered in the

sixties [52]. The constituent quark concept was incorporated into a QCD scheme by taking

into account gluon exchanges [42]. The chosen description was a potential model in order

to establish an immediate connection with all previous work.

The constituent quark scheme has guided some of the most successful parameterizations

of parton distributions [53]. Besides, the philosophy that has guided these parameteriza-

tions is precisely the one used to establish the link between constituent models and parton

distributions. More specifically, model calculations are ascribed to a scale determined by

their partonic content [32, 33]. In most models that scale is characterized by the existence

of valence quarks only. From that low scale one uses DGLAP evolution to describe the

partonic regime [38].
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The models based on constituent quarks (CQMs) have produced beautiful results in the

description of PDs and GPDs, leading to a phenomenological understanding of them in

terms of momentum densities and wave functions [36, 37, 38, 39, 40]. This success in the

description of many parton distributions makes us confident that the application of the

approach to the calculation of the Sivers function will also serve to guide the experimental

observations and help the physical interpretation of this observable.

Let us specify in detail the scheme in which we are going to develop our formalism for the

Sivers function. We shall assume that the nucleon at a certain low energy scale is made up

of valence quarks only. These valence quarks are held together by a confining interaction; in

addition, there is a residual interaction, governed by the structure of perturbative QCD, e.g.

the One Gluon Exchange Interaction. The strong confining interaction maintains the quarks

together, while the residual one governs the splittings within the same flavor multiplet. Any

scheme with these hypothesis is a constituent quark model framework.

This scheme has never to be understood in a trivial perturbative sense. The parameters

absorb much of the non perturbative features of the dynamics and this relation between the

parameters and some chosen observables makes the scheme predictive. If one goes to higher

order in the perturbative expansion, one needs to find new parameters from the chosen

observables. Thereafter, the predictions do not change much with respect to the lowest

order result [54]. Certainly we are dealing with models and not with QCD and therefore one

should not expect precision. Nevertheless, the scheme has been so successful that particles

which do not fit approximately under it are called exotics, hybrids or other peculiar names.

Using this scheme we evaluate a formula for the Sivers function, defined according to

Eq. (6), valid for any CQM. Let us proceed to the analysis having in mind Fig. 1. To the

first non vanishing order giving a contribution to the asymmetry, the Sivers function for the

flavor Q is obtained as follows:

f⊥Q
1T (x, kT ) = ℑ







M

2kx

∫

dξ−d2~ξT
(2π)3

e−i(xξ−P+−~ξT ·~kT )〈ÔQ〉






, (10)

where

〈ÔQ〉 = 〈PSz = 1|ψ̄Qi(0, ξ
−, ~ξT )(ig)

{

Ôa(0, ξ
−, ~ξT )T a

ij

}

× γ+ψQj(0)|PSz = −1〉 + h.c. , (11)
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where T a
ij = λa

ij/2 with λa
ij being a Gell-Mann matrix, and

Ôa(0, ξ
−, ~ξT ) =

∫ ∞

ξ−
A+

a (0, η−, ~ξT )dη−

= eiP̂+ξ−−iP̂T ·~ξT Ôa(0)e−iP̂+ξ−+iP̂T ·~ξT . (12)

In the above equations, use is made of light-cone states2, defined as |p̃〉 = |p+, ~pT 〉, with

p− = (m2 + p2
T )/(2p+). The light-cone states are normalized as follows:

〈p̃′r′|p̃r〉 = (2π)32p+δ(p′+ − p+)δ(~p′T − ~pT )δrr′ , (13)

where the label r represents a set of discrete quantum numbers. The creation and annihila-

tion operators of the quark fields are normalized accordingly:

{b†l (p̃), bl′(p̃′)} = (2π)32p+δ(p′+ − p+)δ(~p′T − ~pT )δll′ , (14)

where the set l = {m, c,F} includes the helicity, color and flavor quantum numbers of the

quark, respectively.

Using the approximation of expanding Eq. (11) in terms of free quark fields [39], one gets

f⊥Q
1T (x, kT ) = ℑ







M

2kx

∫ dξ−d2~ξT
(2π)3

e−i(xξ−P+−~ξT ·~kT )〈PrSz = 1|

×
∫

dk̃3

∑

m3

bQ†
m3i(k̃3)e

ik+

3
ξ−−i~k3T ·~ξT ūm3

(~k3)

× (ig)
{

Ôa(0, ξ
−, ~ξT )T a

ij

}

γ+

×
∑

m′

3

∫

dk̃′3 b
Q
m′

3
j(k̃

′
3)um′

3
(~k′3)|PrSz = −1〉 + h.c.







, (15)

where dk̃i = dk+
i d
~kT i/(2k

+
i (2π)3). Inserting now proper complete sets of intermediate free

one quark states, the previous equation becomes

f⊥Q
1T (x, kT ) = ℑ







M

2kx

∫

dξ−d2~ξT
(2π)3

e−i(xξ−P+−~ξT ·~kT )〈PrSz = 1|

×
∫

dk̃3

∑

m3

bQ†
m3i(k̃3)e

ik+

3
ξ−−i~k3T ·~ξT ūm3

(~k3)

× (ig)
∑

ln,l1

∫

dk̃n

∫

dk̃1|k̃1l1〉|k̃nln〉〈k̃nln|〈k̃1l1|

2 Here and in the following, x̃ = (x+, x−, ~xT ) is a four vector in light-cone coordinates, while obviously

~x = (x1, x2, x3) and ~xT = (x1, x2).

8



×
{

Ôa(0, ξ
−, ~ξT )T a

ij

}

×
∑

l′n,l′
1

∫

dk̃′n

∫

dk̃′1|k̃′1l′1〉|k̃′nl′n〉〈k̃′nl′n|〈k̃′1l′1| γ+

×
∑

m′

3

∫

dk̃′3 b
Q
m′

3
j(k̃

′
3)um′

3
(~k′3)|PrSz = −1〉 + h.c.







. (16)

If there is no further interaction within the recoiling system, one has:

〈k̃nln|k̃′nl′n〉 = (2π)32k+
n δ(k

′+
n − k+

n )δ(~kn′ T − ~kn T )δln,l′n , (17)

〈P r Sz = 1 | {bQ†
m3i(k̃3)|k̃1l1〉|k̃nln〉}

= (2π)32k+
n δ(P

+ − k+
1 − k+

3 − k+
n )δ(~PT − ~k1 T − ~k3T − ~kn T )δ(Sz ,r,l1,l3,ln)

× 〈P r Sz = 1| k̃3{m3, i,Q}; k̃1{m1, c1,F1}; P̃ − k̃3 − k̃1, ln〉

= (2π)32k+
n δ(P

+ − k+
1 − k+

3 − k+
n )δ(~PT − ~k1 T − ~k3T − ~kn T )δ(Sz ,r,l1,l3,ln)

× Ψ†
r Sz=1

(

k̃3{m3, i,Q}; k̃1{m1, c1,F1}; P̃ − k̃3 − k̃1, ln
)

. (18)

In the last equation, the definition of the intrinsic proton wave function, Ψ, in momentum

space3, has been recovered. In the same equation, the terms δ(Sz ,r,...) are showing that all

the discrete quantum numbers of the quarks have to be properly combined to recover those

of the parent proton. In order to obtain a workable expression for the Sivers function given

by Eq. (16), other three relations have to be used. One is written using Eq. (12) and

translational invariance:

〈k̃1l1|
{

Ôa(0, ξ
−, ~ξT )

}

|k̃′1l′1〉 = eik+

1
ξ−−i~k1T ·~ξT 〈k̃1l1|

{

Ôa(0)
}

|k̃′1l′1〉e−ik′+

1
ξ−+i~k′

1T
·~ξT . (19)

Another one is the identity [13]:

Ôa(0) =
∫ ∞

0
A+

a (η−, 0T )dη− = −
∫

d4q

(2π)4

i

q+ − iǫ
A+

a (q) . (20)

The last one is obtained by evaluating the matrix element of the perturbative free gluon

operator appearing in Eq. (19). Assuming, as an approximation, that this operator is

time-independent, one gets, in the Landau gauge:

〈k̃1l1|A+
a (q)|k̃′1l′1〉 =

g

q2
T a

c1c′
1
ūm1

(~k1)γ
+um′

1
(~k′1)δFF ′(2π)δ(q0)

× (2π)32k+
1 δ(k

+
1 − k′+1 − q+)δ(~k1T − ~k′1 T − ~q) . (21)

3 In the class of models to be later used, the separation of the center of mass and intrinsic motion is always

possible.
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Substituting in Eq. (16) the identity:

1

q+ − iǫ
− 1

q+ + iǫ
= i(2π)δ(q+) , (22)

together with Eqs. (17) – (21), one is left with the following expression for the Sivers

function:

f⊥Q
1T (x, kT ) = ℑ

{

−ig2 M

2kx

∫

dk̃1dk̃3
d4q

(2π)3
δ(q+)

× δ(k+
3 + q+ − xP+)δ(~k3T + ~qT − ~kT )(2π)δ(q0)

×
∑

F1,m1,c1,m′

1
,c′

1
,m3,i,m′

3
,j

δ(Sz ,r,m′

3
,m′

1
,ln,m3,m1,i,j,c1,c′1)

× Ψ†
r Sz=1

(

k̃3{m3, i,Q}; k̃1{m1, c1,F1}; P̃ − k̃3 − k̃1, ln
)

× T a
ijT

a
c1c′

1
V (~k1, ~k3, ~q)

× Ψr Sz=−1

(

k̃3 + q̃, {m′
3, j,Q}; k̃1 − q̃, {m′

1, c
′
1,F1}; P̃ − k̃3 − k̃1, ln

)}

,(23)

with the interaction determined by:

V (~k1, ~k3, ~q) =
1

q2
ūm3

(~k3)γ
+um′

3
(~k3 + ~q)ūm1

(~k1)γ
+um′

1
(~k1 − ~q) . (24)

Since the final aim is the evaluation of the Sivers function within a NR model, a NR

reduction of the interaction has to be performed. Using therefore the definitions of free

four-spinors in Eq. (24), performing a NR expansion leaving out terms of second order in

momentum, as it is commonly done in nuclear physics (cf. Ref. [55]), one gets the potential:

VNR(~k1, ~k3, ~q) =
1

2q2

[

(V0)m1,m′

1
,m3,m′

3
+ (VS)m1,m′

1
,m3,m′

3

]

, (25)

with:

V0(~k1, ~k3, ~q)m1,m′

1
,m3,m′

3
=



1 +
kz

3

m
+
~q · ~k3

4m2
+
kz

1

m
− ~q · ~k1

4m2
+O

(

k2
1

m2
,
k2

3

m2

)



 δm1,m′

1
δm3,m′

3
(26)

VS(~k1, ~k3, ~q)m1,m′

1
,m3,m′

3
= −i



1 +
kz

3

m
+
~q · ~k3

4m2



 δm3,m′

3

[~q × (~σ1)m1,m′

1
]z

2m

+i



1 +
kz

1

m
− ~q · ~k1

4m2



 δm1,m′

1

[~q × (~σ3)m3,m′

3
]z

2m

10



+iδm1,m′

1

(~σ3)m3,m′

3
· (~k3 × ~q)

4m2

−i
(~σ1)m1,m′

1
· (~k1 × ~q)

4m2
δm3,m′

3

+
[~q × (~σ1)m1,m′

1
]z(~σ3)m3,m′

3
· (~k3 × ~q)

8m3

+
(~σ1)m1,m′

1
· (~k1 × ~q)[~q × (~σ3)m3,m′

3
]z

8m3

+
[~q × (~σ1)m1,m′

1
]z[~q × (~σ3)m3,m′

3
]z

4m2
+O

(

k2
1

m2
,
k2

3

m2

)

. (27)

A few remarks are in order. First of all, the helicity conserving part, V0, Eq. (26), of the

global interaction Eq. (25), does not contribute to the Sivers function. One should notice

that, in an extreme NR limit, the Sivers function would turn out to be identically zero. In

our approach, it is precisely the interference of the small and large components in the four-

spinors of the free quark states which leads to a non-vanishing Sivers function, even from

the component with l = 0 of the target wave function. Effectively, these interference terms

in the interaction are the ones that, in other approaches, arise due to the wave function (see,

e.g., the MIT bag model calculation [28]).

The scheme is now completely set up and any CQM can be used to evaluate the Sivers

function. We next use properly normalized NR wave functions to transform Eq. (23) in:

f⊥Q
1T (x, kT ) = ℑ

{

−ig2M
2

kx

∫

d~k1d~k3
d2~qT
(2π)2

δ(k+
3 − xP+)δ(~k3T + ~qT − ~kT )MQ

}

, (28)

where

MQ =
∑

F1,m1,c1,m′

1
,c′

1
,m3,i,m′

3
,j

δ(Sz ,r,m′

3
,m′

1
,ln,m3,m1,i,j,c1,c′1)

× Ψ†
r Sz=1

(

~k3{m3, i,Q}; ~k1{m1, c1,F1}; ~P − ~k3 − ~k1, ln
)

× T a
ijT

a
c1c′

1
V (~k1, ~k3, ~q)

× Ψr Sz=−1

(

~k3 + ~q, {m′
3, j,Q}; ~k1 − ~q, {m′

1, c
′
1,F1}; ~P − ~k3 − ~k1, ln

)

. (29)

Each wave function Ψr Sz
describing a possible proton state can be factorized into a com-

pletely antisymmetric color wave function, χ, and a symmetric spin-flavor-momentum state,

Φsf , as follows:

Ψr Sz
= Φsf,Sz

(

~k3{m3,Q}; ~k1{m1,F1}; ~P − ~k3 − ~k1, {mn,Fn}
)

χ(i, c1, cn) . (30)
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The matrix element of the color operator in Eq. (29) can be therefore immediately evaluated:

∑

c1,c′
1
,i,j

χ†(i, c1, cn)T
a
ijT

a
c1c′

1
χ(j, c′1, cn) = −2

3
, (31)

which is the well-known result for the exchange of one gluon between quarks in a color

singlet 3-quark state [56]. Besides, as a consequence of the symmetry of the state Φsf , one

can assume that the interacting quark is the one labeled “3”, so that, after the evaluation

of the summation on the flavors F1, Mα can be written, for the u and d flavors, as follows:

Mu(d) =
(

−2

3

)

· 3 ·
∑

m1,m′

1
,m3,m′

3

Φ†
sf,Sz=1

(

~k3, m3;~k1, m1; ~P − ~k3 − ~k1, mn

)

× 1 ± τ3(3)

2
VNR(~k1, ~k3, ~q)

× Φsf,Sz=−1

(

~k3 + ~q,m′
3;
~k1 − ~q,m′

1;
~P − ~k3 − ~k1, mn

)

. (32)

Eq. (28), with Mu(d) given by Eq. (32), provides us with a suitable formula to evaluate the

Sivers function, once the spin-flavor wave function of the proton in momentum space, i.e.

the quantity Φsf , is available in a given constituent quark model.

IV. THE CALCULATION OF THE SIVERS FUNCTION IN THE ISGUR-KARL

MODEL

As an illustration, in this section we present the results of our approach in the CQM of

Isgur and Karl (IK) [41]. In this model the proton wave function is obtained in a OGE

potential added to a confining harmonic oscillator (H.O.); including contributions up to the

2h̄ω shell, the proton state is given by the following admixture of states

|N〉 = a|2S1/2〉S + b|2S ′
1/2〉S + c|2S1/2〉M + d|4D1/2〉M , (33)

where the spectroscopic notation |2S+1XJ〉t, with t = A,M, S being the symmetry type, has

been used. The coefficients were determined by spectroscopic properties to be a = 0.931,

b = −0.274, c = −0.233, d = −0.067 [56]. If a = 1 and b = c = d = 0, a simple H.O. model

is recovered. The parameter α2 = mω of the H.O potential is fixed to the value 1.23 fm−2,

in order to reproduce the slope of the proton charge form factor at zero momentum transfer

[56].
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The formal expressions of the wave functions appearing in Eq. (33) in the IK model can

be found in [56, 57], given in terms of the following sets of conjugated intrinsic coordinates

~R =
1√
3
(~r1 + ~r2 + ~r3) ↔ ~K =

1√
3
(~k1 + ~k2 + ~k3) ,

~ρ =
1√
2
(~r1 − ~r2) ↔ ~kρ =

1√
2
(~k1 − ~k2) ,

~λ =
1√
6
(~r1 + ~r2 − 2~r3) ↔ ~kλ =

1√
6
(~k1 + ~k2 − 2~k3) . (34)

There are many good reasons to use the IK model as a test of the developed formalism.

First of all, the IK is the typical CQM, succesful in reproducing the low-energy properties

of the nucleon, such as the spectrum and the elastic and transition form factors at small

momentum transfer [41, 56]. In particular, as was shown in Ref. [58], in the IK model,

〈k2〉/m2 ∼ 0.3 and therefore one expects small corrections from terms O (k2/m2). Besides,

one of the features of the IK model is that the OGE mechanism [42], which reduces the

degeneracy of the spectrum, is taken into account. It is therefore natural to study our

formalism, based on OGE FSI, within the IK framework. Concerning PDs, it has been

shown that the IK model can describe their gross features, once QCD evolution of the

proper matrix elements of the corresponding twist-2 operators is performed from the scale

of the model to the experimental one [36, 37, 38]. Reasonable predictions of GPDs have

also been obtained [39], and this makes particularly interesting the evaluation of the Sivers

function in the IK model. In section II, the relation between the Sivers function and the

impact parameter dependent GPDs has been discussed. In a model where a shift of the

quark location in the transverse plane is found, a sizable Sivers function should arise. In

order to investigate whether the IK model is suitable for the analysis of the Sivers function,

the quantity ρQ(x, ξ = 0,~b) has been calculated in this model [59], performing the Fourier

transforms, Eq. (8), of GPDs evaluated along the lines of Ref. [39]. The quantity:

ρQ(~b) =
∫

dxρ̃Q(x, ξ = 0,~b) , (35)

representing the distribution of the quarks of flavor Q, with any longitudinal momentum, in

the transverse plane, independently of their helicity, in a proton polarized along the positive

y direction, is shown in Fig. 2. It is clear that a slight shift along the x direction is observed,

with a different sign for the u and d flavor. Therefore, according to the present wisdom, a

small Sivers function is expected, with different sign for the u and d flavors [49].
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After this discussion, the IK model appears as a promising framework for the evaluation

of the Sivers function.

The Sivers function has been calculated according to Eq. (28), using the proton states

Eq. (33), neglecting the small D component, and the potential Eq. (25) in Mu(d) given by

Eq. (32).

The results of the calculation can be cast in the following form:

f⊥Q=u,d
1T (x, kT ) = −

√
2g2M2

kx

(

3

2

)

3

2 1

2π3/2α3

∫ d2~qT
(2π)2

k0
λ

|k0
λ − kz

λ|
e
− 1

α2

[

k2
λ
+ 7

8
q2
T
−
√

3

2
~q.~kλ

]

× 1

2m

[

a2 qx
q2
p

(Q)
SS + ab

qx
q2

(

p
(Q)
S′S + p

(Q)
SS′

)

+ ac
qx
q2

(

p
(Q)
MS + p

(Q)
SM

)

+ac
(

p
(Q)
SM ′ + p

(Q)
M ′S

)

+ b2
qx
q2
p

(Q)
S′S′ + bc

qx
q2
p

(Q)
S′M + bc

qx
q2
p

(Q)
MS′

+bc
(

p
(Q)
S′M ′ + p

(Q)
M ′S′

)

+ c2
qx
q2

(

p
(Q)
MM + p

(Q)
M ′M ′

)

+ c2
(

p
(Q)
MM ′ + p

(Q)
M ′M

)

]

,

(36)

with k0
λ =

√

m2 + k2
λ, and

~kλ =

√

3

2
(~q − ~k) , kz

λ =
3
2
m2 + ~k2

λT − 3x2P+2

2
√

3P+x

k2
λ = kz2

λ + ~k2
λT . (37)

The expressions of the functions p
(Q)
XX are given in the Appendix.

To evaluate numerically Eq. (36), the strong coupling constant g, and therefore αs(Q
2),

has to be fixed. Here, the prescription introduced in the past for calculations of PDFs in

quark models (see, i.e., Ref. [38]) will be used. It consists in fixing the momentum scale of

the model, the so-called hadronic scale µ2
0, according to the amount of momentum carried

by the valence quarks in the model. In the approach under scrutiny, only valence quarks

contribute. Assuming that all the gluons and sea pairs in the proton are produced pertur-

batively according to NLO evolution equations, in order to have ≃ 55% of the momentum

carried by the valence quarks at a scale of 0.34 GeV2, as in typical low-energy parameteriza-

tions [53], one finds, that µ2
0 ≃ 0.1 GeV2 if ΛNLO

QCD ≃ 0.24 GeV. This yields αs(µ
2
0)/(4π) ≃ 0.13

[38].

For an easy presentation, the quantity which is usually shown for the results of calculations

or for data of the Sivers function is its first moment, defined as follows :

f
⊥(1)Q
1T (x) =

∫

d2~kT
k2

T

2M2
f⊥Q

1T (x, kT ) . (38)
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The results of the present approach for the moments Eq. (38) are given by the dashed

curves in Fig. 3 (4) for the u (d) flavor. They are compared with a parameterization of

the HERMES data, corresponding to an experimental scale of Q2 = 2.5 GeV2 [24]4 The

patterned area represents the 1 − σ range of the best fit proposed in Ref. [24].

As expected from the IPD GPDs analysis, shown in Fig. 2, a different sign for the u and

d flavor is found.

Let us see now how the results of the calculation compare with the Burkardt sum rule

[47], which follows from general principles and must be satisfied at any scale. If the proton

is polarized in the positive y direction, in our case, where only valence quarks are present,

the Burkardt sum rule reads:
∑

Q=u,d

〈kQx 〉 = 0 , (39)

where

〈kQx 〉 = −
∫ 1

0
dx
∫

d~kT
k2

x

M
f⊥Q

1T (x, kT ) . (40)

Within our scheme, at the scale of the model, it is found 〈ku
x〉 = 10.85MeV , 〈kd

x〉 =

−11.25MeV and, in order to have an estimate of the quality of the agreement of our results

with the sum rule, we define the ratio

r =
〈kd

x〉 + 〈ku
x〉

〈kd
x〉 − 〈ku

x〉
, (41)

obtaining r ≃ 0.02, so that we can say that our calculation fulfills the Burkardt sum rule to

a precision of a few percent.

Another prediction has been derived in the framework of large Nc [60] and it reads, when

xNc ∼ O(1) and the large Nc predictions are supposed to be applicable:

rNC =
|f⊥(1)u

1T (x) + f
⊥(1)d
1T (x)|

|f⊥(1)u
1T (x) − f

⊥(1)d
1T (x)|

≃ 1

Nc
. (42)

We get the closest value to the prediction above, 0.26, in a narrow region around x = 0.4.

4 It has been chosen to compare the results with the parameterization of [24] and not with that of [23] or

[25] just because, in the first case, it is easier to reconstruct the parameterization of the data, and their

1-sigma range has been kindly provided by the authors of Ref. [24]. The discussion of the quality of the

agreement of the present results with data would not change substantially if the comparison were made

with the parameterization of Refs. [23, 25].
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We note that the contribution of the states |2S ′
1/2〉S and |2S1/2〉M , in spite of their small

probability in the proton state Eq. (33), turns out to be important in the evaluation of the

Sivers function.

The magnitude of the results is close to that of the data, although they have a different

shape: the maximum (minimum) is predicted at larger values of x. One should anyway

realize that one step of the analysis is still missing: the scale of the model, µ2
0, is much lower

than the one of the data, which is Q2 = 2.5 GeV2. For a proper comparison, the QCD

evolution from the model scale to the experimental one would be necessary. This issue is

discussed in the next session.

V. QCD EVOLUTION OF THE MODEL CALCULATION

The Sivers function is a TMD PDs and the evolution of this class of functions is, to a

large extent, still to be understood. In any case, recent interesting developements can be

found in Ref. [61].

In order to have an indication of the effect of the evolution, we perform a NLO evolution

of the model results assuming, for the moments of the Sivers function, the ones defined

in Eq. (38), the same anomalous dimensions of the unpolarized PDFs. As described in

the previous section, the parameters of the evolution have been fixed in order to have a

fraction ≃ 0.55 of the momentum carried by the valence quarks at 0.34 GeV2, as in typical

parameterizations of PDFs [53], starting from a scale of µ2
0 ≃ 0.1 GeV2 with only valence

quarks. The final result is given by the full curve in Fig. 3 (4) for the u (d) flavor. As it is

clearly seen, the agreement with data improves dramatically and their trend is reasonably

reproduced at least for x ≥ 0.2.

Of course a word of caution is in order: the performed evolution is not really correct. In

any case, an indication of two very important things is obtained:

i) The evolution of the model result is necessary to estimate the quantities at the mo-

mentum scale of experiments, as it happens for standard PDs [36, 37, 38];

ii) after evolution, the present calculation could be consistent with data, at least with the

present ones, still affected by large statistical and systematic errors.
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VI. CONCLUSIONS

A rather general formalism for the evaluation of the Sivers function, to be used in any

CQM, has been developed. The crucial ingredient has been the NR reduction of the leading

twist part of the OGE diagram in the final state. It has been shown that the IK model, based

also on a OGE contribution to the Hamiltonian, is a proper framework for the estimate of

the Sivers function. The obtained results show a sizable effect, with an opposite sign for

the u and d flavors. This is in agreement with the pattern found from an analysis of impact

parameter dependent GPDs in the IK model.

Let us compare our approach with previous calculations. The diquark model with scalar

diquarks has no contribution for the d-quark [27] and therefore does not satisfy the Burkardt

sum rule (BSR), Eq. (39). The diquark model with axial-vector diquarks has contributions

to both u and d-quarks and with opposite sign, but with the magnitude of the d 10 times

smaller than that of the u. The BSR is not satisfied. The MIT bag model calculation [28]

has non-vanishing u and d-quarks contribution of opposite sign which are proportional in

magnitude. The d-quark contribution is much smaller than ours and therefore does not

satisfy the BSR. The MIT bag model modified by instanton effects [29] has u and d-quark

contributions of the same sign and therefore does not satisfy the BSR. As a summary, we

can say that our calculation, despite the naive wave function used, is in better agreement

with the data with respect to the other approaches, and fulfills the BSR.

In order to compare with the data, one has to evolve the model calculation to the experi-

mental scale. Although a consistent QCD evolution of the model results to the experimental

momentum scale is not yet possible, due to the lack of the calculation of the corresponding

anomalous dimensions, an estimate of the evolution has been attempted. It has been found

that, once properly evolved, the model results could be in reasonable agreement with the

available data.

The formalism presented here can be used with any CQM and it will be interesting in

the near future to implement other calculations with different models, performing a correct

evolution as soon as the corresponding ingredients become available. The connection of the

Sivers function with IPD GPDs deserves a careful analysis and will be discussed elsewhere.
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APPENDIX: THE SIVERS FUNCTION IN THE IK MODEL

The functions p
(Q)
XX appearing in Eq. (36) are listed below.

p
(u)
SS = (A− q2

18m2
) ,

p
(d)
SS = (B +

q2

72m2
) , (A.1)

p
(u)
S′S =

1√
3α2

[

A

(

3

2
α2 +

q2

8

)

− 5α2 q2

36m2
− q4

144m2
+ (A− q2

18m2
)(k2

λ − 3α2)

]

,

p
(d)
S′S =

1√
3α2

[

B

(

3

2
α2 +

q2

8

)

+ 5α2 q2

144m2
+

q4

576m2
+ (B +

q2

72m2
)(k2

λ − 3α2)

]

, (A.2)

p
(u)
SS′ =

1√
3α2

[

A

(

3

2
α2 +

q2

8

)

− 5α2 q2

36m2
− q4

144m2
+ (A− q2

18m2
)

(k2
λ − 3α2 + 2q2 − 3~q · (~q − ~k)) −A

q2

2
+

q4

36m2
+ α2 q2

9m2

]

,

p
(d)
SS′ =

1√
3α2

[

B

(

3

2
α2 +

q2

8

)

+ 5α2 q2

144m2
+

q4

576m2
+ (B +

q2

72m2
)

(k2
λ − 3α2 + 2q2 − 3~q · (~q − ~k)) −B

q2

2
− α2 q2

36m2
− q4

144m2

]

, (A.3)

p
(u)
MS =

1√
6α2

[

− k2
λ

(

D − 5q2

72m2

)

+D

(

3

2
α2 +

q2

8

)

− 25α2 q2

144m2
− 5

q4

576m2

]

,

p
(d)
MS =

2√
6α2

[

k2
λ

(

B +
q2

72m2

)

−B

(

3

2
α2 +

q2

8

)

− 5α2 q2

144m2
− q4

576m2

]

, (A.4)

p
(u)
SM = p

(u)
MS +

1√
6α2

[

− (q2 −
√

6~q · ~kλ)

(

D − 5q2

72m

)

+

(

−Dq
2

2
+ 5α2 q2

36m2
+ 5

q4

144m2

)]

,

p
(d)
SM = p

(d)
MS +

1√
6α2

[

(

q2 −
√

6~q · ~kλ

)

(

B +
q2

72m2

)

+

(

B
q2

2
+
α2q2

36m
+

q4

144m2

)]

, (A.5)

p
(u)
M ′S = − 2

q2
√

18α2

[

− α2qx
kz

λ

4
√

2m
− qyα

2 (~k × ~q)z

8
√

2m2
+
~q · ~kλ

2
√

2
CM ′S

MSMA +

1

3



−α2qx
kz

λ

4
√

2m
+ qyα

2 (~k × ~q)z

8
√

2m2
+
~q · ~kλ

2
√

2
CM ′S

MAMS





]

,

p
(d)
M ′S = − 2

q2
√

18α2

2

3

[

− α2qx
kz

λ

4
√

2m
+ qyα

2 (~k × ~q)z

8
√

2m2
+
~q · ~kλ

2
√

2
CM ′S

MAMS

]

, (A.6)

p
(u)
SM ′ = p

(u)
M ′S − 2

q2
√

18α2

(

CM ′S
MSMA +

1

3
CM ′S

MAMS

)





√
3q2

4
− ~q · ~kλ√

2



 ,

p
(d)
SM ′ = p

(d)
M ′S − 2

q2
√

18α2

2

3
CM ′S

MAMS





√
3q2

4
− ~q · ~kλ√

2



 , (A.7)
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p
(u)
S′S′ =

1

3α4

[

F p
(u)
SS +G

(

A

(

3

2
α2 +

q2

8

)

− 5α2 q2

36m2
− q4

144m2

)

+H
(

− A
q2

2

+
q4

36m2
+ α2 q

2

9m

)

−
√

2
(

C
S′S′(1)
MA +

1

3
C

S′S′(1)
MS

)

+
(

C
S′S′(2)
MA +

1

3
C

S′S′(2)
MS

)

]

,

p
(d)
S′S′ =

1

3α4

[

F p
(d)
SS +G

(

B

(

3

2
α2 +

q2

8

)

+ 5α2 q2

144m2
+

q4

576m2

)

+H
(

− B
q2

2

− q4

144m2
− α2 q2

36m

)

−
√

2
2

3
C

S′S′(1)
MS +

2

3
C

S′S′(2)
MS

]

, (A.8)

p
(u)
S′M =

1

3
√

2α4

[

K p
(u)
SS + L

(

A

(

3

2
α2 +

q2

8

)

− 5α2 q2

36m2
− q4

144m2

)

+H
(

−A
q2

2

+
q4

36m2
+ α2 q

2

9m

)

−
√

2
(

C
S′S′(1)
MA +

1

3
C

S′S′(1)
MS

)

+
(

C
S′S′(2)
MA +

1

3
C

S′S′(2)
MS

)

]

,

p
(d)
S′M =

1

3
√

2α4

[

K p
(d)
SS + L

(

B

(

3

2
α2 +

q2

8

)

+ 5α2 q2

144m2
+

q4

576m2

)

+H

(

−Bq
2

2
− q4

144m2
− α2 q2

36m

)

−
√

2
2

3
C

S′S′(1)
MS +

2

3
C

S′S′(2)
MS

]

, (A.9)

p
(u)
MS′ =

1

3
√

2α4

[

N p
(u)
SS +O

(

A

(

3

2
α2 +

q2

8

)

− 5α2 q2

36m2
− q4

144m2

)

− k2
λ

(

− A
q2

2

+
q4

36m2
+ α2 q

2

9m

)

−
√

2
(

C
S′S′(1)
MA +

1

3
C

S′S′(1)
MS

)

+
(

C
S′S′(2)
MA +

1

3
C

S′S′(2)
MS

)

]

,

p
(d)
MS′ =

1

3
√

2α4
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FIGURE CAPTIONS

Fig. 1: The contributions to the Sivers function in the present approach. The graph has

been drawn using JaxoDraw [62].

Fig. 2: In the upper (lower) panel, the quantity ρQ(~b), Eq. (35), is shown for the u (d)

flavor.

Fig. 3: The quantity f
⊥(1)q
1T (x), Eq. (38), for the u flavor. The dashed curve is the result

of the present approach at the hadronic scale µ2
0, Eq. (36). The full curve represents the

evolved distribution after standard NLO evolution (see text). The patterned area represents

the 1 − σ range of the best fit of the HERMES data proposed in Ref. [24].

Fig. 4: The same as in Fig. 3, but for the d flavor.
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